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Abstract

Current MRI signatures of brain cancer often fail to identify regions of hypercellularity
beyond the contrast enhancing region. Therefore, this study used autopsy tissue samples
aligned to clinical MRIs in order to quantify the relationship between intensity values and
cellularity, as well as to develop a radio-pathomic model to predict cellularity using MRI
data. This study used 93 samples collected at autopsy from 44 brain cancer patients. Tissue
samples were processed, stained for hematoxylin and eosin (HE) and digitized for nuclei
segmentation and cell density calculation. Pre- and post-gadolinium contrast T1-weighted
images (T1, T1C), T2 fluid-attenuated inversion recovery (FLAIR) images, and apparent
diffusion coefficient (ADC) images calculated from diffusion imaging were collected from
each patients’ final acquisition prior to death. In-house software was used to align tissue
samples to the FLAIR image via manually defined control points. Mixed effect models were
used to assess the relationship between single image intensity and cellularity for each image.
An ensemble learner was trained to predict cellularity using 5 by 5 voxel tiles from each
image, employing a 2/3-1/3 train-test split for validation. Single image analyses found subtle
associations between image intensity and cellularity, with a less pronounced relationship
within GBM patients. The radio-pathomic model was able to accurately predict cellularity
in the test set (RMSE = 1015 cells/mm2) and identified regions of hypercellularity beyond
the contrast enhancing region. We concluded that a radio-pathomic model for cellularity is
able to identify regions of hypercellular tumor beyond traditional imaging signatures.
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1. Introduction

Brain cancer, along with other central nervous system cancers, are the tenth leading cause
of death worldwide, with an estimated 5-year survival rate of approximately 38 percent1. In
particular, high-grade primary brain tumors such as glioblastomas are associated with partic-
ularly dismal prognoses, with a mean survival rate of around 12-18 months post-diagnosis2.
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Current standard of care for tumor patients includes targeted surgical resection of the tumor
area, as defined by magnetic resonance imaging (MRI), targeted radiation therapy, and ad-
ministration of chemotherapeutic agents. At recurrence, patients can be treated with salvage
therapy such as bevacizumab3,4, with many patients also opting for newer FDA-approved
treatments such as tumor-treating fields5-7. Precise localization of tumor margins is essential
to maximizing the efficacy of these treatments and monitoring tumor progression.

Magnetic resonance imaging (MRI) is currently the gold standard for identifying the tu-
mor boundary and monitoring disease progression. T1-weighted imaging acquired following
an injection with a gadolinium contrast agent (T1C) is used to identify regions where active
tumor has disrupted the blood-brain barrier. Contrast enhancement is often used to define
the extent of the primary tumor region8. Hyperintense regions on fluid-attenuated inversion
recovery (FLAIR) images are thought to indicate a combination of tumor-related edema9-11

and infiltrative non-enhancing tumor12. Multi-b-value diffusion weighted imaging (DWI) is
also typically included in glioma imaging protocols, which is used to calculate quantitative
apparent diffusion coefficient (ADC) maps. These maps identify areas of restricted diffusion
that may indicate either hypercellular tumor13-16 or coagulative necrosis17.

Critical for understanding the relationship between radiological signatures and patholog-
ical features of the tumor is tissue-based pathological validation. These studies inherently
require invasive tissue sampling, and therefore have typically been limited to surgical biopsy
cores taken in-vivo from contrast-enhancing regions (i.e. suspected tumor). Studies using
biopsy cores have provided pathological validation for imaging signatures such as the inverse
relationship between ADC and cellularity13,18,19). Combined radiological-pathological (rad-
path) datasets have also been used to develop predictive models for pathological features20-23.
While these studies have provided understanding of the relationship between the tumor en-
vironment and its corresponding radiological features, limitations in the number and size of
tissue samples result in a loss of the ability to fully characterize these heterogeneous tumors.

Tumor heterogeneity has been a recent focus in radiology imaging studies of GBM. With
non-invasive imaging, regional heterogeneity is readily measurable, but capturing heterogene-
ity with pathology samples is challenging. It can be achieved with en-bloc resection24,25 or
sampling multiple times with image guided biopsies. Each of these techniques require prop-
erly aligning samples to their location, which can be difficult due to a lack of orientation.
Other issues such as brain shift during craniotomy, and the inability to sample regions out-
side the suspected tumor region further complicate these strategies. Despite these challenges,
pathological measurement of tumor heterogeneity is crucial to improving the localization of
multiple tumor pathologies, as well as in order to validate imaging signatures beyond the cur-
rently accepted tumor boundary. In particular, high-grade gliomas are typically associated
with diverse histopathological features that may confound traditional imaging interpreta-
tions, therefore validation across a range of suspected tumor characteristics are important
to distinguish diagnostic differences in MR interpretation.

Another factor in the field of glioma rad-path correlation is the timing of tissue acquisi-
tion. Because the majority of surgeries and biopsies are done at the beginning of treatment,
prior to radiation and chemotherapy, the imaging characteristics at that stage may not fully
capture the spectrum of tissue, which evolves during treatment. Due to factors such as post-
surgical blood products, radiation necrosis, and pseudo-progression, pathological correlations
found upfront may not generalize in the treated phase26–28.
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Studies of glioma patients at autopsy have shown that viable tumor can exist as far as 10
cm beyond contrast enhancement, where pseudo-palisading necrosis and other heterogenous
pathological features may confound traditional MRI interpretations15,17,29. Due to the sam-
pling limitations of biopsy samples, further pathological validation of MR imaging signatures
is warranted, both beyond the contrast enhancing region and in the post-treatment state.
Therefore, this study used large format tissue samples collected across the whole brain at au-
topsy in order to validate current imaging signatures, as well as use this pathological ground
truth to develop predictive tools to assess prospective tumor beyond the contrast enhanc-
ing region. Specifically, this study tested the hypotheses that 1) MP-MRI intensity values
are associated with tumor cellularity at autopsy 2) cellularity imaging signatures are more
robust in non-GBM patients than GBM patients and 3) a radio-pathomic model trained
on autopsy data will be able to accurately identify regions of hypercellular tumor beyond
traditional imaging signatures.

2. Methods

Table 1: Clinical and demographic summary for study sample. Quantitative values are presented as mean
(standard deviation).

2.1. Patient Population

A total of 44 patients with pathologically confirmed brain tumors were enrolled in this
IRB-approved study. Patients underwent an autopsy following clinical decline and death.
Clinical histories and demographic information are shown in Table 1. A diagrammatic
representation of the tissue and imaging data collection process is shown in Figure 1.
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Figure 1: Overview of the data collection process. A) MRI data is collected from the patients’ final imaging
session prior to death, co-registered, and T1, T1C, and FLAIR images are intensity normalized. Tissue
fixation and sampling involves the use of 3D printed brain cages and slicing jigs in order to preserve structural
integrity relative to the MRI. Following staining, tissue samples are digitized for cellularity calculation using
an automated nuclei segmentation algorithm. B) In-house software is used to align each tissue sample to
the FLAIR image using manually-defined control points and regions of interest. C) Single-image cellularity
associations were computed using mixed effect models, and a bagging regression ensemble was trained to
predict cellularity using 5 by 5 voxel tiles from each image using a 2/3-1/3 train-test split.

2.2. MR Image Acquisition and Preprocessing

The clinical MRI scans acquired closest to each patient’s death were used for this study.
Each protocol included T1-weighted pre- and post-contrast images (T1 and T1C, respec-
tively), T2-weighted fluid-attenuated inversion recovery images (FLAIR), and diffusion weighted
images (DWI). Image acquisition was performed on our institutional MRI scanners, includ-
ing 1.5T and 3T GE (General Electric Health, Waukesha, Wisconsin) and Siemens magnets
(Siemens Healthineers, Erlangen, Germany). Example acquisition parameters for scans col-
lected at 1.5T include (repetition time/echo time): T1 spin-echo sequence (T1), 666/14 ms;
contrast-enhanced T1 acquired with gadolinium (T1C), 666/14 ms; apparent diffusion coef-
ficient (ADC), calculated from diffusion-weighted images (DWI) acquired with a spin-echo
echo-planar sequence, 10,000/90.7 ms; and FLAIR, acquired with an inversion recovery se-
quence, 10,000/151.8 ms and TI of 2,200 ms. Example acquisition parameters for scans
collected at 3T include: T1 spin-echo sequence, 716.7/10 ms, T1C 716.7/10 ms, ADC from
DWI acquired with a spin-echo echo-planar sequence, 8,000/83.1 ms, and FLAIR acquired
with an inversion recovery sequence, 10,000/121.1. All images were acquired with submil-
limeter in-plane resolution.

The images collected for inclusion in validation analyses included the T1, T1C, and
FLAIR images, as well as the ADC images derived from the DWI. All images were rigidly
aligned with each subject’s FLAIR image using FSL’s FLIRT tool30–32. All non-quantitative
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images (T1, T1C, FLAIR), were intensity normalized by dividing voxel intensity by its whole
brain standard deviation33,34. Because ADC is a quantitative measure, these images were
not intensity normalized.

2.3. Ex-vivo Histology Processing

At autopsy, each patient’s brain was removed and placed in a patient-specific 3D-printed
brain mold, modeled from the patient’s most recent MRI. These molds were meant to prevent
tissue distortion during 2 to 3 weeks of fixation in formalin (15,17,35). Following fixation,
brains were sliced using patient-specific slicing jigs, also 3D printed to match axial slice
orientation from the most recent MRI17. Tissue samples measuring approximately 2 inches
by 3 inches were then collected from each subject from regions of suspected tumor, as well as
tissue adjacent to the suspected tumor region. These samples were then processed, embedded
in paraffin, sliced, and stained with hematoxylin and eosin (HE). The slides were then
digitized at 0.2 microns per pixel (40X magnification) using a Huron sliding stage microscope.
A total of 93 tissue samples were collected across all patients.

2.4. Pathological Feature Extraction

After digitization, images were processed using Matlab 2020b (Mathworks Inc., Natick,
MA) in order to extract pathological features for quantitative analyses. First, a color de-
convolution algorithm was used to project color data in terms of relative stain intensities,
resulting in an image with color channels representing hematoxylin, eosin, and residual color
information36,37. Images were then down sampled by a factor of 10 in order to smooth color
data for improved nuclei segmentation, as well as to decrease processing time. Cell nuclei
were highlighted by applying filters on each color channel to selectively identify positive
hematoxylin staining, and individual nuclei were identified using Matlab’s regionprops func-
tion. Cell count was computed across 50 by 50 superpixels across the image and converted
to cells per square millimeter for ease of interpretability. Additionally, segmentations for
extra-cellular fluid (ECF) and cytoplasm were computed and converted to proportions of
the superpixel occupied by the component of interest. All segmentations were visually in-
spected for quality assurance, and example segmentations are provided in Supplemental
Figure 1.

2.5. MRI-Histology Co-registration

Previously published in-house software (Hist2MRI Toolbox, written in Matlab, Math-
works Inc, Natick, MA) was used to precisely align histology images to each patient’s clini-
cal imaging15,17,35,38,39. Photographs taken during tissue sectioning were used to identify the
imaging slice that corresponded to each tissue sample. Next, control points were manually
defined in order to calculate a nonlinear warp to match each tissue sample to its shared
anatomical features with the FLAIR image. Following warping, manually defined regions
of interest are used to identify regions of both valid histological information (e.g. free from
processing artifacts) and valid MRI information (e.g. free from motion artifacts). Voxel
intensity values from T1, T1C, FLAIR, and ADC images, as well as cellularity values for
each voxel were collected across these ROIs and used for subsequent analyses. Across all 93
samples, a total of 578,668 voxels were included.
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2.6. Statistical Analyses

2.6.1. Single Image Analyses

Linear mixed effect models were used in order to quantify the propensity for individual
images to identify regions of hypercellularity. Image intensity was included as a main ef-
fect, with time between last MRI scan and patient death (in days) and grey/white matter
probability included as covariates. Patient number was included in the model to account
for patient-specific confounds. Regression coefficients ( values) and R-squared values were
reported to quantify the relationship between MRI intensity and cellularity in terms of slope
and explained variance, respectively. R-squared values were computed in terms of condi-
tional and marginal effects as well, in order to specifically delineate the explained variance
resulting from imaging signatures from that of subject-level variance.

In order to specifically compare diagnosis-level differences in the relationship between
MRI intensity and cellularity, similar mixed effect models were computed for each image type
including a term for the interaction between image intensity and diagnosis, with diagnostic
groups corresponding to GBM, non-GBM glioma (NGG), and Other. The other category
consisted of one patient with brain metastases and one patient with lymphoma. Both of these
patients did not receive treatment for their brain tumors and can thus provide a proxy for rad-
path relationships in the untreated state. Due to the large number of observations relative
to the patient-level data set size, p-values were considered a poor measure of meaningful
significance (all p¡0.00001). Therefore, measures of effect size are reported for this sub-
analysis. Analogous models were also calculated for extracellular fluid (ECF) and cytoplasm
as the dependent variables in order to examine other cellular factors that may driving imaging
values, which are presented in Supplemental Figure 2.

2.6.2. Radio-Pathomic Modeling

A random forest ensemble algorithm was used as the framework for developing a radio-
pathomic model of cellularity. Specifically, a bootstrap aggregating (bagging) model was
used, which fits independent weak learners across several independent bootstrapped samples
from the training data set in order to obtain a combined ensemble model that minimizes
variance across learners40,41. Inputs for this model were intensity values from 5 by 5 voxel
tiles across each image, in order to incorporate local spatial and contextual information.
Model performance was assessed within the training dataset, across a leave-one-subject-out
cross validation scheme. To test generalizability, the models were then applied to imaging
data from an independent dataset from 14 subjects held-out of the training. Performance
was quantified using root mean squared error (RMSE) values, which were standardized
to the standard deviation of cellularity. Example predictions for each validation scheme
were computed across the whole brain of each patient in order to assess the model’s ability
to discern regions of hypercellularity beyond traditional imaging signatures. Additionally,
cellularity prediction maps were computed for one subject across several clinical timepoints
to evaluate the model’s ability to track tumor progression over the course of the disease
state.
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Figure 2: Single image results depicting the relationship between image intensity and cellularity for each
contrast. values for the left-hand plots indicate the change in cellularity per standard deviation increase
in image intensity, and indicate positive associations for T1, T1C, and FLAIR, with the expected negative
association between ADC and cellularity present. B values for the right-hand plots indicate the difference
in slope between GBM, NGG, and Other patients, indicating that GBM patients show less pronounced
cellularity associations than non-GBM patients across all image types, with the exception of T1 intensity.

3. Results

3.1. Single-Image Analyses

Mixed effect model results for the single image analyses are presented in Figure 2. T1,
T1C, and FLAIR images demonstrated positive associations with cellularity (T1 = 160.23
(5.11), Conditional R2 = 0.35, Marginal R2 = 0.012; T1C = 480.60(4.00), Conditional R2 =
0.44, Marginal R2 = -0.074; FLAIR = 152.50(3.12), Conditional R2 = 0.34, Marginal R2 =
0.010). ADC values demonstrated a negative association with cellularity (B = -153.72(5.45),
Conditional R2 = 0.34, Marginal R2 = 0.008), however the strength of this relationship was
much lower than expected. When splitting data by diagnostic group (GBM vs. NGG vs.
Other), stronger relationships between image intensity and cellularity were observed for NGG
and Other patients across each image except the pre-contrast T1, with the largest diagnostic
discrepancy seen in the ADC-cellularity relationship (T1 = 135.56 (4.10), Conditional R2
= 0.15, Marginal R2 = 0.014; T1C = 615.22 (3.76), Conditional R2 = 0.30, Marginal R2 =
0.126; FLAIR = 277.51 (2.83), Conditional R2 = 0.18, Marginal R2 = 0.036; ADC = 168.24
(2.84), Conditional R2 = 0.16, Marginal R2 = 0.016). The GBM group showed an opposite
direction relationship compared to the Other group for the pre-contrast T1 intensity, with
only a subtle relationship seen in the NGG group.

3.2. Radio-Pathomic Mapping

A summary of model performance, including train and test set root-mean-squared error
values and a scatter plot summarizing example prediction values is provided in Figure 3.
Overall train and test set RMSE values (389 cells/mm2 and 1015 cells/mm2, respectively)
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Figure 3: A) Subject-level RMSE values for the train and test data sets. Despite some
degree of overfitting, the test set RMSE indicates that the radio-pathomic model is able to

accurately predict cellularity across most subjects. B) Example predictions for test set
imaging values presented in terms of their T1SUB, FLAIR, and ADC intensity values.

Patterns suggest the presence of traditional imaging signatures, but also indicate the lack
of specificity for these signatures with regards to hypercellularity

show some degree of overfitting with regards to the training data set, but generally indicate
accurate prediction of cellularity. The scatterplot, which demonstrates example predictions
in terms of T1SUB (T1C – T1), FLAIR, and ADC intensity values shows indications of
expected relationships (i.e. FLAIR-ADC mismatch associated with hypercellularity), but
also highlights that traditional hypercellularity signatures are often non-specific. Exam-
ple predictions for test set subjects are included in Figure 4, where cellularity predictive
maps (CPM) for the whole brain are provided with the clinical images for each patient,
as well as the pathological ground truth from the aligned autopsy slide. These example
predictions highlight that the CPMs calculated from the radio-pathomic model accurately
predict several regions of increased cellularity beyond the traditional contrast enhancing re-
gion and discriminate between hypercellular and non-hypercellular regions within contrast
enhancement. Additionally, example CPMs across longitudinal imaging for a 59-year-old
male patient diagnosed with GBM are presented in Figure 5 with timepoints just after
initial surgery (511 days prior to death), as well as two imaging time points acquired during
cognitive decline (26 and 12 days prior to death). These CPMs highlight the potential for
the radio-pathomic model to monitor disease progression, as predictions begin to suggest
selective proliferation within the contrast-enhancing region during the later stages of the
disease.
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Figure 4: Example predictions for three representative subjects, including A) a 43-year-old male diagnosed
with a grade 3 anaplastic astrocytoma, B) a 48 year old male diagnosed with a GBM, and C) a 31-year-old
female diagnosed with a grade 3 anaplastic astrocytoma. These predictions indicate that the radio-pathomic
model is able to predict regions of hypercellularity beyond the contrast-enhancing region, as well as in the
absence of restricted diffusion on the ADC image

4. Discussion

This study evaluated current MP-MRI signatures of brain tumor pathology in compar-
ison to a radio-pathomic model for brain cancer. Using tissue samples taken at autopsy
aligned to the patients’ clinical imaging, this study assessed relationships between imaging
and pathology in the post-treatment state, as well as beyond the contrast-enhancing region.
LME-based analyses of individual image intensity values found that single image signatures
explain a relatively small proportion of cellularity variance. Additional single image analyses
found an effect of tumor type on the cellularity-intensity relationship, with reduced cellu-
larity associations seen in GBM compared to non-GBM patients across all image types. We
developed a radio-pathomic model using a bagging ensemble architecture, which predicted
cellularity accurately on withheld subjects, despite performing less reliably in a small subset
of cases. Predictive maps showed that the model accurately predicted regions of hypercellu-
larity beyond regions of contrast enhancement and other traditional imaging signatures, and
predictions across longitudinal data plausibly tracked tumor proliferation over the course of
the disease state.

Contrast-enhancement is often the principal MRI signature used to clinically define the
tumor boundary8,42. Coupled with FLAIR hyperintense regions, these signatures are thought
to indicate regions with some combination of infiltrative tumor and vasogenic edema9,11. The
general trends for increased cellularity associated with increased contrast enhancement and
FLAIR intensity support the notions that these features relate to pathological effects of the
tumor. However, these features failed to account for the vast majority of cellularity vari-
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ance, and in some cases failed to identify regions of hypercellular tumor beyond the primary
tumor mass. Previous studies have suggested that radiation therapy and other treatments
may influence the relationship between different imaging signatures and pathological tumor
features, as induced necrosis may confound traditional interpretations of these features43,44.
Diagnostic factors may play a role here as well, as the results of this study show that GBM
cases, which present with a wide range of pathological characteristics, have less pronounced
relationships between cellularity and imaging values than their lower-grade, more patho-
logically homogenous counterparts45–47. Further studies probing potential confounds could
further assess which factors influence the relationship between T1C/FLAIR enhancement
and its underlying pathological characteristics.

Past studies have particularly highlighted ADC values as a correlate for cellularity. Par-
ticularly, studies using biopsy tissue samples to calculate ground truth cellularity demon-
strate a fairly robust inverse relationship between ADC and cellularity13,16,48. This study
finds evidence of this negative association, though the strength of this relationship is more
subtle in comparison to previous studies. Biopsy tissues sampled within regions of contrast
enhancement may only reflect relationships near the tumor core, which may not general-
ize to areas beyond the traditionally defined tumor region. Additionally, diagnostic factors
could play a role here, as a much more pronounced relationship between ADC and cellularity
was observed for non-GBM cases compared to GBM cases. Heterogenous pathological fea-
tures of GBM, such as pseudopalisading necrosis, may co-localize within individual voxels,
mitigating the effects of cell density on diffusion restriction. Other pathological features
may be more representative of ADC values as well, with both ECF and cytoplasm showing
more consistent relationships across diagnostic groups (see Supplemental Figure 2). Given
past findings examining the relationship between ADC and cellularity, further replications
of these results are warranted, as well as more in-depth assessments of how heterogenous
pathological findings relate to corresponding imaging signatures.

The performance statistics for our radio-pathomic model suggest that our model can
accurately assess tumor cellularity in brain cancer patients. Despite some increased error
observed in some individual cases, the majority of subjects in the test set had a RMSE within
a standard deviation of each subjects’ cellularity, indicating that the model has the capacity
to generalize to unseen data. These results thus demonstrate the feasibility of developing
radio-pathomic models for pathological features using autopsy tissue data. These predictions
are particularly valuable as they are validated in the post-treatment state, whereas predictive
models from biopsy tissue are typically collected prior to treatments such as radiotherapy.
Biopsy core studies also provide a much smaller region of tissue per subject, providing a single
ground truth observation per sample. Autopsy tissue samples contain pathological substrates
for hundreds of voxels per sample, providing a richer training data set for developing machine
learning models.

In addition to traditional measures of model performance, we tested the hypothesis that
a radio-pathomic model can highlight regions of tumor beyond contrast enhancement. Ex-
ample whole-brain CPMs indicate that the radio-pathomic model can highlight regions of
infiltrative tumor beyond contrast enhancement, suggesting that radio-pathomic modeling
may provide improved localization of tumor areas in the post-treatment setting. In addi-
tion, CPMs for the longitudinal imaging demonstrate the potential for CPMs to continuously
monitor disease progression and track the timing of non-contrast enhancing tumor infiltra-
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Figure 5: Longitudinal predictions for a 59-year-old male diagnosed with GBM at surgery. Earlier predic-
tions indicate limited hypercellular tumor; however, the last two time points, collected around the beginning
of cognitive decline, indicate hypercellular tumor growth within a portion of the contrast enhancing region.

tion. The CPMs generated from this radio-pathomic model provide early insight into clinical
uses for non-invasive imaging models for pathological information collected at autopsy.
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4.1. Limitations

While the results of this study are promising, there are several limitations that warrant
noting. While this study uses a relatively large data set compared to other studies of brain
cancer tissue at autopsy and developed voxel-wise predictions across hundreds of thousands of
observations, the subject-level sample size is still fairly small by machine learning standards.
Particularly for a disease with a wide range of pathological characteristics and prognoses,
future investigations with a larger number of cases will be able to further improve the subject-
level generalizability of radio-pathomic models. Additionally, the use of clinical imaging data
provides another potential confound of these results, as variability in scanner vendor or image
acquisition parameters may affect radio-pathomic relationships. Lastly, time between image
acquisition and tissue sampling is an inherent concern arising from the use of autopsy tissue,
which may affect these relationships beyond what we were able to control for statistically
in this study. Future studies acquiring post-mortem MRI data may be able to assess the
influence of this time period on assessing radio-pathomic relationships.

4.2. Conclusion

In conclusion, this study evaluated MP-MRI signatures of brain tumor pathology and de-
veloped a radio-pathomic model for brain cancer using machine learning. Our model defined
predictive maps of tumor cellularity highlighted tumor beyond conventional boundaries and
plausibly tracked tumor growth using longitudinal imaging. We hope these algorithms may
be useful in the future for treatment planning and tumor monitoring. Additional research is
necessary to probe the potential confounding factors influencing these predictions (diagnosis,
treatment effects, etc.), as well as to further improve and validate these predictive maps in
larger data sets.
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Supplemental Figure 1: Example tissue segmentations for a representative area of
digitized tissue. Segmentations include nuclei (used for computing cell count), cytoplasm,
and extracellular fluid (ECF)
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Supplemental Figure 2: Single image results depicting the relationship between image
intensity and ECF/cytoplasm proportion for each contrast. B values for the left-hand plots
indicate the change in ECF/cytoplasm proportion per standard deviation increase in image
intensity. B values for the right-hand plots indicate the difference in slope between GBM,
NGG, and Other patients.
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