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Abstract 9 

Perceptual confidence is an evaluation of the validity of perceptual decisions. While there is behavioural 10 

evidence that confidence evaluation differs from perceptual decision-making, disentangling these two 11 

processes remains a challenge at the neural level. Here we examined the electrical brain activity of human 12 

participants in a protracted perceptual decision-making task where observers tend to commit to perceptual 13 

decisions early whilst continuing to monitor sensory evidence for evaluating confidence. Premature decision 14 

commitments were revealed by patterns of spectral power overlying motor cortex, followed by an 15 

attenuation of the neural representation of perceptual decision evidence. A distinct neural representation 16 

was associated with suboptimalities affecting confidence reports, with sources localised in the superior 17 

parietal and orbitofrontal cortices. In agreement with a dissociation between perception and confidence, 18 

these neural resources were recruited even after observers committed to their perceptual decisions, and 19 

thus delineate an integral neural circuit for the computation of confidence. [148 words] 20 

Introduction 21 

Whilst perception typically feels effortless and automatic, it requires probabilistic inference to resolve the 22 

uncertain causes of essentially ambiguous sensory input (Helmholtz, 1856). Human observers are capable of 23 

discriminating which perceptual decisions are more likely to be correct using subjective feelings of 24 

confidence (Pollack and Decker, 1958). These feelings of perceptual confidence have been associated with 25 

metacognitive processes (Fleming and Daw, 2017) that enable self-monitoring for learning (Veenman, 26 

Wilhelm, & Beishuizen, 2004) and communication (Bahrami et al., 2012; Frith, 2012). We are only just 27 

beginning to uncover the complex functional role of metacognition in human behaviour, and outline the 28 

computational and neural processes that enable metacognition. The study of perceptual confidence offers 29 

promising insight into metacognition, because one can use our detailed knowledge of perceptual processes 30 

to isolate factors which affect the computation of perceptual confidence. 31 

At the computational level, perceptual decisions are described by sequential sampling processes (Vickers, 32 

1970; Ratcliff, 1978; Pleskac and Busemeyer, 2010), in which noisy samples of evidence are accumulated 33 
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over time, until there is sufficient evidence to commit to a decision. Perceptual confidence tends to reflect 34 

the quantity and quality of evidence used to make the perceptual decision (Vickers, 1979; Kepecs et al., 35 

2008; Moreno-Bote, 2010). In this way, perceptual confidence is necessarily tethered to decision evidence: 36 

more evidence for the perceptual decision yields greater perceptual accuracy, and therefore higher 37 

confidence. This makes it difficult to dissociate what processes could be specifically involved in the 38 

computation of confidence beyond the underlying perceptual processes. Indeed, confidence (or a non-39 

human primate proxy for confidence) can be reliably predicted from the firing rates of neurons coding the 40 

perceptual decision itself (Kiani and Shadlen, 2009), suggesting that confidence may be a direct by-product 41 

of perceptual processing.  42 

However, a large body of behavioural studies suggest that confidence is affected by additional sources of 43 

noise that do not influence perceptual decisions (Bang, Shekhar and Rahnev, 2019; Shekhar and Rahnev, 44 

2020). And conversely, the precision of perceptual confidence can be boosted by integrating additional 45 

information, such as decision time (Kiani, Corthell, and Shadlen, 2014) or continued evidence accumulation 46 

after the observer commits to a perceptual decision (Baranski and Petrusic, 1994; Pleskac and Busemeyer, 47 

2010). Together these factors mean that the same perceptual decision evidence can lead to different levels of 48 

confidence, explaining the diverse range of confidence precision displayed by human observers, and 49 

suggesting essential differences in the processes for perceptual and confidence decisions. Moreover, 50 

evidence suggesting that confidence precision is correlated across different tasks (such as memory and 51 

perception; Mazancieux et al., 2018) further calls into question whether confidence is a mere consequence of 52 

perceptual processes, or rather, recruits specialised metacognitive resources that operate across cognition, 53 

incurring similar suboptimalities in evaluating any cognitive process.  54 

In this experiment we aimed to delineate the neural processes contributing to perception and confidence, 55 

using electroencephalography (EEG). We exploited a protracted decision-making task in which the evidence 56 

presented to the observer can be carefully controlled. On each trial, the observer was presented with a 57 

sequence of visual stimuli, oriented Gabor patches, which offer a specific amount of evidence towards the 58 

perceptual decision. The orientations were sampled from one of two overlapping circular Gaussian 59 

distributions, and the observer was asked to categorise which distribution the orientations were sampled 60 

from. We manipulated the amount of evidence presented such that the observer tends to covertly commit to 61 

their perceptual decision before evidence presentation has finished, whilst continuing to monitor ongoing 62 

evidence for assessing their confidence (Balsdon et al., 2020). These covert decisions were evident from 63 

behaviour and computational modelling, and we show similarities between the neural processes of decision-64 

making across conditions of immediate and delayed response execution. 65 

Human behaviour was compared to an optimal observer who perfectly accumulates all the presented 66 

evidence for perceptual decisions and confidence evaluation. The optimal observer must accurately encode 67 

the stimulus orientation, the decision update relevant for the categorisation, and add this to the accumulated 68 

evidence for making the perceptual decision. We uncovered dynamic neural representations of these 69 

variables, and examined how the precision of these representations fluctuate with behavioural 70 
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suboptimalities. We found two distinct representations of the accumulated evidence where imprecision in 71 

the representation was related to suboptimal behaviour in the perceptual decisions and confidence 72 

evaluations respectively. The noise contributing to the imprecision of the confidence representation was 73 

localised to the Superior Parietal and Orbitofrontal cortices. Whilst the perceptual representation was 74 

attenuated following covert decisions, the confidence representation continued to reflect evidence 75 

accumulation. This is consistent with a neural circuit that can be recruited for confidence evaluation 76 

independently of perceptual processes, providing empirical evidence for the theoretical dissociation 77 

between perception and confidence. 78 

Results 79 

The computational architecture of perceptual confidence  80 

Human observers (N = 20) performed two versions of the task whilst EEG was recorded. Across the two 81 

tasks, 100 predefined sequences of oriented Gabors were repeated for each observer, with stimuli presented 82 

as described in Figure 1a. In the Free task, the sequence continued until observers entered their perceptual 83 

decision (Figure 1b), indicating which category (Figure 1d) they thought the orientations were sampled 84 

from. Observers were instructed to enter their response as soon as they ‘felt ready’, on three repeats of each 85 

predefined sequence (300 trials in total). In the Replay task (Figure 1c), observers were shown a specific 86 

number of samples and could only enter their response after the response cue. After entering their 87 

perceptual (Type-I) decision, they made a confidence (Type-II) evaluation, how confident they were that 88 

their perceptual decision was correct, on a 4-point scale. Importantly, the number of samples shown in the 89 

Replay task was manipulated relative to the Free task, in three intermixed conditions: in the Less condition, 90 

they were shown two fewer than the minimum they had chosen to respond to over the three repeats of that 91 

predefined sequence in the Free task; in the Same condition they were shown the median number of 92 

samples; and in the More condition, four more than the maximum (Figure 1e). The variability across repeats 93 

in the Free task means that in the More condition, observers were show at least four additional stimuli, but 94 

often more than that. 95 

 96 

Figure 1. Procedure. a) Stimulus presentation: stimuli were presented at an average rate of 3 Hz, but with 97 

variable onset and offset (𝒗𝒔 ∈ [𝟖𝟑, 𝟏𝟑𝟑] ms, 𝒗𝒔𝒔 +  𝒗𝒆𝒔−𝟏 ≥ 𝟐𝟏𝟔 ms; see Methods). Stimuli were presented 98 
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within a circular annulus which acted as a colour guide for the category distributions. The colour guide and the 99 

fixation point were present throughout the trial. b) Free task: on each trial observers were presented with a 100 

sequence of oriented Gabors, which continued until the observer entered their response (or 40 samples were 101 

shown). 100 sequences were predefined and repeated three times. c) Replay task: The observer was presented 102 

with a specific number of samples and could only enter their response after the cue (fixation changing to red). 103 

The number of samples (x) was determined relative to the number the observer chose to respond to on that 104 

same sequence in the Free task (p). There were three intermixed conditions, Less (x = pmin – 2; where pmin is the 105 

minimum p of the three repeats), Same (x = pmed; where pmed is the median p) and More (x = pmax + 4; where pmax 106 

is the maximum p of the three repeats of that predefined sequence). d) Categories were defined by circular 107 

Gaussian distributions over the orientations, with means -45° (blue) and 45° (orange), and concentration 𝜿 =108 

𝟎. 𝟓. The distributions overlapped such that an orientation of 45° was most likely drawn from the orange 109 

distribution but could also be drawn from the blue distribution with lower likelihood. e) Distributions of the 110 

number of samples per trial in the Free task, and Replay task conditions (over all observers).  111 

Based on previous findings (Balsdon et al., 2020) we expected observers to prematurely commit to 112 

perceptual decisions in the More condition, whilst continuing to monitor sensory evidence for evaluating 113 

their confidence. Replicating previous results (Balsdon et al., 2020), we found that perceptual decision 114 

sensitivity was significantly decreased in the Less condition compared to those same (pmin) trials in the Free 115 

task (Wilcoxon sign rank Z = 3.88, p < 0.001, Bonferroni corrected for three comparisons), there was no 116 

significant difference for the Same condition (Z = 1.21, p = 0.23, uncorrected), nor the More condition (Z = -117 

1.53, p = 0.13, uncorrected; despite at least an additional four samples being presented compared to the pmax 118 

trials; Figure 2a). In addition, reaction times in the More condition were significantly decreased compared 119 

to the Same condition (on average, 60 ms faster; Z(19) = 2.58, p = 0.010; Figure 2b). 120 

This lack of substantial increase in performance in the More condition could be the result of either a 121 

performance ceiling effect or a premature commitment to the perceptual decision. The former explanation 122 

reflects a limitation of the perceptual evidence accumulation process, whereas the latter refers to an active 123 

mechanism that ignores the final sensory evidence. We compared these two hypotheses using a 124 

computational modelling approach (Balsdon et al., 2020; see Methods). Specifically, we compared a model 125 

in which performance in the More condition is limited by the suboptimalities evident from the Same and the 126 

Less conditions (inference noise, and temporal integration bias, see Supplementary Note 1), to a model in 127 

which performance could be impacted by a covert bound at which point observers commit to a decision 128 

irrespective of additional evidence. Cross-validated model comparison provided significant evidence that 129 

observers were implementing a covert bound (mean relative increase in model log-likelihood = 0.048, 130 

bootstrapped p = 0.001, Figure 2c). The winning model provided a good description of the data (red open 131 

markers in Figure 2a).  132 

In contrast to what we found for the perceptual decision, there was no evidence that observers were 133 

implementing a covert bound on confidence: Implementing the same bound as the perceptual decision did 134 

not improve the fit (relative improvement with bound = -0.007, bootstrapped p = 0.11, uncorrected) and an 135 
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independent bound actually significantly reduced the fit compared to continued accumulation (relative 136 

improvement = -0.014, p = 0.022, Bonferroni corrected for two comparisons; Figure 2c). We obtained 137 

further distinctions between perceptual and confidence processes through computational modelling: 138 

additional noise was required to explain the confidence ratings, along with a separate temporal bias. The 139 

best description of both perceptual and confidence responses was provided by a partially dissociated 140 

computational architecture (full details in Supplementary Note 1), where perceptual and confidence 141 

decisions are based on the same noisy representation of the sensory evidence, but confidence accumulation 142 

incurs additional noise and can continue after the completion of perceptual decision processes (Figure 2d). 143 

These computational differences between perceptual decisions and confidence evaluations result in 144 

deviations between the inference errors associated with perceptual and confidence decisions (see 145 

Supplementary Note 2 for model simulations). 146 

 147 

Figure 2. Behaviour and computational modelling. a) Proportion correct in each condition of the Replay 148 

task, relative to the Free task (orange horizontal lines). Individual data are shown in scattered points, error 149 

bars show 95% between- (thin) and 95% within- (thick) subject confidence intervals. Open red markers show 150 

the model prediction. b) Median reaction time (from response cue) in each condition of the Replay task, error 151 

bars show 95% within-subject confidence intervals, the orange horizontal line shows the non-decision time 152 

estimated in the Free task, based on computational modelling. Individual data are shown in scattered points. c) 153 

Difference in log-likelihood of the models utilising a covert bound relative to the models with no covert bound. 154 

On the left, the model fitting perceptual decisions only. The middle bar shows the difference in log-likelihood of 155 

the fit to confidence ratings with identical perceptual and confidence bounds. The right bar shows the difference 156 

in log-likelihood of the fit to confidence ratings of the model with an independent bound for confidence evidence 157 

accumulation. Error bars show 95% between-subject confidence intervals. d) Computational architecture of 158 

perceptual and confidence decisions. Perceptual (Type-I) and confidence (Type-II) decisions accumulate the 159 

same noisy perceptual evidence, but confidence is affected by additional noise (𝜀𝑐) and a separate temporal bias 160 

(𝛼𝑐). This partial dissociation allows Type-II accumulation to continue after the observer has committed to a 161 

perceptual decision. 162 
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Model-free EEG analysis 163 

We first examined EEG amplitude modulations around the time of the response: the CPP (Central-Parietal 164 

Positivity; O’Connell et al., 2012) and the LRP (Lateralised Readiness Potential; Deecke et al., 1976). There 165 

were significant differences in the CPP and the LRP between the More and the Less conditions of the Replay 166 

task (for the CPP, from -500 prior to the response, the largest cluster showing tave(19) = -2.85, pcluster = 0.006; 167 

for the LRP, from just after the response, the first cluster from 32 to 196 ms;  tave(19) = -3.57, pcluster < 0.002; 168 

Figure 3, left). There were also differences based on perceptual decision accuracy (for CPP, the main cluster 169 

emerges from -156 ms to 592 ms around the response; tave(19) = 4.38, pcluster < 0.002; and LRP from -84 ms to 170 

652 ms around the response, with the largest difference just after the response, tave(19) = 2.81, pcluster < 171 

0.002; Figure 3, middle). There was no significant difference in the LRP between trials with high confidence 172 

(ratings of 3 and 4) and low confidence (ratings of 1 and 2), but a substantial difference was observed in the 173 

CPP (from 250 ms prior to the response; tave(19) = 4.46, pcluster < 0.002; Figure 3, right), in line with previous 174 

findings (e.g. Herding et al., 2019). These modulations are consistent with the differences in the underlying 175 

accumulated evidence driving observers’ responses. We aimed to more closely examine the neural processes 176 

underlying these broad effects on EEG amplitude, especially with respect to the distinctions between 177 

perceptual decision-making and confidence evaluation, as identified by the computational model of 178 

behaviour: perceptual decision processes can conclude prior to the confidence evaluation processes, and 179 

rely on a representation of the evidence that incurs distinct inference errors.  180 

 181 

Figure 3. Amplitude modulations with task variables. Central-Parietal Positivity (CPP, top) and Lateralised 182 

Readiness Potential (LRP, bottom), within condition (Less/Same/More; left), correct and incorrect perceptual 183 

responses (middle), and high and low confidence ratings (right). Vertical black lines mark the time of the 184 

response, red horizontal lines mark cluster corrected significant differences. Shaded regions show 95% within-185 

subject confidence intervals. 186 
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EEG signatures of premature perceptual decision commitment 187 

We examined the neural signatures of perceptual decision commitment using a linear discriminant analysis 188 

of the spectral power of band-limited EEG oscillations (see Methods). A classifier wad trained to 189 

discriminate observers’ perceptual decisions based on the spectral power in 8 to 32 Hz frequency bands at 190 

time-points leading up to the response in the Free task (Supplementary Note 4). This classifier was then 191 

tested across time in each condition of the Replay task, to trace the progression of perceptual decision-192 

making in comparison to the Free task (where decisions are directly followed by response execution). There 193 

were opposite asymmetries in the cross-classification of the Less and the More conditions (Figure 4a). 194 

Statistical comparison revealed substantial clusters of significant differences (Figure 4b): Training around -195 

0.78 to 0.44 s from the time of the response in the Free task led to significantly better accuracy testing in the 196 

More condition than in the Less condition, prior to when the response was entered (for the cluster testing at 197 

-2.5 to -1.6 s Zave = 2.04, pcluster = 0.002; testing at -1.5 to -1 s, Zave = 1.95, pcluster = 0.01; testing at -0.8 to -0.3, 198 

Zave = 2.32, pcluster < 0.001). This pattern of findings suggests that observers were not only committing to their 199 

perceptual decision early, but already preparing their motor response, which would explain the faster 200 

reaction times in the More condition (Figure 2b). 201 

We found that the accumulated evidence over all samples could predict the strength of the neural signature 202 

of response execution (mean 𝛽 = 0.11, t(19) = 3.89, p < 0.001; Figure 4c). For the Same and Less conditions, 203 

the weight on the accumulated evidence appeared to decrease as evidence was accumulated to samples 204 

further prior from the response. But, in the More condition, the evidence accumulated up to four samples 205 

prior to the response still predicted the classifier response (t(19) = 3.81, p = 0.001). This difference between 206 

conditions over samples is evidenced by a significant interaction based on a repeated measures ANOVA 207 

(F(8,152) = 2.429, p = 0.05, after Bonferroni correction for three comparisons). Leading up to the response, 208 

the accumulated evidence becomes increasingly predictive of the strength of the neural signature of 209 

response execution, except in the More condition, where this prediction is already accurate up to four 210 

samples prior to the response: After committing to a perceptual decision, the observer’s perceptual response 211 

is no longer influenced by additional evidence. 212 
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 213 

Representations of decision evidence in EEG signals 214 

To perform this task the optimal observer must encode the orientation of the stimulus, estimate the decision 215 

update based on the categories, and add this to the accumulated evidence for discriminating between the 216 

categories (Wyart et al., 2012; Wyart et al., 2015). We examined the neural representation of these optimal 217 

variables using a regression analysis with the EEG signals (evoked response, bandpass filtered between 1 218 

and 8 Hz, see Methods). Figure 5a shows the time course of the neural coding of stimulus orientation, 219 

momentary decision update, and accumulated evidence, locked to stimulus onset. The representations of 220 

these variables showed distinct time courses and relied on distinct patterns of EEG activity over scalp 221 

topography (Figure 5b). There was a transient representation of stimulus orientation localised over 222 

occipital electrodes. The representation of the momentary decision update was maintained for a longer 223 

duration, initially supported by occipital electrodes, then increasingly localised over central-parietal 224 

electrodes. The representation of the accumulated evidence was sustained even longer and relied on both 225 

frontal and occipital electrodes.  226 

The precision with which the EEG representations reflect the optimal decision variables can be compared 227 

with observers’ suboptimal inference, based on whether the observers’ behavioural responses matched 228 

those of an optimal observer. For each variable, we estimated the representation precision separately for 229 

epochs leading to suboptimal behavioural responses, and responses that matched those of the optimal 230 

observer (Replay task epochs only; Figure 5c; Supplementary Note 3). For perceptual decisions, the 231 

optimal observer responds with the correct category. For confidence evaluations, the optimal observer gives 232 

high confidence on trials with greater than the median evidence (over all trials) for their perceptual 233 

response. The precision of the representation of stimulus orientation did not significantly vary with 234 

behavioural suboptimalities. The representation precision of the momentary decision update showed a 235 

significant effect of perceptual decision suboptimality from 380 to 468 ms (Favg(1,19) = 7.97, pcluster = 0.008) 236 

Figure 4. EEG signatures of premature perceptual 

decisions. a) Classifier AUC training at each time-point 

in the Free task and testing across time in the Less 

(top), Same (middle), and More (bottom) conditions of 

the Replay task. Black contours encircle regions where 

the mean is 3.1 standard deviations from chance (0.5; 

99% confidence). b) Difference in AUC between the 

More and Less conditions. Cluster corrected significant 

differences are highlighted. c) The relationship between 

the evidence accumulated up to n samples prior to the 

response cue and the strength of the neural signature of 

response execution in each condition. Error bars show 

95% within- (thick) and between-subject (thin) 

confidence intervals. 
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and a significant interaction between perceptual and confidence suboptimalities from 396 to 468 ms 237 

(Favg(1,19) = 6.66, pcluster = 0.022) and from 716 to 856 ms (Favg(1,19) = 10.75, pcluster < 0.001). The largest 238 

effects were seen in the representation precision of the accumulated evidence. Representation precision was 239 

significantly reduced in epochs leading to suboptimal perceptual decisions from 108 ms post stimulus onset 240 

to the end of the epoch (Favg(1,19) = 13.65, pcluster <0.001). In addition, there was a significant interaction with 241 

suboptimal confidence from 696 to 836 ms (Favg(1,19) = 8.72, pcluster = 0.005). The precision of the EEG 242 

representations showed distinct associations with the suboptimality of behavioural responses. 243 

The presence of a covert bound implies that, after the observer commits to a decision, they no longer 244 

incorporate additional evidence for that decision. We should therefore see significant decreases in the 245 

precision of representations that specifically contribute to perceptual evidence accumulation. Indeed, the 246 

precision of the early representation of accumulated evidence was significantly attenuated for the last four 247 

samples of the More condition (in which observers were likely to have already committed to a decision), 248 

compared to the last four samples of the Less condition (where observers were unlikely to have committed 249 

to a decision; from the start of the epoch to 424 ms, Figure 5d; tavg(19) = -5.19, pcluster<0.001). These 250 

differences in representation precision were not present for the encoding of stimulus orientation, nor the 251 

decision update, nor was the decreased precision evident in a comparison of the first four samples 252 

(Supplementary Note 5). Together, these comparisons suggest that different aspects of these evolving EEG 253 

representations of decision variables are related to the neural processes for perception and confidence. 254 

 255 

Figure 5. Representation of decision variables. a) Representation precision (Fischer transformed correlation 256 

coefficient, z) of stimulus orientation (blue, left), momentary decision update (green, middle), and accumulated 257 

decision evidence (purple, right). The encoded variables are shown in the insets (the accumulated evidence is 258 

the cumulative sum of the momentary evidence signed by the response, only one example sequence is shown). 259 

Shaded regions show 95% between-subject confidence intervals. b) Relative electrode representation precision 260 
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over three characteristic time windows (100 – 200 ms, left; 400 – 600 ms, middle; and 600 – 800 ms, right).  c) 261 

Representation precision for epochs leading to optimal and suboptimal perceptual (T1) and confidence (T2) 262 

responses. Lighter lines show perceptual decisions that match the optimal response, dashed lines show 263 

suboptimal confidence ratings. Dashed red horizontal lines show significant interactions between perceptual 264 

and confidence suboptimality. The light red horizontal line shows the significant effect of suboptimal perception 265 

and the dark red horizontal line shows the significant effect of suboptimal confidence. Shaded regions show 266 

95% within-subject confidence intervals. d) Difference in decoding precision between the More and the Less 267 

conditions for epochs corresponding to the last four samples of the trial. The purple horizontal line shows the 268 

significant difference in decoding of accumulated evidence. 269 

Neural processes for confidence 270 

The analysis above shows that at certain times there was on average more noise affecting the EEG 271 

representation of accumulated evidence on epochs leading to suboptimal behavioural responses. We 272 

examined whether this increase in noise was due to a systematic change in the representation that could be 273 

functionally related to the inference suboptimalities affecting observers’ decision-making and confidence 274 

evaluation. Cluster modelling with multivariate Bayesian scan statistics (Neill, 2011; Neill, 2019) was used to 275 

isolate contiguous signals in space (electrode location) and time where imprecision in the representation of 276 

accumulated evidence was associated with behavioural suboptimalities beyond what could be explained by 277 

deviations in measurement noise alone (see Supplementary Note 6 for further details). For perceptual 278 

decision-making, signals were initially clustered over posterior electrodes, becoming dispersed over more 279 

anterior electrodes late in the epoch (Figure 6a, top). For confidence, we found two co-temporal clusters in 280 

posterior and anterior electrodes emerging from 668 ms to 824 ms from stimulus onset (Figure 6a, 281 

bottom). We combined the signals from the two confidence clusters to estimate the confidence 282 

representation of accumulated evidence (Figure 6b, dark green bar). We used this representation to 283 

estimate the single-sample inference error of the observer, based on the deviation of the effective (noisy) 284 

value from the predicted value, given the representation and the true value presented to the observer. 285 

We compared the inference error estimated from the confidence representation to the inference error 286 

estimated from the computational model of behaviour. There was a significant correlation with the error 287 

estimated from the model of confidence ratings (mean z = 0.05, t(19) = 5.12, p  < 0.001), and this correlation 288 

was significantly greater than the error estimated from the model of perceptual decisions alone (t(19) = 289 

2.62, p = 0.017; see Supplementary Note 7). This suggests that the noise present in this cluster-wide 290 

representation specifically contributes to suboptimal confidence ratings over and above perceptual noise. 291 

Moreover, the precision of the confidence representation persisted through the last four samples of the More 292 

condition (Figure 6b), as expected of a signal that continues to process evidence for confidence after 293 

perceptual decision commitment. In contrast, the early posterior representation found to be relevant for 294 

perceptual decision-making did show attenuation for the last four samples of the More condition (a repeated 295 

measures ANOVA revealed a significant interaction between cluster and condition for decoding precision in 296 

the last four samples, F(1,19) = 32.00, p = 0.001, Bonferroni corrected for three comparisons; Figure 6b), 297 
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and the perceptual representation error was unrelated to suboptimal confidence ratings (in fact the 298 

evidence was in favour of the null hypothesis; summed log likelihood ratio = -1176). These results are 299 

consistent with dissociable stages of neural processing for confidence evaluation and perceptual decision-300 

making. 301 

Greater error in the confidence representation of accumulated evidence was associated with greater model 302 

estimated inference error and suboptimal behavioural confidence evaluations. We examined the sources of 303 

the EEG representation error by comparing ‘Noise Min’ and ‘Noise Max’ epochs (the top and bottom quartile 304 

of epochs sorted by the confidence representation precision). The presented sensory evidence was similar 305 

across these epochs (see Supplementary Note 7), but the additional noise in the Noise Max epochs pushes 306 

the represented evidence further from the mean, and should therefore correspond to a greater absolute 307 

normalised signal. We estimated the sources of activity in the Noise Min and Noise Max epochs using a 308 

template brain (Figure 6c; see Methods) and tested for differences in the rectified normalised current 309 

density in ROIs defined based on the previous literature (Figure 6d; Graziano, Parra, and Sigman, 2015; 310 

German and Philiastides, 2018; Herding et al., 2019, see Supplementary Note 9). As expected, Noise Max 311 

epochs showed a greater increase in current density power over time. Significant differences first emerged 312 

in the Superior Parietal cortex (Figure 6e; 276 - 304 ms; tavg(19) = 2.37, pcluster = 0.016, re-emerging at 596 – 313 

748 ms; tavg(19) = 2.53, pcluster = 0.016; and  912 ms; tavg(19) = 2.50, pcluster = 0.014), and then in the 314 

Orbitofrontal cortex (OFC; 516 – 556 ms; tavg(19) = 2.30, pcluster = 0.022, re-emerging at 660 – 772 ms; tavg(19) 315 

= 2.79, pcluster = 0.032, and 824 – 1000 ms; tavg(19) = 2.60, pcluster = 0.022). No differences in the rostral Middle 316 

Frontal cortex nor Lateral Occipital cortex survived cluster correction. 317 
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 318 

Figure 6. Clusters of behaviourally relevant representations and their sources. a) Log likelihood ratio 319 

(LLR) of the data given the hypothesis that decoding precision varies with behavioural suboptimalities, against 320 

the null hypothesis that decoding precision varies only with measurement noise. Perceptual (Type-I) behaviour 321 

is shown on top and confidence (Type-II) behaviour is shown on the bottom. Clusters where the log posterior 322 

odds ratio outweighed the prior are circled, only the bold area of the perceptual cluster was further analysed. 323 

Time series (left) show the maximum LLR of electrodes laterally, with frontal polar electrodes at the top 324 

descending to occipital electrodes at the bottom. Scalp maps (right) show the summed LLR over the indicated 325 

time windows. b) Left: representation precision (z) training and testing on signals within the clusters. Colours 326 

correspond to the circles in a), with the dark green bar showing the combined decoding precision of the 327 

anterior and posterior confidence clusters, and the black bar showing the combined representation precision of 328 

all clusters. Right: Representation precision of the last four samples in the Less and the More conditions for the 329 

combined confidence representation and the perceptual representation. Error bars show 95% within-subject 330 

confidence intervals. c) Average rectified normalised current density in Noise Min epochs for the corresponding 331 

time windows, filtered above the half-maximum amplitude. d) ROIs (defined by mindBoggle coordinates; Klein 332 

et al., 2017): Lateral Occipital cortex (blue); Superior Parietal cortex (green); Orbitofrontal cortex (orange); 333 
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and Rostral Middle Frontal cortex (red). e) ROI time series for Noise Max (black) and Noise Min (coloured) 334 

epochs, taking the average rectified normalised current density (z) across participants. Shaded regions show 335 

95% within-subject confidence intervals, red horizontal lines indicate cluster corrected significant differences. 336 

Standardised within-subject differences are traced above the x-axis, with the shaded region marking z = 0 to z = 337 

1.96 (95% confidence). 338 

Discussion 339 

We examined the dynamic neural signals associated with suboptimal accumulation of evidence for 340 

evaluating confidence in perceptual decisions. Observers were required to integrate evidence over multiple 341 

samples provided by a sequence of visual stimuli. When observers were unable to control the amount of 342 

evidence they were exposed to, they employed a covert decision bound, committing to decisions when they 343 

had enough evidence, even if stimulus presentation continued. We had previously shown evidence for this 344 

premature decision commitment based on behaviour and computational modelling (Balsdon, Wyart and 345 

Mamassian, 2020). We replicated these results here, and further examined the neural signatures of covert 346 

decision making. We found that the distribution of spectral power associated with preparing a motor 347 

response in the Free task (where the response is entered as soon as the decision is made) could be used to 348 

accurately predict responses in the More condition of the Replay task over 1 s prior to when the response 349 

was entered, and with significantly greater sensitivity than in the Less condition (when observers were 350 

unlikely to have committed to a decision early). This suggests that covert decisions could trigger the motor 351 

preparation for pressing the response key. Moreover, the strength of the eventual motor response signal 352 

could be predicted by earlier decision evidence in the More condition, as if observers are maintaining some 353 

representation of the decision evidence whilst waiting to press the response key. 354 

Based on the evoked representation of accumulated evidence, perceptual decision accuracy relied on a flow 355 

of information processing from early Occipital and Parietal signals, which then spread through to anterior 356 

electrodes. When observers committed to perceptual decisions prematurely, only the early part of the 357 

representation of accumulated evidence was attenuated. This selective dampening of the representation of 358 

accumulated evidence following premature decision commitment delineates which computations are 359 

devoted solely to the perceptual decision process, and which computations reflect the input to the decision 360 

process: The representations of stimulus orientation and decision update (Wyart et al., 2012; Wyart et al., 361 

2015; Weiss et al., 2019), which are necessary input for the perceptual decision, did not substantially change 362 

after committing to a perceptual decision. This initial perceptual processing stage likely remained important 363 

for the continued accumulation of evidence for evaluating confidence (even after the completion of 364 

perceptual decision processes), though it could also be that these processes are automatically triggered by 365 

stimulus onset irrespective of whether the evidence is being accumulated for decision-making. 366 

Confidence should increase with increasing evidence for the perceptual decision. It is therefore unsurprising 367 

that the neural correlates of confidence magnitude have found similar EEG markers as those related to the 368 

accumulation of the underlying perceptual decision evidence: the P300 (Gherman and Philiastides, 2015; 369 
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Desender et al., 2016; Desender et al., 2019; Zakrzewski et al., 2019; Rausch et al., 2020); and Central 370 

Parietal Positivity (CPP; Boldt et al., 2019; Herding et al., 2019, indeed we show a similar effect in Figure 3). 371 

The analysis presented in this manuscript targeted confidence precision rather than confidence magnitude, 372 

by assessing confidence relative to an optimal observer who gives high confidence ratings on trials where 373 

the evidence in favour of the perceptual choice is greater than the median across trials. We isolated part of 374 

the representation of accumulated evidence where greater error in the representation was followed by 375 

suboptimal confidence ratings, and showed that this was also associated with greater error estimated by the 376 

computational model fit to describe confidence behaviour. 377 

The precision of the confidence representation was found to be disrupted by noise localised to the Superior 378 

Parietal and Orbitofrontal cortices. This is not at odds with the previous literature: The difference in 379 

Superior Parietal cortex could be linked with findings from electrophysiology that suggest that confidence is 380 

based on information coded in Parietal cortex, where the underlying perceptual decision evidence is 381 

integrated (Kiani et al., 2009; Rutishauser et al., 2018; though at least a subset of these neurons reflect 382 

bounded accumulation, which is in contrast with the continued confidence accumulation described in this 383 

experiment; Kiani, Hanks, and Shadlen, 2007). Early electrophysiological investigation into the function of 384 

the Orbitofrontal cortex revealed neural coding associated with stimulus value (Thorpe, Rolls, and 385 

Maddison, 1983), which has since been linked with a confidence-modulated signal of outcome-expectation 386 

(Kepecs et al., 2008; and in human fMRI; Rolls, Grabenhorst, and Deco, 2010) and recently, shown to be 387 

domain-general (single OFC neurons were associated with confidence in both olfactory and auditory tasks; 388 

Masset et al., 2020). The source localisation analysis therefore connects previous findings, indicating 389 

confidence feeds off an evidence accumulation process, culminating in higher-order brain areas that appear 390 

to function for guiding outcome-driven behaviour based on decision certainty. 391 

These neural signatures of confidence evidence encoding were present throughout the process of making a 392 

perceptual decision. This is in line with more recent evidence suggesting that confidence could be computed 393 

online, alongside perceptual evidence accumulation (Zizlsperger et al., 2014; Gherman and Philiastides, 394 

2015; Balsdon et al., 2020), as opposed to assessing the evidence in favour of the perceptual decision only 395 

after committing to that decision. Computational model comparison supported this interpretation, showing 396 

the best description of confidence behaviour was an accumulation process that was partially dissociable 397 

from perceptual evidence accumulation (Supplementary Note 1; replicating our previous analysis, Balsdon 398 

et al., 2020). This partial dissociation mediates the ongoing debate between single-channel (for example, 399 

Maniscalco and Lau, 2016) and dual-channel (for example, Charles, King, and Deheane 2014) models, as it 400 

constrains confidence by perceptual suboptimalities, at the same time as allowing additional processing to 401 

independently shape confidence. The combination of this partial dissociation and online monitoring could 402 

allow for metacognitive control of perceptual evidence accumulation, to flexibly balance perceptual accuracy 403 

against efficiency by bounding perceptual evidence accumulation according to contemporaneous confidence. 404 

Using this protocol, we were able to delineate two distinct representations of accumulated evidence which 405 

correspond to perceptual decision-making and confidence evaluations. These neural representations were 406 
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partially dissociable in that the perceptual representation neglected additional evidence following 407 

premature decision commitment whilst the confidence representation continued to track the updated 408 

evidence independently of decision commitment. This partial dissociation validates the predictions of the 409 

computational model and provides a framework for the cognitive architecture underlying the distinction 410 

between perception and confidence. That the neural resources involved in the confidence representation can 411 

be recruited independently of perceptual processes implies a specific neural circuit for the computation of 412 

confidence, a necessary feature of a general metacognitive mechanism flexibly employed to monitor the 413 

validity of any cognitive process. 414 

Methods 415 

Participants 416 

A total of 20 participants were recruited from the local cognitive science mailing list (RISC) and by word of 417 

mouth. No participant met the pre-registered 418 

(https://osf.io/346pe/?view_only=ddbc092996f34438964cf45a239498bb) exclusion criteria of chance-419 

level performance or excessive EEG noise. Written informed consent was provided prior to commencing the 420 

experiment. Participants were required to have normal or corrected to normal vision. Ethical approval was 421 

granted by the INSERM ethics committee (ID RCB: 2017-A01778-45 Protocol C15-98). 422 

Materials 423 

Stimuli were presented on a 24” BenQ LCD monitor running at 60 Hz with resolution 1920x1080 pixels and 424 

mean luminance 45 cd/m2. Stimulus generation and presentation was controlled by MATLAB (Mathworks) 425 

and the Psychophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007), run on a Dell Precision 426 

M4800 Laptop. Observers viewed the monitor from a distance of 57 cm, with their head supported by a chin 427 

rest. EEG data were collected using a 64-electrode BioSemi ActiveTwo system, run on a dedicated mac laptop 428 

(Apple Inc.), with a sample rate of 512 Hz. Data were recorded within a shielded room. 429 

Stimuli 430 

Stimuli were oriented Gabor patches displayed at 70% contrast, subtending 4 dva and with spatial frequency 431 

2 cyc/deg. On each trial a sequence of stimuli was presented, at an average rate of 3 Hz, with the stimulus 432 

presented at full 70% contrast for a variable duration between 50 and 83 ms, with a sudden onset, followed 433 

by an offset ramp over two flips, where the stimulus contrast decreased by 50% and 75% before complete 434 

offset. Stimulus onset timing was jittered within the stimulus presentation interval such that the timing of 435 

stimulus onset was irregular but with at least 216 ms between stimuli. These timings and stimulus examples 436 

are shown in Figure 1a.  437 

On each trial the orientations of the presented Gabors were drawn from one of two circular Gaussian (Von 438 

Mises) distributions centred on +/- 45° from vertical (henceforth referred to as the ‘orange’ and ‘blue’ 439 

distributions respectively), with concentration κ = 0.5 (shown in Figure 1d). Stimuli were displayed within 440 

an annular ‘colour-guide’ where the colour of the annulus corresponds to the probability of the orientation 441 

under each distribution, using the red and blue RGB channels to represent the probabilities of each 442 
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orientation under each distribution. Stimuli were presented in the centre of the screen, with a black central 443 

fixation point to guide observers’ gaze. 444 

Procedure 445 

The task was a modified version of the weather prediction task (Knowlton et al., 1996; Drugowitsch et al., 446 

2016). Throughout the experiment, the observer’s perceptual task was to categorise which distribution the 447 

stimulus orientations were sampled from. They were instructed to press the ‘d’ key with their left hand (of a 448 

standard querty keyboard) for the blue distribution and the ‘k’ key with their right hand for the orange 449 

distribution. There were two variants of the task: The Free task and the Replay task. The trials were 450 

composed of three repetitions of 100 predefined sequences of up to 40 samples (50 trials from each 451 

distribution) for each observer (300 trials per task). 452 

In the ‘Free’ task, observers were continually shown samples (up to 40) until they entered their response. 453 

They were instructed to enter their response as soon as they ‘feel ready’ to make a decision, with emphasis 454 

on both accuracy (they should make their decision when they feel they have a good chance of being correct) 455 

and on time (they shouldn’t take too long to complete each trial). A graphical description of this task is 456 

shown in Figure 1b. 457 

After completing the Free task, observers then completed the Replay task. In this task they were shown a 458 

specific number of samples and could only enter their response after the sequence finished, signalled by the 459 

fixation point turning red. The number of samples was determined based on the number observers chose to 460 

respond to in the Free task. There were three intermixed conditions: In the Less condition observers were 461 

shown two fewer samples than the minimum they had chosen to respond to on that predefined sequence in 462 

the Free task; In the Same condition observers were shown the median number of samples from that 463 

predefined sequence; in the More condition observers were shown four additional samples compared to the 464 

maximum number they chose to respond to on that sequence in the Free task. After entering their 465 

perceptual (Type-I) response, observers were cued to give a confidence rating (Type-II decision). The 466 

confidence rating was given on a 4-point scale where 1 represents very low confidence that the perceptual 467 

decision was correct, and 4, certainty that the perceptual decision was correct. The rating was entered by 468 

pressing the ‘space bar’ when a presented dial reached the desired rating.  The dial was composed of a black 469 

line which was rotated clockwise to each of 4 equidistant angles (marked 1 - 4) around a half circle, at a rate 470 

of 1.33 Hz. The dial started at a random confidence level on each trial and continued updating until a rating 471 

was chosen. A graphical description of this task is shown in Figure 1c. 472 

Prior to commencing the experimental trials, participants were given the opportunity to practice the 473 

experiment and ask questions. They first performed 20 trials of a fixed number of samples with only the 474 

perceptual decision, with feedback after each response as to the true category. They then practiced the 475 

Replay task with the confidence rating (and an arbitrary number of samples). Finally, they practiced the Free 476 

task, before commencing the experiment with the Free task. 477 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 10, 2021. ; https://doi.org/10.1101/2021.04.08.439033doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439033
http://creativecommons.org/licenses/by/4.0/


 17 

Analysis 478 

Behaviour 479 

Perceptual (Type-I) decisions were evaluated relative to the category the orientations were actually drawn 480 

from. Performance is presented as proportion correct, whilst statistical analyses were performed on 481 

sensitivity (d’). Confidence was evaluated relative to an optimal observer who gives high confidence when 482 

the log-likelihood of the chosen category, based on the presented orientations, is above the median across 483 

trials, and low confidence on trials with less than the median log-likelihood. More broadly, confidence should 484 

increase with increasing evidence in favour of the perceptual decision, see Supplementary Note 3. 485 

Computational modelling 486 

Computational modelling followed the same procedure as Balsdon, Wyart, and Mamassian (2020). The 487 

model parametrically describes suboptimalities relative to the Bayesian optimal observer. The Bayesian 488 

optimal observer knows the category means, 𝜇1 =  −
𝜋

4
, 𝜇2 =  

𝜋

4
, and the concentration, 𝜅 = 0.5, and takes the 489 

probability of the orientation 𝜃𝑛 (at sample n) given each category 𝜓  (𝜓 = 1 or 𝜓 = 2): 490 

 
𝑝(𝜃𝑛  | 𝜓) =  

𝑒𝜅 cos (2(𝜃𝑛−𝜇𝜓))

𝜋𝐼0(𝜅)
 

(1) 

Where 𝐼0(∙) is the modified Bessel function of order 0. The optimal observer then chooses the category 491 

𝜓 with the greatest posterior probability over all samples for that trial, T (T varies from trial to trial). Given a 492 

uniform category prior, 𝑝(𝜓) ∝
1

2
 , and perfect anticorrelation in 𝑝(𝜃𝑛  | 𝜓) over the categories, the log 493 

posterior is proportional to the sum of the difference in the log-likelihood for each category (ℓ𝑛 =  ℓ𝑛,1 −494 

 ℓ𝑛,2): 495 

 
𝑧 =  ∑ ℓ𝑛

𝑇

𝑛=1

 
(2) 

Where: 496 

 ℓ𝑛,𝜓 = log 𝑝(𝜃𝑛  |𝜓) = 𝜅 cos (2(𝜃𝑛 −  𝜇𝜓)) + 𝑐𝑜𝑛𝑠𝑡. (3) 

Such that the Bayesian optimal decision is 1 if 𝑧 > 0 and 2 if 𝑧 ≤ 0.  497 

The suboptimal observer suffers inaccuracies in the representation of each evidence sample, captured by 498 

additive independent identically distributed (i.i.d) noise, 𝜀𝑛. The noise is Gaussian distributed with zero 499 

mean, and the degree of variability parameterised by 𝜎, the standard deviation:  500 

 𝜀𝑛  ~ 𝑁(0, 𝜎2) (4) 

The evidence over samples is also imperfectly accumulated, incurring primacy or recency biases 501 

parameterised by 𝛼, the weight on the current accumulated evidence compared to the new sample (𝛼 > 1 502 

creates a primacy effect). By the end of the trial, the weight on each sample n is equal to: 503 
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 𝑣𝑛 =  𝛼𝑇−𝑛 (5) 

Where T is the eventual total samples on that trial and 𝑛 ∈ [1, 𝑇].  504 

In the Free task the observer responds when accumulated evidence reaches a bound, Λ. The optimal 505 

observer sets a constant bound on proportion correct over sequence length, which is an exponential function 506 

on the average evidence over the samples accumulated. The human observer can set the scale, b, and the rate 507 

of decline, 𝜆, of the bound suboptimally, resulting in: 508 

 Λ𝑛+ = 𝑛 × (𝑎 + 𝑏𝑒−
𝑛
𝜆 ) (6) 

for the positive decision bound (the negative bound, Λ𝑛− =  −Λ𝑛+). The likelihood 𝑓(𝑛) of responding at 509 

sample n was estimated by computing the frequencies, over 1000 samples from 𝜀𝑛 (Monte Carlo simulation), 510 

of first times where the following inequality is verified: 511 

 
| ∑(ℓ𝑛 +  𝜀𝑛) ∙ 𝑣𝑛

𝑁

𝑛=1

 | >  Λ𝑛  
(7) 

The response time, relative to reaching the decision bound, is delayed by non-decision time for executing the 512 

motor response, which is described by a Gaussian distribution of mean, 𝜇𝑈 , and variance, 𝜎𝑈
2. 513 

Model fitting 514 

Parameters were optimised to minimise the negative log-likelihood of the observer making response r on 515 

sample n on each trial for each participant using Bayesian Adaptive Direct Search (Acerbi and Ma, 2017). The 516 

log-likelihoods were estimated using Monte Carlo Simulation, with the sensitivity of this approach being 517 

addressed in previous work (Balsdon et al., 2020). The full model was simplified using a knock-out 518 

procedure based on Bayesian Model Selection (Rigoux et al., 2014) to fix the bias (exceedance probability = 519 

0.93) and lapse (exceedance probability >0.99) parameters (not described above, see Supplementary Note 520 

1). 521 

In the Replay task, confidence ratings were fit using the same model described above, but with additional 522 

criteria determining confidence ratings, described by three bounds on the confidence evidence, 523 

parameterised in the same manner as the decision bound. These models were then used to simulate the 524 

internal evidence of each observer from sample to sample, and the error compared to the ideal evidence 525 

(uncorrupted by suboptimalities, see Supplementary Note 2). 526 

EEG pre-processing 527 

EEG data were pre-processed using the PREP processing pipeline (Bigdely-Shamlo, et al., 2015), 528 

implemented in EEGlab (v2019.0, Delorme & Makeig, 2004) in MATLAB (R2019a, Mathworks). This includes 529 

line noise removal (notch filter at 50 Hz and harmonics) and re-referencing (robust average re-reference on 530 

data detrended at 1 Hz). The data were then filtered to frequencies between 0.5 and 80 Hz, and down-531 

sampled to 256 Hz. Large epochs were taken locked to each stimulus (-500 to 1500 ms) and each response (-532 

5000 to 1500 ms). Independent Components Analysis was used to remove artefacts caused by blinks and 533 
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excessive muscle movement identified using labels with a probability greater than 0.35 from the ICLabel 534 

project classifier (Swartz Centre for Computational Neuroscience).  535 

Classical analyses 536 

We present several ‘classical’ comparisons, examining the effect of confidence on EEG amplitude 537 

(microvolts). In Figure 3, we show Central Parietal Positivity (CPP; O’Connell et al., 2012; average amplitude 538 

of electrodes CP1, CP2, and CPz over response locked epochs), and the Lateralised Readiness Potential (LRP; 539 

difference in microvolts between the average of electrodes [C1, C3], and [C2, C4], signed by response hand; 540 

Deecke et al., 1976). In all cases, the group average within condition over the 100 ms prior to the first 541 

stimulus of each trial was used as a baseline, the data were otherwise unfiltered except for the pre-542 

processing. 543 

Response classification analysis 544 

The power spectrum across frequency tapers from 1 to 64 Hz with 25% spectral smoothing was resolved 545 

using wavelet convolution implemented in FieldTrip (Oostenveld et al., 2011). The epochs were then clipped 546 

at -3 to 1 s around the time of entering the perceptual response.  Linear discriminant analysis was 547 

performed to classify perceptual responses, using 10-fold cross validation, separately on each taper at each 548 

time-point. An analysis of the frequencies contributing to accurate classification at the time of the response 549 

revealed significant contributions from 8 to 26 Hz (Supplementary Note 4). We therefore continued by 550 

using the power averaged across these frequency bands to train and test the classifier. Classifier accuracy 551 

was assessed using the area under the receiver operating characteristic curve (AUC). At the single-trial level, 552 

the probability of the response based on the classifier was computed from the relative normalised Euclidean 553 

distance of the trial features from the response category means in classifier decision space. 554 

Encoding Variable Regression 555 

We used a linear regression analysis to examine the EEG correlates of different aspects of the decision 556 

evidence (encoding variables) in epochs locked to stimulus onset. Regularised ridge regression (ridge 𝜆 = 1) 557 

was used to predict the encoding variables based on EEG data, over 10-fold cross validation. The precision of 558 

the representation of each encoding variable was computed within each observer by taking the Fisher 559 

transform of the correlation coefficient (Pearson’s r) between the encoded variable and predicted variable. 560 

To maximise representation precision, the data were bandpass filtered (1 – 8 Hz) and decomposed into real 561 

and imaginary parts using a Hilbert Transform (Supplementary Note 5). For each time point, the data from 562 

all electrodes were used to predict the encoded variable. The temporal generalisation of decoding weights 563 

was examined by training at one time point and testing at another. The contribution of information from 564 

signals at each electrode was examined by training and testing on the signals at each electrode at each time 565 

point (further details in Supplementary Note 5).  566 

Behaviourally relevant signals were isolated by comparing representation precision at each time point and 567 

electrode for epochs leading to optimal and suboptimal perceptual and confidence responses. Cluster 568 

modelling was used to isolate contiguous signals where the log posterior odds were in favour of the 569 
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alternative hypothesis that representation precision was affected by inference noise beyond what could be 570 

explained by measurement noise alone (Supplementary Note 6). New regression weights were then 571 

calculated on signals from the entire cluster and representation errors calculated as the difference of the 572 

predicted variable from the expected value given the representation precision.  573 

Source Localisation 574 

Identifying the clusters of signals associated with confidence processes offers relatively poor spatial and 575 

temporal (given the bandpass filter; de Cheveigné, and Nelken, 2019) resolution for identifying the source of 576 

the suboptimalities affecting confidence ratings. Source localisation was therefore performed, using 577 

Brainstorm (Tadel et al., 2011). The forward model was computed using OpenMEEG (Gramfort et al., 2010; 578 

Kybic et al., 2005) and the ICBM152 anatomy (Fonov et al., 2011; 2009). Two conditions were compared, 579 

Noise Min and Noise Max, which corresponded to quartiles of epochs sorted by representation error in the 580 

confidence clusters (see Supplementary Note 7 for more details). Cortical current source density was 581 

estimated from the average epochs using orientation-constrained minimum norm imaging (Baillet, Mosher, 582 

and Leahy, 2001). ROIs in the Lateral Occipital, Superior Parietal, Rostral Middle Frontal (including dlPFC), 583 

Medial Orbitofrontal, and rostral Anterior Cingulate Cortex, were defined using MindBoggle coordinates 584 

(Klein et al., 2017). Statistical comparisons were performed on the bilateral ROI time series (using cluster 585 

correction and a minimum duration of 20 ms), computed over separate conditions on rectified normalised 586 

subject averages (low-pass filtered at 40 Hz). 587 

  588 
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 1 

Supplementary materials 1 

Supplementary Note 1 2 

Computational Model fitting 3 

The computational model is described in full in the Methods section. Briefly, the model is based on the 4 

Bayesian optimal observer with full knowledge of the category distributions (means 𝜇1 and 𝜇2, 5 

concentration 𝜅), and takes as evidence the difference in the log posterior probability (ℓ𝑛) of each category 6 

given the orientation (𝜃𝑛) 7 

 ℓ𝑛 =  ℓ𝑛,1 − ℓ𝑛,2 = 𝜅 cos(2(𝜃𝑛 −  𝜇1)) −  𝜅 cos(2(𝜃𝑛 − 𝜇2))

= 2 𝜅 sin(𝜇1 − 𝜇2) sin(2𝜃𝑛 − 𝜇1 − 𝜇2) = sin(2𝜃𝑛)        

, 

(1) 

where chosen values (𝜅 = 0.5, 𝜇1 = −𝜋/4, and 𝜇2 = 𝜋/4) have been implemented in the last equation. 8 

Whilst the optimal observer perfectly sums the evidence over each sample, the suboptimal human observer 9 

accumulates evidence with some temporal integration bias, 𝛼 (where 𝛼 > 1 creates a primacy effect, and 10 

𝛼 < 1, a recency effect), and incurs inference error (noise in the estimate of the true evidence) 11 

parameterised by 𝜎, the standard deviation of the Gaussian distribution from which each sample of noise, 𝜀𝑛, 12 

is drawn from. The human observer may also experience some response bias, c (the tendency to choose one 13 

category irrespective of the evidence), and incur lapses (pressing a random key), described by the lapse rate, 14 

l. The accumulated evidence, z, up to sample n, is suboptimally accumulated by 15 

 𝑧𝑛 = 𝛼𝑧𝑛−1 +  ℓ𝑛 +  𝜀𝑛 (2) 

The observer then chooses category 1 if z > c, except on a proportion of trials, l, where the response is 16 

randomly selected. 17 

These four parameters were used to capture the differences in the human observers’ responses (category 18 

choice and confidence rating) from the optimal observer who perfectly integrates all evidence presented. 19 

In the Free task, the model was designed not only to describe the category choice, but at which sample the 20 

human observer chose to respond. This was achieved via a decision boundary, the nature of which has been 21 

addressed in previous work (Balsdon, Wyart, and Mamassian, 2020). The boundaries, Λ𝑛+ and Λ𝑛−, follow 22 

an exponential function on the average evidence over samples (which is a constant bound on the probability 23 

of a correct response), described by three parameters: the minimum, a, the scale, b, and the rate of decline, 𝜆 24 

 Λ𝑛+ = 𝑛 × (𝑎 + 𝑏𝑒−
𝑛
𝜆 ) (3) 

There is an optimal combination of these parameters to achieve any particular proportion correct across the 25 

experiment, but the human observer may set their bound suboptimally. In addition, non-decision time (the 26 
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 2 

time from the last sample integrated to pressing the response key) was described by a Normal distribution 27 

with mean 𝜇𝑈 , and variance 𝜎𝑈
2. Giving an additional five parameters for describing when the observer enters 28 

their response. 29 

We followed the same procedure as in Balsdon et al., 2020, involving four stages:  30 

1. Reduce the number of free parameters with a knock-out procedure. 31 

2. Compare (covert) Bound and No-bound models of the perceptual decision in the Replay task. 32 

3. Identify any systematic differences in the parameters required to describe the confidence ratings, 33 

compared to the perceptual decision, in order to discern the relationship between processes for 34 

perceptual decisions and confidence. 35 

4. Apply the same Bound vs. No-bound comparison for describing the confidence ratings. 36 

The average parameter values and fit metrics for Stage 1. are shown in Table 1. According to this analysis, 37 

the bias (c) and lapse rate (l) were fixed. There was some evidence the boundary minimum (a) could be fixed 38 

in the Replay task, but the preference in the Free task was to leave it free to vary. 39 

Free Task                       

Model 𝝈 𝜶 c 𝝁𝑼 𝝈𝑼
𝟐  a b 𝝀 l LLH 𝚺BIC 

Full 0.83 0.98 -0.04 425 0.52 0.10 6.04 1.93 0.016 -734.91 30423.01 

𝛼 = 1 0.83 1.00 0.00 430 0.50 0.13 6.61 2.03 0.014 -734.97 30311.59 

c = 0 0.80 0.92 0.00 452 0.54 0.11 5.28 2.01 0.017 -736.86 30387.02 

𝜇𝑈 = 400 0.76 0.94 0.00 400 0.52 0.09 5.52 2.23 0.016 -739.77 30503.40 

𝜎𝑈
2 = 1 0.69 0.96 -0.02 435 1.00 0.10 6.34 1.97 0.015 -754.18 31079.84 

a = 0.1 0.77 0.92 0.03 417 0.52 0.10 5.78 2.20 0.016 -735.48 30331.75 

b = 5.5 0.78 0.94 0.02 410 0.64 0.13 5.50 1.79 0.013 -742.18 30599.67 

l = 0.001 0.82 0.98 0.01 400 0.48 0.10 4.77 2.22 0.001 -730.66 30139.17 

c = 0; l = 0.001 0.79 0.94 0.00 397 0.51 0.10 4.52 2.26 0.001 -732.66 30104.74 

c = 0; l = 0.001; a = 0.1 0.77 0.94 0.00 403 0.52 0.10 5.37 2.13 0.001 -742.42 30381.13 

Replay Task - no-
bound 

                      

Model 𝝈 𝜶 c 𝝁𝑼 𝝈𝑼
𝟐  a b 𝝀 l LLH 𝚺BIC 

Full 0.47 0.90 0.05 ~ ~ ~ ~ ~ 0.012 -81.13 3701.44 

𝛼 = 1 0.56 1.00 0.10 ~ ~ ~ ~ ~ 0.012 -92.21 4030.55 

c = 0 0.48 0.90 0.00 ~ ~ ~ ~ ~ 0.009 -82.73 3651.38 

l = 0.001 0.50 0.91 0.06 ~ ~ ~ ~ ~ 0.001 -82.05 3624.39 

c = 0; l = 0.001 0.51 0.90 0.00 ~ ~ ~ ~ ~ 0.001 -83.64 3573.67 

Replay task - bound                       

Model 𝝈 𝜶 c 𝝁𝑼 𝝈𝑼
𝟐  a b 𝝀 l LLH 𝚺BIC 

Full 0.44 0.87 0.10 ~ ~ 0.17 8.68 11.71 0.012 -79.81 3991.09 

c = 0; l = 0.001 0.48 0.88 0.00 ~ ~ 0.13 8.58 15.55 0.001 -82.22 3859.24 

c = 0; l = 0.001; a = 0.1 0.48 0.88 0.00     0.10 8.91 15.88 0.001 -82.38 3751.55 

Table S1. Average parameter values. Table shows the average values and the sum of BIC across participants. 40 

The large difference in the average loglikelihood (LLH) across tasks is due to the fact the Free task model was fit 41 

to both when and what observers responded, whereas in the Replay task only the response was fit. Red values 42 

show the fixed parameters. Colour code of the BIC column corresponds to the goodness of fit (the greener the 43 

better). 44 
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To compare the Bound and No-bound models in Stage 2. we used five-fold cross validation. The No-bound 45 

model had two free parameters: 𝛼 (temporal bias) and 𝜎 (inference noise), which were fit to the Same and 46 

Less conditions of the Replay task, but tested across all conditions. The Bound model had three free 47 

parameters to describe the bound, with the inference noise and temporal bias parameters fixed to those fit 48 

to the Same and Less conditions only. In this way, the no-bound model must account for the lack of increased 49 

performance in the More condition with the suboptimalities present in the Same and Less conditions, whilst 50 

the bound model can limit performance in the More condition in particular by stopping further evidence 51 

accumulation. The results of this analysis are presented in the manuscript: the bound significantly improved 52 

the fit, mean relative increase in model log-likelihood = 0.048, bootstrapped p = 0.001, Figure 2c in the main 53 

text. 54 

Of additional interest is the pattern of parameters fit to each condition separately, when the model attempts 55 

to explain behaviour without a bound. There was little difference in parameters fit to the Same and Less 56 

conditions (mean 𝜎𝑆 = 0.48, 𝜎𝐿 = 0.44, Z(19) = -1.46, p = 0.15; 𝛼𝑆 = 0.86, 𝛼𝐿 = 0.78, Z(19) = 1.38, p = 0.17). 57 

The inference noise fit to the More condition significantly increased from the Less condition (𝜎𝑀 = 0.55, 58 

Z(19) = -2.61, pbonf*4 = 0.036), but there was significantly reduced temporal integration bias (𝛼𝑀 = 0.93, 59 

Z(19) = -2.50, pbonf*4 = 0. 0496) suggesting observers’ performance was worse than predicted by the Same 60 

and Less conditions, and they were putting less weight on the more recent evidence. These differences in 61 

parameters are consistent with the model trying to mimic bounded evidence accumulation without a bound, 62 

providing additional support for the comparison described above. 63 

Stage 3. of the model procedure was to account for the confidence ratings. We compared three processing 64 

architectures that span the space from single-channel to dual-channel (Maniscalco and Lau, 2016). We took 65 

as the null hypothesis a serial processing (single-channel) architecture in which the confidence ratings 66 

(Type-II decisions) can be described by the exact same evidence as used to make the perceptual (Type-I) 67 

decision. A weaker version of this null hypothesis is that the same suboptimal inference process is used for 68 

both perception and confidence, but that the observer can commit to their perceptual decision whilst 69 

continuing to monitor additional evidence for evaluating their confidence (a schematic of these processes is 70 

shown in Figure S1a). The average parameter values are shown in Table S2, labelled ‘Serial’ and ‘Serial 71 

continued’ respectively. Note the substantial increase in inference noise (𝜎) and reduction in temporal bias 72 

(𝛼 is closer to 1) when attempting to describe both the perceptual decision and the confidence rating 73 

compared to only the perceptual decision (Table S1, Replay task – bound, model c = 0; l = 0.001). This is 74 

indicative of the difficulty of describing both perception and confidence with the same suboptimalities. 75 

At the other extreme is the parallel processing (dual-channel) architecture, in which perception and 76 

confidence are computed by independent resources, based on the same sensory input (Figure S1b, labelled 77 

‘Parallel’ in Table S2). This is the most computationally expensive description, and provided a lack of 78 

parsimony that was only surpassed by a model that attempted to describe confidence ratings with only the 79 

inference noise evident from the perceptual decisions. 80 
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 4 

The intermediate models in this architectural space are the partial dissociation models (Figure S1c), which 81 

suggest that confidence inherits the same noisy perceptual evidence as the perceptual decision, but may 82 

incur some independent suboptimalities. We compared four versions of these models: same 𝜎 (no additional 83 

inference noise); accumulation noise (additional inference noise with each sample of evidence); read-out 84 

noise (one additional sample of noise before the confidence response); and same 𝛼 (the temporal bias 85 

affecting the confidence accumulation is the same as that affecting the perceptual accumulation).  86 

In all cases the models were fit to minimise the negative loglikelihood of both perceptual and confidence 87 

decisions. The model comparison overwhelmingly favoured the partial dissociation models, and of these, the 88 

best description was offered by a model with an independent temporal bias on the confidence evidence 89 

accumulation, and additional noise at the read-out stage. We caution against interpreting this result as 90 

meaning that there is no additional accumulation noise in the processing of confidence evidence, whilst the 91 

models are very similar, it is possible that the read-out noise in this case can additionally capture some noise 92 

in setting and maintaining bounds for assigning a rating to the confidence evidence. 93 

 94 

Figure S1. Schematic of possible relationships between perceptual (Type-I) and confidence (Type-II) 95 

evidence accumulation. a) Same evidence accumulation processes: Type-I (perceptual) and Type-II 96 

(confidence) decisions are different responses to the same evidence: each sample of perceptual evidence is 97 

disrupted by a sample of sensory noise (𝜀𝑠) drawn from a zero-mean Gaussian with standard deviation 𝜎, and 98 

accumulated with a temporal bias described by 𝛼𝑠. b) Parallel processing: Type-I and Type-II decisions rely on 99 

entirely separate processing of the same physical stimulus: the confidence decision also incurs noise and 100 

temporal integration bias (with subscript c), but these may vary independently of the perceptual processing 101 

suboptimalities (subscript s). c) Partial dissociation: Type-I and Type-II decisions rely on partially dissociable 102 

accumulation of the same evidence. 103 

 104 

 105 
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Model 𝝈 𝜶 a b 𝝀 ac bc 𝝀c1 𝝀c2 𝝀c3 LLH 𝚺BIC 

Serial 0.73 0.92 0.10 12.74 17.07 0.07 0.64 1.28 6.81 31.38 -428.36 18275.28 

Serial continued 0.67 0.91 0.13 9.60 17.98 0.06 0.53 0.66 7.08 30.41 -424.88 18135.83 

Parallel 0.76 0.90 ~ ~ ~ 0.01 0.58 0.18 7.51 30.68 -437.25 18288.50 

Partial - same sigma 0.00 0.89 ~ ~ ~ 0.06 0.47 1.03 6.77 25.92 -446.41 18540.68 

Partial - accumulation 
noise 0.45 0.91 ~ ~ ~ 0.03 0.58 0.50 7.71 31.03 -421.59 17662.25 

Partial - read-out noise 0.12 0.90 ~ ~ ~ 0.02 0.52 1.85 8.63 37.39 -417.94 17516.29 

Partial - same alpha 0.12 0.88 ~ ~ ~ 0.02 0.52 0.98 8.22 35.16 -423.02 17605.29 

 106 

Table S2. Average parameter values for perceptual and confidence behaviour. Bound parameters with 107 

subscript c describe the criteria for confidence ratings, which take the same form as the perceptual decision 108 

bound. They have the same minimum and scale, but different rates of decline, such that 𝜆c1 determines the 109 

upper bound on a confidence rating of 1, and the lower bound on a rating of 2. Apart from the ‘Serial’ and 110 

‘Serial continued’ models, parameters for perceptual decisions were fixed to those fit in the winning perceptual 111 

decision model and the listed parameters affect only the confidence evidence accumulation. 112 

 The model comparison of Stage 3. just described mainly assumed continued, unbounded accumulation of 113 

confidence evidence (with the exception of the strictly serial processing architecture). Stage 4. was to 114 

formally compare bounded and unbounded accumulation for confidence evaluations in the same manner as 115 

with the perceptual decisions. This time, two versions of the bound were compared: the same bound as 116 

perceptual evidence accumulation (the participant could close their eyes after committing to their 117 

perceptual decisions and their responses would not change); or an independent bound (the participant can 118 

continue to accumulate evidence for confidence decisions after the committing to the perceptual decision, 119 

but will eventually stop). As reported in the manuscript, neither bound improved the fit, if anything, adding 120 

the bound decreased the log-likelihood of the model (same bound: relative improvement with bound = -121 

0.007, bootstrapped p = 0.11, uncorrected; independent bound: relative improvement = -0.014, p = 0.022, 122 

Bonferroni corrected for two comparisons; Figure 2c, in the main text). This reflects the fact that even a 123 

very high bound affects the shape of the accumulation trace, which will harm the fit when behaviour is not 124 

affected by a bound. 125 

In summary, this computational modelling procedure suggests a partial dissociation in the processing for 126 

perception and confidence. In the Replay task, perceptual decisions were best described by bounded 127 

evidence accumulation, enabling observers to commit to decisions before the sequence of presented samples 128 

finishes. The confidence ratings required additional noise and reduced temporal integration bias compared 129 

to the suboptimalities affected the perceptual decisions. These differences were best described by the partial 130 

dissociation architecture where confidence received the same noise samples of evidence as the perceptual 131 

decision, though they are accumulated differently. In addition, model comparison suggested confidence 132 

evidence accumulation continued to the end of the sequence, even in cases of premature commitment to the 133 

perceptual decision. The results of these comparisons replicate the results of Balsdon et al. (2020), with the 134 

exception of the confidence noise comparison: here we find evidence in favour of read-out noise, whereas 135 

the previous analysis found the models indistinguishable.  136 
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Supplementary Note 2 137 

Model Simulation 138 

The computational model comparison suggested a partial dissociation in the evidence used to make 139 

perceptual decisions and confidence evaluations. We compared the evidence underlying the observers’ 140 

perceptual decisions and confidence ratings by simulating the winning computational model. For each trial, 141 

10,000 samples of noise per decision update were randomly sampled from the Gaussian distribution 142 

describing the observer’s inference noise. These were combined to give 10,000 simulated evidence traces 143 

per trial. The first 1,000 simulated evidence traces that agreed with the observer’s response on that trial 144 

were taken to measure the median evidence trace (or, the process was repeated until 1,000 adequate 145 

simulated evidence traces were drawn, up to 100 repeats). Figure S2a demonstrates this process for one 146 

example trial of one observer. For the perceptual evidence (Figure S2a, left) simulated evidence traces that 147 

agreed with the observer’s response are those that reach the respective decision bound before the opposing 148 

decision bound, or reach no bound but show evidence in favour of the response by the final sample. It was 149 

assumed that once the evidence reaches the bound, that evidence is maintained until the response. For the 150 

confidence evaluation (in the example, a confidence rating of 3), the final evidence had to be between the 151 

confidence rating bounds to agree with the observer’s confidence decision (after the final sample of 152 

additional noise – which is why a few samples in Figure S2a, right, exceed the bounds). The median 153 

evidence was compared to the ideal evidence (green lines of Figure S2a).  154 

The estimated inference error (used in Supplementary Note 7) scaled the difference between the median 155 

consistent evidence and the ideal evidence by the probability of the response given all samples, to estimate 156 

the relative deviation of the observers’ internal evidence from the optimal observer’s evidence. This estimate 157 

of the error is quite imprecise: the median trace tends to be quite close to the ideal, even though any one of 158 

the traces (which reflect much larger error) could have described the internal evidence of the observer.  159 

Figure S2b shows the predicted final accumulated evidence for the perceptual (Type-I) compared to the 160 

confidence (Type-II) decision for the same example observer. The evidence is strongly correlated but there 161 

are substantial deviations, because of the additional noise, different temporal bias, and continued 162 

accumulation for the confidence decision, especially in the More condition (light blue). The example 163 

observer is a more extreme case because of the relatively strong bound on perceptual evidence 164 

accumulation. The (Fisher transformed) correlation for each observer is shown in Figure S2c. For many 165 

observers there are substantial differences between the median simulated evidence consistent with the 166 

perceptual and confidence responses, meaning the simulated evidence could be useful in distinguishing 167 

representations important for perception vs. confidence. 168 
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 169 

Figure S2. Model simulation of accumulated evidence for perceptual and confidence decisions. a) 170 

Example trial from one observer showing simulated evidence traces agreeing with the observer’s response 171 

(blue) and a sample of example traces which did not agree (red). The perceptual decision is shown on the left. 172 

An evidence trace was taken to agree with the observer’s decision if the corresponding bound was reached prior 173 

to the opposing bound, or if no bound was reached but the final accumulated evidence was in favour of the 174 

chosen option. The median evidence trace (thick blue line) was calculated assuming the evidence that reached 175 

the bound early was maintained until the response was entered. For the confidence rating (right) we compared 176 

the median evidence from traces where the final accumulator (plus one additional sample of noise) agreed with 177 

the observer’s confidence rating. We examined the difference from the ideal accumulated evidence (thick green 178 

line) relative to the likelihood of the observers’ rating given all simulated evidence traces. b) Median final 179 

simulated accumulated evidence for the perceptual decision (abscissa), and the confidence decision (ordinate) 180 

for all trials of the example observer, colours indicate the condition. c) Correlation (Fisher transformed z) 181 

between perceptual and confidence evidence for each observer. The example observer is highlighted in orange. 182 

Supplementary Note 3 183 

Confidence behaviour 184 

Proportion correct increased with increasing confidence, reflecting the observers’ ability to use their 185 

confidence ratings to discriminate correct from incorrect responses (Figure S3a). Observers appeared to be 186 

monitoring the decision evidence to make their confidence ratings, as opposed to some proxy for confidence 187 

such as the number of samples they were shown (Figures S3b and S3c). 188 

We required a single-trial measure of confidence precision for identifying the key neural processes 189 

underlying the computation of confidence. To do so, we compared observers’ responses to an optimal 190 

observer. The optimal observer perfectly accumulates all presented evidence and assigns ratings to equally 191 

partition the evidence for their perceptual decision. To simplify, we split trials by the median evidence for 192 

the chosen category, where the optimal observer gives a high confidence rating (3 or 4) to those trials with 193 

greater than the median evidence, and a low confidence rating (1 or 2) to those with less than the median 194 

evidence. We labelled trials as ‘suboptimal confidence’ when the observer’s confidence response disagreed 195 

with the response of this optimal observer. This trial labelling is demonstrated for two example observers in 196 

Figure S3d. We reasoned that on suboptimal confidence trials the internal evidence of the human observer 197 
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was less likely to be close to the optimal presented evidence, and the neural representation of the optimal 198 

presented evidence should be less precise in neural circuits that actually represent this suboptimal 199 

confidence evidence. That this measure of confidence precision does capture the suboptimalities in 200 

confidence evaluation is confirmed by the significant increase in model estimated confidence error on 201 

suboptimal confidence trials (Wilcoxon sign rank test: Z(19) = 3.85, p < 0.001; Figure S3e). 202 

In this way, observers’ confidence is assessed relative to a “super-ideal” observer, who has perfect access to 203 

the presented evidence (Mamassian and de Gardelle, under review). Theoretically, observers’ confidence 204 

should be assessed relative to the internal evidence for their perceptual decision, that is, relative to the 205 

evidence based on suboptimal inference (afflicted by noise and temporal integration biases). However, the 206 

single-trial estimates of the internal evidence for perceptual decisions, based on model simulations, were 207 

relatively imprecise (see Supplementary Note 2), and could also introduce systematic errors from the 208 

model assumptions, making this estimate of the internal evidence unappealing for the purpose of assessing 209 

confidence. Moreover, the goal of this measure was to compare observers’ confidence ratings to the neural 210 

representation of the accumulated evidence, which was also assessed relative to the optimal evidence. We 211 

therefore chose to assess confidence ratings relative to the optimal observer in the same way that neural 212 

responses were assessed relative to optimal, though this ignores the fact that some suboptimality is actually 213 

inherited from perceptual decision processes. 214 

A second important consideration with this measure is that it is affected by confidence bias. There are three 215 

types of biases that could affect confidence ratings: first, a response bias to enter a certain response 216 

irrespective of the evidence; second, a miscalibration bias such that ratings mean different things to different 217 

observers (the same value of evidence will be given a rating of 4 for one observer and 3 for another, for 218 

example); third, a miscalling bias such that perceptual evidence is relatively exaggerated or diminished in 219 

the assessment of confidence. All these biases mean that the same internal perceptual evidence could result 220 

in systematically different confidence ratings across observers, and observers could report on average 221 

higher or lower confidence despite similar perceptual performance and precision in representing the 222 

internal evidence for evaluating their confidence.  223 

Taking an average proportion of suboptimal confidence ratings and comparing across observers would 224 

result in observers of similar ability having different scores simply because of biases in how they implement 225 

the confidence rating responses: greater biases will increase average proportion suboptimal. Importantly, 226 

this single-trial measure of confidence was not used for this purpose. Rather, it was compared to neural 227 

activity during the process of accumulating evidence for the perceptual decision and confidence evaluation. 228 

We expect that biases that are not of interest for the computation of confidence (in particular, response bias 229 

and miscalibration bias) are incorporated at a later stage, when the confidence evaluation is converted into a 230 

rating for executing the response. The biases will only reduce the sensitivity with which a trial labelled as 231 

suboptimal truly reflects internal evidence that differs from optimal, reducing our ability to identify neural 232 

processes underlying confidence computation. This is simulated in Figure S3f, where a relative bias is 233 

introduced by assessing human confidence ratings to a biased optimal observer (who responds on 65% of 234 
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trials with high confidence – making the human observers relatively more liberal, or 35% high confidence – 235 

making the human observers more conservative). The general trend for the difference between confidence 236 

ratings that match the (biased) optimal observer and those that are suboptimal remains the same, though 237 

the bias reduces the difference. 238 

 239 

Figure S3. Confidence behaviour. a) proportion correct (in the perceptual decision) by confidence rating. b) 240 

Decision evidence (based on the presented samples) by confidence rating. c) Number of samples presented by 241 

confidence rating. In all plots, error bars show 95% within-subject confidence intervals. Red circles show the 242 

predictions of the best fitting confidence model (Supplementary Note 1). d) Confidence responses of two 243 

observers (top and bottom panels) on all trials sorted by the confidence evidence of the optimal observer. The 244 

median confidence evidence (shown by a black vertical line) defines an optimal confidence observer whose 245 

confidence above this median are rated high. Observers’ high confidence ratings are shown in blue and low 246 

confidence ratings in green. Suboptimal confidence ratings, where human and optimal confidence observers do 247 

not match, are indicated with small vertical segments (green for Type-II misses and blue for Type-II false 248 

alarms). Negative confidence evidence corresponds to incorrect perceptual decisions. The observer shown on 249 

top clearly has fewer suboptimal responses compared with the observer below, and the frequency of suboptimal 250 

responses decreases further from the median. e) Model estimated confidence error by confidence rating 251 

suboptimality (0 = the observer’s confidence rating was the same as the optimal observer, 1 = suboptimal 252 

confidence rating). f) The effect of response bias on the analysis of suboptimal confidence in the EEG 253 

representation of accumulated evidence. Observers’ confidence ratings were compared to an unbiased optimal 254 

observer (purple), and two biased (but otherwise optimal) observers, who respond with high confidence on 35% 255 

and 65% of trials (making the human observers relatively more liberal and conservative with their response 256 

strategy in comparison). Thick lines show the within-subject difference in precision (Fisher transformed 257 
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correlation) between trials where the human observers’ confidence ratings correspond to the (un/biased) 258 

optimal observer and suboptimal confidence ratings. Shaded regions show the 95% between-subject confidence 259 

intervals on the difference. 260 

Supplementary Note 4 261 

Response classification 262 

A linear discriminant analysis was used to classify the perceptual decision response based on the spectral 263 

power of band-limited EEG signals in epochs locked to the time of the response. The spectral power across 264 

frequency tapers from 1 to 64 Hz with 25% spectral smoothing was resolved using wavelet convolution 265 

implemented in FieldTrip (Oostenveld et al., 2011). The epochs were then clipped at -3 to 1 s around the 266 

time of entering the perceptual decision response. We first trained and tested at each frequency taper at 267 

each time point in the Free task (Figure S4a). Classifier performance was measured as the area under the 268 

curve (AUC). The power in frequency bands between 8 and 32 Hz yielded the most accurate classification 269 

performance. The difference in the average power across these frequency bands between -0.5 and 0.5 270 

seconds around the time of the response for right- and left-handed responses showed a clear lateralisation 271 

over central and parietal electrodes (Figure S4b). Training and testing at each time point in each condition 272 

of the Replay task showed a similar pattern to the Free task, with reliable classifier performance from 273 

around -0.5 to 0.5 seconds around the response (Figure S4c). Training and testing within each condition of 274 

the Replay task resulted in a larger between-subject error, likely because there are only 100 trials per 275 

condition. In the main text, we present a cross-classification analysis where the classifier is trained on the 276 

Free task, and tested on each condition in the Replay task, which more directly examines when the signals 277 

relevant for entering a response (based on the Free task) emerge during the lead up to the response in each 278 

condition of the Replay task. 279 

 280 

Figure S4. Response Classification analysis. a) Classifier AUC training and testing at each time point 281 

(abscissa) based on the power (dB) in each frequency band (ordinate). Clusters where average performance is 282 

greater than 3.1 standard deviations (99% confidence) from baseline (0.5) are circled in black. b) Scalp map of 283 

the difference in power for right- compared to left-handed responses averaged over 8 to 32 Hz and -0.5 to 05 284 

seconds around the response. c) Classifier performance (AUC) training and testing at each time point, in each 285 

condition of the Replay task and in the Free task. 286 
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Supplementary Note 5 287 

Encoding variable regression 288 

Linear regression was used to examine the representation of encoding variables in the EEG signals. First, 289 

regression weights (𝑊̂) were computed using ridge regression of the encoding variables (C, an n × 1 matrix) 290 

on the EEG signals (D, an n × m matrix, where m is the number of EEG signals, and n, the number of epochs): 291 

 𝑊̂ = (𝐷𝑇𝐷 +  𝜆𝐼)−1𝐷𝑇𝐶 (4) 

The regularisation parameter, 𝜆, was set to 1, where I is the identity matrix. Weights were computed on 90% 292 

of the epochs, and used to predict the encoding variables on the other 10% (10-fold cross validation) simply 293 

as: 𝐶̂ = 𝐷 ∗ 𝑊̂. The precision of the prediction was calculated as the correlation between 𝐶̂ and C, 294 

standardised using a Fisher transformation.  295 

Three different encoding variables, 𝐶𝜃 ,  𝐶ℓ, and 𝐶𝑧 , were examined (Figure S5a): the stimulus orientation 296 

(𝐶𝜃 = 𝜋 − |𝜃𝑛|), the momentary decision update (𝐶ℓ =  |ℓ𝑛| =  | 𝜅𝑐𝑜𝑠(2(𝜃𝑛 − 𝜇1)) − 𝜅𝑐𝑜𝑠(2(𝜃𝑛 − 𝜇2)) | ), 297 

and the accumulated evidence (𝐶𝑧 = 𝑧𝑛 =  ∑ ℓ𝑁
𝑛
𝑁=1  , signed by the response). These variables are not 298 

entirely independent: There is a weak correlation between the stimulus orientation and the momentary 299 

decision update (r = 0.03), and a weak correlation between the momentary decision update and the 300 

accumulated evidence (r = 0.09). In addition, the accumulated evidence is strongly correlated over samples 301 

(r = 0.92 at n+1, and r = 0.85 at n+2). The cross-correlations are shown in Figure S5c. 302 

The EEG signals in D were low-pass filtered and decomposed into real and imaginary parts using a Hilbert 303 

transform. Regression precision was first calculated using the signals from all electrodes (m = 128) 304 

separately for each time-point in the stimulus-locked epochs. Initial analysis showed a low-pass cut-off of 8 305 

Hz was appropriate to decrease noise whilst maintaining precision (Figure S5b). The previous literature has 306 

shown similar results (Salvador et al., 2020). 307 

Temporal generalisation of the representation of encoding variables was tested by computing weights at 308 

each time point and testing the predicted encoding variables across time (Figure S5d). Though the 309 

representation of the momentary decision update is maintained for a relatively longer duration than the 310 

representation of stimulus orientation, there is little temporal generalisation, suggesting the representation 311 

in the EEG signals evolves over time. This is also the case for the representation of accumulated evidence, 312 

however, there are also strong off-diagonals in the temporal generalisation matrix. This is likely because of 313 

the strong correlation across consecutive samples (Figure S5c). 314 

The precision of the representation of accumulated evidence was compared across the Less and More 315 

conditions for the first four and the last four stimuli (Figure S5e). As reported in the main text, 316 

representation precision was substantially attenuated for the last four stimuli of the More condition. This 317 

was not the case for the first four samples, where decoding precision in the More condition was briefly (from 318 
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132 to 244 ms) greater than in the Less condition (tave(19)  = 3.67, pcluster < 0.001). 319 

Given the sustained precision of decoding accumulated evidence over time, and the strong correlation 320 

between consecutive samples, it is curious that the measured precision does drop to baseline at the start of 321 

the epoch. That the same pattern is found when decoding sample n-1 and sample n+1 based on the epoch at 322 

sample n (Figure S5f) suggests that the onset of the stimulus is disrupting the ongoing representation (or at 323 

least, our ability to measure it). Furthermore, this decrease in performance is not seen in the temporal 324 

generalisation matrix, where the off-diagonal is not aligned with the onset of successive samples (due to the 325 

jitter in stimulus presentation timing). Comparing precision between groups of epochs where the timing of 326 

the subsequent sample is aligned (Figure S5g; red 317 ms, green 333 ms, blue 350 ms) suggests there could 327 

be an interaction between the timing of ongoing updates and the precision of the representation of the 328 

accumulated evidence (but not the momentary decision update). This could be of interest for future 329 

research. 330 

 331 

Figure S5. Encoding variable regression. a) Encoded variables used to regress EEG signals. The encoded 332 

orientation (𝐶𝜃 , left) and encoded momentary decision update (𝐶ℓ, middle) were dependent on the orientation 333 

presented to the observer. The encoded accumulated evidence (𝐶𝑧) varied over all presented orientations in a 334 

trial, the figure on the right shows only one example. b) Representation precision of encoding variables using 335 

different low-pass filters. c) Cross correlation between encoding variables over consecutive samples. d) 336 

Temporal generalisation of representations: the regression weights were calculated on EEG signals at each time 337 
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point and precision was tested across time. Colour scales are relative to the maximal precision, with zero 338 

precision in white and negative in grey (a sign flip of the regression weights). e) Representation precision of the 339 

accumulated evidence for the first (left) and last (right) four stimuli of the Less and More conditions. Shaded 340 

error bars show the 95% within subject confidence intervals, red horizontal bars mark cluster corrected 341 

significant differences between conditions. f) Representation precision of the previous (n-1), current (n) and 342 

future (n+1) accumulated evidence, based on the EEG signals locked to the current epoch. g) Representation 343 

precision of the momentary decision update (top) and the accumulated evidence (bottom) for epochs separated 344 

by the timing of the subsequent stimulus, shown in coloured bars (317 ms, red, left; 333 ms, green, middle; and 345 

350 ms blue, right). 346 

Supplementary Note 6 347 

Cluster modelling 348 

Cluster modelling was used to isolate contiguous signals in space (electrode location) and time, where the 349 

precision of the representation of accumulated evidence systematically varied with the suboptimalities 350 

evident from behavioural responses. Suboptimal responses result from greater inference error, where the 351 

internal representation of the accumulated evidence deviates further from the presented evidence, thus 352 

neural signals that reflect the internal evidence of the observer should also deviate further from the optimal 353 

evidence used in the regression. Clusters were isolated using a multivariate Bayesian scan statistic (Neill, 354 

2011; Neill, 2019). This statistic was calculated based on the loglikelihood ratio of the alternative hypothesis 355 

(that representation precision depends on the inference noise of the observer) against the null hypothesis 356 

(that any difference in representation precision is due to measurement noise alone, which is independent 357 

across epochs). It is assumed that the neural signals reflect the input (cumulative presented evidence) with 358 

added measurement noise (𝑁𝑚) and, when the neural signals are relevant for behaviour, inference noise (𝑁𝑖) 359 

that reflects the observers’ suboptimal internal representation of the decision evidence: 360 

 𝑌𝑜𝑢𝑡 =  𝑌𝑖𝑛 + 𝑁𝑖 +  𝑁𝑚 (5) 

Where the two sources of noise are assumed to be gaussian distributed (𝑁(0, 𝜎2)). The total measured 361 

correlation (𝑟𝑇) between 𝑌𝑖𝑛 and 𝑌𝑜𝑢𝑡 is a function of the additional noise (where Yin is normalised): 362 

 
𝑟𝑇 =  

1

√2 +  𝜎𝑖
2 +  𝜎𝑚

2

 
(6) 

The observer makes suboptimal decisions when the inference noise pushes their internal representation of 363 

the accumulated evidence further from the true value, resulting in a weaker correlation between the internal 364 

representation and the presented evidence. Therefore, when we split based on behaviour, we expect that on 365 

average there is greater inference noise on incorrect trials than correct trials. The correlation over all 366 

samples can be described as: 367 
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𝑟𝑇 =  

1

√2 +  𝑝(𝐼)𝜎𝑖𝐼
2 +  𝑝(𝐶)𝜎𝑖𝐶

2 + 𝜎𝑚
2

 
(7) 

Where p(I) is the observed probability of a suboptimal decision, and p(C), a decision that corresponds to that 368 

of the optimal observer. The null hypothesis is that the neural signal is not relevant for behaviour, 369 

specifically, signals on suboptimal trials do not reflect additional inference noise. Any difference in the 370 

correlation is due to variance in the measurement noise.  371 

 𝐻0:  𝜎𝑖𝐼 =  𝜎𝑖𝐶 = 0 (8) 

The alternative hypothesis is that the neural signals are relevant for behaviour, reflecting the greater noise 372 

on trials where the observer makes a suboptimal decision. 373 

 𝐻1:  𝜎𝑖𝐼 >  𝜎𝑖𝐶 , or 𝜎𝑖𝐼
2 =  (𝜎𝑖𝐶

2 − 𝑥) where 𝑥 > 0 (9) 

The difference in the inference noise is limited by the total variance: 374 

 
𝑝(𝐼)(𝜎𝑖𝐼

2) + 𝑝(𝐶)(𝜎𝑖𝐼
2 + 𝑥) =  

1

𝑟𝑇
2 − 2 −  𝜎𝑚

2  
(10) 

Solving for 𝜎𝑖𝐼
2 (since 𝑝(𝐶) + 𝑝(𝐼) = 1): 375 

 
𝜎𝑖𝐼

2 =  
1

𝑟𝑇
2 − 2 − 𝜎𝑚

2 − 𝑝(𝐶)𝑥 
(11) 

If we consider the correlation between the neural representation and the presented evidence on trials with 376 

optimal responses and suboptimal trials separately (for simplicity, let 𝑅 =  
1

𝑟𝑇
2 ): 377 

 
𝑟𝐼 =  

1

√𝑅 − 𝑝(𝐶)𝑥
 

(12) 

 378 

 
𝑟𝐶 =  

1

√𝑅 − 𝑝(𝐶)𝑥 − 𝑥
 

(13) 

Setting a uniform prior on the ratio of inference and measurement noise, results in a linearly descending 379 

prior on x: 380 

 
𝑝(𝑥) =

𝑅 − 2 − 𝑝(𝐼)𝑥

∫ 𝑅 − 2 − 𝑝(𝐼)𝑥
(𝑅−2)) 𝑝(𝐼)⁄

0
 𝑑𝑥

 
(14) 

We actually measure the difference in the Fischer transform of the correlation: 381 
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𝑧𝐶 − 𝑧𝐼 = 0.5log (

(1 + 𝑟𝑐)(1 − 𝑟𝐼)

(1 − 𝑟𝑐)(1 + 𝑟𝐼)
)  

(15) 

Since 𝑟𝑐 and 𝑟𝐼 are independent of the assumed measurement noise, there is one 𝑥 that corresponds to a 382 

measured difference 𝑧𝐶 − 𝑧𝐼, given the overall correlation 𝑟𝑇. 383 

For each participant, for each electrode, at each time-point, the prior on 𝜎𝑚
2  for 𝐻0 is calculated by permuting 384 

the data labels (accurate vs inaccurate behavioural responses). The probability of the data given 𝐻0 and 𝐻1 385 

are calculated as above and used to compute the loglikelihood ratio: 386 

 
𝐿𝐿𝑅 = 𝑙𝑜𝑔 (

𝑝(𝐷|𝐻1)

𝑝(𝐷|𝐻0)
)  

(16) 

The clusters are identified using the Fast Subset Sums procedure: The loglikelihood ratios are summed 387 

across participants, for each electrode and time-point. We then find small clusters by thresholding the log 388 

posterior odds ratio: 389 

 
𝑃𝑂𝑅 = 𝐿𝐿𝑅 + 𝑙𝑜𝑔 (

𝑝(𝐻1)

𝑝(𝐻0)
) 

(17) 

Where the prior p(𝐻1) is set to 0.05. The cluster with the largest LLR (summed across electrodes and time 390 

points) is then expanded by continuing to add the largest neighbour and the new log prior (p(𝐻1) =  0.05/n), 391 

where n is the size of the cluster, whilst the POR remains in favour of 𝐻1. This is repeated until all clusters 392 

with evidence in favour of 𝐻1 have been identified. 393 

Supplementary Note 7 394 

Estimating single-sample confidence inference error 395 

We aimed to examine the neural processes that are important for the precise representation of the decision 396 

evidence for computing confidence. To do so, we explored the source(s) of the noise affecting the neural 397 

representation of the accumulated evidence in the clusters of signals identified as relevant for suboptimal 398 

confidence evaluations. We used the representation error as an estimate of the inference error of the 399 

observer: the absolute difference between the cluster predicted value and the expected value given the 400 

cluster representation and the true value of accumulated evidence based on the orientations presented to 401 

the observer. This estimate is likely substantially affected by measurement noise, in addition to the inference 402 

error of the observer. However, we do not expect measurement noise to be systematically driven by a 403 

specific source, especially not across subjects. Noise Min and Noise Max epochs were selected by taking the 404 

top and bottom quartiles of epochs sorted by representation error. 405 

A separate estimate of the inference error was obtained by simulating the computational model (Figure S6a 406 

shows the process of obtaining these estimates and their mutual reliance on the input stimulus variables and 407 

the behavioural output). This measure also has its drawbacks: It is relatively imprecise, given the large range 408 
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of errors that are consistent with the observers’ behavioural responses (see Supplementary Note 2); and is 409 

based on the assumptions of the model. By examining these two estimates, we avoid relying on the same set 410 

of assumptions throughout the analysis. The correlation between these estimates suggests that they do tap 411 

into the suboptimal inference of the observer. 412 

We considered how the different measures vary across samples and by the division in Noise Min and Noise 413 

Max epochs. Figure S6b shows the correlation of these measures, averaged across subjects. The average 414 

absolute effect size of the within subject difference between different variables dividing trials by Noise Min 415 

and Noise Max epochs is shown in Figure S6c. There was a larger effect on confidence inference error (d = 416 

0.06) than perceptual inference error (d = 0.02), from the model estimate. There were some effects on 417 

stimulus variables: a small effect of condition (More vs Less, d = 0.03), a large effect on sample position in the 418 

sequence (Noise Min epochs tended to correspond to earlier samples, d = 0.2), and an effect on decision 419 

update (Noise Min epochs tended to correspond to smaller momentary decision updates, d = 0.08). The 420 

effects on behaviour were largest for confidence accuracy (d = 0.06), with limited effect on perceptual 421 

accuracy (d = 0.02) and confidence rating (Noise Min epochs were somewhat more associated with high 422 

confidence ratings, d = 0.03).  423 

 424 

Figure S6. Estimating inference error. a) Two approaches to estimate inference error. It is assumed the 425 

observer’s behaviour is based on a suboptimal inference over the physical stimulus. We do not have access to the 426 

single-sample inference error, but can estimate it using the measured variables: the physical stimulus 427 

properties, the behaviour, and the EEG signals. Two approaches are outlined: The EEG inference error estimate, 428 

which relies on the error of the representation of the accumulated evidence, in clusters where the precision of 429 

the representation is related to suboptimal behaviour; and the model error, which relies on simulating the 430 

processing of the evidence based on the fitted model parameters, and taking the median of simulated traces 431 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 10, 2021. ; https://doi.org/10.1101/2021.04.08.439033doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439033
http://creativecommons.org/licenses/by/4.0/


 17 

which concur with the observer’s response. b) Correlation between variables measured from behaviour, the 432 

stimulus input, and the estimated inference error. c) Effect size on the difference between Noise Min and Noise 433 

Max epochs. 434 

Supplementary Note 8 435 

Regions of interest 436 

Regions of interest were selected based on the previous literature. Specifically, Herding et al. (2019) found 437 

subjective evidence to modulate activity in the Superior Parietal Cortex; Gherman and Philiastides (2018) 438 

found correlates of confidence encoding in the ventro-medial Prefrontal cortex (overlapping with the 439 

MindBoggle Orbitofrontal Cortex coordinates), whilst Graziano et al., (2015) examined ROIs in the Anterior 440 

Cingulate cortex, Orbitofrontal cortex, Temporal lobe, Posterior Parietal cortex, and Occipital cortex. We 441 

chose to use ROIs defined by MindBoggle (Klein et al., 2017) that corresponded to similar regions: Lateral 442 

Occipital cortex, Superior Parietal cortex, Orbitofrontal cortex (combining medial and lateral partitions), 443 

rostral Middle Frontal cortex, and initially the Anterior Cingulate Cortex (combining rostral and caudal 444 

partitions; Figure S7a). The results of the Anterior Cingulate Cortex were similar to the neighbouring 445 

Orbitofrontal region, so we decided not to present this in the manuscript for simplicity. We show the results 446 

in Figure S7b, for left and right hemispheres separately (statistical analyses were performed on the 447 

average). 448 

 449 

Figure S7. Regions of interest and corresponding current density. a) Regions of interest based on 450 
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Mindboggle coordinates. b) Average normalised rectified current density in the right (top) and left (bottom) 451 

hemispheres. Noise Min epochs are shown coloured, Noise Max in black, with shaded regions showing the 95% 452 

within-subject confidence interval.  453 
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