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ABSTRACT: Fast-scan cyclic voltammetry at carbon fiber microelectrodes measures low concentrations of analytes in bio-
logical systems. There are ongoing efforts to simplify FSCV analysis and several custom platforms are available for filtering 
and multi-modal analysis of FSCV signals but there is no single, easily accessible platform that has capacity for all these fea-
tures. Here we present The Analysis Kid: a free, open-source cloud application that does not require a specialized runtime 
environment and is easily accessible via common browsers. We show that a user-friendly interface can analyze multi-platform 
file formats to provide multimodal visualization of FSCV color plots with digital background subtraction. We highlight key 
features that allow interactive calibration and parametric analysis via peak finding algorithms to automatically detect the 
maximum amplitude, area under the curve and clearance rate of the signal. Finally, The Analysis Kid enables semi-automatic 
fitting of data with Michaelis Menten kinetics with single or dual reuptake models. The Analysis Kid can be freely accessed at 
https://analysis-kid.herokuapp.com/. The web application code is found, under an MIT license, at 
https://github.com/sermeor/The-Analysis-Kid. 

 

Fast-scan cyclic voltammetry (FSCV) at carbon fiber micro-
electrodes is an electrochemical that measures low concen-
trations of analytes, with a good signal-to-noise ratio (SNR) 
and time resolution. Because of the micron dimensions of 
the electrodes, the technique has been popular for biologi-
cal analysis, especially in intricate tissues such as the brain.1 
FSCV has been widely applied to measurements of dopa-
mine in ex vivo and in vivo models. Here, a triangular wave-
form is applied to the electrode at high frequency (10 Hz) 
and scan rate (~400 Vs-1).2,3 The positive and negative limits 
of the waveform are chosen to optimize the signal per ex-
perimental preparation; for dopamine the limits are gener-
ally -0.4 V resting/negative potential limit (to facilitate pre-
concentration of the dopamine cation) and 1.3 V positive 
limit (to overoxidize the carbon surface thereby increasing 
sensitivity).4 Recently, detection waveforms have been op-
timized to measure serotonin, hydrogen peroxide, adeno-
sine, copper and guanine, in  vivo and ex vivo.5–9 

FSCV is experimentally challenging, thus strong efforts have 
been in progress to simplify it. Several custom software 
platforms have been developed for the filtering and analysis 
of FSCV signals.10–12 These packages require memory-heavy 
runtime environments (such as LabVIEW’s) and are often 
not compatible with each other and/or between operating 
systems. This is particularly problematic because mainte-
nance/updates and new analysis algorithms do not transfer 
between packages. Additionally, each package has a niche 
analysis feature (e.g., Demon Voltammetry can model decay 
curves with Michaelis-Menten (M-M) kinetic models). 
There is no single, easily accessible platform that has the ca-
pacity for all these analyses. 

Here we present The Analysis Kid: a free, open-source web 
application that does not require specialized runtime envi-
ronments to combine the most useful aspects of FSCV anal-
ysis. The program is easily accessible via common browsers 
where post-processing of experimental signals with custom 
algorithms have minimal software dependency and mainte-
nance and updates are automatic. A user-friendly interface 

can analyze multi-platform file formats (.csv, .txt, .xls and 
.xlsx) to provide multimodal visualization of FSCV acquisi-
tion with digital background subtraction.  

In this paper, we first describe the background subtraction 
and filtering methods incorporated in our application (in-
cluding 2D convolution smoothing and 2D fast Fourier 
transform (FFT) filtering). Second, we highlight key fea-
tures that allow interactive calibration and parametric anal-
ysis via peak finding algorithms to automatically detect the 
maximum amplitude, area under the curve (AUC) and clear-
ance rate (𝑡1/2) of the signal. Finally, The Analysis Kid ena-

bles semi-automatic fitting of data with Michaelis Menten 
kinetics with single or dual reuptake models. 

The Analysis Kid can be freely accessed at https://analysis-
kid.herokuapp.com/. The web application code is found, un-
der an MIT license, at https://github.com/sermeor/The-
Analysis-Kid. 

EXPERIMENTAL SECTION 

Software. 

The Analysis Kid is designed to work as a lightweight front-
end web application with minimal connection to the server. 
The graphical user interface was written in HTML, CSS, and 
JavaScript. The imported FSCV data and methods were or-
ganized using object-oriented programming. The applica-
tion is hosted in a PHP runtime Linux server on a cloud plat-
form. The server allows 256 users to simultaneously con-
nect. Data processing algorithms were largely custom de-
signed on JavaScript, except for the 2D FFT algorithm, com-
piled from C++ to JavaScript. The website was designed in a 
hierarchical structure. The applications can be accessed 
from a homepage, which contains documentation and tuto-
rials on how to use them. This way, several applications can 
be opened from the homepage at the same time without any 
interference between them. The files are fully processed in 
the local desktop browser and are not loaded into the 
server. As a result, the files are safe in the user’s personal 
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computer and the computational speed of the algorithms 
depends on the local machine.  

FSCV data is graphed using the Plotly JavaScript library. Full 
experimental acquisitions can be displayed as false color 
heatmaps, contour maps or 3D surfaces with a selected 
color palette. A filtering panel allows the application of zero-
phase 2D Gaussian convolution smoothing or 2D Butter-
worth low pass filtering to the FSCV acquisition. For the 2D 
Gaussian convolution, the user selects the number of repe-
titions and the standard deviation of the Gaussian kernel. 
For the low pass filtering, the user sets the cutoff frequen-
cies in each axis and the order of the transfer function. Cur-
rent traces at selected potentials and perpendicular cyclic 
voltammograms can be interactively selected by the user 
and graphed in two distinct Cartesian axes. The extracted 
current traces from any of the imported FSCV files can then 
be calibrated via a calibration factor to obtain a concentra-
tion trace. The application will automatically graph the con-
centration trace, together with an exponential fit of the 
reuptake curve and calculated 𝑡1/2 of clearance. The filtered 

FSCV data, the calibrated curves and parametric analysis 
can be exported as Excel files.  

The reuptake kinetic analysis is a detached application. The 
user can select the experimental trace used to fit the model 
expressed in Equation 4. The user can modify each of the 
parameters of the Michaelis Menten differential equation 
through the graphical interface. For each change, the appli-
cation recalculates the modelled concentration profile and 
graphs it together with the experimental trace. Additionally, 
each of the Michaelis Menten kinetic parameters can be op-
timized using a custom-made nonlinear least-squares algo-
rithm. As the error between the model and the experimental 
signal is expected to have multiple local minima, each ki-
netic parameter can be optimized separately providing a 
range of accepted values.   The modelled concentration pro-
file, as well as the optimized parameters and metrics of the 
goodness of fit can also be exported into an Excel spread-
sheet. 

Computational Methods.   

Digital background subtraction was achieved by subtracting 
each cyclic voltammogram with an average cyclic voltam-
mogram obtained from a user-defined section of the FSCV 
acquisition. Gaussian 2D convolution was carried out by 
separating the convolution operation into a horizontal and 
subsequent vertical 1D Gaussian convolution.  Making use 
of the central limit theorem,13,14 each Gaussian convolution 
was approximated by 3 consecutive uniform convolutions. 
Low pass filtering was optimized by using the conjugate 
symmetry property of the Fourier transform. The FSCV ac-
quisition was mirrored at the edges before transformation 
to avoid low pass boundary artifacts. The 2D Butterworth 
filter follows the transfer function in Equation 1. 
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where 𝐻(𝜔𝑥 , 𝜔𝑦) is the gain at horizontal frequency 𝜔𝑥 and 

vertical frequency 𝜔𝑦, 𝑐𝑥 and 𝑐𝑦 are the horizontal and ver-

tical cutoff frequencies, and  𝑝 is the order of the filter. The 
transfer function was modified from its general formula-
tion15 to allow different cutoff frequencies on each axis. The 
bandpass frequencies have an amplification gain of 0 dB, 

and the cutoff values are designed as frequencies at which 
the gain is reduced to 50% (-3 dB).   

𝑡1/2 of clearance was estimated by fitting the exponential 

decay function given by Equation 2 to the experimental 
evoked concentration trace after the maximum release 
peak.  

𝐶(𝑡) = 𝐶0𝑒−𝐾𝑡   , 𝑡1/2  =  
𝑙𝑛(2)

𝐾
(2) 

The exponential regression is initially obtained by lineariz-
ing the exponential decay function and using linear least 
squares. The user can manually apply nonlinear least 
squares to optimize the exponential fitting, in which case a 
custom-made stochastic gradient descent algorithm is ap-
plied to find the best fit. The stochastic algorithm uses the 
linear estimations as initial parameters and the root mean 
square error (RMSE) as cost function. The standard errors 
of the regression parameters were estimated from the 
square root of the diagonal elements of the inverted Hessian 
matrix. The standard error of 𝑡1/2 was estimated from the 

propagation of uncertainty of the K parameter,16,17 as ex-
pressed in Equation 3. 

𝛥𝑈𝑡1/2
2 = (

𝜕𝑓(𝐾)

𝜕𝑡1/2

)

2

𝛥𝑈𝐾
2 (3) 

The maximum amplitude of the release of concentration 
profiles is detected using a custom-made peak-finding algo-
rithm that compares each concentration value to its neigh-
bours. The number of neighbours used is set to 20 by default 
and can be changed by the user. The numerical integral is 
calculated using the Simpson’s rule between the first point 
and the first intercept of the x-axis after maximum ampli-
tude. If there is no x-axis intercept, the algorithm uses the 
minimum amplitude point.  

The kinetics of the reuptake were estimated using one of 
two different mathematical models. The first one, Equation 
4, with a single reuptake mechanism commonly used for do-
pamine,18,19  and the second one, Equation 5, with two 
reuptake terms, previously used for serotonin.12,20  

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑓 · [𝐶𝑝]  −  

𝑉𝑚𝑎𝑥 · 𝐶(𝑡)

𝐾𝑚 + 𝐶(𝑡)
(4) 

 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑅(𝑡)(1 − 𝐴(𝑡)) − 𝛼

𝑉𝑚𝑎𝑥1 · 𝐶(𝑡)

𝐾𝑚1 + 𝐶(𝑡)
− 𝛽

𝑉𝑚𝑎𝑥2 · 𝐶(𝑡)

𝐾𝑚2 + 𝐶(𝑡)
 

(5) 

𝐶(𝑡) is the concentration of the neurotransmitter in the ex-
tracellular space, 𝑓 is the frequency of stimulation, [𝐶𝑝] is 

the constant release of neurotransmitter per stimulus, 𝑅(𝑡) 
is the evoked release rate of the neurotransmitter, 𝐴(𝑡) is 
the fraction of occupied autoreceptors of the neurotrans-
mitter, which works as negative feedback control, 𝛼 and 𝛽 
are the weights of the two reuptake mechanisms, and 𝑉𝑚𝑎𝑥 
and 𝐾𝑚 are Michaelis Menten reuptake parameters. The dif-
ferential equations were solved by discretization of the dif-
ferential term. For the second model, the initial condition 
corresponds to the estimated basal concentration of the 
neurotransmitter, provided by the user.  Optimal kinetic pa-
rameters were then estimated using the previously men-
tioned stochastic gradient descent algorithm to fit the 
evoked concentration trace. 
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Experimental Procedures. The Analysis Kid is purely a 
post-processing tool. In this report, we intend to describe 
the main functionalities of the web application. The FSCV 
experimental signals shown here correspond to dopamine 
(NAc) and serotonin (CA2 region of hippocampus) voltam-
metric measurements in anesthetized rodents. Experi-
mental procedures used to acquire these signals are de-
scribed extensively elsewhere.12,21 

RESULTS AND DISCUSSION 

Background Subtraction and Filtering of FSCV Data. 
FSCV is most commonly used for neurotransmitter analysis 
with the aim of understanding the roles and mechanisms of 
these chemicals in brain function and pathology. Because 
neurotransmission occurs on a subsecond time scale and 
measurable extrasynaptic neurotransmitter concentrations 
are low (nano to micro molar),21,22 detection remains chal-
lenging. FSCV applies a continuous potential waveform to a 
carbon fiber microelectrode and measures the current 
along this potential ramp with a resolution dependent on 
scan rate and acquisition frequency (determined by data ac-
quisition card). The waveform is applied at high frequency 
(typically 10Hz) and data are typically collected between 
15-30 seconds. These data files are often presented as 2-di-
mensional representations of 3-dimensional data. These 
‘color’ plots display the potential waveform as a function of 
time (y-axis) vs. data file collection time (x-axis).  The cur-
rent is displayed in false color. Color plots are described in 
more detail by Michael et al. 23 The physiological infor-
mation held in these color plots is 2-fold. The potential at 
which redox peaks occur identifies substrates (via voltage 
vs. current (i) plots, cyclic voltammograms (CVs)), the max-
imum current amplitude of the peak here quantifies the an-
alyte (current (i) vs. t). 

Successful FSCV measurements necessitate several, simul-
taneous noise reducing/signal amplifying processes. For 
data acquisition, these processes include precision-fabri-
cated electrodes, electromagnetic shielding (via Faraday 
Cage), waveform filtering and pre- and post-amplification. 
24,25 Post-acquisition, data is digitally treated with back-
ground subtraction, filtering and multi-parametric analy-
sis.26 

There is no single platform that can interface with common 
FSCV data acquisition paradigms to simultaneously back-
ground-subtract, filter and provide in-depth analysis of in-
put data. The Analysis Kid aims to provide user-friendly, dig-
ital post-processing tools for FSCV data. The first step to-
wards this is background subtraction and filtering. 

Background subtraction in FSCV is necessary to remove a 
large, unspecific capacitive current that arises from double-
layer charging on the carbon surface due to high scan rates. 
.27 The idea is that over the short-term (10s of seconds) this 
capacitive or charging current is relatively stable. Hence, 
subtracting signals from a baseline will reveal the much 
smaller, Faradaic (electron transfer) current related to ana-
lyte concentration changes. FSCV background subtraction 
has been achieved in the continuous domain,28,29 and con-
sists of recording the background current and subtract it 
from the signal at the current transducer before analog-to-
digital conversion.  Analog subtraction is irreversible and 
difficult to control as it occurs at the pre-acquisition stage. 
Digital, post processing methods give more visibility and 

control since the baseline is manually determined by a pe-
riod of low activity during file collection.30 The Analysis kid 
enables the latter, digital background subtraction.  

Filtering the digital background-subtracted signals is often 
critical for revealing data. Existing analysis software apply 
one-dimensional low pass filters to remove high-frequency 
noise from the cyclic voltammograms, then uniform convo-
lutions to smooth the color plots.31 HDCV introduces 2-di-
mensional filtering by applying a one-dimensional filter to a 
two-dimensional mask. A two-dimensional approach re-
moves a step, simplifying the process and rendering the 
data less prone to overfiltering. The Analysis Kid filters the 
high-frequency noise using two optimized approaches. 
Each approach is equally valid for filtering data and can be 
chosen depending on unique advantages and disadvantages 
for custom data sets. 

1. Two-dimensional Gaussian convolution approximated by 
a separable and recursive uniform convolution. Gaussian 
convolution better preserves the edges and overall shape of 
signals than uniform convolution.32 However the computa-
tional performance of straight Gaussian convolution is sub-
optimal because the FSCV signal must be multiplied by pre-
computed Gaussian kernel coefficients. Specifically, the 
computational complexity of a two-dimensional Gaussian 
convolution is O(MNk2), with M and N being the dimensions 
of the color plot and k the size of the kernel. Functionally 
this means that because FSCV acquisitions are large data 
sets, filtering (depending on processing power), is not in-
stantaneous. Our convolution algorithm maintains Gaussian 
smoothing properties while optimising performance by re-
ducing the computational complexity to O(max(M, N)) - 
which is independent of kernel size. So while 2D FFT filter-
ing (O(MN·ln(MN))) tends to perform faster than conven-
tional convolution operations, this is not the case for our op-
timized convolution algorithm, which performs approxi-
mately twice as fast as the 2D FFT filtration on the same ma-
chine and signal size. 

2. Two-dimensional FFT, Butterworth Low Pass Filtering. 

Figure 1 illustrates the Butterworth filtering scheme. The 
method consists of transforming the FSCV acquisition (in 
vivo dopamine color plot, left) into the two-dimensional fre-
quency domain (Fourier spectrum, right) (1A), where the y 
and x axes represent the vertical and horizontal frequency 
spectrum of the color plot. The spectrum is multiplied by 
the Butterworth transfer function (1B) using the Hadamard 
product (element-wise, not matrix multiplication) to scale 
the magnitude of the frequency components. The result of 
the operation is then transformed back to the temporal do-
main using the inverse 2D FFT algorithm (1C).  

Figure 2 provides a comparison of our two filtering meth-
ods. Here, via electrical stimulation (at 5 seconds) of the me-
dial forebrain bundle in a mouse brain, dopamine is evoked. 
Dopamine is identified via the characteristic positions of re-
dox peaks in the CV. The current signal increases immedi-
ately upon stimulation and clears within seconds after-
wards. 2A shows in vivo dopamine color plots (middle: raw, 
left: 2D convoluted, right: 2D FFT filtered). 2B and 2C are 
the i vs. time and CVs taken from the horizontal/vertical 
dashed crosshairs form the color plots. The unfiltered data 
is superimposed over the filtered data for comparison. 
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Figure 1. Representation of the 2D FFT low pass filtering scheme. (A) FSCV color plot and 2D frequency spectrum of an in vivo evoked dopamine measure-
ments in the nucleus accumbens of a mouse brain. The range of the frequency spectrum in each axis is determined by the Nyquist rate, 𝑓𝑚𝑎𝑥 =  ± 𝑓𝑠/2. (B) 
Illustration of the 2D Butterworth filter gain (cutoff frequencies 𝑐𝑥 = 0.75 Hz and 𝑐𝑦 = 37.5 kHz, and order p = 5) for the same range of frequencies as the 

color plot spectrum. The 50% gain dropout (also known as 3 dB cutoff) is denoted with a red circle. The transfer function presents a uniform gain in the 
passband, characteristic of Butterworth filters, and a steep transition to the stopband due to the high order of the filter. (C) Filtered FSCV color plot and 2D 
frequency spectrum. The filtered spectrum is obtained as the element-wise product of the transfer function in part (B) and the 2D spectrum in part (A). 

Figure 2. Comparison between 2D Gaussian convolution and 2D FFT low-pass spectrum filtering. (A) FSCV color plots of in vivo electrically stimulated 
dopamine in the nucleus accumbens of a mouse. The unfiltered color plot is shown on the center. On the left, the color plot was smoothed using 2D 
convolution with a Gaussian 5x5 kernel and one repetition. On the right, 2D Butterworth spectrum filtering (cutoff frequencies 𝑐𝑥 = 0.75 Hz and 𝑐𝑦 = 37.5 

kHz, and order p = 5) was used instead. SNR (average ± SEM, n = 5 animals) was calculated as peak-signal-to-noise ratio (see Supporting Information). 
(B) Horizontal current traces extracted at potential 0.6 V from the respective color plot above. (C) Cyclic voltammograms extracted at time 7 s from the 
respective color plot above. Filtered signals are superimposed to the unfiltered signal to demonstrate that there are no time voltage or amplitude shifts. 
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 Both filtering methods remove high-frequency noise and 
increase SNR and are zero-phase, meaning that there is no 
peak shift. For 2D FFT Butterworth filtering, cut-off fre-
quencies are defined as a percentage of the maximum fre-
quency of the signal in each direction. This allows for the 
selection of filter boundaries without knowledge of the fre-
quency spectra. Each method has distinct advantages; for 
typical data sets, convolution is faster (vide supra) while fil-
tering in the frequency domain is more intuitive and pre-
cise. Additionally, convolution in the temporal domain usu-
ally requires a trial-and-error approach. Thus, for clean, 
simple data convolution is more appropriate, while noisier, 
more complex data sets could benefit from FFT filtering. 
The 2D frequency spectrum representation together with 
the cutoff boundaries of the filter are available on the plat-
form. As shown in Figure 1, the stopband of the transfer 
function can be designed to filter out artifactual frequency 
components with different cutoff frequencies for each axis. 
This feature is critical because the noise frequency spectra 
of cyclic voltammograms and current traces are different, 
an effect that is exacerbated because the sampling fre-
quency used to acquire CVs is much higher than the voltage 
application frequency (e.g., 500 kHz vs. 10Hz).   

Automatic Parametric Peak Analysis. Physiological infor-
mation about how the concentration of an analyte changes 
with time is derived from color plots as i vs. time traces. The 
analyte concentration is directly and linearly proportional 
to this current,33 and can easily be determined via in vitro 
calibrations. A calibration factor derived from the linear 
portion of the calibration curve allows conversion of the sig-
nal to concentration. From these concentration signals, 
physiological information can be garnered from the peak 
amplitude and the post-stimulation clearance rate (either 
via simple 𝑡1/2 analysis of the clearance curve or a more so-

phisticated first-order kinetic decay described by a Michae-
lis-Menten model). 

The Analysis Kid provides a platform for simple and more 
complex (i.e.  Michaelis-Menten) parametric analysis. Multi-
ple color plot data files can be simultaneously uploaded to 
the platform. A single color plot is displayed, and filtering is 
applied (vide supra). Via an interactive selection tool, the i 
vs. time of interest is graphed into an embedded window 
and assigned a color tag. A calibration panel allows the user 
to apply a calibration factor to this data - the resulting con-
centration vs. time trace is displayed in an additional win-
dow. Here, the maximum peak concentration, 𝑡1/2 of clear-

ance and area under the curve are automatically plotted. 
Multiple files can be treated in this way and are optionally 
superimposed on the i vs. t panel on the same Cartesian 
axes; the user can select which ones to show and hide. Each 
trace is assigned a tag with the name of the origin file, a color 
and a number. This information is shown as a tooltip when 
the user hovers over a current trace. The standard error of 
the estimate (SEE) and coefficients of the exponential fit are 
also provided to assess the goodness of fit. T1/2 is either ob-
tained from a linearized exponential regression, or a nonlin-
ear optimization of the exponential parameters.  

Figure 3 illustrates this analysis process for an in vivo ex-
periment where dopamine is evoked in the same way as de-
scribed above. Panel A is the color plot filtered with 5x5 
Gaussian kernel convolution, inset into this color plot is the 
i vs. time extracted from the dopamine oxidation peak at 0.6 

V. Panel B and C are the same data, calibrated for concen-
tration. In B, the decay curve is fitted with a linearized ex-
ponential function (C(t)) and in C, the curve is fitted with a 
non-linear least-squares algorithm with a stopping crite-
rion of 50 iterations per optimization. This approach better 
fits the data, evidenced by the lower standard error of the 
estimate in C and better R2 value (0.87 in B and 0.97 in C, 
even though the R2  parameter is a frail estimate of the good-
ness of fit of nonlinear models.34,35 This lower error occurs 
partly because a linear regression assumes the error distri-
bution is additive in the logarithmic scale. Consequently, er-
rors will be higher for high concentration values making a 
linear model less able to accurately model higher dopamine 
concentrations. 

Figure 3. Calibration and automatic analysis in The Analysis Kid. (A) 
FSCV color plot of DA evoked release in the nucleus accumbens of the 
mouse brain. The white dotted line illustrates the extracted current 
trace at the faradaic potential of interest. The inset white graph shows 
the extracted trace. (B, C) Dopamine trace after calibration with a factor 
of 0.0625 μM/nA. Blue dots represent the maximum and minimum am-
plitude points detected by the algorithm. Dashed blue line represents 
the exponential fit, also expressed as an equation together with the 
half-life of the reuptake and SEE. Shaded area represents the integrated 
area under the curve.  In part (B), the initial linearized exponential re-
gression is provided. In part (C), the nonlinear least-squares algorithm 
is applied for 50 iterations.  
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Analysis of Reuptake Kinetics.  Michalis-Menten models 
are employed to analyze reuptake curves because trans-
porter/substrate interactions have first-order reaction ki-
netics. The M-M equation, Equation 6 below, describes the 
velocity of reaction (v) as a function of substrate concentra-
tion and two constants that define the system. 𝑉𝑚𝑎𝑥  is the 
maximum rate of reaction, the higher 𝑉𝑚𝑎𝑥   the more effi-
cient the transporter. 𝐾𝑚  is the substrate concentrate at 

 
𝑉𝑚𝑎𝑥

2
  and measures the capacity of the system. The lower 

the 𝐾𝑚, the higher the affinity of the transporter for the sub-
strate. 

𝑣 =
[𝑆] · 𝑉𝑚𝑎𝑥

𝐾𝑚 + [𝑆]
(6) 

Thus, modelling reuptake curves with M-M informs about 
the efficiency and affinity of transport systems to be estab-
lished. Different M-M models have been developed to fit 
FSCV concentration traces, including general models incor-
porating one19,36,37 or two12,20 reuptake mechanisms, and 
circuit-level models designed for multiple neurotransmit-
ters.38 All of these models are differential equations. Most 
commonly computational software (such as MATLAB) is 
utilized to fit the solution of the differential equation to the 
experimental data.  This approach, while effective, requires 
a high level of computational and mathematical expertise. 
In The Analysis Kid, we created a straightforward estimation 
of reuptake kinetics from two general models with one and 
two reuptake mechanisms (Equation 4 and Equation 5, 
used previously to model dopamine and serotonin traces, 
respectively). 

Equation 4 is a simple model that has been extensively 
used to model dopamine curves with only 3 variables (𝑉𝑚𝑎𝑥 , 
𝐾𝑚  and [𝐶𝑝]), describing the rate of change of analyte (do-

pamine) as a function of dopamine released per stimulation 
pulse minus a single M-M term.19  However, this equation 
was not successful in modelling serotonin curves because of 
two additional features of the experimental traces. These 
additional experimental features arise from a prolonged au-
toreceptor effect (1-A(t)) that offsets release, and a second 
M-M term to reflect Uptake 1 and 2 mechanisms. These mul-
tiple reuptake mechanisms have been described for some 
time for serotonin. The notion is that at low serotonergic ac-
tivity, the serotonin transporters, that are localized to the 
synaptic region, uptake serotonin with high affinity but low 
capacity, this mechanism is called Uptake 1. At times of in-
creased activity (above a certain concentration threshold), 
other monoamine transporters such as norepinephrine and 
organic cation transporters team up to uptake serotonin. 
This Uptake 2 mechanism clears serotonin with low affinity 
(because the transporters are not specific to serotonin) and 
high capacity (but there are several different types). α and 
β coefficients allow different weights to be assigned to each 
reuptake component dependent on local tissue architecture 
and a concentration threshold defines at which point Up-
take 2 is activated.20 The dopamine model assumes a basal 
level of 0, while the serotonin model assumes a basal level 
of 20-80 nM based on previous work. First, we found that 
serotonin falls below baseline by up to 10s of nM after stim-
ulation – effect that we attributed to autoreceptors,20 and 
second from actual basal level measurements of serotonin 
with a new technique FSCAV.39 

The analysis is partially automatic. For dopamine, input of 
stimulation frequency and the number of pulses is sufficient 
for an initial estimation of the modelled trace. Then, the user 
can apply our optimization algorithm – a stochastic gradient 
descent algorithm that iterates over user-fixed intervals of 
𝐾𝑚, 𝑉𝑚𝑎𝑥 and [𝐶𝑝] to improve the model fitting. For seroto-

nin, the release and autoreceptor term are modelled inter-
actively in the user interface and are not defined by con-
stants. The release term can take any shape, which is neces-
sary to fit the experimental data arising from the complex 
release and auto-inhibition interaction. Standard values of  
𝐾𝑚  and 𝑉𝑚𝑎𝑥  for Uptake 1 and 2 are the starting points for 
modelling the two reuptake curves. Basal levels, α and β co-
efficients and a threshold concentration for Uptake 2 (β) are 
user inputted and the fitting is as for dopamine above. When 
multiple parameters are optimized, the algorithm will iter-
ate them in succession. The number of iterations and learn-
ing rate of the optimization process can also be modified by 
the user. 

Figure 4 shows how stereotypical in vivo dopamine (A) and 

serotonin (B) traces are modeled with The Analysis Kid.  Ai 

and Bi contain the color plots, filtered with a 5x5 kernel con-

volution. Aii and Bii show the model fits, and Aiii and Biii 

show how the release (and autoreceptor for serotonin) 

terms change with time. For dopamine, the M-M parameters 

of the single reuptake (𝑉𝑚𝑎𝑥  =  1.45 𝜇𝑀/𝑠, 𝐾𝑚  =

 0.39 𝜇𝑀, [𝐶𝑝] = 0.04 𝜇𝑀) agree with those from previous 

studies in the NAc of rats.40 The release term (4Aiii) is mod-

elled as a constant release of neurotransmitter during stim-

ulation with only one variable parameter([𝐶𝑝]), and the 

model fits the experimental data with a low deviation from 

the experimental trace. For serotonin, an experimental sig-

nal with two different reuptake curves was analyzed. The 

slow reuptake mechanism (𝑉𝑚𝑎𝑥1  =  14.59 𝑛𝑀/𝑠, 𝐾𝑚1  =

 5.09 𝑛𝑀) always takes effect (𝛼 =  1), while the fast 

reuptake mechanism (𝑉𝑚𝑎𝑥2  =  642.38 𝑛𝑀/𝑠, 𝐾𝑚2  =

 221.63 𝑛𝑀) only takes effects when the experimental trace 

reaches a concentration threshold (𝛽 =  0.03, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

 22 𝑛𝑀). The release and autoreceptor terms are manually 

modelled to fit the shape of the experimental signal. The op-

timised kinetic parameters and overall shape of the release 

and autoreceptor terms agree with previous work.20 Thus, 

our application provides an analogous yet straightforward 

method to model the reuptake kinetics. 

CONCLUSIONS 

For filtering and multi-modal analysis of FSCV signals sev-
eral custom platforms are available. However, no easily ac-
cessible software has the capacity for all these features. In 
this work, we introduced The Analysis Kid: a free, open-
source web application. We showed that multi-platform file 
formats could be imported for visualization of FSCV color 
plots with background subtraction. We discussed key fea-
tures that enabled calibration and parametric analysis 
(maximum amplitude, AUC and 𝑡1/2) of the signal. Finally, 

we highlighted a key feature of The Analysis Kid, namely 
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semi-automatic fitting of data with Michaelis Menten kinetic 
models for in vivo dopamine and serotonin traces. The Anal-
ysis Kid aims to simplify and broaden FSCV analysis signifi-
cantly. 
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