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Abstract 

Pathogens have profound effects on life on earth, both in nature and agriculture. Despite the 

availability of well-established epidemiological theory, however, a quantitative genetic theory of the 

host population for the endemic prevalence of infectious diseases is almost entirely lacking. While 

several studies have demonstrated the relevance of the transmission dynamics of infectious diseases 

for heritable variation and response to selection of the host population, our current theoretical 

framework of quantitative genetics does not include these dynamics. As a consequence, we do not 

know which genetic effects of the host population determine the prevalence of an infectious disease, 

and have no concepts of breeding value and heritable variation for endemic prevalence.  

Here we propose a quantitative genetic theory for the endemic prevalence of infectious 

diseases. We first identify the genetic factors that determine the prevalence of an infectious disease, 

using an approach founded in epidemiological theory. Subsequently we investigate the population 

level effects of individual genetic variation on 𝑅0 and on the endemic prevalence. Next, we present 

expressions for the breeding value and heritable variation, for both prevalence and individual binary 

disease status, and show how these parameters depend on the endemic prevalence. Results show that 

heritable variation for endemic prevalence is substantially greater than currently believed, and 

increases when prevalence approaches zero, while heritability of individual disease status goes to zero. 

We show that response of prevalence to selection accelerates considerably when prevalence goes 

down, in contrast to predictions based on classical genetic models. Finally, we show that most of the 

heritable variation in the endemic prevalence of the infection is due to indirect genetic effects, 

suggestion a key role for kin-group selection both in the evolutionary history of current populations 

and for genetic improvement strategies in animals and plants. 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438789doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Introduction 

Pathogens have profound effects on life on earth, both in nature and agriculture, and also in the human 

population (Schrag and Wiener, 1995; Russel, 2013). In livestock, for example, the annual cost of 

fighting and controlling epidemic and endemic infectious diseases is substantially greater than the 

annual value of genetic improvement (Rushton, 1990; Knap and Doeschl-Wilson, 2020). Moreover, 

while antimicrobials have revolutionized medicine, the rapid appearance of resistant strains has resulted 

in a global health problem, both in the human population and in livestock (EFSA 2012; Thanner et al. 

2016). Thus there is an urgent need for additional methods and tools to combat infectious diseases. For 

livestock and crop production, artificial genetic selection of (host) populations for infectious disease 

traits may provide such a tool. To quantify and optimize the potential benefits of such selection, we need 

to understand the quantitative genetics of infectious disease traits.  

Current approaches to select against infectious diseases in livestock and crops are entirely based 

on the individual host response, ignoring transmission of the infection in the population. Despite the 

availability of well-established epidemiological theory (e.g., Diekmann et al. 2013), quantitative genetic 

theory of the host population for the endemic prevalence of infectious diseases is almost entirely lacking. 

Infections for which recovery does not confer any long-lasting immunity typically show endemic 

behaviour, where the infection remains present in the population. For such infections, the endemic 

prevalence is defined as the expected fraction of the population that is infected. While several studies 

have demonstrated the relevance of the transmission dynamics of infectious diseases for heritable 

variation and response to selection in the host population (Lipschutz-Powell et al., 2012; Anche et al., 

2014; Tsairidou et al., 2019; Hulst et al., 2021), mostly using stochastic simulations, the current 

theoretical framework of quantitative genetics does not include these dynamics. As a consequence, we 

do not know which genetic effects of the host population determine the prevalence of an infectious 

disease, and have no concepts of breeding value and heritable variation for endemic prevalence. Hence, 

we do not understand response to genetic selection in the prevalence of infectious diseases at present. 

Moreover, we lack general expressions for the genetic variance in key epidemiological parameters, in 

particular the basic reproduction number 𝑅0, even though such parameters may have a genetic basis. 𝑅0 

is defined as the average number of individuals that gets infected by a typical infected individual in an 

otherwise non-infected population, and is the main parameter determining the prevalence of endemic 

infections and the size of epidemic infections. In this manuscript we will propose a quantitative genetic 

framework for heritable variation and response to selection for 𝑅0 and the endemic prevalence of 

infectious diseases.   

Individual phenotypes for infectious diseases are often recorded as the binary disease status of 

an individual, zero indicating non-infected and one indicating infected. The prevalence of a disease is 

then defined as the fraction of individuals that is infected and thus shows disease status y = 1. Because 

the average value of individual binary disease status is equal to the fraction of individuals infected, 

response to selection in binary disease status is identical to response in prevalence, and vice versa. 

Binary disease status (0/1) typically shows low heritability, which suggests limited response to selection 

(Bishop and Woolliams 2010; Bishop et al., 2012; Martin et al., 2018). 

Geneticists have long realized that the categorical distribution of binary traits does not agree 

well with quantitative genetic models for polygenic traits, such as the infinitesimal model (Fisher 1918). 

For this reason, models have been developed that link an underlying normally-distributed trait to the 

observed binary phenotype, such as the threshold model  (Dempster & Lerner, 1950; Gianola, 1982) and 
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the equivalent generalized linear mixed model with a probit link function (e.g., de Villemereuil et al. 

2016). In such models, the underlying scale is interpreted as causal, and genetic parameters are assumed 

to represent “biological constants” on this scale. The genetic parameters on the observed scale, in 

contrast, depend on the prevalence of the trait, and thus change with the trait mean, even when the 

change in allele frequencies at causal loci is infinitesimally small. In a landmark paper, Robertson (1950) 

showed that the observed-scale heritability of binary traits reaches a maximum at a prevalence of 0.5, 

and approaches zero when the prevalence is close to 0 or 1. Hence, observed-scale heritability vanishes 

when artificial selection moves prevalence close to zero, hampering further genetic change.  

Infectious disease status, however, differs fundamentally from binary phenotypes for non-

communicable traits, such as, say, heart failure. Because pathogens can be transmitted between host 

individuals, either directly or via the environment, the infection status of an individual depends on the 

status of its contact individuals. This suggests that Indirect Genetic Effects (IGE) may play a role, which 

would fundamentally alter heritable variation and response to selection (Griffing 1967; Moore et al., 

1997; Wolf et al., 1998; Bijma 2011; Bijma and Wade 2008). Results of simulation studies indeed 

suggest that response in the prevalence of infectious diseases may differ qualitatively from response in 

non-communicable traits (Nieuwhof et al., 2009; Doeschl-Wilson et al., 2011; Anche et al., 2014; Hulst 

et al. 2021), and this has also been observed in an actual population (Heringstad et al. 2007). Results of 

Hulst et al. (2021), for example, show that genetic selection may result in the eradication of an infectious 

disease via the mechanism of herd immunity, just like with vaccination (FINE 1993). This result 

contradicts predictions based on observed-scale heritability for non-communicable binary traits, where 

heritability vanishes when prevalence approaches zero (Robertson, 1950).  

While quantitative geneticists and breeders typically focus on individual disease status and 

(implicitly) interpret prevalence as an average of individual trait values, epidemiologists interpret the 

endemic prevalence of an infectious disease as the result of a population level process of disease 

transmission (Kermack and McKendrick, 1927; Keeling and Rohani, 2011; Diekmann et al. 2013). In 

the latter perspective, the prevalence is an emergent trait of a population, similar to the size of a termite 

colony or the number of prey caught by a hunting pack, rather than an average of individual trait values. 

Because such emergent traits do not belong to single individuals, we cannot apply the common 

partitioning of individual phenotypic values into individual additive genetic values (breeding values) 

and non-heritable residuals (“environment”). Nevertheless, the genetic effects that determine the 

response to selection in an emergent trait and the heritable variation for an emergent trait can be defined 

by using an approach based on the so-called total heritable variation (Bijma 2011). The total heritable 

variation in a trait is based on the individual genetic effects on the level of the emergent trait, rather than 

on a decomposition of individual trait values into heritable and residual effects. This suggests we can 

develop a quantitative genetic theory for the endemic prevalence of infectious diseases by combining 

epidemiological theory with the total heritable variation approach.  

Here we propose a quantitative genetic theory for the endemic prevalence of infectious diseases. 

We first identify the genetic factors that determine the prevalence of an infectious disease. Similar to 

the threshold model, we will assume an underlying additive infinitesimal model for these genetic factors. 

However, the link between the underlying additive scale and the observed endemic prevalence will be 

founded in epidemiological theory, with a key role for the basic reproduction number (𝑅0). Subsequently 

we investigate the population level effects of genetic variation in individual disease traits on the level of 

𝑅0 and on the endemic prevalence in the population. Next,  we move to the individual level, and derive 

expressions for the breeding value and heritable variation, for both prevalence and individual binary 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438789doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

disease status, and show how these parameters depend on the endemic prevalence. Results will show 

that heritable variation for endemic prevalence increases when prevalence approaches zero, while 

heritability of individual disease status goes to zero. Then we investigate response to selection, and show 

that response of prevalence to selection accelerates considerably when prevalence goes down. Finally, 

we partition the breeding value for prevalence into direct and indirect genetic effects, and show that 

most of the heritable variation in the endemic prevalence of the infection is indirect, and thus hidden to 

classical genetic analysis and selection. We focus solely on the development of quantitative genetic 

theory, and do not consider the statistical estimation of the genetic effects underlying prevalence. Such 

methods have been developed elsewhere (Anacleto et al. 2015; Biemans et al. 2017; Pooley et al. 2020). 

 

Theory and Results 

1. The genetic factors that determine prevalence and R0. 

We consider an endemic infectious disease, where individuals can either be susceptible (i.e., non-

infected), denoted by S, or infected, denoted by I. We use corresponding symbols in italics to denote the 

number of individuals with that status. Thus, with a total of N individuals in the population in which the 

endemic takes place, S denotes the number of susceptible individuals, I the number of infected 

individuals, and 𝑆 + 𝐼 = 𝑁 (see Table 1 for a notation key). We will assume that infected individuals 

are also infectious, and can thus infect others (see Discussion). This model is known as the SIS 

compartmental model (Hethcote, 1989), and was first discussed by Weiss and Dishon (1971). 

The prevalence (P) of an endemic infection is defined as the fraction of the population infected  

(Diekmann et al. 2013),  

𝑃 =
𝐼

𝑁
       (1) 

When individual disease status is coded in a binary fashion, using y = 0 for non-infected individuals and 

y = 1 for infected individuals, the prevalence is equal to the average individual disease status in the 

population, 

𝑃 = �̅�.      (2) 

The prevalence of an infectious disease depends on the so-called basic reproduction number of 

the disease (𝑅0). The 𝑅0 is defined as the average number of individuals that gets infected by a typical 

infected individual in an otherwise non-infected population, and is a property of the population 

(Kermack and McKendrick, 1927; Anderson and May, 1979; Diekmann et al. 1990). When R0 > 1, an 

average infected individual on average infects more than one new individual, and the infection can 

persist in the population.  

The prevalence of an endemic infection reaches an equilibrium value, known as the endemic 

prevalence, when a single infected individual on average infects one other individual (R = 1). This occurs 

when the product of R0 and the fraction of contact individuals that is susceptible is equal to 1; 𝑅0 (1 −

𝑃) =  1. For example, when R0 = 3, an infected individual could in principle infect three other 

individuals. However, when only one third of its contact individuals is susceptible (i.e., not infected), 

meaning 1−P = 1/3, then the effective reproduction number equals 3 × 1/3 = 1. Hence, when 1−P = 
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1/3, an infected individual is on average replaced by a single newly infected individual, so that an 

equilibrium occurs at 𝑃 = 1 − 1/3 = 2/3. The endemic prevalence, therefore, is given by (Weiss and 

Dishon 1971). 

𝑃 = 1 − 1/𝑅0.      (3) 

Throughout, we will use the symbol P to denote prevalence in the endemic equilibrium, unless stated 

otherwise, and we will refer to P as the endemic prevalence. The actual prevalence tends to fluctuate 

around the equilibrium value because of random perturbations and transient effects, for example when 

new animals replace some of the resident animals. Equation 3 is an approximation when there is 

variation among individuals, which will be addressed in section 4 below.  

Figure 1 illustrates the relationship between the endemic prevalence and 𝑅0. When 𝑅0 is smaller 

than one the endemic prevalence is zero (the infection is not present in the long run), and Equation 3 

does not apply. For large 𝑅0 the endemic prevalence asymptotes to 1. Note that the curve is steeper the 

closer 𝑅0 is to 1. This pattern will have considerable consequences for the relationship between the 

heritable variation in the endemic prevalence and the level of the endemic prevalence, as will be shown 

in section 6 of this manuscript.  

 

Figure 1 – The relationship between the endemic prevalence (P) and the basic reproduction number (R0). From 

Equation 3. 

 

Because the endemic prevalence is determined by R0 (Equation 3), the response of prevalence 

to selection, i.e., the genetic change in the endemic prevalence from one (host) generation to the next, 

follows from the genetic change in R0. Thus, to measure the value of an individual with respect to 

response to selection, we should base this measure on the genetic impact of the individual on R0. In other 

words, the definition of an individual breeding value for endemic prevalence should be based on 𝑅0. 

The next step, therefore, is to find the individual genetic factors underlying 𝑅0. 
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In the absence of variation among individuals (commonly referred to as “heterogeneity” in the 

epidemiological literature), 𝑅0 is the product of the transmission rate parameter () and the mean 

duration of the infectious period (1/; Kermack and McKendrick, 1927; Diekmann et al., 1990), 

𝑅0 = 𝛽/𝛼.      (4) 

where  is the recovery rate parameter. The  is the average number of individuals infected per unit of 

time by a single infected individual when all its contact individuals are susceptible, and 𝛼 is the 

probability per unit of time for an infected individual to recover. With heterogeneity, Equation 4 is an 

approximation (Diekmann et al., 1990), which we will address in section 3 of this manuscript. 

With heterogeneity, the transmission rate parameter may vary among pairs of individuals. The 

transmission rate parameter between infectious individual j and susceptible individual i may be modelled 

as the product of an overall effective contact rate (c), the susceptibility () of recipient individual i and 

the infectivity () of donor individual j (e.g., Lipschutz-Powell et al., 2014; Anacleto et al. 2015; 

Biemans et al. 2017), 

𝛽𝑖𝑗 = 𝑐𝛾𝑖𝜑𝑗      (5) 

Hence, 𝛽𝑖𝑗 refers to transmission from individual j to i, and may differ from 𝛽𝑗𝑖.  

Equations 3 through 5 show that the factors underlying the endemic prevalence of an infection are 

the contact rate c, the susceptibility, , the infectivity, , and the recovery rate . The c is a fixed 

parameter for the population (or, for example, for a sex, herd or age class combination), whereas ,  

and  may show random variation among individuals. To fix the scale of Equations 4 and 5, it is 

convenient to include the scale in c, and to express ,  and  relative to a value of 1. Hence, with this 

parameterisation, the c is on the scale of 𝑅0. In the absence of heterogeneity, 𝑅0 and c are identical. With 

heterogeneity 𝑅0 may deviate a bit from c. 

 

2. Genetic models for susceptibility, infectivity, recovery and 𝑹𝟎 

Genetic variation is potentially present in susceptibility, infectivity and the recovery rate. In this section 

we propose a genetic model for these traits, which subsequently leads to a genetic model for 𝑅0.  

We assume that susceptibility, infectivity and the recovery rate are affected by a large number 

of loci, each of small effect, so that genetic effects approximately follow a Normal distribution. 

However, as 𝛾, 𝜑, and 𝛼 represent rates, i.e., probabilities per unit of time, their values are strictly 

positive. For this reason, following Anacleto et al. (2015), we define normally distributed additive 

genetic effects for the logarithm of the rates, so that the rates themselves follow a log-normal 

distribution, 

𝛾𝑖 = 𝑒𝐴𝑙𝛾,𝑖       (6a) 

𝜑𝑖 = 𝑒𝐴𝑙𝜑,𝑖        (6b) 

𝛼𝑖 = 𝑒𝐴𝑙𝛼,𝑖       (6c) 
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where 𝐴𝑙..,𝑖 denotes the Normally distributed breeding value for the logarithm of the corresponding rate 

for individual i, and has a mean of zero,  

[

𝐴𝑙𝛾

𝐴𝑙𝜑

𝐴𝑙𝛼

] ~𝑁 [(
0
0
0

) , (

𝜎𝐴𝑙𝛾

2 𝜎𝐴𝑙𝛾𝐴𝑙𝜑
𝜎𝐴𝑙𝛾𝐴𝑙𝛼

𝜎𝐴𝑙𝛾𝐴𝑙𝜑
𝜎𝐴𝑙𝜑

2 𝜎𝐴𝑙𝜑𝐴𝑙𝛼

𝜎𝐴𝑙𝛾𝐴𝑙𝛼
𝜎𝐴𝑙𝜑𝐴𝑙𝛼

𝜎𝐴𝑙𝛼

2

)].  (7) 

Throughout, we use subscript l to denote the natural logarithm. Thus, the breeding values for log (𝛾), 

log (𝜑) and log (𝛼) follow a multivariate normal distribution, as common in quantitative genetics. 

Moreover, for the average individual the 𝐴𝑙.. = 0, so that its rates are equal to one (𝛾 = 𝜑 = 𝛼 = 1). 

Hence, those rates should be interpreted relative to a value of 1. An individual with 𝛾 = 2, for example, 

is twice as susceptible as the average individual.  

The breeding values on the log-scale can approximately be interpreted as a relative change of 

the corresponding rate. For example, since 𝑒0.1 ≈ 1.1, and 𝐴𝑙𝛾 of 0.1 corresponds approximately to a 

10% greater than average susceptibility (𝛾 ≈ 1.1). Similarly, and 𝐴𝑙𝛾 of  -0.1 corresponds approximately 

to a 10% smaller than average susceptibility (𝛾 ≈ 0.9).  Realistic values for the genetic variances on the 

log-scale are probably smaller than ~0.52 (Hulst et al., 2021). For example, with 𝜎𝐴𝑙𝛾

2 = 0.52, the 10% 

least susceptible individuals have �̅� =  𝑒−0.88 = 0.42, while the 10% most susceptible individuals have 

�̅� =  𝑒0.88 = 2.40. Thus average susceptibilities of these top and bottom 10% of individuals differ by a 

factor of 5.7, which is substantial. Therefore, we will consider additive genetic variances on the log-

scale no greater than 0.52. With a prevalence of 0.3, this value corresponds to an observed-scale 

heritability of individual binary disease status of about 0.05 (Hulst et al., 2021). 

Genotypic value and breeding value for 𝑹𝟎: Based on Equations 4 and 5, we may define an individual 

genotypic value for 𝑅0 (see also Anche et al. 2014 and Biemans et al. 2019), 

𝐺𝑅0,𝑖 = 𝑐𝛾𝑖𝜑𝑖/𝛼𝑖     (8) 

In contrast to the pair-wise transmission rate parameter 𝛽𝑖𝑗 in Equation 5, an individual’s genotypic 

value for 𝑅0 is entirely a function of its own rates, as can be seen from the index i on all elements of 

Equation 8. This is because 𝐺𝑅0,𝑖 refers to the genetic effects that originate from the individual, rather 

than to those that affects its trait value. Hence, 𝐺𝑅0,𝑖 represents a total genotypic value, including both 

direct and indirect genetic effects (Bijma et al., 2007a; Bijma 2011). We focus on the total genotypic 

value, because our ultimate interest is in response to selection (Section 7). In section 3 of this manuscript, 

we will show that 𝑅0 is indeed the simple average of 𝐺𝑅0
.  

From Equations 6 and 8, 

𝐺𝑅0,𝑖 = 𝑐 𝑒𝐴𝑙𝛾,𝑖  𝑒𝐴𝑙𝜑,𝑖/𝑒𝐴𝑙𝛼,𝑖  

=   𝑒ln(𝑐) + 𝐴𝑙𝛾,𝑖 + 𝐴𝑙𝜑,𝑖 − 𝐴𝑙𝛼,𝑖 

= 𝑒ln(𝑐) + 𝐴𝑙𝑅0,𝑖,       (9) 

where 𝐴𝑙𝑅0,𝑖 is a Normally distributed additive genetic effect (breeding value) for the logarithm of 𝑅0,  
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𝐴𝑙𝑅0,𝑖 = 𝐴𝑙𝛾,𝑖 + 𝐴𝑙𝜑,𝑖 − 𝐴𝑙𝛼,𝑖      (10a) 

𝐴𝑙𝑅0
~𝑁(0, 𝜎𝐴𝑙𝑅0

2 )       (10b) 

𝜎𝐴𝑙𝑅0

2 = 𝜎𝐴𝑙𝛾

2 + 2𝜎𝐴𝑙𝛾𝐴𝑙𝜑
− 2𝜎𝐴𝑙𝛾𝐴𝑙𝛼

+ 𝜎𝐴𝑙𝜑

2 − 2𝜎𝐴𝑙𝜑𝐴𝑙𝛼
+ 𝜎𝐴𝑙𝛼

2   (10c) 

Hence, our model of the genotypic value for 𝑅0 is additive with Normally distributed effects on the log-

scale. The breeding value for the logarithm or 𝑅0 will play a central role in the remainder of this 

manuscript.  

It follows that the genotypic value for 𝑅0, as defined in Equations 8 and 9, follows a log-normal 

distribution,  

𝐺𝑅0
~𝑙𝑜𝑔𝑁 (μ = ln(𝑐) , 𝜎2 = 𝜎𝐴𝑙𝑅0

2 ).    (11) 

The genotypic value for 𝑅0 for the average individual, which has 𝐴𝑙𝑅0
= 0, is equal to the contact rate, 

c. Hence, the genotypic value is defined including its average, it is not expressed as a deviation from the 

mean. Moreover, we refer to 𝐺𝑅0
 as a genotypic value, rather than a breeding value, because the 𝑒𝐴𝑙𝑅0  

in Equation 9 is a non-linear function, so that 𝐺𝑅0
 will show some non-additive genetic variance even 

though 𝐴𝑙𝑅0
 is additive. 

The log-normal distribution of 𝐺𝑅0
 agrees with the infinitesimal model and the strictly positive 

values for 𝑅0 (Anacleto et al., 2015), and is also convenient because the mean and variance of 𝐺𝑅0
 

follow from the known properties of the log-normal distribution,  

E(𝐺𝑅0
) = 𝑐 𝑒

1

2
𝜎𝐴𝑙𝑅0

2

      (12) 

var(𝐺𝑅0
) = 𝑐2(𝑒

2𝜎𝐴𝑙𝑅0

2

− 𝑒
𝜎𝐴𝑙𝑅0

2

)    (13) 

With realistic levels of heterogeneity, the mean genotypic value is close to the contract rate, c. For 

example, for 𝜎𝐴𝑙𝑅0

2 = 0.52, E(𝐺𝑅0
)  ≈  1.13c.  

Equations 12 and 13 show that a log-normal distribution for susceptibility, infectivity and 

recovery results in a positive mean-variance relationship for 𝐺𝑅0
. Figure 2 illustrates this relationship, 

for 𝜎𝐴𝑙𝑅0

2 = 0.32 and genetic variation in susceptibility only. The x-axis shows the contact rate, which is 

equal to the genotypic value for 𝑅0 of the average individual. Hence, the x-axis reflects the level of 𝑅0. 

The small circle represents a population with a prevalence of ~0.33, for which observed-scale heritability 

of binary disease status is ~0.02 (Hulst et al., 2021). For that population, 𝑅0 is ~1.5, and the genetic 

standard deviation in 𝑅0 is ~0.48. Hence, despite the small observed-scale heritability, 𝑅0 has 

considerable genetic variation and some individuals will have a genotypic value smaller than 1, which 

agrees with the findings of Hulst et al. (2021). In the context of artificial selection against infectious 

diseases, the positive mean-variance relationship resulting from our model may be interpreted as 

conservative, because it implies a reduction of the genetic variance in 𝑅0 with continued selection for 

lower prevalence. 
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Figure 2 - Genetic standard deviation in 𝑅0 as a function of the level of 𝑅0 (as measured by the contact rate c). 

From Equation 13, for 𝜎𝐴𝑙𝑅0

2 = 𝜎𝐴𝑙𝛾
2 = 0.32, and no variation in 𝜑 and 𝛼. The circle represents a population with a 

prevalence of ~0.33, for which observed-scale heritability of binary disease status is ~0.02 (Hulst et al., 2021).   

 

In summary, this section has presented a genetic model for susceptibility, infectivity and recovery, 

leading to expressions for the genotypic value and genetic variance in 𝑅0.  In the next two sections, we 

will focus on the population-level consequences of genetic heterogeneity, and investigate the impact of 

genetic variation in 𝑅0 on the level of 𝑅0 and on the endemic prevalence. In the classical quantitative 

genetic model, genetic variation only affects the variation among individuals; not the population average 

trait value. However, because 𝑅0 and the endemic prevalence are the result of a transmission process in 

the population, genetic variation among individuals may affect their value (Diekmann et al., 1990). 

 

 

3. The impact of genetic heterogeneity on R0 

𝑅0 is a key parameter for infectious diseases, because infectious diseases can persist in a population only 

when 𝑅0 is greater than one (Kermack & McKendrik,1927; Diekmann et al. 1990). In other words, an 

endemic equilibrium can exist only when 𝑅0 is greater than one. Conversely, eradication of an infectious 

disease, either by vaccination or other measures such as genetic selection of the host population, requires 

that 𝑅0 is reduced to a value smaller than one. Here we address the consequences of genetic variation in 

susceptibility, infectivity and recovery for the value of 𝑅0. Note that 𝑅0 is strictly defined for the disease 

free state of the population (i.e., where the infected fraction is infinitesimally small). Hence, in this 

section we consider the disease free state, while the endemic equilibrium will be addressed in section 4.  

As stated above, 𝑅0 is the average number of individuals that gets infected by a typical infected 

individual in an otherwise non-infected population (Kermack and McKendrick, 1927; Diekmann et al., 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438789doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

1990). The expression for 𝑅0 given in Equation 4 ignores the “typical” term in the definition of 𝑅0, and 

is therefore an approximation with heterogeneity.  

The properties of the “typical infected individual” will depend on the magnitude and nature of 

the heterogeneity among the individuals in the population. In contrast to the conclusion of Springbett et 

al. (2003), therefore, genetic heterogeneity may affect 𝑅0 (Diekmann et al. 1990, 2013). Suppose, for 

example, that individuals differ in both susceptibility and infectivity, and that susceptibility is positively 

correlated to infectivity. Because individuals with greater susceptibility are more likely to become 

infected, the typical infected individual will have an above-average susceptibility. Moreover, because 

of the positive correlation with infectivity, this will also translate into an above average infectivity of 

the typical infected individual, leading to higher 𝑅0. Hence, variation among individuals together with 

a positive (negative) correlation between susceptibility and infectivity results in an increase (decrease) 

in 𝑅0 (Diekmann et al. 1990). For this reason, 𝑅0 may deviate from the right-hand side of Equation 4. 

In Appendix 1, we derive the relationship between 𝑅0 and the genetic parameters for 

susceptibility, infectivity and recovery. The first step is the derivation of the infectivity of the typical 

infected individual. The result shows that the life-time infectivity (𝜙) of the typical infected individual 

equals  

�̅�𝑡𝑦𝑝 = �̅�𝑒
𝜎𝐴𝑙𝛾𝐴𝑙𝜙      (14) 

where �̅� is the simple average of life-time infectivity, and 𝜎𝐴𝑙𝛾𝐴𝑙𝜙
 the covariance between the breeding 

values for the logarithms of susceptibility and life-time infectivity. Life-time infectivity is the total 

infectivity of an individual, aggregated over its infectious period, and is the product of its infectivity per 

unit of time (𝜑, Equations 5 & 6) and the mean duration of its infectious period, 1/𝛼𝑖, 

𝜙𝑖 = 𝜑𝑖/𝛼𝑖.      (15) 

Equation 14 shows that the typical infected individual has an above (below) average life-time infectivity 

when the covariance between susceptibility and life-time infectivity is positive (negative), as argued 

verbally in the previous paragraph.   

From the definition of 𝑅0 and Equations 4, 5 and 14, it follows that  

𝑅0 = 𝑐 �̅� �̅� 𝑒
𝜎𝐴𝑙𝛾𝐴𝑙𝜙      (16) 

where �̅� is the simple population average value of susceptibility. The last term of this expression shows 

that a positive covariance between susceptibility and life-time infectivity indeed increases 𝑅0.  

Equation 16 can be simplified by substituting the expression for �̅� and �̅�, which follow from 

the log-normal distribution,   

�̅� = 𝑒
1

2
𝜎𝐴𝑙𝛾

2

       (17a) 

�̅� = 𝑒
1

2
𝜎𝐴𝑙𝜙

2

       (17b) 
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Substituting Equations 17a and b into Equation 16, and expressing the genetic variance of life-time 

infectivity in terms of infectivity per unit of time and recovery, reveals that 𝑅0 is equal to the simple 

average individual genotypic value for 𝑅0 (see Appendix 1 and Equation 12), 

𝑅0 = 𝑐 𝑒
1

2
𝜎𝐴𝑙𝑅0

2

= E(𝐺𝑅0
)    (18) 

Thus, while a positive covariance between susceptibility and infectivity indeed increases R0, this effect 

is fully captured by the variance in the breeding values for the logarithm of 𝑅0 (the 𝑒
1

2
𝜎𝐴𝑙𝑅0

2

 term in 

Equation 18). As shown in Equation 10c, a positive covariance between susceptibility and infectivity 

increases 𝜎𝐴𝑙𝑅0

2 , and this effect fully accounts for the effect of the 𝑒
𝜎𝐴𝑙𝛾𝐴𝑙𝜙  term in Equation 16. Thus, 

𝑅0 is equal to the simple average of individual genotypic values for 𝑅0 as long as those genotypic values 

follow a log-normal distribution. 

Note that, while 𝑅0 is equal to the simple average of genotypic values for 𝑅0, it may still differ 

from the product of the simple averages of the rates; 𝑅0 ≠ 𝑐 �̅� �̅� /�̅�  when susceptibility, infectivity 

and/or recovery are correlated. Moreover, 𝑅0 may also differ from �̅�/�̅� with heterogeneity. A numerical 

investigation of the 𝑒
𝜎𝐴𝑙𝛾𝐴𝑙𝜙  term in Equation 16, however, shows that the effect of a correlation between 

susceptibility and life time infectivity on 𝑅0 is unlikely to be greater than ~ ±25% when those traits are 

polygenic. For example, for 𝜎𝐴𝑙𝛾

2  = 𝜎𝐴𝑙𝜙

2  = 0.52, and a correlation 𝑟𝐴𝛾𝐴𝜙
= 0.8, 𝑅0 is only 22% greater 

than 𝑐 �̅� �̅� /�̅�. Thus, for polygenic traits, the effect of a correlation between susceptibility and life-time 

infectivity on 𝑅0 is expected to be limited. 

In summary, this section has shown that heterogeneity and a positive correlation between 

susceptibly and life-time infectivity lead to an increase of 𝑅0, and thus increase the probability that an 

infectious disease persists in the population. However, when genotypic values for 𝑅0 follow a log-

normal distribution, 𝑅0 is still equal to the simple average of those genotypic values.  

 

4. The impact of genetic variation on the equilibrium prevalence  

In this section we present an expression for the endemic prevalence in a population with genetic variation 

in susceptibility, infectivity and recovery, and also briefly investigate the consequences of such variation 

for the endemic prevalence. Figure 1 and Equation 3 show the relationship between 𝑅0 and the endemic 

prevalence for a homogeneous population. With variation among individuals, however, highly 

susceptible individuals are likely to be in the infected state in the endemic equilibrium. For this reason, 

the mean susceptibility of the remaining non-infected individuals will be lower than the population 

average susceptibility. This in turn translates into a prevalence that is lower than the value given by 

Equation 3 (See Springbett et al., 2003 for epidemic infections). Similar arguments can be used to show 

that prevalence depends on the variation in the recovery rate and on the correlation of infectivity with 

susceptibility and recovery. Thus Equation 3 is exact only in the absence of heterogeneity.  

The equilibrium prevalence in a heterogeneous population can be derived by realizing that the 

prevalence must have reached an equilibrium value for each type of individual (Biemans et al., 2017; 

Aznar et al., 2018). Suppose, for example, that susceptibility, infectivity, and recovery would be 

governed by a single bi-allelic locus in a diploid organism. Then, for the entire population to be in 
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equilibrium, each of the three genotypic classes should be in equilibrium as well. In other words, the 

prevalence should have reached an equilibrium value within each genotypic class, but this value may 

differ among the three classes. Here we adapt this approach to continuous variation in polygenic traits.  

In the endemic equilibrium, the number of susceptible individuals of each type, say i, should 

not change over time (apart from random fluctuation). Thus the number of newly infected susceptibles 

should be equal to the number of recovering infecteds for each type i,  

𝑑𝑆𝑖

𝑑𝑡
= −𝑐𝛾𝑖 �̅�inf 𝑆𝑖

𝐼

𝑁
+  𝛼𝑖𝐼𝑖 = 0     (19) 

where 𝑆𝑖 is the number of susceptible individuals of type i, t denotes time, c the contact rate, 𝛾𝑖 the 

susceptibility of type i, �̅�inf the mean infectivity of the infected individuals in the endemic equilibrium, 

I the total number of infected individuals, N total population size, 𝛼𝑖 the recovery rate for type i, and 𝐼𝑖 

the number of infected individuals of type i. Above, we used i to index individuals. Here we also use i 

to index classes, since each individual will be genetically unique with polygenic traits, so that a type 

corresponds to an individual (𝑆𝑖 and 𝐼𝑖 may be treated as non-integer). The first term in Equation 19 

represents the decrease in the number of susceptibles due to transmission (infection), while the second 

term represents the increase of the number of susceptibles due to recovery of infected individuals. Note 

that the mean infectivity of the infected individuals in the endemic equilibrium (�̅�inf) will differ from 

the simple population average of infectivity (�̅�) when infectivity is correlated to susceptibility and/or 

recovery. 

Equation 19 can be solved for the endemic prevalence in type i, 𝑃𝑖 = 𝐼𝑖/𝑁𝑖, 𝑁𝑖 denoting the total 

number of individuals of type i in the population, 

𝑃𝑖 =
ℛ0,𝑖𝑃

ℛ0,𝑖𝑃+1
      (20a) 

where P denotes the overall endemic prevalence in the population (Equation 1), and  

ℛ0,𝑖 =
𝑐𝛾𝑖�̅�inf

𝛼𝑖
      (20b) 

Equations 20a&b make no assumptions on the distribution of 𝛾, 𝜑 and 𝛼, and are thus not restricted to 

log-normal distributions. Although Equation 20b is similar to Equation 8, note that ℛ0,𝑖 differs from the 

genotypic value for 𝑅0 (𝐺𝑅0,𝑖; We use a symbol slightly different from 𝑅 to highlight this difference). 

The ℛ0,𝑖 is a function of the mean infectivity of the infected individuals in the endemic equilibrium 

(�̅�inf), while 𝐺𝑅0,𝑖 is a function of the infectivity of the individual itself (𝜑𝑖). Our interest here is in the 

prevalence for an individual with susceptibility 𝛾𝑖 and recovery rate 𝛼𝑖 in the endemic equilibrium, 

where i is exposed to the mean infectivity of the infected individuals. Hence the �̅�inf term in ℛ0,𝑖. The 

𝐺𝑅0,𝑖, in contrast, defines the contribution of an individual to 𝑅0 (Equation 18), and will be relevant for 

response to selection (section 7).  

To find the endemic prevalence, we need to solve Equations 20a and b for P. While we found 

an analytical solution for the case without (correlated) genetic variation in infectivity, the resulting 

expression is very complex (not shown). We therefore used a numerical solution, which is easily 

obtained (see Appendix 2 for methods, and Supplementary Material 1 for an R-code). We validated the 

numerically obtained solution using full stochastic simulation of actual endemics, following  standard 
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methods in epidemiology. Results of these simulations confirmed the numerically obtained solutions 

(see Appendix 3 for methods).  

The solutions of Equations 20a and b show two opposing effects of heterogeneity on the 

endemic prevalence. First, with a log-normal distribution of the rates, heterogeneity in susceptibility, 

infectivity and/or recovery increases 𝑅0 (Equations 10c and 18), which in turn increases the equilibrium 

prevalence. Second, at the same 𝑅0, variation in susceptibility and/or recovery reduces the equilibrium 

prevalence (Equations 20a and b), as argued in the first paragraph of this section. Hence, with variation 

in susceptibility and/or recovery, prevalence is lower than predicted by Equation 3. Genetic variation in 

infectivity has no effect on the prevalence beyond its effect on 𝑅0, as long as infectivity is not correlated 

to susceptibility and/or recovery.  

Moreover, the effects of genetic variation on the prevalence are identical for susceptibility and 

recovery. It follows from Equation 20b that the ℛ0,𝑖 of an individual depends on the difference between 

its breeding values for log-susceptibility and log-recovery, 𝐴𝑙𝛾,𝑖 − 𝐴𝑙𝛼,𝑖, 

ℛ0,𝑖 = 𝑐�̅�inf 𝑒
𝐴𝛾𝑖

−𝐴𝛼𝑖      (21) 

Hence, in the absence of correlated variation in infectivity, the equilibrium prevalence depends only on 

the variance of this difference,  

𝑣𝑎𝑟(𝐴𝑙𝛾 − 𝐴𝑙𝛼) =  𝜎𝐴𝑙𝛾

2 − 2𝜎𝐴𝑙𝛾𝐴𝑙𝛼
+ 𝜎𝐴𝑙𝛼

2 .   (22) 

Finally, when c = 2 and there is no variation in infectivity, prevalence is always equal to 1 − 1/𝑐 = 0.5, 

irrespective of the genetic variation in susceptibility and infectivity. This occurs because the two effects 

mentioned at the beginning of this paragraph exactly cancel each other. When c < 2, prevalence is (much) 

higher than 1 − 1/𝑐, while prevalence is only a little lower than 1 − 1/𝑐 when c > 2. Figure 3 illustrates 

the impact of heterogeneity on the endemic prevalence for a limited number of scenarios. More detailed 

results can be found in Supplementary Material 2.  

In conclusion, for a contact rate greater than ~1.7 (P ≈ 0.4), the endemic prevalence is very 

similar to 1-1/c. For small values of the contact rate, the endemic prevalence is larger than 1-1/c.  
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Figure 3 - The impact of heterogeneity on the endemic prevalence. Solid lines show the true prevalence, and the 

dashed lines the prediction based on Equation 3 using the true 𝑅0. The dotted line uses Equation 3 assuming 𝑅0 =

𝑐. For three levels of the additive genetic standard deviation in log susceptibility (𝜎𝐴𝑙𝛾
) and no genetic variation in 

infectivity or recovery. Note that identical results would have been obtained with the same amount of heterogeneity 

in the recovery rate (𝜎𝐴𝑙𝛼
) instead of the susceptibility. 

 

5. Genotypic value for individual binary disease status  

In the previous two sections, we have considered the population-level effects of genetic heterogeneity. 

In the next two sections, we move to the individual level. Section 5 focusses on the effects of an 

individual’s genes on its own diseases status, while section 6 focusses on the effect of an individual’s 

genes on the prevalence in the population.  

By definition, the genotypic value for binary disease status is the expected disease status of an 

individual given its genotype,  

𝐺𝑦,𝑖 = 𝐸(𝑦𝑖|𝐴𝛾,𝑖, 𝐴𝛼,𝑖)     (23) 

Thus, the 𝐺𝑦 represents the direct genetic effect (DGE) on the own phenotypic value (including the 

mean, �̅�, here). The genotypic value of an individual is not a function of its breeding value for log-

infectivity, since an individual’s infectivity does not affect its own disease status. Hence, Equation 23 

does not condition on 𝐴𝜑,𝑖. 
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In the previous section, we used Equations 20a and b to investigate the effect of heterogeneity 

on the endemic prevalence in the population. Equation 20a shows the expected prevalence of an 

individual of type i. However, since prevalence is simply the mean of binary disease status, Equation 

20a may also be interpreted as the expected phenotypic value for disease status (y = 0,1) of an individual, 

given its genotype (specifically, the 𝛾𝑖 and 𝛼𝑖 components of ℛ0,𝑖). Hence, Equation 20a also represents 

the genotypic value for binary disease status, 

𝐺𝑦,𝑖 =
ℛ0,𝑖𝑃

ℛ0,𝑖𝑃+1
      (24) 

where ℛ0,𝑖 follows from Equation 20b, and P here denotes the prevalence i is exposed to. (Strictly, this 

does not need to be the prevalence in the endemic equilibrium). The same result was found by Bijma 

(2020), but based on a different approach. (Note the distinction between subscript y, indicating 

individual binary disease status, and , indicating susceptibility). Thus the 𝐺𝑦 refers to the expected 

binary disease status of individual i in a population with prevalence P, conditional on its genotype. 

Equation 21 and 24 imply that susceptibility and recovery are equally important for the disease status of 

an individual. For example, an individual with 𝐴𝑙𝛾 = −0.1 has the same expected disease status as an 

individual with 𝐴𝑙𝛼 = +0.1.  

Calculation of 𝐺𝑦 from Equation 24 requires knowledge of the endemic prevalence P. In the 

previous section we used a numerical approach to find P, because our interest was in the effects of 

heterogeneity on P. In applied breeding, however, breeders may often have a reasonable idea of realistic 

values for P, and a numerical solution may not be needed, or have little added value. 

 

Validation: We used stochastic simulation of endemics, following standard epidemiological 

methodology (see Appendix 3 for methods), to validate the expression for the genotypic value for 

individual disease status (Equation 24). Figures 4a-c show the mean observed disease status of 

individuals as a function of their genotypic value 𝐺𝑦. For all three panels in Figure 4, regression 

coefficients were very close to 1, showing that 𝐺𝑦 is an unbiased linear predictor of individual disease 

status.   

 

Figure 4. Validation of the genotypic value for individual binary disease status. Panels show a scatter plot of the 

mean disease status of individuals (y-axis) as a function of their genotypic value for disease status (𝐺𝑦, x-axis, 

Equation 24). For genetic variation in susceptibility only, with 𝜎𝐴𝛾
2 = 0.32, N = 2000 individuals, and a total of 
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300,000 events (sum of recoveries and infections). Panel A: P = 0.2; �̂�𝑦,𝐺𝛾
= 0.998. Panel B: P = 0.5, �̂�𝑦,𝐺𝛾

=

1.006. Panel C: P = 0.8, �̂�𝑦,𝐺𝛾
= 1.005. 

 

We numerically investigated the relative amount of non-additive genetic variance in 𝐺𝑦. Results 

(not shown) revealed only little non-additive genetic variance. For example, for P = 0.2 and 𝜎𝐴𝛾

2 = 0.52, 

more than 96% of the genotypic variance in y was additive. Thus the breeding value for own disease 

status is very similar to the genotypic value, 

𝐴𝑦 ≈ 𝐺𝑦 − 𝑃,       (25) 

where the “−𝑃” term simply reflects subtraction of the average, 𝐺𝑦
̅̅ ̅ = 𝑃, so that the mean breeding value 

is zero by definition. We defer further investigation of the breeding value and the additive genetic 

variance for individual disease status to the next section, to facilitate comparison with the corresponding 

measures for prevalence. 

   

6. Heritable variation for the endemic prevalence 

The previous section focussed on the genetic effects of individuals on their own disease status. In this 

section we will consider the genetic effects of individuals on the endemic prevalence in the population. 

In other words, the previous section focussed on the contribution of genetic effects to the variation in 

disease status among individuals, while this section considers the genetic effects that are relevant for 

response to selection. We will present expressions for the genotypic value, breeding value and additive 

genetic variance for the endemic prevalence. The genotypic value will reflect the full genetic effect of 

an individual on the endemic prevalence in the population, while the breeding value reflects the additive 

component thereof. The last part of this section contains a comparison of the breeding value for endemic 

prevalence and that for individual disease status. 

The relationship between 𝑅0 and the endemic prevalence (Equation 3) suggests we can translate 

the individual genotypic value for 𝑅0 (Equations 8 and 9) to the scale of prevalence, using   

𝐺𝑃,𝑖 = 1 −
1

𝐺𝑅0,𝑖
       (26a) 

where the 𝐺𝑃 may be interpreted as an individual’s genotypic value for prevalence. Substituting 

Equation 9 yields an expression for the genotypic value of an individual for the endemic prevalence, in 

terms of its breeding value for the logarithm of 𝑅0, 

𝐺𝑃,𝑖 = 1 − 𝑒− ln(𝑐)−𝐴𝑙𝑅0,𝑖    (26b) 

Because the term in the exponent is Normally distributed, 1 − 𝐺𝑃 follows a log-normal distribution, 

(1 − 𝐺𝑃)~𝑙𝑜𝑔𝑁 [𝜇 = −ln(𝑐) , 𝜎2 = 𝜎𝐴𝑙𝑅0

2 ]    (27) 

The mean and variance of the genotypic values for prevalence, therefore, follow from the properties of 

the log-normal distribution,  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438789doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

E(𝐺𝑃) = 1 − 𝑐−1 𝑒
1

2
𝜎𝐴𝑙𝑅0

2

     (28) 

var(𝐺𝑃) = 𝑐−2(𝑒
2𝜎𝐴𝑙𝑅0

2

− 𝑒
𝜎𝐴𝑙𝑅0

2

)    (29) 

To enhance interpretation of Equation 29, we can express it as a function of 𝑅0 or of the endemic 

prevalence. With limited heterogeneity, the contact rate c is approximately equal to 𝑅0 and to 1/(1 −

𝑃). Substituting these relationships into Equation (29) yields an expression for the genetic variance in 

prevalence as a function of 𝑅0 and of the endemic prevalence, respectively,  

var(𝐺𝑃) ≈
1

𝑅0
2 (𝑒

2𝜎𝐴𝑙𝑅0

2

− 𝑒
𝜎𝐴𝑙𝑅0

2

)    (30a) 

var(𝐺𝑃) ≈ (1 − 𝑃)2(𝑒
2𝜎𝐴𝑙𝑅0

2

− 𝑒
𝜎𝐴𝑙𝑅0

2

)    (30b) 

Equations 30a and b show how the genotypic variance in the endemic prevalence changes with a change 

in 𝑅0 or equivalently, in the endemic prevalence. Hence, in contrast to ordinary additive genetic traits, 

the genetic variance in endemic prevalence is a function of the level of the endemic prevalence. 

Figures 5a and b illustrate that the standard deviation in genetic values for endemic prevalence 

is considerably larger at lower 𝑅0, or equivalently, at lower prevalence. Hence, even though the genetic 

variance in 𝑅0 decreases with the level of 𝑅0 (Figure 2), the genetic variance in prevalence increases 

strongly when 𝑅0 decreases. This result originates from the increasing slope of the relationship between 

prevalence and 𝑅0 at lower 𝑅0 (Figure 1). In other words, an equal change in 𝑅0 has much greater impact 

on prevalence at low 𝑅0 than at high 𝑅0, which is well-known in epidemiology (e.g., Bolker and 

Grenfell, 1996). Hence, for a constant genetic variance of the logarithm of 𝑅0, the genetic variance in 

endemic prevalence is much greater at lower prevalence, and genetic selection for lower prevalence 

leads to an increase in the genetic variance in prevalence.  

 

Figure 5 – Genetic standard deviation in prevalence as a function of 𝑅0 (panel A), and as a function of the endemic 

prevalence (panel B). From Equations 30a and b. For 𝜎𝐴𝑙𝑅0

2 = 0.32. In panel A, x-axis values below 𝑅0 = 1 are 

excluded, because equilibrium prevalence is zero (the infection is not present) and Equation 30 does not apply.  
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Figure 6 shows some examples of the distribution of the genotypic value for endemic 

prevalence, for different values of 𝑅0 and the corresponding endemic prevalence. For the scenarios in 

Figure 6, the observed scale heritability of individual disease status does not exceed 0.022 (see Figure 7 

below). The panels illustrate that the genotypic standard deviation in the endemic prevalence is relatively 

large, particularly when prevalence is small. For example, for 𝑅0 = 1.67 (P = 0.4), the standard deviation 

in genotypic values for prevalence is around 0.19 (See also Figure 5), and values between ~0 and ~0.7 

are quite probable. Hence, despite the low observed scale heritability of individual disease status, the 

probable values of 𝐺𝑃 span as much as 70% of the full 0-1 range of endemic prevalence.  

 

 

Figure 6 – Distribution of individual genotypic values for prevalence (𝐺𝑃), for different values of 𝑅0, or 

equivalently, different values of the endemic prevalence. The distribution is given by  𝑓(𝐺𝑃) =

1

(1−𝐺𝑃)𝜎𝐴𝑙𝑅0
√2𝜋

𝑒𝑥𝑝 (−
(log(1−𝐺𝑃)+log(𝑐))2

2𝜎𝐴𝑙𝑅0

2 ) , with domain 𝐺𝑃 = (−∞, 1). For  𝜎𝐴𝑙𝑅0

2 = 0.32. Note that 𝐺𝑃 can take 

negative values while prevalence cannot. This is because 𝐺𝑃 reflects the genetic effect of an individual on the 

prevalence of the population, not the expected value of its own disease status. Thus, negative values for 𝐺𝑃 are 

possible, as long as P is positive. Note that P is very close to the average of the distributions shown.  
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Breeding value and additive genetic variance in prevalence: The genotypic value for prevalence is 

not identical to the additive genetic value (i.e., breeding value) for prevalence, because the exponential 

function in Equation 26b is non-linear, so that 𝐺𝑃 contains a non-additive component. Appendix 4 shows 

that the linear regression coefficient of 𝐺𝑃 on 𝐴𝑙𝑅0
 is equal to  𝑐−1 exp (

1

2
𝜎𝐴𝑙𝑅0

2 ). Therefore, the breeding 

value for prevalence is given by 

𝐴𝑃,𝑖 =
1

𝑐
 𝑒

1

2
𝜎𝐴𝑙𝑅0

2

  𝐴𝑙𝑅0,𝑖      (31a) 

With limited heterogeneity, this result is approximately equal to 

𝐴𝑃,𝑖 ≈
1

𝑅0
 𝐴𝑙𝑅0,𝑖      (31b) 

Thus the additive genetic variance in prevalence equals 

𝜎𝐴𝑃

2 =
1

𝑐2  𝑒
𝜎𝐴𝑙𝑅0

2

 𝜎𝐴𝑙𝑅0

2      (32a) 

and, with limited heterogeneity, 

𝜎𝐴𝑃

2 ≈
1

𝑅0
2  𝜎𝐴𝑙𝑅0

2       (32b) 

or, expressed as a function of endemic prevalence,  

𝜎𝐴𝑃

2 ≈ (1 − 𝑃)2 𝜎𝐴𝑙𝑅0

2      (32c) 

Equation 32c show that additive genetic variance in the endemic prevalence increases strongly 

when prevalence decreases, similar to the relationship between genotypic variance and prevalence 

(Figure 5). This result suggest that response of endemic prevalence to selection will be greater at lower 

levels of the prevalence.  

The relative amount of non-additive genetic variance in the endemic prevalence is determined 

by the magnitude of 𝜎𝐴𝑙𝑅0

2  (Appendix 4). For realistic values of 𝜎𝐴𝑙𝑅0

2 , the vast majority of the genotypic 

variance in prevalence is additive. For example, for 𝜎𝐴𝑙𝑅0

2  = 0.52, 88% of the variance in 𝐺𝑃 is additive. 

Hence, the distinction between the breeding value for prevalence (𝐴𝑃) and the genotypic value for 

prevalence (𝐺𝑃) seems of minor importance, and results in Figures 5 and 6 closely resemble those for 

the additive genetic effects.  

 

Breeding value and heritability for disease status vs. prevalence: Appendix 5 shows that, in the 

absence of genetic variation in infectivity, the breeding value for prevalence is a factor 1/P greater than 

the breeding value for individual disease status, 

𝐴𝑃,𝑖 ≈
1

𝑃
𝐴𝑦,𝑖    (33) 

Note, in contrast to genotypic values, breeding values are expressed as a deviation from their mean. The 

𝐴𝑦 is the ordinary observed scale breeding value for binary disease status that breeders are familiar with.  
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This result implies that the impact of an individual’s genes on response to selection is considerably 

larger than their impact on the disease status of the individual itself, particularly when endemic 

prevalence is small. Consider, for example, an individual with 𝐴𝑦,𝑖 = −0.02 in a population with a 

prevalence of P = 20%. The expected disease status of this individual in the current population equals 

0.20 − 0.02 = 0.18. Hence, on average, this individual will be infected 18% of the time. However, its 

breeding value for prevalence equals 𝐴𝑃,𝑖 = −0.02/0.2 =  −0.10. Hence, if we select individuals with 

𝐴𝑦,𝑖 = −0.02 as parents of the next generation, then the endemic prevalence will go down to 0.20 – 

0.10 = 0.10. In other words, response to selection will be fivefold greater than suggested by the ordinary 

breeding values for individual disease status (1/P = 1/0.2 = 5). We will validate this result in section 7, 

which focusses on response to selection. 

The relationship between the breeding value for prevalence and the breeding value for own 

disease status shown in Equation 33 suggests a relatively simple expressions for 𝐴𝑦. On combining 

Equations 31 and 33, and assuming limited heterogeneity, so that 𝑒
1

2
𝜎𝐴𝑙𝑅0

2

≈ 1 and 1/𝑐 ≈ (1 − 𝑃), the 

breeding value for individual disease status becomes  

𝐴𝑦,𝑖 ≈ 𝑃(1 − 𝑃)𝐴𝑙𝑅0,𝑖     (34) 

The breeding value for individual disease status may also be expressed in terms of 𝑅0 rather than P, by 

substituting P in Equation 34 by Equation 3. We used stochastic simulation to validate this expression 

and investigate its precision. Results show that Equation 34 closely matches the regression of individual 

binary disease status on the breeding value for the logarithm of 𝑅0 for realistic levels of heterogeneity 

(𝜎𝐴𝑙𝑅0

2 ≤ 0.52; see Supplementary Material 3 for results). Hence, Equation 34 is sufficiently precise for 

practical application. Note that, since infectivity does not affect the disease status of an individual itself, 

a potential component due to infectivity has to be left out of the 𝐴𝑙𝑅0,𝑖 term when calculating Equation 

34. In other words, in Equation 34 the 𝐴𝑙𝑅0,𝑖 should include only the breeding values for the logarithm 

of susceptibility and recovery (see Equation 10a). 

It follows from Equation 34 that the additive genetic variance in individual binary disease status 

equals  

𝜎𝐴𝑦

2 ≈ 𝑃2(1 − 𝑃)2𝜎𝐴𝑙𝑅0

2      (35) 

Observed-scale heritability of binary disease status follows from dividing Equation 35 by the phenotypic 

variance of binary disease status, 𝜎𝑦
2 = 𝑃(1 − 𝑃), giving 

ℎ𝑦
2 ≈ 𝑃(1 − 𝑃) 𝜎𝐴𝑙𝑅0

2 .     (36) 

Hence, observed-scale heritability for binary disease status has a maximum at a prevalence of 0.5, and 

goes to zero at a prevalence of zero or one, similar to the heritability of binary phenotypes for non-

communicable polygenic traits (Robertson, 1950; Figure 7A; assuming a constant 𝜎𝐴𝑙𝑅0

2 ). 

The ratio of additive genetic variance in prevalence over phenotypic variance in binary disease 

status is given by, 

𝑇𝑃
2 =

𝜎𝐴𝑃
2

𝑃(1−𝑃)
     (37) 
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with 𝜎𝐴𝑃

2  taken from Equation 32. The 𝑇𝑃
2 is an analogy of heritability, but the numerator represents the 

additive genetic variance relevant for response to selection in endemic prevalence, rather than for 

individual binary disease status. The 𝑇𝑃
2, therefore, reflects the genetic variance that can be used for 

response to selection, whereas ℎ𝑦
2 reflects the contribution of additive genetic effects to phenotypic 

variance (Bijma et al., 2007a; Bijma 2011). 

Figures 7 A & B show a comparison of ℎ𝑦
2 and 𝑇𝑃

2 for a population without genetic variation in 

infectivity, with genetic variances in the logarithm of 𝑅0 ranging from 0.12 through 0.52. In Figure 7A, 

the maximum value of ℎ𝑦
2 equals 0.0625, for P = 0.5 and 𝜎𝐴𝑙𝑅0

2 = 0.52. Given that genetic variances 

greater than 𝜎𝐴𝑙𝑅0

2 = 0.52 are very large (as argued above), observed scale heritabilities of binary disease 

status greater than ~0.06 are unlikely for endemic infectious diseases. The heritabilities in Figure 7A 

agree with the findings of Hulst et al. (2021), who used stochastic simulation of actual endemics and 

analysis of the resulting binary disease status data with a linear animal model. Figure 7B shows that 𝑇𝑃
2 

increases strongly when prevalence goes down. The difference between 𝑇𝑃
2 and ℎ𝑦

2 shows that the 

additive genetic variance in prevalence is (much) greater than the additive genetic variance in individual 

diseases status, and may even exceed phenotypic variance at low prevalence.  

In conclusion, in this section we have presented expressions for the breeding value for prevalence 

and for individual diseases status, and for the corresponding genetic variances. With realistic levels of 

heterogeneity, the breeding value for prevalence is a factor 1/P greater than the breeding value for 

individual disease status. This result suggests that response to selection should be considerably greater 

than expected based on ordinary heritability of individual disease status. We will test this hypothesis in 

the next section. 

 

Figure 7. Panel A: Observed-scale heritability (ℎ𝑦
2) of individual binary disease status (y = 0,1) as a function of 

the endemic prevalence, for different additive genetic standard deviations in the logarithm of 𝑅0 (SDAlR0). From 

Equation 36. Panel B: Ratio of additive genetic variance in prevalence and phenotypic variance in disease status 

(𝑇𝑃
2), as a function of the endemic prevalence. From Equations 37 and 32a. In both panels, there is no genetic 

variation in infectivity. 
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7. Response to selection 

The increase in the genetic variance in prevalence when the prevalence decreases (Equations 30 & 32, 

Figure 5b & 6) suggests that response to selection should also increase when the prevalence decreases. 

To validate and illustrate this hypothesis, we stochastically simulated an endemic infectious disease in 

a large population undergoing mass selection based on individual disease status. Simulations were based 

on standard methods in epidemiology, without making use of the above theory (Appendix 6). Figure 8A 

shows the observed prevalence (i.e., the mean binary disease status in each generation), the mean 

breeding value for prevalence and the mean breeding value for binary disease status, for ~70 generations 

of selection. Response in prevalence increases strongly when prevalence decreases, and the infection 

disappears in the final generation. There is excellent agreement between the observed prevalence and 

the breeding value for prevalence, showing that the change in �̅�𝑃 indeed predicts the change in 

prevalence. In contrast, the response in prevalence deviates substantially from the response in the 

breeding value for individual disease status (�̅�𝑦), particularly at lower values of the prevalence. Hence, 

while the breeding value for disease status correctly predicts individual disease status within a generation 

(Figure 4), the change in �̅�𝑦 considerably underestimates the response to selection. Furthermore, given 

the low value of the observe-scale heritability of binary diseases status, which did not exceed 0.022 in 

Figure 8A, response to selection in prevalence is quite large, unless prevalence is high. 

  

Figure 8 – Response to selection in prevalence for 70 generations of mass selection of the host population. For 

two populations, one starting at a prevalence of 90% (c = 10), the other starting at a prevalence of 50% (c = 2). 

Each generation, the 50% individuals with the lowest average disease status were selected as parents of the next 

generation. With genetic variation in susceptibility only, and 𝜎𝐴𝛾
2 = 0.32. For a population of N = 4,000 individuals, 

a total of 15,000 events (sum of infections and recoveries) per generation, consisting of a burn-in of 10,000 events 

and 5,000 recorded events. Hence, selection is based on 1.25 events per individual on average, indicating a limited 

amount of phenotypic data. Observed scale heritability for binary disease status in any generation can be read from 

Figure 7A using an x-axis value corresponding to the prevalence in that generation. Panel A: Observed prevalence 

(circles), breeding value for prevalence (�̅�𝑃, solid blue line) and breeding value for individual disease status (�̅�𝑦, 

dashed red line). Results for breeding values are the cumulative change in breeding value plus the initial 

prevalence. Panel B: Predicted (lines) versus observed (circles) prevalence. Prevalence was predicted from 

Equation 38 (blue solid line) or Equation 39 (red dashed line).  
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We also briefly investigated prediction of response to mass selection with a very simple 

expression assuming linearity and with genetic variation in susceptibility only. We based our predictions 

on estimated breeding values for binary disease status, because these are typically available to breeders. 

Because the breeding value for prevalence and the breeding value for binary disease status differ by a 

factor 1/P when there is no genetic variation in infectivity (Equation 33), we simply upscaled the 

response to selection in binary disease status predicted from the breeder’s equation (Walsh and Lynch, 

2018) by this factor, giving 

𝑅𝑃 = 𝜄𝜌𝐴𝑦,�̅�𝜎𝐴𝑦
 

1

𝑃
       (38) 

where  is the intensity of selection, defined as the standardized selection differential in mean individual 

disease status, 𝜄  =  (�̅�selected − �̿�)/𝜎�̅� , 𝜌𝐴𝑦,�̅� is the accuracy of selection, which is the correlation 

between the selection criterion (�̅�𝑖) and the true breeding value for individual disease status, and P is the 

prevalence in the generation of the selection candidates. Hence, the numerator of Equation 38 represents 

the predicted response using parameters for binary disease status, which is multiplied by a factor 1/P to 

find response in prevalence. To implement Equation 38, we calculated the 𝜌𝐴𝑦,�̅� as the correlation 

between the true breeding values for binary disease status (𝐴𝑦) and the selection criterion (�̅�) in the 

candidates for selection. Hence, we did not attempt to predict the accuracy of selection. 

Figure 8B shows a comparison of observed and predicted prevalence. Above a prevalence of 

~0.5, response predicted from Equation 38 is somewhat larger than observed response, while the reverse 

is true below a prevalence of ~0.5. Nevertheless, agreement between observed and predicted response 

is remarkably good given the very unrealistic assumption of linearity in Equation 38 (i.e., bivariate 

normality of 𝐴𝑦 and �̅�). Because selection was based on mean individual disease status recorded over a 

period lasting on average only 1.25 events per individual (see legend Figure 8), many values were either 

0 or 1, implying strong deviations from normality.   

When prevalence was smaller than 0.5, response to selection was quite large. Hence, there was 

a meaningful difference in prevalence between the parent and offspring generation. Because the P in 

Equation 38 refers to the prevalence in the parent generation, while response is realized in the offspring 

generation, Equation 38 resulted in underprediction of response to selection when response was large. 

This underprediction disappeared when using prevalence in the offspring generation in the 1/P term in 

Equation 38. However, because prevalence in the offspring generation is initially unknown, as it depends 

on the response to selection, this prediction required solving the expression 𝑅 = 𝑖𝜌𝐴𝑦,�̅�𝜎𝐴𝑦
 /(𝑃 + 𝑅), 

yielding  

𝑅𝑃 =
1

2
(−𝑃 + √𝑃2 + 4𝑖𝜌𝐴𝑦,�̅�𝜎𝐴𝑦

 )   (39) 

For a prevalence smaller than ~0.5, predictions from Equation 39 were very close to the observed 

response in prevalence (Figure 8B).  

In conclusion, results in this section show that response to selection in the prevalence of endemic 

infectious diseases is a factor 1/𝑃 greater than suggested by the ordinary breeding values for individual 

binary disease status (Figure 8A). Thus breeders can predict response to selection by upscaling the 
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selection differential in the usual estimated breeding values for binary disease status by a factor 1/𝑃 

(Figure 8B).  

 

8. Direct and indirect genetic variance in prevalence 

In this section, we partition the total genetic variance in prevalence into direct and indirect genetic 

components. This partitioning is relevant, because IGE respond fundamentally different to selection than 

DGE (Griffing 1967; Griffing 1977; Moore et al., 1997; Muir 2005; Bijma 2010, 2011; see Discussion). 

We can partition the total breeding value for prevalence into a direct and an indirect component,  

𝐴𝑃 = 𝐴𝑃𝐷
+ 𝐴𝑃𝐼

     (40) 

Analogously, we can partition the full additive genetic variance in prevalence into components due to 

direct genetic variance, indirect genetic variance and a covariance, 

𝜎𝐴𝑃

2 = 𝜎𝐴𝑃𝐷

2 + 2𝜎𝐴𝑃𝐷
𝐴𝑃𝐼

 + 𝜎𝐴𝑃𝐼

2     (41) 

In the absence of genetic variation in infectivity, the breeding value for own disease status is a 

fraction P of the breeding value for prevalence (Equation 33). Hence, a fraction P of the genetic effects 

of susceptibility and recovery on prevalence affects the disease status of the individual itself and is thus 

due to direct effects, while the remaining fraction (1 − 𝑃) is due to indirect effects. For infectivity, the 

entire genetic effect is indirect, because an individual’s infectivity does not affect its own disease status. 

Assuming limited heterogeneity, it follows from Equations 31b that 

𝐴𝑃𝐷
=

1

𝑅0
 𝑃 (𝐴𝑙𝛾 − 𝐴𝑙𝛼)     (42a) 

𝐴𝑃𝐼
=

1

𝑅0
  ((1 − 𝑃)𝐴𝑙𝛾  +  𝐴𝑙𝜑  − (1 − 𝑃)𝐴𝑙𝛼)   (42b) 

Note that Equation 42a is identical to the breeding value for individual disease status (𝐴𝑦, Equation 

34, using the substitution 1/𝑅0 = 1 − 𝑃), but the current expression emphasizes the partitioning of 𝐴𝑃 

into direct and indirect effects. The direct and indirect genetic (co)variances are given by 

𝜎𝐴𝑃𝐷

2 =
𝑃2

𝑅0
2 (𝜎𝐴𝑙𝛾

2  − 2𝜎𝐴𝑙𝛾𝐴𝑙𝛼
+  𝜎𝐴𝑙𝛼

2 )    (43a) 

𝜎𝐴𝑃𝐷
𝐴𝑃𝐼

=
𝑃

𝑅0
2 { (1 − 𝑃) (𝜎𝐴𝑙𝛾

2  − 2𝜎𝐴𝑙𝛾𝐴𝑙𝛼
+  𝜎𝐴𝑙𝛼

2 ) +  𝜎𝐴𝑙𝛾𝐴𝑙𝜑
− 𝜎𝐴𝑙𝛾𝐴𝑙𝛼

 }  (43b) 

𝜎𝐴𝑃𝐼

2 =
1

𝑅0
2  { (1 − 𝑃)2 (𝜎𝐴𝑙𝛾

2  − 2𝜎𝐴𝑙𝛾𝐴𝑙𝛼
+  𝜎𝐴𝑙𝛼

2 ) +  2(1 − 𝑃) (𝜎𝐴𝑙𝛾𝐴𝑙𝜑
− 𝜎𝐴𝑙𝜑𝐴𝑙𝛼

)  +  𝜎𝐴𝑙𝜑

2  }

 (43c) 

Figure 9 shows the total additive genetic variance in the endemic prevalence and the fractions 

due to DGE, IGE and their covariance, for a scenario with equal genetic variances in susceptibility, 

infectivity and recovery and covariances equal to zero. For an endemic prevalence smaller than 0.5, IGE 

contribute the majority of the genetic variance. For example, for an endemic prevalence of 0.3, the full 

additive genetic variance consists of 6% direct genetic variance, 66% indirect genetic variance and 28% 
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direct-indirect genetic covariance. These results imply that IGE dominate the heritable variation and 

response to selection in the endemic prevalence of infectious diseases.  

 

Figure 9 – Total additive genetic variance in endemic prevalence (𝑉total; secondary y-axis) and the relative 

contribution of DGE, IGE and their covariance (𝑓direct, 𝑓indirect, and 𝑓covariance; primary y-axis). For 𝜎𝐴𝛾
2  = 𝜎𝐴𝜑

2  = 

𝜎𝐴𝛼
2  = 1 and covariances equal to zero. Results are obtained from Equations 32b, 3, and 43a-c. 

 

Discussion 

We presented quantitative genetic theory for endemic infectious diseases, with a focus on the genetic 

factors that determine the endemic prevalence. We defined an additive model for the logarithm of 

individual susceptibility, infectivity and rate of recovery, which results in normally distributed breeding 

values for the logarithm of 𝑅0. Next we investigated the impact of genetic heterogeneity on the 

population level. Results showed that genetic heterogeneity has limited impact on 𝑅0 and on the endemic 

prevalence. Subsequently, we considered genetic effects of individuals on their own disease status and 

on the endemic prevalence. Building on the breeding value for the logarithm of 𝑅0, we showed that 

genotypic values and genetic parameters for the prevalence follow from the known properties of the log-

normal distribution. In the absence of genetic variation in infectivity, genetic effects on the endemic 

prevalence are a factor 1/prevalence greater than the ordinary breeding values for individual binary 

disease status. Hence, even though prevalence is the simple average of individual binary disease status, 

breeding values for prevalence show much more variation than those for individual disease status. These 

results imply that the genetic variance that determines the potential response of endemic prevalence to 

selection is largely due to IGE, and thus hidden to classical genetic analysis and selection. For 

susceptibility and recovery, a fraction 1-P of the full genetic effect is due to IGE, whereas the effect of 
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infectivity is entirely due to IGE. Hence, the genetic variance that determines the potential response of 

prevalence to selection must be much greater than currently believed, particularly at low levels of the 

prevalence (Figure 7). We evaluated this implication using stochastic simulation of endemics following 

standard methods in epidemiology, where parents of the next generation were selected based on their 

own disease status (mass selection). The results of these simulations showed that response to selection 

in the observed prevalence and in the breeding value for prevalence increased strongly when prevalence 

decreased, which supports our theoretical findings.  

 

Model assumptions: Following Anacleto et al. (2015, 2019), Biemans et al. (2019) and Pooley et al. 

(2020), we assumed a linear additive model with normally distributed effects for the logarithm of 

susceptibility, infectivity and recovery, leading to a normal distribution of the additive genetic values 

for the logarithm of 𝑅0. For complex traits, it is common to assume normally distributed genetic affects, 

based on the central limit theorem (Fisher 1918). Because 𝑅0 is non-negative, we specified a normal 

distribution for its logarithm, to translate the [0, ∞) domain of 𝑅0 to the (−∞, +∞) domain of the normal 

distribution. The same approach has been used to model variation in the genetic variance, which is also 

restricted to non-negative values (SanCristobal-Gaudy et al. 1998; Hill and Mulder 2010). The log-

normal distribution of genotypic values for 𝑅0 results in a decrease of the genetic standard deviation in 

𝑅0 with decreasing 𝑅0 (Figure 2), which seems reasonable given the presence of a lower bound for 𝑅0. 

Moreover, the log-normal distribution for 𝑅0 is convenient, because it results in relatively simple 

expressions for the breeding value and the genetic variance for prevalence. 

The assumption of a normal distribution for the logarithm of genotypic values for 𝑅0 also agrees 

with the standard implementation of generalized linear (mixed) models (GLMM; Nelder and 

Wedderburn, 1972). 𝑅0 refers to an expected number of infected individuals; In other words, 𝑅0 is the 

expected value of count data. In GLMM, the default link function for count data is the log-link 

(McCullagh, 2019). Hence, our linear model for the logarithm of 𝑅0 also agrees with common statistical 

practise.  

Note that the strong increase of the genetic variance in prevalence with decreasing 𝑅0 (Figure 

5A) is not due to the assumption of lognormality of 𝑅0. On the contrary, the log-normal distribution 

results in a decrease of the genetic standard deviation in 𝑅0 with decreasing 𝑅0 (Figure 2). The strong 

increase in the genetic variance in prevalence results from the relationship between 𝑅0 and the endemic 

prevalence (Figure 1; Equation 3), which becomes steeper when 𝑅0 is closer to one. This relationship is 

very well established in epidemiology (Weiss and Dishon, 1971; refs). 

 

Positive feedback: The increasing difference between the breeding value for prevalence and the 

breeding value for individual disease status at lower prevalence (Equation 33) is a result of the increasing 

slope of the relationship between 𝑅0 and the endemic prevalence (Equation 3, Figure 1). Equation 3 

follows directly from a simple equilibrium condition (see text above Equation 3). However, the focus 

on the equilibrium partly obscures the underlying mechanism. Figures 10A and B illustrate that the 

difference between 𝐴𝑃 and 𝐴𝑦 originates from positive feedback effects in the transmission dynamics. 

(Figure 10 shows results for selection against susceptibility, selection for faster recovery would yield 

identical results). With lower susceptibility fewer individuals become infected, which subsequently 

translates into a reduced transmission rate, followed by a further reduction in the number of infected 

individuals, etc. This creates a positive feedback loop over cycles of the transmission-recovery loop 
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(Figure 10A). The initial change in prevalence before feedback effects manifest is equal to the selection 

differential in breeding value for individual disease status (∆�̅�𝑦; horizontal lines in Figure 9). This 

change represents the direct response due to reduced susceptibility, and does not include any change in 

exposure of susceptible individuals to infected herd mates. Next, prevalence decreases further because 

the initial decrease in prevalence reduces the exposure of susceptible individuals to infected herd mates. 

This additional decrease represents the indirect response to selection via the “social” environment. 

Without genetic variation in infectivity, the direct response makes up a fraction P of the total response 

in prevalence, and the indirect response a fraction 1 − 𝑃. 

 

 

Figure 10 – Positive feedback after selection for lower susceptibility. Panel A: Diagram of the SIS compartmental 

model illustrating the feedback, with the number of susceptible (S) and infectious (I) individuals and the 

transmission and recovery rates (ignoring heterogeneity for simplicity). A reduction in the transmission rate 

parameter  reduces I, which in turn reduces the transmission rate, leading to a further reduction in I, etc.  Panel 

B: Convergence of the prevalence to the new equilibrium after selection. For two populations; one starting at P = 

0.25 (red triangles; c = 1.333), the other at P = 0.125 (blue circles; c = 1.143). The x-axis represents cycles of the 

transmission loop. The horizontal dotted lines show the prevalence predicted by the breeding value for binary 

disease status (the direct effect). The Asterix shows the equilibrium prevalence after convergence, which occurs a 

little later than t = 50 for the lower line. The genetic selection differential for binary disease status equals ∆�̅�𝑦 =

−0.01 for both populations. The initial response to selection (the y-axis difference between t = 0 and t = 1) is equal 

to the ∆�̅�𝑦 of −0.01 for both scenarios. Total response is -0.04 for the scenario with P = 0.25, and -0.08 for the 

scenario with P = 0.125, corresponding to -0.01/0.25 and -0.01/0.125. Results in panel B follow from iterating on 

Equation 20a, using a single value for ℛ0,𝑖, with 𝛼𝑖 =  �̅�inf = 1 and choosing 𝛾 so that the selection differential 

∆�̅�𝑦 = −0.01 (using 𝛾 =
𝐺𝑦

𝑃(1−𝐺𝑦)
/𝑐 from Equation 20a). In each iteration, the P in the righthand side of Equation 

20a is replaced by the 𝑃𝑖  calculated from Equation 20a in the previous iteration. This iteration converges to the 

prevalence given by Equation 3 (assuming negligible heterogeneity).  
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Herd immunity: In Figure 8A, the infection ultimately goes extinct due to mass selection for individual 

disease status. This happens due to a phenomenon known as herd immunity (Fine, 1993). In the final 

generation, the infection disappears because 𝑅0 falls below a value of one; not because all the individuals 

have become fully resistant to infection. This result is similar to eradication of an infection by means of 

vaccination, which does not require full immunity of individuals and can also be achieved when only 

part of a population is vaccinated (Anderson and May,  1985). As can be seen in Figure 10 and in 

simulation results of Hulst et al. (2021), herd immunity develops over cycles of the transmission-

recovery loop. Thus the full benefits of genetic selection or vaccination do not manifest immediately, as 

it takes some time for a population to converge to the new endemic prevalence. 

The relevance of herd immunity can be illustrated using the data underlying Figure 8A. In the 

initial generation of the population starting at a prevalence of 0.5, the mean breeding value for log-

susceptibility is equal to zero, and the contact rate is equal to two (c = 2, �̅�𝑙𝛾 = 0, so that 𝑅0 ≈ 𝑐𝑒 �̅�𝑙𝛾 = 

2). In the final generation, the mean breeding value for log-susceptibility has dropped to -0.73, so that 

𝑅0 ≈ 2𝑒−0.73 = 0.96. Hence, 𝑅0 < 1, explaining extinction. However, if the average individual of the 

final generation would have been exposed to the infection pressure of the first generation, then the 

expected prevalence for this individual would have been 0.32 (From Equation 20a, with 𝑅0,𝑖 = 0.96 and 

P = 0.5). Hence, the individual would have been infected 32% of the time. Nevertheless, in a population 

consisting entirely of this type of individual, as is the case in the final generation, the infection will no 

longer be present in the long term. This example illustrates the relevance of indirect effects for herd 

immunity and response to selection of infectious diseases. 

 

Utilization of hidden genetic variation for genetic improvement: In this work, we have shown that a 

fraction 1 − 𝑃 of the full individual genetic effect on the endemic prevalence represents an IGE, because 

only a fraction P of the full effect surfaces in the disease status of the individual itself (assuming no 

genetic variation in infectivity; Equation 33 and Appendix 5). In other words, a fraction 1 − 𝑃 of the 

individual genetic effects of susceptibility and recovery on the prevalence are hidden to direct selection 

and classical genetic analysis. Nevertheless, results in Figure 8 show that prevalence responds rapidly 

to selection, particularly when prevalence is small. Hence, prevalence responds faster to selection when 

a greater proportion of its heritable variation is hidden, and when heritability is low (Figure 7A), which 

seems a paradox.  

However,  the IGEs due to susceptibility and recovery are a special kind, because they are fully 

correlated to the corresponding DGE. For each of the two traits, there is only a single genetic effect (𝐴𝑙𝛾 

and 𝐴𝑙𝛼, respectively), which has both a direct effect and an indirect effect on the prevalence. Hence, 

when selection changes the mean DGE, the mean IGE changes correspondingly.  This can be seen from 

Equation 38, where the term  𝜎𝐴𝑦
 /𝑃 represents the full additive genetic standard deviation in prevalence 

(as is clear from Equation 33), while the accuracy (𝜌𝐴𝑦,�̅�) refers to selection for the direct effect only. 

Hence, without genetic variation in infectivity, the total response to selection based on individual disease 

status can be interpreted as the sum of a direct response in DGE and a correlated response in IGE, 

𝑅𝑃,𝑑𝑖𝑟𝑒𝑐𝑡 = 𝜄𝜌𝐴𝑦,�̅�𝜎𝐴𝑦
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𝑅𝑃,𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 = 𝜄𝜌𝐴𝑦,�̅�𝜎𝐴𝑦

1 − 𝑃

𝑃
 

and the sum of  𝑅𝑃,𝑑𝑖𝑟𝑒𝑐𝑡 and 𝑅𝑃,𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 is equal to Equation 38. The 𝑅𝑃,𝑑𝑖𝑟𝑒𝑐𝑡 is the response to 

selection expected based on ordinary genetic analysis of individual disease status. The 𝑅𝑃,𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 

represents the additional response due to IGE. The direct response occurs immediately in the first cycle 

of the transmission loop (Figure 10B), while the indirect response manifests gradually over several 

cycles of the transmission loop, particularly when prevalence is small (see also result in Hulst et al. 

2021).   

The response due to the IGE of susceptibility and recovery arises naturally when selecting for 

lower individual disease status (i.e., for the direct effect); it does not require any specific measures of 

the breeder. Thus, on the one hand, our results imply that response to genetic selection against infectious 

diseases should be considerably greater than currently believed, even when no changes are made to the 

selection strategy.   

 On the other hand, however, classical selection for direct effects is not the optimal way to 

reduce prevalence, for the following two reasons. First, classical selection does not target genetic effects 

on infectivity, because an individual’s infectivity does not affect its own disease status (Lipschutz-

Powell et al., 2012). Hence, infectivity changes merely due to a potential genetic correlation with 

susceptibility and/or recovery. When this correlation is unfavourable, infectivity will increase and 

response in prevalence will be smaller than expected based on the genetic selection differentials for 

susceptibility and recovery. (And thus smaller than the result of Equation 38). In theory, this could even 

lead to a negative net response (Griffing 1967). This is similar to the case with social behaviour-related 

IGEs on survival in laying hens and Japanese quail, where selection for individual survival may increase 

mortality (Craig and Muir, 1996; Muir 2005). This scenario seems unlikely for infectious diseases, but 

at present we lack knowledge of the multivariate genetic parameters of susceptibility, infectivity and 

recovery to make well-founded statements.  

Second, even in the absence of genetic variation in infectivity, individual selection for 

susceptibility and recovery is non-optimal because the accuracy of selection is limited due to limited 

heritability, particularly at low prevalence (Figure 7A). The response to selection in traits affected by 

IGE can be increased by using kin selection and/or group selection (Griffing 1976; Muir 1996; Bijma 

2011), or by including IGE in the genetic analysis (Muir 2005, Bijma et al. 2007b; Muir et al. 2013; 

Biemans et al. 2019, Anacleto et al. 2015, Pooley et al. 2020). Kin selection occurs when transmission 

takes place between related individuals, for example within groups of relatives (Anche et al. 2014). 

Group selection refers to the selection of parents for the next generation based on the prevalence in the 

group in which transmission takes place, rather than on individual disease status (Griffing 1976). Both 

theoretical and empirical work shows that kin and group selection lead to utilization of the full genetic 

variation, including both DGE and IGE (Griffing 1976, Muir 1996, 2005; Bijma and Wade, 2008; Bijma 

2010,  2011). For infectious diseases, the work of Anche et al. (2014) illustrates the effect of kin 

selection, where favourable alleles for susceptibility increase much faster in frequency when disease 

transmission is between related individuals.  

The mechanism of both kin and group selection relies on feed-back of an individual’s IGE on 

its own value for the selection criterion. With kin selection, individuals with poor IGEs are on average 
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exposed to the poor IGEs of their genetically related social partners, which reduces their trait value and 

thus their change of being selected as parent of the next generation. Irrespective of genetic relatedness, 

individuals with poor IGEs depress the performance of their group, which reduces their change of being 

selected as parent of the next generation in group selection scenarios.  

Other compartmental models: In this work, we focused on endemic infectious diseases following a 

SIS-model, where individuals can either be susceptible (S, i.e., non-infected) or infected (I). Hence, we 

assumed the infection does not confer any long-lasting immunity, and we ignored the potential existence 

of infection classes (“compartments”) other than S and I, for example latently infected individuals that 

are not yet infectious. Moreover, we ignored the influx of new individuals into the population due to 

births, and the removal of individuals due to deaths, because the dynamics of transmission are often 

much faster than those of birth and death.  

 A key condition for validity of our results is that the pathogen can replicate only in the 

host individual, meaning that a reduction in, e.g., susceptibility fully translates into reduced exposure of 

the host population to the pathogen (The mere survival of the pathogen in the environment does not 

violate our assumptions; see Hulst et al., 2021 for a discussion). This condition is not limited to the SIS-

model, but is, for example, also met in the SEIS compartmental model. In the SEIS model, there is an 

incubation period after infection, where individuals have been exposed (E) but are not yet infectious. 

However, when birth and death can be ignored, 𝑅0 and the equilibrium prevalence of the SEIS model 

are identical to those of the SIS model (Equations 3 and 4). Hence, our results also apply to cases with 

an incubation period after infection.  

 Infections that confer long-lasting immunity typically show epidemic, rather than 

endemic, behavior. Measles in the human population before the introduction of vaccination are a well-

known example. For such infections, the same mechanisms as discussed above will play a role, but their 

quantitative effect is different.  For epidemic infections, a fraction of the initially susceptible individuals 

typically escapes from becoming infected, and the scale of the epidemic is measured by the fraction of 

the population that has been infected when the epidemic is over (the so-called final size; Kermack & 

McKendrick, 1927). The Susceptible-Infected-Recovered (SIR) model is the simplest and best known 

compartmental model for epidemic infections. 𝑅0 is the same for the SIR and the SIS model (Equation 

4), and the final size follows from 𝑅0 (Kermack & McKendrick, 1927). However, the relationship 

between the final size and 𝑅0 in the SIR model, differs from the relationship between the endemic 

prevalence and 𝑅0 in the SIS-model. At the same 𝑅0, the final size is greater than the endemic prevalence 

because of an overshoot (e.g., Diekmann et al. 2013; see figure in Appendix 7). Below (above) 𝑅0 ≈

2.15, the slope of final size plotted as a function of 𝑅0 is steeper (flatter) than the slope of endemic 

prevalence as a function of 𝑅0 (Figure 1). Therefore, when 𝑅0 ≲ 2.15, the increase of the additive 

genetic variance for the final size of an epidemic infection when 𝑅0 decreases is considerably stronger 

than for the prevalence of an endemic infection (the latter is in Figure 5A). Hence, we expect that the 

final size of epidemic infectious diseases with 𝑅0 ≲ 2.15 will respond very rapidly to selection, even 

more so than the equilibrium prevalence of endemic infections (assuming presence of genetic variance 

of course).  

 

Exposure to infectious pathogens is a major driver of the evolution of host populations by 

natural selection, both in animals and plants (reviewed in Karlsson et al. 2014 and Ebert and Fields 
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2020). In the human species, for example, a study of genetic variation in 50 worldwide populations 

reveals that selection on infectious pathogens is the primary driver of local adaptation and the strongest 

selective force that shapes the human genome (Barreiro and Quintana-Murci 2010; Fumagalli et al. 

2011). The key role of infectious pathogens in natural selection, together with the large contribution of 

IGE to the genetic variation in prevalence in the host population, indicates that IGE must have been an 

important fitness component. This, in turn, suggests that associating with kin may have evolved as an 

adaptive behaviour. In other words, natural selection might lead to social structures where individuals 

associate preferably with kin, because such behaviour has indirect fitness benefits. This is because 

interactions among kin lead to utilisation of the full heritable variation in fitness, including both DGE 

and IGE (Bijma, 2010), and thus accelerate response of fitness to selection. At low to moderate levels 

of the endemic prevalence, the genetic variation in prevalence might be sufficiently large for such 

behaviour to evolve even in the absence of direct fitness benefits, such as preferential behaviour towards 

kin. While this is a complex issue requiring careful quantitative modelling, including migration and 

emergence of selfish mutants, the size of IGE together with the key role of pathogens in natural selection 

strongly suggest the importance of kin selection in the history of life.  

In agriculture, the implementation of kin selection may be feasible when animals can be kept in 

kin groups or plants can be grown in plots of a single genotype. In many cases, however, this will not 

be feasible, and other methods are required to optimally capture the IGE underlying the prevalence of 

infectious diseases. Current developments in sensing technology and artificial intelligence enable the 

development of tools for large scale automated collection of longitudinal data on individual disease 

status, and also on the contact structure between individuals (relevant mainly in animals). These 

advances, together with recently developed statistical methods for the estimation of the direct and 

indirect genetic effects underlying disease transmission (Pooley et al. 2020), could represent a much-

needed breakthrough in artificial selection against infectious diseases in agriculture. Our results on 

genetic variation and response to selection suggest that such selection is way more promising than 

currently believed. 
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Appendix 1 

𝑹𝟎 with heterogeneity and log-normally distributed susceptibility, infectivity en recovery 

 

We assume that the transmission rate from infected individual j to susceptible individual i is proportional 

to the product of the infectivity of j and the susceptibility of i (Equation 5), 

𝛽𝑖𝑗 = 𝑐𝛾𝑖𝜑𝑗. 

So there is no interaction between i and j. (This property is known as separable mixing in the 

epidemiological literature; Diekmann et al. 1990; 2013). Moreover, we assume that susceptibility, 

infectivity and recovery follow a log-normal distribution (Equations 6 and 7). We also assume that the 

population is not very small, so that in the early phase of an endemic where only few individuals are 

infected, the composition of the remaining susceptible individuals is not affected.  

Because 𝑅0 refers to the “total number of individuals that become infected by a typical infected 

individual over its entire infectious lifetime”, we define an individual lifetime infectivity, which is the 

product of an individual’s infectivity per unit of time and the average duration of its infectious lifetime,  

𝜙𝑖 = 𝜑𝑖/𝛼𝑖, 

which follows a log-normal distribution with parameters following from those of 𝜑 and 𝛼. Hence, we 

have condensed our three genetic effects into two. 

We can find 𝑅0 from  

𝑅0 = 𝑐 �̅� �̅�𝑡𝑦𝑝 

where �̅�𝑡𝑦𝑝 is the lifetime infectivity of the typical infected individual, and �̅� is the simple average 

susceptibility in the population, 

�̅� = ∫ 𝛾 𝑔(𝛾) 𝑑𝛾
∞

0
. 

where 𝑔(𝛾) is the pdf of 𝛾. We can use the simple average of susceptibility in this expression because 

we assume the population is large. 

With separable mixing, the typical infected individual is created immediately in the first 

generation of disease transmission. This is the case because there is no interaction between 𝛾 and 𝜑, so 

that the properties of the typical infected individual are determined entirely by susceptibility.  Hence, 

the pdf of 𝛾 for the typical infected individual follows from weighing 𝑔(𝛾) by 𝛾,  

𝑔𝑡𝑦𝑝(𝛾) =
1

�̅�
𝛾 𝑔(𝛾) 

Since the properties of the typical infected individual depend on susceptibility only, we can find 

�̅�𝑡𝑦𝑝 by averaging 𝜙 over its distribution conditional on 𝛾, and subsequently averaging over the 

distribution of 𝛾, 
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�̅�𝑡𝑦𝑝 = ∫ (∫ 𝜙 𝑓(𝜙|𝛾) 𝑑𝜙

∞

0

)

∞

0

  𝑔𝑡𝑦𝑝(𝛾) 𝑑𝛾 

Hence, we now have the elements of 𝑅0, but still need to solve the integral expression. 

Because conditional Normal distributions are also Normal and the logarithm is a bijective 

function, 𝜙|𝛾 follows a log-normal distribution with parameters being the conditional mean and variance 

of the Normal distribution, 

𝜙|𝛾~𝐿𝑛𝑜𝑟𝑚 (𝜇 = 𝑏𝜙,𝛾𝐴𝑙𝛾 ;  𝜎2 = (1 − 𝜌𝛾,𝜙
2 )𝜎𝐴𝑙𝜙

2 ) 

with  𝑏𝜙,𝛾 = 𝑐𝑜𝑣(𝐴𝑙𝛾 , 𝐴𝑙𝜙)/𝑣𝑎𝑟(𝐴𝑙𝛾) denoting the regression coefficient of 𝐴𝑙𝜙 on 𝐴𝑙𝛾, and 𝜌𝛾,𝜙
2 =

 𝑐𝑜𝑣2(𝐴𝑙𝛾 , 𝐴𝑙𝜙)/[𝑣𝑎𝑟(𝐴𝑙𝛾)𝑣𝑎𝑟(𝐴𝑙𝜙)] the squared correlation, where 𝐴𝑙𝜙 denotes the breeding value 

for logarithm of lifetime infectivity.  

Hence, the inner integral is the mean of a log-normal variate, which is of the form exp (𝜇 +

𝜎2

2
), 

∫  𝜙 𝑓(𝜙|𝛾) 𝑑𝜙

∞

0

= 𝐸[𝜙|𝛾] = exp (𝑏𝜙,𝛾𝐴𝑙𝛾 +
1

2
(1 − 𝜌𝛾,𝜙

2 )𝜎𝐴𝑙𝜙

2 ) 

=  𝑒
1

2
(1−𝜌𝛾,𝜙

2 )𝜎𝐴𝑙𝜙
2

 𝑒𝑏𝜙,𝛾𝐴𝑙𝛾  . 

Since the first term of this expression is a constant,  

�̅�𝑡𝑦𝑝 = 𝑒
1

2
(1−𝜌𝛾,𝜙

2 )𝜎𝐴𝑙𝜙
2

  ∫ 𝑒𝑏𝜙,𝛾𝐴𝑙𝛾
∞

0
𝑔𝑡𝑦𝑝(𝛾) 𝑑𝛾. 

Substituting 𝑔𝑡𝑦𝑝(𝛾) =
1

�̅�
𝛾 𝑔(𝛾), and replacing 𝑔(𝛾) by the corresponding log-normal pdf yields  

∫ 𝑒𝑏𝜙,𝛾𝐴𝑙𝛾

∞

0

  𝑔𝑡𝑦𝑝(𝛾) 𝑑𝛾  =    
1

�̅�𝜎√2𝜋
∫ 𝑒

−
𝐴2

2𝜎2+𝑏𝐴

∞

0

 𝑑𝛾 

where we simplified the notation for brevity, using 𝜎2 =  𝜎𝐴𝑙𝛾

2 , 𝑏 =  𝑏𝜙,𝛾, and 𝐴 = 𝐴𝑙𝛾. 

Next, we change variable, using 𝑑𝛾 = 𝑒𝐴𝑑𝐴, and adjust the bounds accordingly,  

1

�̅�𝜎√2𝜋
∫ 𝑒

−
𝐴2

2𝜎2+𝑏𝐴

∞

−∞

 𝑒𝐴𝑑𝐴  =    
1

�̅�𝜎√2𝜋
∫ 𝑒

− 
𝐴2

2𝜎2  + (1+𝑏)𝐴

∞

−∞

𝑑𝐴 

Solving the integral term in Mathematica-online yields 

1

�̅�𝜎√2𝜋
∫ 𝑒

− 
𝐴2

2𝜎2  + (1+𝑏)𝐴

∞

−∞

𝑑𝐴 =
1

�̅�
 𝑒

 1
2

𝜎𝐴𝑙𝛾
2 (1+𝑏𝜙,𝛾)2
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�̅�𝑡𝑦𝑝 =  𝑒
1
2(1−𝜌𝛾,𝜙

2 )𝜎𝐴𝑙𝜙
2

 
1

�̅�
 𝑒

1
2

𝜎𝐴𝑙𝛾
2 (1+𝑏𝜙,𝛾)

2

 

 

�̅�𝑡𝑦𝑝 =
1

�̅�
 𝑒

1
2

[(1−𝜌𝛾,𝜙
2 )𝜎𝐴𝑙𝜙

2 +𝜎𝐴𝑙𝛾
2 (1+𝑏𝜙,𝛾)

2
]
  

 

𝑅0 = 𝑐 �̅� �̅�𝑡𝑦𝑝 = 𝑐 𝑒
1
2

[(1−𝜌𝛾,𝜙
2 )𝜎𝐴𝑙𝜙

2 +𝜎𝐴𝑙𝛾
2 (1+𝑏𝜙,𝛾)

2
]
  

 

 Using �̅� = 𝑒
1

2
𝜎𝐴𝑙𝛾

2

 and �̅� = 𝑒
1

2
𝜎𝐴𝑙𝜙

2

 this simplifies to Equations 14 and 16 of the main text, 

�̅�𝑡𝑦𝑝 = �̅�𝑒
𝜎𝐴𝑙𝛾𝐴𝑙𝜙  

 𝑅0 = 𝑐 �̅� �̅� 𝑒
𝜎𝐴𝑙𝛾𝐴𝑙𝜙  

Further simplification follows from expressing �̅� , �̅� and 𝑒
𝜎𝐴𝑙𝛾𝐴𝑙𝜙  in terms of variances and 

covariances of 𝛾, 𝜑 and 𝛼. 

�̅� = 𝑒
1
2

𝜎𝐴𝑙𝛾
2

  

𝜙𝑖 =
𝜑𝑖

𝛼𝑖
= 𝑒(𝐴𝑙𝜑,𝑖−𝐴𝑙𝛼,𝑖) = 𝑒𝐴𝑙𝜙,𝑖 

where 𝐴𝑙𝜙,𝑖 = 𝐴𝑙𝜑,𝑖 − 𝐴𝑙𝛼,𝑖, which is the breeding value for the logarithm of lifetime infectivity, with 

𝑣𝑎𝑟(𝐴𝑙𝜙,𝑖) = 𝜎𝐴𝑙𝜑

2 − 2𝜎𝐴𝑙𝜑𝐴𝑙𝛼
+ 𝜎𝐴𝑙𝛼

2  

From the properties of the log-normal distribution,  

�̅� = 𝑒
1
2

𝜎𝐴𝑙𝜙
2

= 𝑒
1
2

(𝜎𝐴𝑙𝜑
2 −2𝜎𝐴𝑙𝜑𝐴𝑙𝛼

+𝜎𝐴𝑙𝛼
2 )

 

Furthermore, 

𝑒
𝜎𝐴𝑙𝛾𝐴𝑙𝜙 = 𝑒

(𝜎𝐴𝑙𝛾𝐴𝑙𝜑
−𝜎𝐴𝑙𝛾𝐴𝑙𝛼

)
 

Substitution of the expressions for �̅�, �̅� and 𝑒
𝜎𝐴𝑙𝛾𝐴𝑙𝜙  into 𝑅0 = 𝑐 �̅� �̅� 𝑒

𝜎𝐴𝑙𝛾𝐴𝑙𝜙  yields  

𝑅0 = 𝑐  𝑒
1
2

𝜎𝐴𝑙𝛾
2

  𝑒
1
2

(𝜎𝐴𝑙𝜑
2 −2𝜎𝐴𝑙𝜑𝐴𝑙𝛼

+𝜎𝐴𝑙𝛼
2 )

  𝑒
(𝜎𝐴𝑙𝛾𝐴𝑙𝜑

−𝜎𝐴𝑙𝛾𝐴𝑙𝛼
)
 

𝑅0 = 𝑐 𝑒
1
2

(𝜎𝐴𝑙𝛾
2  + 𝜎𝐴𝑙𝜑

2 + 𝜎𝐴𝑙𝛼
2 + 2𝜎𝐴𝑙𝛾𝐴𝑙𝜑

−2𝜎𝐴𝑙𝜑𝐴𝑙𝛼
−2𝜎𝐴𝑙𝛾𝐴𝑙𝛼

)
   

𝑅0 = 𝑐 𝑒
1
2

𝜎𝐴𝑙𝑅0

2

 

The right-hand side of this expression is identical to the mean genotypic value for 𝑅0 (Equation 12).  
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Appendix 2 

Numerical solution to find the endemic equilibrium prevalence with heterogeneity 

To find the endemic prevalence, P, we partition the population into types, i, and numerically solve the 

expressions  

𝑃𝑖 =
ℛ0,𝑖𝑃

ℛ0,𝑖𝑃+1
       

and 

ℛ0,𝑖 =
𝑐𝛾𝑖�̅�inf

𝛼𝑖
       

for P. Here we develop this numerical solution for the case where susceptibility, infectivity and recovery 

follow a log-normal distribution, assuming separable mixing (see Appendix 1). 

As can be seen from the expression for ℛ0,𝑖, the equilibrium prevalence for a type depends on 

both its susceptibility (𝛾𝑖) and its recovery rate (𝛼𝑖). Individuals with above-average susceptibility are 

over-represented among the infecteds in the equilibrium, whereas individuals with above-average 

recovery are under-represented. Hence, as can be seen from the expression for ℛ0,𝑖, the partitioning into 

types should be based on 𝛾𝑖/𝛼𝑖. Therefore we define 

𝜃𝑖 =
𝛾𝑖

𝛼𝑖
= 𝑒𝐴𝜃,𝑖 

𝐴𝜃𝑖
= 𝐴𝛾,𝑖 − 𝐴𝛼,𝑖  

𝜃 ~ 𝐿𝑛𝑜𝑟𝑚(𝜇𝐴𝜃
= 0, 𝜎𝐴𝜃

2 = 𝜎𝐴𝛾

2 − 2𝜎𝐴𝛾𝐴𝛼
+ 𝜎𝐴𝛼

2 ) 

To numerically solve the two equations given above, we also need �̅�inf. The �̅�inf will depends on the 

𝜃𝑖 of the infecteds when infectivity is correlated to susceptibility and/or recovery. Hence, we need the 

distribution of 𝜑|𝜃, which follows from 

𝜎𝐴𝜃𝐴𝜑
= 𝜎𝐴𝛾𝐴𝜑

− 𝜎𝐴𝛼𝐴𝜑
 

𝑏𝜑𝜃 =
𝜎𝐴𝜃𝐴𝜑

𝜎𝐴𝜃

2  

𝜌𝜑𝜃 = 𝜎𝐴𝜃𝐴𝜑
/𝜎𝐴𝜃

𝜎𝐴𝜑
 

𝐸(𝐴𝜑|𝐴𝜃) = 𝑏𝜑𝜃𝐴𝜃 = 𝜇𝜑|𝜃   

var(𝐴𝜑|𝐴𝜃) = (1 − 𝜌𝜑𝜃
2 )𝜎𝐴𝜑

2 =  𝜎𝜑|𝜃
2    

so that 

𝜑|𝜃 ~ 𝐿𝑛𝑜𝑟𝑚(𝜇𝜑|𝜃 = 𝑏𝜑𝜃𝐴𝜃 ,  𝜎𝜑|𝜃
2 = (1 − 𝜌𝜑𝜃

2 )𝜎𝐴𝜑

2 ) 

From the log-normal distribution: 

𝐸(𝜑|𝜃) = e𝜇𝜑|𝜃 +
1
2

𝜎𝜑|𝜃
2
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Hence, we can partitioning  into classes i, with 

 ℛ0,𝑖 = 𝑐 𝜃𝑖 �̅�inf 

�̅�inf =
1

𝑃
∑ 𝑓𝑖 𝑃𝑖 𝐸(𝜑𝑖|𝜃𝑖)

𝑖

 

𝑃𝑖 =
ℛ0,𝑖𝑃

ℛ0,𝑖𝑃 + 1
 

𝑃 = ∑ 𝑓𝑖𝑃𝑖

𝑖

 

where 𝑓𝑖 is the fraction of individuals of type i, 𝑓𝑖 = 𝑁𝑖/𝑁, and 𝑃𝑖 is the prevalence in type i, 𝑃𝑖 = 𝐼𝑖/𝑁𝑖. 

The numerical solution follows from iterating on these four equations. An R-code is in Supplementary 

Material 1.  
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Appendix 3 - Methods for simulation of epidemics and validation of prevalence and 

genotypic value for individual disease status 

 

We simulated endemics according to standard epidemiological theory to validate the numerical 

solution of the endemic prevalence (Equations 20a,b) and the genotypic values for binary 

disease status (Equation 24). We considered two compartments of individuals, susceptible 

individuals (S) and infected (I) individuals, and a so-called stochastic SIS-model where 

susceptible individuals can become infected, and infected individuals can recover and then 

immediately become susceptible again (Weiss and Dishon, 1971). For simplicity, we simulated 

genetic variation in susceptibility only, with 𝛾𝑖~Lognormal(0, 𝜎𝐴𝑙𝛾

2 ).   

To limit Monte-Carlo error, we simulated a relatively large population of N = 2,000 

genetically unrelated individuals for a total of 300,000 events (infection or recovery). We used 

a burn-in of 100,000 events before recording data on individual binary disease status. Hence, in 

the recorded data, the average individual experienced 100 events (50 infections and 50 

recoveries). 

The endemic was started by infecting a proportion P0 = 1-1/c of the individuals, chosen 

at random. Subsequently, we sampled events (infection or recovery) and the individual involved 

using Gillespie’s algorithm (Gillespie, 1977). For each infected individual, the probability of 

recovery was proportional to the recovery rate, 𝛼. For susceptible individual i the probability of 

infection was proportional to 𝑐𝛾𝑖𝐼/𝑁, I/N denoting the fraction of the population that is infected. 

Probabilities were accumulated over all individuals and scaled to a sum of 1 by dividing them 

by their sum. Finally, the specific event was sampled by drawing a random number, say x, from 

a standard uniform distribution and finding the event and the corresponding individual 

belonging to the probability interval [𝑥𝑙 , 𝑥ℎ], where 𝑥𝑙 < 𝑥 < 𝑥ℎ. The disease status of that 

individual and I were updated before sampling the next event. The time of each event was not 

simulated. After 300,000 events, prevalence was calculated as the disease status averaged over 

the entire population, and also by individual, discarding the burn-in period. The regression 

coefficient of average individual disease status on 𝐺𝑦 was also estimated.  

Additive genetic variance in log-susceptibility was 𝜎𝐴𝑙𝛾

2 = 0.33. Three scenarios were 

considered, differing in contact rate: c = 1.22 giving P = 0.2, c = 2 giving P = 5 and c = 5.15 

giving P = 0.8. Those combinations of 𝜎𝐴𝑙𝛾

2 , c and P were found by numerically solving 

Equations 20a&b. The actual prevalences observed in the simulations were equal to these 

numerical solutions. 
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Appendix 4. Additive genetic variance in log-normal traits.  

We assumed log-normally distributed genotypic values for susceptibility, infectivity and 

recovery, also resulting in a log-normal distribution for 𝐺𝑅0
 and for 1 − 𝐺𝑃. Hence, genetic 

effects are additive on the log-scale, but taking the exponent introduces some non-additive 

genetic variance on the actual scale. Here we derive the fraction of the variance that is additive 

on the actual scale. 

Because all genetic effects had a mean of zero on the log-scale, the problem is 

equivalent to finding the fraction of additive variance in 𝑦 = 𝑒𝑥, where 𝑥~𝑁(𝜇 = 0, 𝜎2). From 

the properties of the long-normal distribution, 𝐸(𝑦) =  𝑒𝜇 𝑒𝜎2/2. With a small change d, the 

mean of y becomes 𝑒𝑑𝜇 𝑒𝜎2/2. Hence, the mean of y changes by an amount 𝑒
𝜎2

2 (𝑒𝑑𝜇 − 1). Since 

lim
𝑑𝜇→0

𝑒𝑑𝜇 = 1 + 𝑑𝜇, this change corresponds to 𝑒
𝜎2

2 𝑑𝜇 . Hence, the linear regression coefficient 

of y on x equals   

𝑏𝑦,𝑥 = 𝑒𝜎2/2. 

 Thus the additive effect for y equals  

  

𝐴𝑦 = 𝑒𝜎2/2 𝑥, 

and additive variance in y equals  

𝜎𝐴𝑦

2 = 𝜎2𝑒𝜎2
. 

The total variance in y follows from the properties of the log-normal distribution, 

𝜎𝑦
2 = (𝑒𝜎2

− 1)𝑒𝜎2
. 

The non-additive variance in y, therefore, equals  

𝜎𝑁𝐴𝑦

2 =  𝜎𝑦
2 −  𝜎𝐴𝑦

2 = (𝑒𝜎2
− 1)𝑒𝜎2

− 𝜎2𝑒𝜎2
= 𝑒𝜎2

(𝑒𝜎2
− 1 − 𝜎2) 

 

Figure A3.1 illustrates that the additive fraction of 𝜎𝐴𝑦

2  approaches 1 when 𝜎2 goes to zero. For 

𝜎2 = 0.52, ~88% of the variance in y is additive. Variances on the log scale larger than 0.52 are 

unrealistic (see main text). This indicates that at least 88% of the genetic variance in 

susceptibility, infectivity, recovery, R0 and prevalence is additive when they follow a log-normal 

distribution. 
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Figure A4.1 – The additive fraction of the variance in traits following a log-normal distribution. 
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Appendix 5. Genotypic value for individual disease status vs. genotypic value for 

prevalence, without genetic variation in infectivity 

 

Without genetic variation in infectivity we have 𝜑𝑖 =  𝜑 = 1, because the scale is included in 

the effective contact rate c. From Equation 24,  the genotypic value for individual binary disease 

status is, 

𝐺𝑦,𝑖 =
ℛ0,𝑖𝑃

ℛ0,𝑖𝑃 + 1
 

where, from Equation 20b,  

ℛ0,𝑖 = 𝑐𝛾𝑖/𝛼𝑖   

 

From Equation 26a,  the genotypic value for prevalence is, 

 

𝐺𝑃,𝑖 = 1 −
1

𝐺𝑅0,𝑖
 

 

where, from Equation 8,  

𝐺𝑅0,𝑖 = 𝑐𝛾𝑖/𝛼𝑖      

Hence, without genetic variation in infectivity, ℛ0,𝑖 and 𝐺𝑅0,𝑖 are identical, and we will use the 

symbol 𝐺𝑅0,𝑖 in the following. 

The linear approximation of the relationship between 𝐺𝑦 and 𝐺𝑃 follows from a 

comparison of their first derivatives with respect to 𝐺𝑅0
,  

𝑑𝐺𝑝

𝑑ℛ0
=

1

𝐺𝑅0

2  

𝑑𝐺𝑦

𝑑ℛ0
=

𝑃(𝐺𝑅0
𝑃 + 1) − 𝐺𝑅0

𝑃2

(𝐺𝑅0
𝑃 + 1)2  

 

=
𝑃

(𝐺𝑅0
𝑃 + 1)2  

 

Substituting Equation 3, assuming limited heterogeneity, yields 

𝑑𝐺𝑦

𝑑ℛ0
=

𝐺𝑅0
− 1

𝐺𝑅0

3   
 

Hence, 

 

𝑑𝐺𝑦

𝑑𝐺𝑅0

  
𝑑𝐺𝑝

𝑑𝐺𝑅0

 =  
𝐺𝑅0

𝐺𝑅0
− 1

= 𝑃⁄  
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Therefore, for a small change in an individual’s genotypic value for 𝑅0, the change in its 

genotypic value for binary disease status is only a fraction P of the change in its genotypic value 

for prevalence,  

𝑑𝐺𝑦  𝑑𝐺𝑝⁄ = 𝑃 

Hence, when expressed relative to their mean, 𝐺𝑦 and 𝐺𝑝 differ approximately by a factor P (see 

also Figure 4 in Bijma 2020). This result is approximate, because the true relationship is non-

linear and the expression 𝑃𝑒𝑞 =  1 − 1/𝑅0 is approximate with variation among individuals. For 

realistic magnitudes of the genetic variance, however, the non-linearity is limited. Note that the 

above derivation does not require the assumption of a log-normal distribution of susceptibility 

and recovery.  
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Appendix 6 Methods for observed response to selection 

First a base population was generated of N = 4000 unrelated individuals, with genetic variation in 

susceptibility only. No distinction was made between males and females. For each individual, breeding 

values for the logarithm of susceptibility were sampled from 𝐴𝑙𝛾~𝑁 (�̅� = 0, 𝜎𝐴𝛾

2 = 0.32), and 

individual susceptibility was calculated as 𝛾𝑖 = 𝑒𝐴𝛾,𝑖. The expected prevalence for the base generation 

was calculated as 𝑃0 = 1 − 1/𝑐, with a c of either 2 or 10, and the initial disease status of base generation 

individuals was sampled at random from 𝐵𝑖𝑛(4000, 𝑃0).  

Next, an endemic was simulated as described in Appendix 3, for a total of 15,000 events (sum 

of infections and recoveries), consisting of a burn-in of 10,000 events and 5,000 recorded events. The 

4,000 individuals were ordered based on their mean individual disease status over the 5,000 recorded 

events (so based on 1.25 events on average per individual), and the 2000 individuals with the lowest 

values were selected as parents of the next generation (corresponding to a selected proportion of 0.5). 

 Selected parents were mated at random. Each pair of parents produced two offspring, resulting 

in N = 4,000 offspring. Offspring inherited the breeding value for the logarithm of susceptibility in a 

Mendelian fashion; 𝐴𝑙𝛾,offspring =
1

2
𝐴𝑙𝛾,𝑝𝑎𝑟𝑒𝑛𝑡1 +  

1

2
𝐴𝑙𝛾,𝑝𝑎𝑟𝑒𝑛𝑡2 + 𝑁 (0,

1

2
𝜎𝐴𝛾

2 ). The initial disease 

status of offspring (i.e., at the start of the burn-in period of their generation) was sampled at random 

from 𝐵𝑖𝑛(4000, 𝑃offspring), where 𝑃offspring denotes the expected prevalence in the offspring 

generation, calculated as 𝑃offspring = max [1 −
1

𝑐 𝑒�̅�𝛾
; 0.02]. The 0.02 guaranteed an average of at least 

80 infected individuals at the start of the endemic in any generation, also when the expected prevalence 

was zero (i.e, when 1 −
1

𝑐 𝑒�̅�𝛾
≤  0). Then an endemic was started, as described above for the base 

generation, etc. This process was repeated until the number of infected individuals dropped to zero, 

implying extinction of the infection. 
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Appendix 7 - Final size of epidemics vs. equilibrium prevalence of endemics 

For endemic infections, the “size” is measured by the equilibrium prevalence, P, as given in Equation 3 

(assuming limited heterogeneity), and illustrated in Figure 1 of the main text. For epidemic infections 

described by a Susceptible – Infectious – Recovered (SIR) model, the size is measured be the fraction 

of the population that has been infected when the epidemic has ended, 𝑅∞/𝑁 = 1 − 𝑠∞ (Kermack & 

McKendrick 1927; Diekmann et al., 2013). Hence, 𝑠∞ denotes the fraction of the population still 

susceptible after the epidemic has ended, i.e., that has escaped from infection. The final size is 

determined by 𝑅0, and follows from numerically solving the implicit equation 

log(𝑠∞) = 𝑅0(𝑠∞ − 1) 

Figure A7.1 shows a comparison of the final size of an epidemic infection and the equilibrium 

prevalence of an endemic infection, as a function of 𝑅0. 

 

Figure A7.1 – Final size of an epidemic infection from a SIR model, and equilibrium prevalence of an endemic 

infection from a SIS model, as a function of 𝑅0. 

At low values of 𝑅0, the line for final size is steeper, while at high values of 𝑅0 the line for 

prevalence is steeper. The point where both slopes are equal follows from equating the derivatives of 

both lines with respect to the logarithm of 𝑅0, 

𝑑(1 − 𝑠∞)

𝑑𝑙𝑅0
= −

𝑠∞(𝑠∞ − 1) log(𝑠∞)

𝑠∞ − 𝑠∞ log(𝑠∞) − 1
 

𝑑𝑃

𝑑𝑙𝑅0
=

1

𝑅0
 

A numerical solution, also using the above expression for final size, yields 𝑅0 ≈ 2.15, 𝑃 ≈ 0.54 and 

1 − 𝑠∞ ≈ 0.83. Hence, below 𝑅0 ≈ 2.15 the change in final size due to a marginal change in 𝑅0 is 

greater than the change in endemic prevalence due to that same change in 𝑅0. Hence, at the same 
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response to selection in 𝑅0, the final size of an epidemic will respond faster to selection than the 

equilibrium prevalence of an endemic infection when 𝑅0 < ~2.15.  
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Supplementary material 

 

Supplementary Material 1: R-code to numerically find the endemic equilibrium prevalence.  

See file “Supplementary Material 1 - Numerical Solution Prevalence Heterogeneity.R” 

 

 

Supplementary Material 2: Additional results for the endemic equilibrium prevalence.  

See file “Supplementary Material 2 - Effect of heterogeneity on endemic prevalence.xlsx” 

 

 

Supplementary  Material 3: Validation of Equation 34 

Equation 34 states that, in the absence of genetic variation in infectivity, the breeding value for 

individual disease status is given by  

𝐴𝑦 ≈ 𝑃(1 − 𝑃)𝐴𝑙𝑅0
 

where P denotes prevalence and 𝐴𝑙𝑅0
 the breeding value for the logarithm om 𝑅0. We validated this 

expression using stochastic simulation of endemics following standard epidemiological theory (as 

outlined in Appendix 4). We simulated a population of N = 10,000 individuals, for a total of 500,000 

events (sum of infections and recoveries), using the first 100,000 events as burn in. We considered input 

values of 𝜎𝐴𝑙𝛾

2  = 0.12, 0.32 and 0.52 and a prevalence ranging from 0.1 to 0.9, with steps of 0.1. We found 

the values for the contact rate that correspond to these prevalences numerically from solving Equations  

20a and b (Table S3.1; R-code in Supplementary Material 1).  

 

Table S3.1 - Contact rates required to find a certain prevalence, for 3 values of 𝜎𝐴𝑙𝛾

2 . 

P 0.12 0.32 0.52 

0.1 1.108 1.073 1.010 

0.2 1.247 1.218 1.163 

0.3 1.424 1.404 1.362 

0.4 1.665 1.652 1.628 

0.5 2.000 2.000 2.000 

0.6 2.502 2.523 2.560 

0.7 3.340 3.393 3.495 

0.8 5.015 5.135 5.374 

0.9 10.040 10.364 11.025 

 

By definition, the individual breeding value equals the regression of individual trait value on 

additive genetic effects. Validation, therefore, focussed on the comparison of the 𝑃(1 − 𝑃) term in the 

above expression for 𝐴𝑦 to the regression coefficient of individual disease status on 𝐴𝑙𝑅0
 (𝑏𝑦,𝐴𝑙𝑅0

) 

estimated from the simulated data. Table S3.2 shows close agreement between these two parameters. 
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Table S3.2 - Comparison of estimated regression coefficient (bhat) of individual disease status on 

individual breeding value for the logarithm of 𝑅0 with its expected value of P(1-P). For three levels of 

genetic variance in log(R0). P_desired denotes the desired prevalence; P_realized denotes the realized 

prevalence using contact rates given in Table S3.1.  
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