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Abstract
Single-cell data provides us new ways of discovering biological

truth at the level of individual cells, such as identification of cellu-
lar sub-populations and cell development. With the development of
single-cell sequencing technologies, a key analytical challenge is to in-
tegrate these data sets to uncover biological insights. Here, we devel-
oped a domain-adversarial and variational approximation framework,
DAVAE, to integrate multiple single-cell data across samples, tech-
nologies and modalities without any post hoc data processing. We fit
normalized gene expression into a non-linear model, which transforms
a latent variable of a lower-dimension into expression space with a
non-linear function, a KL regularizier and a domain-adversarial reg-
ularizer. Results on five real data integration applications demon-
strated the effectiveness and scalability of DAVAE in batch-effect re-
moving, transfer learning, and cell type predictions for multiple single-
cell data sets across samples, technologies and modalities. DAVAE
was implemented in the toolkit package “scbean” in the pypi repos-
itory, and the source code can be also freely accessible at https:

//github.com/jhu99/scbean.

Introduction

Single-cell sequencing technologies have emerged over the past decade as an
extraordinarily sensitive technique that can quantatively measure gene ex-
pression levels [1], DNA methylation landscape [2], chromatin accessibility
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[3], in situ expression [4] at the level of single cell. Tremendous single-cell
data sets are generated across different technologies, organisms, and modal-
ities; and some large-scale comprehensive single-cell atlases [5, 6, 7] are now
being built, which will cover almost every aspect of biology and complex dis-
eases. Therefore, we are facing challenges of developing scalable and efficient
methods for integrating single-cell data sets across samples, technologies and
modalities; and gain biological insights into cellular heterogeneity, biological
states/cell types, cell development and spatial patterns in complex tissues
[8].

One major task in single-cell data integration is to remove various data
noises, such as batch-effects, which hinder our ways of comparing two or more
heterogeneous tissues. Both scmap [9] and scAlign [10] take the reference-
based strategy to annotate query data sets, while these methods are unable
to predict new cell types of query data sets. Batch-correction methods are
proposed to overcome the deficiency, which attempt to remove batch effects
from original datasets and return a batch-corrected expression matrix. Some
previously existing batch-correction methods were specially designed for bulk
RNA-seq, such as combat [11], RUVseq [12] and limma [13]. However, their
applications to scRNA-seq is not pratical since their models assume that
the cellular composition of each batch is identical. To avoid the assump-
tion of equal composition, mnnCorrect [14] finds most similar cells by de-
tecting mutually nearest neighbors (MNN) across batches, and obtains a
batch correction vector by averaging many MNN pairs. Seurat [15] attempts
to remove the batch effects on a set of metagene vectors using canonical
correlation analysis (CCA) as an initial dimension reduction. Inspired by
MNN, Seurat v3 [16] utilizes k-MNN for each cell within its paired dataset
to identify matching pairs, termed as “anchors”, based on the CCA-based cell
embeddings. However, its CCA-based dimensional reduction is potentially
less efficient in capturing the structure of scATAC-seq data. That’s why it
relies on latent semantic indexing to reduce the dimension for the scATAC-
seq data. In analogy to mnnCorrect, Scanorama [17] employs a generalized
mutual nearest-neighbors matching method to find similar cells among all
datasets, instead of paired datasets, on lower dimensional embeddings. A
probabilistic model scVI [18] based on a hierarchical Bayesian model with
conditions was proposed to fit the count expression data into a zero-inflated
negative binomial (ZINB) distribution conditioned on a batch annotation, as
well as two additional unobserved random variables. LIGER [19] attempts to
identify both shared cell types and dataset-specific features using integrative
non-negative matrix factorization (iNMF).

Although several existing approaches (e.g. Seurat v3 and LIGER) pro-
vided efficient ways of integrating multiple scRNA-seq data sets, few of them
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can integrate single-cell data sets across modalities without post hoc data pro-
cessing. Further, scalability and computation speed are essential problems
when we integrated large-scale data sets. To address these limitations, we
proposed a unified framework which can integrate multiple scRNA-seq into
an atlas reference, transfer learning for scATAC-seq data, spatially resolved
transcritomics without post hoc data processing.

Results

Methods overview

Here, we considered the problem of integrating multiple scRNA-seq data
sets, and multiple single-cell data across modalities. To solve this prob-
lem, we proposed a unified framework, Domain-Adversarial and Variational
Auto-Encoder (DAVAE), to fit the normalized gene expression (or chromatin
accessibility) into a non-linear model, which transforms a latent variable z
into the expression space with a non-linear function, a KL regularizier and
a domain-adversarial regularizier. As shown in Fig. 1, DAVAE was imple-
mented in the structure of neural networks, which consists of a variational
approximation network [20], a generative Bayesian neural network and a
domain-adversarial classifier [21]. The non-linear feature enables us to fit
to complex models to capture the biological insights from the integration
of multiple single-cell data sets; the deep neural network enables us to effi-
ciently learn the regression model from large-scale data sets. In contrast to
existing integration methods, it can transform multi-modalities into lower di-
mensional space without any post hoc data processing. The latent factors or
variables in the shared-lower dimensional space can be used for clustering cell
sub-populations, trajectory inference, and transfer learning across modalities,
and the recovered expression data support downstream integrative analyses.

Integrating human dendritic cells from different samples

Our first application attempts to integrate scRNA-seq data on human blood
dendritic cells [22] obtained from eight different samples with Smart-Seq2
protocol [23]. Following Tran et al. [24], we considered plates “P7”, “P8”,
“P9”, “P10” as batch 1, and “P3”, “P4”, “P13”, “P14” as batch 2. Both of
the two batches consist of 384 cells and a same set of 26,593 genes. Before
integration, the two batches were coupled with nuisance factors such as batch-
effects, and cells across the two batches are unable to be mixed together
based on the raw single-cell data (Fig. 2a). The nuisance noise hinder our
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ways of downstream integration analysis such as clustering. Thus, our aim
here is to remove batch-effects between the two batches, while preserving
the true biological signal through the process of integration. DAVAE and
three other integration algorithms, DESC, Scanorama and Seurat V3, were
applied to integrate the two batches. To evaluate the integration quality, we
first visualized the integration data using UMAP (Fig. 2b-e). The UMAP
visualization show that DAVAE was the only algorithm that retained the
heterogeneity of cell types and mixed the two batches in each cell type.
Next, we used adjusted rand index (ARI) [25] to assess cell type purity
and batch mixing. By following [26], ARI cell type and 1-ARI batch score
were measured such that a higher value represents a better performance in
clustering and batch mixing. The results show that DAVAE and DESC are
the two best methods in terms of both ARI cell type and 1-ARI batch, which
are significantly higher than that of Seurat V3 and Scanorama (Fig. 2f).
Additionally, we performed kBET [27] test on each cell type over a range of
neighborhood size that covers 5 to 25% of the sample size, with 100 replicates
for each neighborhood size, to quantify batch effects between the two batches.
An overall kBET acceptance rate was measured on the integrated data such
that a higher value indicates a better performance of an integration method
in removing batch effects. Compared to other integration methods, DAVAE
obtained the highest overall kBET acceptance rate for each of the four cell
types: CD1C DC, CD141 DC, plasmacytoid DC (pDC), and double negative
cells (Fig. 2g). Overall, DAVAE facilitates the integration of scRNA-seq data
collected across different samples.

Integrating scRNA-seq data sets with different cellular
compositions

Next, we examined our method in integrating three previously published
scRNA-seq data sets [28]: one with 2,885 293T cells, one with 3,285 Jurkat
cells, and one with a mixture of 1,605 293T cells and 1,783 Jurkat cells. It’s
a challenge to remove batch effects without less- or over-correction for the
first two data sets since their cell types are completely different. To verify
the existence of batch-effects among the three data sets, we performed PCA
on the raw scRNA-seq data before integration. UMAP visualization demon-
strates that the Jurkat cells were separated into two distinct groups (Fig. 3a).
To remove the batch-effects, we applied DAVAE, DESC, Scanorama, Seurat
V3 to integrate these three data sets. Results show that DAVAE is the only
method that can separate the three data sets into two different clusters and
mix the same cell type well into the same cluster (Fig. 3b). DESC failed to
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separate these cells into two cell types; Scanorama and Seurat were unable
to mix the same cell type well into a same cluster (Fig. 3c-e). Additionally,
quantification in ARI cell type and 1-ARI batch suggest that DAVAE is su-
perior to the three others in terms of clustering accuracy and batch mixing
(Fig. 3f). DAVAE also achieves the highest kBET acceptance score for both
of Jurkat cells and 293T cells with neighborhood settings from 5 to 25% of the
sample size (Fig. 3g). Overall, DAVAE outperforms other existing methods
in facilitating integration of data sets which may contain different cellular
compositions.

Integrating scATAC-seq and scRNA-seq data on PBMCs

In our third application, we further extended DAVAE to integrate two dif-
ferent single-cell data types on human peripheral blood mononuclear cells
(PBMCs): a scRNA-seq data of 33,538 genes measured on 11,769 cells and
a scATAC-seq data of 78,700 peak measurements on 7,064 nuclei. Single cell
ATAC-seq technology quantatively measures chromatin accessiblity in single
cell resolution, which may provide new insights into cellular heterogeneity
in tissue samples by linking cell type-specific regulatory variation and phe-
notypic variation [29]. Before integration with scRNA-seq data, we simply
collapsed the peak matrix into an activity matrix by summing up all counts
of peaks within a same region (a gene body and its 2k upstream). Then,
we performed integration for the scRNA-seq data and the gene activity ma-
trix, and successfully mixed the two data in the shared-lower dimensional
space (Fig. 4a). Cell type labels of scATAC-seq cells were predicted by using
a deep-learning-based classifier. The integrated scRNA-seq data (i.e. cell
embedding) along with its cell type labels were treated as training data, or
reference data, and each of the scATAC-seq cells was assigned to a predicted
cell type. UMAP visualization shows that cells of different cell types were
clearly separated into different groups in the latent feature space after inte-
gration performed by DAVAE (Fig. 4b). We performed kBET test on the cell
embedding integrated by Seurat v3 and DAVAE over a range of neighbor size
from 5 to 25% of the sample size. As shown in Fig. 4c, it suggests that cell
embedding obtained by DAVAE is much better than that of Seurat v3. To
verify the predicted cell type of scATAC-seq cells, we examined activity pat-
terns of six well-known cell-type-specific marker genes: LYN, VCAN, CCL5,
BANK1,SULF2, LDHB. Results in Fig. 4d suggests that our predicted cell
types of scATAC-seq data were clearly separated into distinct groups. We
further verified the predicted cell types by examining peak patterns within
the gene body and the neighborhood of their corresponding marker genes
(Fig. 4e). The expected chromatin accessibility patterns in the UMAP vi-
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sualization and peaks of marker gene suggest that DAVAE can accurately
transfer cell type labels from scRNA-seq data to scATAC-seq cells. On the
other hand, we correctly failed to identify platelet cells in scATAC-seq data,
because these cells are not nucleated [16]. Hence, we can draw a conclusion
that DAVAE facilitates integration of scRNA-seq and scATAC-seq data and
transfer learning for cell-type labels across modalities.

Integrating spatial transcriptomics data and scRNA-seq
data on mouse brain

We next extended our method to integrate two spatially resolved transcrip-
tomics data sets, and used a technique of transfer learning to transfer la-
bels from a reference of well-annotated scRNA-seq data to the spatial data.
Specifically, we used two slices of mouse brain (anterior and posterior) sagittal
data sets profiled with the 10X/Visium technology [30], and one scRNA-seq
reference data profiled with smart-seq on Mouse Brain cortex with 22,272
cells on 36,577 genes [31]. Expression of 32,285 genes were measured for
2,695 spots in anterior and 3,355 spots in posterior. The Visium technology
can measure gene expression profile, meanwhile, retain the background infor-
mation of spatial coordinate in tissue samples. The integration of single-cell
data of heterogeneous tissues across modalities aims to discover biological in-
sights from spatially resolved transcriptomics with assistance of characterized
scRNA-seq reference atlas. UMAP visualization shows that cells of the two
slices were well mixed after integration (Fig. 5a). From the 26 clusters iden-
tified from the integrated data, we can clearly visualize the stratification of
the cortical layer in both of the two tissues (Fig. 5b,c) in spatial coordinates.
Additionally, the continuity between clusters in the two slices demonstrates
that DAVAE can remove batch effects and preserve the tissue heterogeneity
after the integration of spatial transcriptomics. To predict cell type labels
for the Visium data, we further extended DAVAE to integrate the integrated
Visium data and the scRNA-seq data across modalities, and performed a
soft reference-based classification by assigning cell type-specific probabilities
of each spot in the Visium data to each cell type. These assigned proba-
bilities (weights) can reflect similarity between expression profile of spots in
Visium data and expression profile of cell types in scRNA-seq data. From the
heatmap results in spatial coordinate (Fig. 5d, Supplementary Fig. 1), we
can see a clear successive layers of cortical neurons in both the anterior and
posterior sagittal slices. Overall, DAVAE facilitates integrating not only two
spatially resolved transcriptomics, but also scRNA-seq and spatially resolved
transcriptomics across modalities.
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Integrating large-scale data sets

To test the scalability, DAVAE was applied to integrate two large-scale
scRNA-seq data sets from human cell atlas (HCA): one with 384,000 cord
blood cells; the other with 378,000 bone marrow cells [5]. Gene expres-
sion of each cell was measured on 18,969 genes with 10x genomics protocol.
UMAP visualization shows that DAVAE can effectively mix the two data
sets and separate each cell type into different clusters (Fig. 6a,b). Expression
patterns of fourteen well-known marker genes support a similar conclusion
that cell heterogeneity of the two batches was well preserved after integra-
tion performed by DAVAE (Fig. 6c-e). Specifically, heatmap of six marker
genes (Fig. 6c) clearly show the six different groups of immune cells: B cell
(CD79A); Dendritic (S100A8); Erythrocyte (HBB); NK cell (GNLY); and
Myeloid (CST3); Memory T cells (CD3D); violin plot (Fig. 6d) and dot plot
(Fig. 6e) show differential expression patterns of the fourteen marker genes
across the ten clusters identified from the integrated data of DAVAE. The cell
type annotation of each cluster was assigned based on the expression patterns
of marker genes. To test the computational efficiency, we performed DAVAE,
DESC and Scanorama on five sub-datasets uniformly down-sampled from the
two HCA data sets with a machine of Intel(R) Xeon(R) Gold 6226R CPU
@ 2.90GHz and 256G memory. The five data sets contain 100,000, 200,000,
400,000 and 600,000 cells, respectively. Results (Fig. 6f) show that deep
learning-based algorithms (DAVAE and DESC) have significant advantages
over Scanorama in terms of running time when applied to large-scale data
sets. Overall, DAVAE is both efficient and scalable for integration of large-
scale data sets.

Discussion

In this paper, we proposed a novel non-linear model that consists of a non-
linear function, a KL regulazier and a domain-adversarial regulazier to inte-
grate multiple single-cell data sets across samples, technologies and modal-
ities. To estimate the representation of cells in a commonly shared low-
dimensional space, we constructed a variational and adversarial deep neural
networks, called DAVAE, to unsupervisedly and jointly learn a variational
approximation model, a generative model and a domain-adversarial classi-
fier. DAVAE takes the normalized gene expression matrix as input and re-
turns integrated data, which include cell embedding and recovered expression
data that can be used for downstream integrative analyses, such as cluster-
ing, visualization, transfer learning across modalities. Comparing to existing
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methods, DAVAE can integrate multiple single-cell data sets across modali-
ties without any post hoc data processing. To examine the effectiveness and
scalability of DAVAE, we applied our methods and several widely-used exist-
ing approaches in integrating five real data sets. After a careful comparison,
results demonstrate that DAVAE can effectively remove batch effects in mul-
tiple scRNA-seq data sets, while preserve the biological difference for various
cell types. Further, our results demonstrate that DAVAE can integrate two
consecutive spatial transcriptome sections to restore a complete tissue sec-
tion; it can also integrate scATAC-seq data and spatial transcriptomics with
a reference scRNA-seq data; and it can perform prediction of cell type labels
using transfer learning across modalities. Lastly, by taking advantage of a
mini-batch based stochastic gradient descent procedure, DAVAE is scalable
and efficient for integration of large-scale scRNA-seq data sets, and can be
accelerated by using GPUs. Our method is unsupervised and therefore does
not require a prior knowledge about cell types. As single-cell genomics con-
tinues to evolve and sequencing experiments scale up, we believe that the
efficient and scalable nature of DAVAE could make it a valuable tool for
biomedical researchers to distinguish complex cellular heterogeneity.

Methods and Materials

The non-linear model

Let X = {X(1), X(2), · · · , X(k)} be k normalized gene expression matrices collected
from k different scRNA-seq datasets with their corresponding batch-specific one-
hot vectors {b(1), b(2), · · · , b(k)}. The m-th gene expression matrix X(m) is a matrix
of dimensionality nm by p, denoting normalized expression of nm cells on a common
set of p genes across the k datasets. We extend our model to other single-cell data
such as scATAC-seq, spatially resolved transcriptomics, in which X(m) represents
reads count of chromatin-accessible regions or counts of spatial spots. To inte-
grate the k scRNA-seq datasets, it always involves finding a representation matrix
Z(m) of dimensionality nm by p for the expression matrix X(m), where d� p and
m = 1, . . . , k. The set of lower-dimensional matrices Z = {Z(1), Z(2), · · · , Z(k)}
are expected to reflect the true biological states of cells, and could be used for
downstream analyses such as identification of cell subpopulations, trajectory in-
ference, visualization. To estimate Z, we modeled the normalized gene expression
into a non-linear model that transforms a latent variable z into expression space.
Mathematically, we can write it as bellows:

X
(m)
i = f(Z

(m)
i , b(m); θ1) + E

(m)
i (1)

Z
(m)
i ∼ N (0, I), E

(m)
i ∼ N (0, σ2I) (2)
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where X
(m)
i is a single-cell expression vector; f is a non-linear regression function

that transforms Z
(m)
i from a latent d-dimensional space into observable expression

space with a one-hot vector b(m) and a set of parameters θ1; and E
(m)
i is a p-vector

of residual errors following N (0, σ2I). We assume that the latent factor Z
(m)
i

follows a standard multivariate normal distribution N (0, I). Under this assump-
tion, the latent variables of different datasets all reside on the same d-dimensional
space. The non-linear function f(·) was constructed by using a generative deep

neural network structure, which takes Z
(m)
i , b(m) as input, and outputs an out-

come p-vector. In the deep neural networks, Z
(m)
i and b(m) are concatenated into

a (d+ k)-dimensional layer. The resulting concatenated layer is connected to the
output p-dimensional layer in the form of (d+k)→ 32→ 64→ 128→ p. All inter-
mediate layers are fully connected with each other through a batch normalization
layer, relu activation function and a dropout layer (rate=0.1). Specifically, the
batch normalization layer is designed to center and scale the inputs to a layer in a
deep learning neural network, with the centering and scaling parameters treated
as unknown and inferred through the inference algorithm. The dropout is a tech-
nique that can prevent over-fitting and provide a way of approximating combining
exponentially many different neural network architectures efficiently. The final
output layer is connected with softplus as activation function.

Two regulariziers and the objective function

Our goal is to obtain estimates for Zmi which can be used for downstream integrated
analyses and visualization. However, the likelihood and the posterior probability

of Z
(m)
i cannot be computed analytically because of non-linear function f(·). Thus,

we propose to combine the above non-linear regression model, variational approx-
imation approach [20] and a domain-adversarial model [21] within one process to
jointly learn an inference model qφ(·), a domain-adversarial classifier gθ2(·) and the
non-linear model fθ1(·). The main idea is to add two regularizers: KL regularizer
and domain-adversarial regularizer, to the objective loss function.

KL regularizier. Mathematically, the marginal log-likelihood is composed of
a sum over the marginal log-likelihood of individual cells, which can be written as:

log pθ1(X) =
k∑

m=1

nm∑
i=1

KL(qφ(Z
(m)
i |X(m)

i )||pθ1(Z
(m)
i | X(m)

i )) + L(θ1, φ;X
(m)
i ) (3)

Here, the first term is KL divergence between the variational distribution and the
posterior distribution; the second term is called evidence lower bound (ELBO). As
KL divergence is non-negative, the MLE is equivalent to maximizing the ELBO.
In other words, the ELBO hits the log probability of X iff the KL divergence is
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perfectly closed to 0. The ELBO can be written as:

L(θ1, φ;X
(m)
i ) = −KL(qφ(Z

(m)
i |X(m)

i )||pθ1(Z
(m)
i ))+E

qφ(Z
(m)
i |X(m)

i )
[log pθ1(X

(m)
i |Z(m))

i ]

(4)

For simplicity, we assume that both the prior pθ1(Z
(m)
i ) and the variational ap-

proximate posterior are Gaussian with a diagonal convariance:

pθ1(Z
(m)
i ) = N (0, I) (5)

log qφ(Z
(m)
i |X(m)

i ) = N (Z
(m)
i ;µ

(m)
i , diag(σ

2(m)
i1 , σ

2(m)
i2 , · · · , σ2(m)

id )) (6)

Then, the KL term in equation (4) can be computed analytically. To estimate the

second term of equation (4), we used Monte Carlo estimator by sampling Z
(m)
i N

times from qφ(Z
(m)
i | X(m)

i ). Since the residual errors follow N (0, σ2), the second
term can be rewritten as:

E
qφ(Z

(m)
i |X(m)

i )
[log pθ1(X

(m)
i |Z(m)

i )] ≈ −p
2

(log 2π + log σ2)

− 1

2Nσ2

N∑
l=1

||X(m)
i − f(Z

(m,l)
i , b(m); θ1)||2

(7)

Let’s take the derivative with respect to σ and set it to zero. It yields the update
rule:

σ̂2 =
1

N

N∑
l=1

||X(m)
i − f(Z

(m,l)
i , b(m); θ̂1)||2 (8)

Now, the objective loss function is constrained with a KL regularizer, which can
be written as belows:

Lf (φ, θ1, σ) =
∑
m

∑
i

[

d∑
j=1

1

2
(µ

2(m)
ij + σ

2(m)
ij − log σ

2(m)
ij − 1)

+
p

2
(log 2π + log σ2) +

1

2Nσ2

N∑
l=1

||X(m)
i − f(Z

(m,l)
i , b(m); θ1)||2]

(9)

Here, µ
(m)
i and σ

2(m)
i are estimated by learning the neural network. However, the

Monte Carlo sampling process would result in indifferential bottleneck layer in the
deep neural networks. To solve this problem, we used the reparameterization trick
as follows:

Z
(m)
i = µ

(m)
i + σ

(m)
i � ε, ε ∼ N (0, I) (10)

We rewrite the expectation and take samples of Z
(m)
i from the distribution p(ε) so

that the sampling process is independent from the parameter µ
(m)
i and σ

(m)
i . The

symbol � represents element-wise multiplication of two vectors.
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Domain-adversarial regularizier. Next, we embedded a domain-adversarial
classifier gθ2(·) into the process of learning latent feature representation, so that
the estimated latent factor Zmi can represent biological state of cells across data
sets and the original batch label cannot be classified by learning from its latent
representation. The domain classifier is also constructed by using neural network

structure, which takes Z
(m)
i as input, outputs a probability distribution through

one intermediate gradient reversal layers (GRL) and one dense layer. Specifically,
the domain classifier are connected in the form of d → 16 → k. The d represents
a d-dimensional GRL, which updates parameters with a reverse gradient using
back-propagation gradient descent method. The GRL is fully connected with the
following 16-dimensional dense layer through a relu activation function; and the
final output k layer is supplied with softmax as the activation function and cate-
gorical cross entropy between the output probability and b(m) as the loss function
Lg(φ, θ2).

The objective function. Now, we have constructed a non-linear model
fθ1(·), an inference model qφ(·) and a domain-adversarial learning model gθ2(·)
for expression vector X

(m)
i and a latent variable Z

(m)
i . We can write the objective

loss function as:

φ∗, θ∗1, θ
∗
2, σ
∗ = arg min

∑
i,m

L(i,m)
f (φ, θ1, σ) + λL(i,m)

g (φ, θ2) (11)

Then, our integration problem has been transformed into an optimization problem,
which aims to search for (near-) optimal parameters by minimizing the objective
function in equation (11). The hyper-parameter λ is used to tune the trade-off
between these two quantities during the learning process. The gradient descent
method updates each set of parameters in an iterative ways as below:

θ1 ←− θ1 − η
∂Lf
∂θ1

(12)

θ2 ←− θ2 − ηλ
∂Lg
∂θ2

(13)

σ ←− σ − η
∂Lf
∂σ

(14)

φ←− φ− η(
∂Lf
∂φ
− λ∂Lg

∂φ
) (15)

Here, η is the learning rate of gradient descent method. Note that the adversarial

mechanism is achieved by minimizing λL(i,m)
g by updating parameters θ2 as 13,

meanwhile maximizing λL(i,m)
g by updating parameters φ as 15 with GRL that

takes the gradient from the subsequence level (λ
∂Lg
∂φ ) and changes its sign (−λ∂Lg∂φ )

before passing it to the preceding layer.
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Data used in real data applications

Application 1: human dendritic cells
In the first application, human blood dendritic cell (DC) scRNA-seq data sets
were obtained from GEO (GSE94820) [22], downloaded from https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE94820. We normalized the raw data
with transcript per million (TPM) values. Cell type and batch information were
extracted using the cell ID which is formatted as “Cell.Type” “Plate.ID”. We
considered plates “P7”, “P8”, “P9”, “P10” as batch 1, and “P3”, “P4”, “P13”,
“P14” as batch 2. Both of the two batches consist of 384 cells and a same set of
26,593 genes.

Application2: 293T+ Jurkat cell
In the second application, we obtained three published data sets [28] from the 10X
Genomics single-cell portal: one with 2,885 293T cells (https://support.10xgenomics.com/single-
cell-gene-expression/datasets/1.1.0/293t); one with 3,285 Jurkat cells (https://
support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat),
and one with a mixture of 1,605 293T cells and 1,783 Jurkat cells(https://
support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat:

293t_50:50). All these data are measured on a common set of 32,738 genes. The
cell type labels of the 50:50 mixed samples were obtained from 293t jurkat cluster.txt
file in the cell labels subfolder of data downloaded from http://scanorama.csail.

mit.edu/data.tar.gz

Application 3: human cell atlas
In our third application, we used data sets with 384,000 cord blood-derived cells in
batch 1 and 378,000 bone marrow cells in batch 2 [5]. (cord blood: https://s3.

amazonaws.com/preview-ica-expression-data/ica_cord_blood_h5.h5; bone
marrow:https://s3.amazonaws.com/preview-ica-expression-data/ica_bone_
marrow_h5.h5). Gene expression of each cell was measured on 18,969 genes with
10x genomics protocol.

Application 4: spatial transcriptomics data
In our fourth application,we used data sets consist of two slices (anterior and
posterior ) of the Mouse Brain Sagittal datasets profiled with the 10X/Visium
technology. Anterior downloaded from: https://support.10xgenomics.com/

spatial-gene-expression/datasets/1.1.0/V1_Mouse_Brain_Sagittal_Anterior.
Posterior downloaded from: https://support.10xgenomics.com/spatial-gene-expression/
datasets/1.1.0/V1_Mouse_Brain_Sagittal_Posterior.

Application 5: scATAC-seq data
In our fifth application, we used datasets consist of two different single-cell data
types on human peripheral blood mononuclear cells (PBMCs): a scRNA-seq data
of 33538 genes measured on 11769 cells (https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3) and a single cell
ATAC-seq data of 78700 peak measurements on 7064 nuclei, both of which were
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profiled with 10X genomics technologies (https://cf.10xgenomics.com/samples/
cell-atac/1.0.1/atac_v1_pbmc_10k/atac_v1_pbmc_10k_filtered_peak_bc_matrix.

h5). We obtained 13 cell types in the scRNA-seq data using the standard work-
flow in Seurat (https://www.dropbox.com/s/3f3p5nxrn5b3y4y/pbmc_10k_v3.
rds?dl=1).

Software availability

The DAVAE algorithm was implemented in our python package scbean (≥0.4.0),

which was archived at https://github.com/jhu99/scbean. A tutorial that de-

scibes how to use DAVAE for several real data applications was published at

https://scbean.readthedocs.io/en/latest/?badge=latest. All source code

and data sets used for reproducing our results have been deposited at https:

//github.com/jhu99/davae_paper.
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Figure 1: Overview of DAVAE. DAVAE is an adversarial and variational
deep neural network framework for integrating multiple single-cell data sets,
which includes a variational inference model (blue), a non-linear mapping
(grey), a domain-adversarial classifier (pink). The gradient reversal layer
(GRL) enables the adversarial mechanism, which takes the gradient from
the subsequence level and changes its sign before passing it to the preceding
layer.
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Figure 2: Integration of scRNA-seq data sets on human dendritic
cells across samples. UMAP visualization on integrated data of five meth-
ods (RAW, DAVAE, Scanorama, DESC, Seurat 3.0) are organized into two
rows (a-e). Each cell was represented by a dot and colored by batches (the
first row), or cell types (the second row). Overall integration quality of com-
pared algorithms are measured by two metrics: adjusted rand index (ARI)
and kBET acceptance rate. Dot plots in (f) show clustering accuracy with
ARI cell type and mixing quality with 1-ARI batch; Line plots in (g) show
the average kBET acceptance rate of each integrated data across four cell
types over a range of neighborhood size from 5 to 25% of the sample size.
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Figure 3: Integration of scRNA-seq data sets on 293T and Ju-
rkat cells. UMAP visualization on integrated data of five methods (RAW,
DAVAE, Scanorama, DESC, Seurat 3.0) are organized into two rows (a-e).
Each cell was represented by a dot and colored by batches (the first row),
or cell types (the second row). Overall integration quality of compared algo-
rithms are measured by two metrics: adjusted rand index (ARI) and kBET
acceptance rate. Dot plots in (f) show clustering accuracy with ARI cell
type and mixing quality with 1-ARI batch; Line plots in (g) show the aver-
age kBET acceptance rate of each integrated data across two cell types over
a range of neighborhood size from 5 to 25% of the sample size.
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Figure 4: Integrating scATAC-seq data and scRNA-seq data
on PBMCs. UMAP visualization shows DAVAE’s integrated results on
scATAC-seq and scRNA-seq data. Each cell was represented by a dot and
colored by batches (a) or cell types (b). Line plots in (c) show the aver-
age kBET acceptance rate of integrated data of Seurat v3 and DAVAE over
a range of neighborhood size from 5 to 25% of the sample size. UMAP
heatmaps in (d) show activity of six markers in scATAC-seq data, that in-
clude LYN, VCAN, CCL5, BANK1, SULF2, LDHB. Plots in (e) show peak
activity patterns nearby the marker genes of ten cell types (B cell progeni-
tor, CD14+ Monocyte, CD16+ Monocyte, CD4 Memory, CD4 Naive, CD8
Naive, CD4 effector, Dendritic cell, Double negative T, NK cell).
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Figure 5: Integration of spatial transcriptomics data sets and
scRNA-seq data set on sagittal anterior and posterior mouse brain.
(a) UMAP visualization of mouse brain cells colored by batch label after
DAVAE’s integration. (b) UMAP visualization of mouse brain cells colored
by identified clusters after DAVAE’s integration. (c) Identified clusters in the
spatial coordination. (d) After the integration of the spatial data with the
scRNA-seq data on mouse cortex, cell-type-specific weight of each spot was
learned from the reference scRNA-seq data. The heatmap plots show the
probability of cell types L2/3IT, L4, L5PT, L6 CT in each spot. Predicted
cell types were show in the supplementary figure.
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Figure 6: Integrating two large-scale data sets on human immune
cells. UMAP visualization in (a) and (b) shows DAVAE’s integrated data on
human cord blood and bone marrow. Each cell was represented by a dot and
colored by batches (a) or cell types (b). Expression patterns of five marker
genes (CD79A, S100A8, HPRT1, GNLY, CST3, CD3D) were shown in (c).
Violin plots in (d) and dotplots in (e) show expression patterns of fourteen
marker genes in ten cell types. Color in (d) represents the mean expression
within each of the categories and the dot size in (e) indicates the fraction of
cells in the categories expressing a gene. Line plots in (f) show runtime of
DAVAE, DESC, Scanorama on five data sets with 100,000, 200,000, 400,000
and 600,000 cells, respectively.
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