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Abstract
It’s now common to approach questions about information representation in the brain using multivariate statistics and machine

learning methods. What is less recognized is that, in the process, the capacity for data-driven discovery and functional localization

has diminished. This is because multivariate pattern analysis (MVPA) studies tend to restrict themselves to regions of interest

and severely-filtered data, and sound parameter mapping inference is lacking. Here, reproducible evidence is presented that a

high-dimensional, brain-wide multivariate linear method can better detect and characterize the occurrence of visual and socio-affective

states in a task-oriented functional magnetic resonance imaging (fMRI) experiment; in comparison to the classical localizationist

correlation analysis. Classification models for a group of human participants and existing rigorous cluster inference methods are used

to construct group anatomical-statistical parametric maps, which correspond to the most likely neural correlates of each psychological

state. This led to the discovery of a multidimensional pattern of brain activity which reliably encodes for the perception of happiness in

the visual cortex, cerebellum and some limbic areas. We failed to find similar evidence for sadness and anger. Anatomical consistency

of discriminating features across subjects and contrasts despite of the high number of dimensions, as well as agreement with the wider

literature, suggest MVPA is a viable tool for full-brain functional neuroanatomical mapping and not just prediction of psychological

states. The present work paves the way for future functional brain imaging studies to provide a complementary picture of brain

functions (such as emotion), according to their macroscale dynamics.

Keywords: MVPA, multivariate, brain-wide, pattern classification, functional localization, face perception, emotion, affective

neuroscience, fMRI, task-oriented

1 Introduction

Mapping of segregated brain functions is far from a settled methodology. Take for instance the very choice of

statistical model in task-oriented functional neuroimaging for modalities like fMRI and PET: while the venerable

mass-univariate analysis fits separate models to encode each brain time series based on experimental variables;

multivariate pattern analysis (MVPA) reverses this — particularly multivariate pattern learning — fitting one

model to decode experimental conditions out of the joint activity of several brain signals. The former is excellent

at uncovering simple correlations between loci and functions; whereas the latter provides increased sensitivity due

to emergent informational dependencies, at the expense of computational complexity.
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For this reason and because having more dimensions than samples leads to overfitting — popular wisdom goes

— multivariate searches must be restricted to regions of interests (ROI)1–3 or moving searchlights,4,5 or otherwise

greatly reduced. Furthermore, the ability to map model parameters onto anatomy may not always be available,

depending on algorithm transparency and nonlinearities.6 Indeed, rigorous group inference of sensitivity clusters

(akin to activation map thresholding) is seldom performed in MVPA studies; casting doubt on whether it will ever

become a true match to classical functional brain mapping.

We don’t call into question the strengths of each approach. However, how big of a difference do they make in

practice? We suspect the limits of MVPA usage have been overestimated or don’t apply as much anymore. With the

right choice of learning algorithm and implementation, a neuroscientist may want to explore information-bearing

patterns in the brain as a whole, analogously to mass-univariate analysis, before (or without) narrowing down the

search to some subsystem or subjecting the data to the caveats of some dimensionality reduction method.7 Other

reasons for doing this include avoiding the statistical pitfalls of selection bias.8 Also, sometimes there’s no reason

at all to prefer one spatial scale a priori;9 as with pioneering studies of high-level, poorly-understood cognitive

functions and personalized imaging of plastic ad-hoc skills.

As difficult as finding a near-optimal predictive model might be, amid all the noise voxels relative to the task;10

it’s hard to tell beforehand whether zero evidence of interesting long-range spatial patterns could be harnessed

from brain-wide activity. In fact, the most recent advances in statistical learning tell the opposite story: against

all expectations, deep architectures have come to grips with notoriously difficult problems by embracing their

extremely high-dimensional nature.11 Meanwhile, stringent observation of cross-validation and ROC-curve standards

already account for exaggerated (i.e. overfitted) findings. Finally, this would complete the full spectrum of available

complementary analytical perspectives purported since the introduction of MVPA. Just as allowing for multivariate

dependencies might give a completely different picture to the traditional methodology,12–14 so could do multivariate

data drawn from a different spatio-temporal scale (e.g. neuronal ensembles vs large-scale networks). Yet the merits

of such straightforward model have never been fully put to test, to the best of our knowledge.

Just one year after introducing the general linear model (GLM) for per-voxel analysis,15 Friston et al. applied

multivariate analysis of covariance on whole-brain data, reduced to a space of 35 canonical-variate eigenimages.16

Importantly, this study not only established that multidimensional distributions of brain volumes could be dis-

tinguished under slight differences of cognitive-motor task conditions, but also that their hemodynamic transients

were very heterogeneous despite of indistinguishable stationary statistical momenta. In general, detachment of

focal neural response from experimental condition is one of the main motivations behind multivariate analysis.12

Ever since, the existing whole-brain experiments either keep constructing a low-dimensional state-space from brain

atlases and parcellations,17 univariate voxel selection10,18 and multivariate methods like principal components anal-

ysis and similar ones;7,19–24 or they avoid reduction altogether but fall short of translating machine learning models

into statistically-sound parametric maps for morpho-physiological insight.6,10,25–27 For instance, the latter study

by Raizada et al. actually was conducted in the same spirit as ours, and provided promising results keeping track

of behaviorally-separable groups according to how they perceived phonemes. Statistical-anatomical maps were de-

rived from voxelwise testing of GLM-based classifiers, but correction for multiple comparisons was absent.27 Others

simply don’t get as far as performing functional localization.
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Here we tested the competitiveness of pattern classification analysis (i.e., supervised pattern learning) as a

methodology for anatomical localization of the correlates of cognitive functions in brain-wide, high-dimensional

fMRI data. To this end, we employed rather standard and easily-interpretable support vector machine (SVM)

classifiers on a sample of 16 human participants who performed a visual perception task. The task poses variable

levels of decoding difficulty: from simple visual stimulation and face perception to the more ethereal perception of

three basic emotions. We evaluate whether SVM can learn to predict task state above empirically-estimated chance

performance, and if so, whether individual models converge on what the most relevant neural correlates of each

cognitive ability are.

We expect both univariate and multivariate analyses to reveal well-known early visual cortex areas in contrasts

intended to capture the effect of visual stimulation, and components of the so-called face processing network in the

ventral stream during face perception.28,29 If successful, this would provide greater confidence when exploring the

correlates of the more poorly-understood emotional functions.

Although over a hundred years of affective neurobiology research have been fruitful in identifying the anatomical

components of the emotional central nervous system; ample disagreement still exists on the physiological characteri-

zation of particular emotional experiences, even among metanalytical reviews.30–36 It’s not clear how the distributed

activity of many limbic and other mid-line structures, from the posterior perivermian cerebellum to the medial pre-

frontal cortex (among others), gives rise to such behaviorally and evolutionarily relevant phenomena as sadness, rage

or positive hedonic valence. This realization has in turn prompted the advent of more sensitive multivariate meth-

ods in emotion research37–45 and, closely related, emotional perception research (see table 1); whereby multivariate

activity localized in ROIs and searchlights has been found to outperform its univariate counterpart distinguishing

among affective states.
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Algo./Ref. Modality Emotions ROI Accuracy

SVM46 visual fear many 78%> 50%

SVM47 auditory happiness, anger,
sadness, relief

auditory cortex 33% > 20%

SMLR48 visual happiness, anger,
sadness, disgust,
surprise, fear

superior temporal
sulcus, frontal
operculum

22% > 14%

RSA49 auditory, visual (faces
and body language)

happiness, anger,
sadness, disgust, fear

brain (searchlight) N.A.

SVM50 auditory happiness, anger,
sadness, surprise

brain (searchlight) 28% > 20%

SVM51 reading, visual (faces) 21 appraisals theory of mind network,
brain (searchlight)

~8% > 5% (ROIs)

MGPC52 visual (faces) happiness, anger, fear many ~32% > 25%

SVM53 visual (faces) happiness (canis familiaris) right
temporal cortex,
caudate. Brain
(searchlight)

~65% > 50% (ROIs)

Table 1: Survey of experimental studies regarding emotion perception which employed MVPA. Column descriptions: Algo./Ref.: reference
in bibliography and algorithm employed. Modality: stimuli modality. Emotions: emotions under investigation (usually supplemented with an
extra neutral category). ROI: region of interest. Accuracy: classification accuracy, compared to theoretical average random accuracy given
the number of emotions.

2 Materials and Methods

2.1 Sample

We used a cross-sectional group of 16 volunteers from both sexes (8 female, 8 male) with an average age of 25 years,

recruited at UNAM campus Juriquilla from October 2019 to June 2020. Participants were briefly interviewed to

exclude those previously diagnosed with neurological or psychiatric conditions. With the exception of one male

subject, all of them reported having right-handed phenotype. Prior to the study, subjects formally consented to

participating after being informed of its aims, risks and procedures — in accordance with the 1964 Declaration of

Helsinki — and were compensated with their brain scans and free diagnostics by a radiologist.

𝑛 = 16

Age (years) 𝑥̄ 𝑆.𝐷.
25 3.01

Sex Female Male

8 8
Education level Undergraduate Postgraduate

(obtained or in progress) 8 8
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Table 2: Demographic features of the 16 successfully included participants.

2.2 Image acquisition

Images were obtained from a 3-Tesla General Electric Discovery MR750 scanner at the MR Unit at UNAM’s

Institute of Neurobiology, during a single session per participant. The protocol included 5 echo-planar imaging

(EPI) blood-oxygen level-dependent (BOLD) sequences for fMRI, 185 volumes each. A T1-weighted scan of head

anatomy was also acquired. Sequence parameters are described in Table 3. Electromagnetic responses were recorded

using a head-mounted 32-channel coil.

Parameter EPI BOLD T1w FSPGR

Slice orientation Axial Axial or sagital

Slices 35 176
Field of view 64×64 256×256
Voxel size (4 𝑚𝑚)3 (1 𝑚𝑚)3

Flip angle 𝜋/2 3𝜋/45
TR (ms) 2000 8.18
TE (ms) 30 3.19
TInv (ms) 450

Table 3: Sequence parameters used for the MRI protocol. Abbreviations: EPI: echo planar imaging, BOLD: blood-oxygen-level dependent,
T1w: T1-weighted, FSPGR: fast spoiled-gradient echo (GE’s nomenclature), TInv: inversion time parameter for FSPGR T1w imaging.

Figure 1: Raw samples of both image modalities for a single subject in our dataset (in the same order as in Table 3).

2.3 Stimuli and task

Each of the 5 fMRI sequences was temporally coupled to a psychological block-based task implemented in PsychoPy

3.0.1.54 All 5 tasks were identical, save for the pseudo-random order in which their 30 s blocks were administered.

A total of 6 block classes were used: happy faces, sad faces, angry faces, neutral faces, pseudo (scrambled) faces

and low-stimulation. Neutral/inexpressive faces might provide an extra control when contrasting among emotions.

Otherwise, one might risk mistakenly concluding from classification analysis that 𝑛 emotions are identified, when

in fact only 𝑛 − 1 are, in addition to something else that is neither the 𝑛 − 1 emotions nor the remaining one.

Pseudo-faces and dim blocks were introduced so as to buttress and diagnose the analysis pipeline, by way of more

trivial contrasts (like pseudo-faces vs low-stimulation and faces vs pseudo-faces).
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Each block in turn comprises 10 randomly-presented images belonging to that class, each one shown for about

3 seconds and without possibility of reinstantiation during the same block. Each block occurs twice per sequence,

yielding a total of 12 of them (360 s = 6 min). After their presentation, participants had to wait for 10 seconds

before concluding the sequence, in order to capture the hemodynamic response (HR) elicited by the last stimuli.

A selection of 10 grayscale photographs per category of frontal human faces (male and female) served as stimuli.

These were chosen from the classical “Pictures of Facial Affect” database.55 As for the low-stimulation (a.k.a. “dim”)

blocks, a small but visible fixation cross was made fluctuate from quadrant to quadrant at random every 3 seconds.

The whole task is summarized in Figure 2.

Additionally, behavioral responses were recorded throughout the task in order to measure performance and thus

evaluate the suitability of physiological data for further analysis. Participants were instructed at the beginning

of every sequence to indicate whether faces belonged to a man or a woman as soon as they were perceived. The

response was submitted with the press of a button — one at each hand. Analogously, for scrambled and dim

blocks (when no faces should have been perceived), the instruction was to simply report image change, alternating

between buttons. In this fashion, motor activity remained rather homogeneous for all blocks, minimizing a possible

confounding effect when contrasting among faces and pseudo-faces. Even though the whole task was explicitly

orthogonal to thinking about emotions, one cannot rule out the possibility that such linguistic-conceptual process

spontaneously appeared in the participants’ train of thought as percepts were experienced. Statistical analysis of

behavioral data was conducted using the R programming language.

Figure 2: Block-paradigm design of the psychological experiment. The horizontal axis corresponds to the passing of time. Rectangles represent
stimulation units (sequences, blocks or individual stimuli).

2.4 Analysis methods

2.4.1 Data, source code and reproducibility

All the source code necessary for reproducing, analyzing or adapting the present study is made available as free

software, both for the behavioral task described in the previous section (https://github.com/isacdaavid/emotional-

faces-psychopy-task) and the neuroimaging analysis (https://github.com/isacdaavid/np-mvpa) as described next.

Original data and final group activation maps in standard space may be downloaded respectively from OpenNeuro

(https://doi.org/10.18112/openneuro.ds003548.v1.0.0) and Neurovault (https://identifiers.org/neurovault.collectio
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n:9492).

2.4.2 Image preprocessing

Functional and T1w scans were converted from the DICOM format56 to NIfTI-157 and structured in a file tree

according to the BIDS 1.4.0 standard58 using the Dcm2Bids 2.1.459 tool, which in turn was configured to use

the dcm2niix 1.0.20170411 converter60 and anonymize the faces of participants with pydeface 2.0.0.61 The sanity

of the resulting database was further checked with BIDS Validator 1.5.4. T1w images were submitted to the

Volbrain tissue segmentation and volumetry Web service,62 whose resulting brain and gray/white matter masks

we used for deskulling the field-bias-corrected T1w images and, later on, for selection of fMRI voxels. fMRI

sequences were concatenated by temporal order in one long sequence per subject, then the result underwent the

following preprocessing pipeline due to the FSL 6.0 utilities:63 high-pass frequency filter (>50 s) and interpolation

for slice-time correction (interleaved acquisition),64 affine movement correction and coregistration65,66 with the

respective T1w anatomical reference and the standard MNI-152 T1w template67,68 at 1 mm of resolution. After

registration, the corresponding resulting matrices were applied to the Volbrain masks, so as to transform them to

the low-resolution subject-space of fMRI images. Gray-matter time series were extracted afterwards (about 10000

depending on subject), and linear trends were subtracted by preserving residuals from a simple linear regression

performed on each of the 5 sequences the long concatenated time series is composed of. Finally, and seeking not

to bias classification models in any dimension, the composite time series at each voxel is normalized to z-scores;

pushing the covariance matrix of the multivariate data to resemble an identity matrix and thus decorrelating phase

space.

2.4.3 Univariate analysis

In the vein of assessing the feasibility and performance of the brain-wide multivariate approach against the golden

standard in functional brain mapping, we investigated the same 2-way contrasts included in multivariate analysis

using FSL 6.0 in a classical mass-univariate analysis. Said contrasts are grouped into visual stimulation (“dim

vs scrambled”, “dim vs neutral”, “dim vs angry”, “dim vs sad”, “dim vs happy”), face perception (“scrambled vs

neutral”, “scrambled vs happy”, “scrambled vs sad” y “scrambled vs angry”) and emotion perception (“angry vs

happy”, “sad vs happy”, “sad vs angry”, “angry vs neutral”, “happy vs neutral”, “sad vs neutral”). Preprocessed

data (up until subtracting linear trends and normalizing) were spatially-smoothed with a Gaussian convolution

kernel of 5 mm FWHM. Each of the 6 block classes described for the task was considered as a column-vector

regressor in the design matrix 𝐗, after convolving them with a zero-lag, double-gamma hemodynamic response

curve. 𝐗 was augmented with the time derivatives of each convolved regressor, but no motion covariates were

added. General linear models are fitted afterwards. GLM is a matrix-form extension to multiple linear regression,

which models each physiological time series (column 𝐲) as a linear combination of 𝐗 plus some gaussian error 𝚬.

The model reads:13

𝐘 = 𝐗𝚹 + 𝚬; 𝚬 ∼ 𝒩(0, 𝚺) (1)
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Assuming trial independence and homocedasticity, maximum likelihood estimation or ordinary least-squares

estimation may be followed to obtain the so-called normal equation, which optimizes parameters 𝚹 according to:

𝚹̂ = (𝐗𝑇 𝐗)−1𝐗𝑇 𝐘 (2)

After estimation, contrasts of parameter estimates are subject to the same procedure as the multivariate model

parameters for purposes of group-level inference. This is described in more detail in the Group inference subsection.

2.4.4 MVPA

Once preprocessed, multivariate decoding of fMRI patterns was conducted using the pyMVPA 2.5.0 Python library.69

We trained a linear support vector machine (SVM) classifier per subject and block contrast combination using all

available brain volumes (120 volumes per class for the training phase, 30 for testing). In addition to the contrasts

described in the previous section, emotion-related ones were augmented with the (4
3) possible 3-way classification

problems and the single 4-way contrast. The supervised SVM algorithm learns a hyperplane for binary classifica-

tion in high-dimensional phase space.70,71 Given a vector 𝐰 orthogonal to the hyperplane, the SVM decision rule is

equivalent to the sign of the projection of unseen data vectors 𝐲𝑖 on 𝐰, adding or subtracting the necessary constant

𝑏 so as to make the result exactly 0 at the hyperplane:

𝑠𝑔𝑛(𝑥𝑖) = 𝐰 ⋅ 𝐲𝑖 + 𝑏 (3)

Out of all possible hyperplanes, SVM’s key insight is to estimate the one that maximizes separation margin to

the most difficult training data: the support vectors right above opposite margin lines. Since margin width can be

calculated from pairs of positive-class and negative-class support vectors according to:

𝑚𝑎𝑟𝑔𝑖𝑛 = (𝐲+ − 𝐲−) ⋅ 𝐰
||𝐰|| = (𝐰 ⋅ 𝐲+ − 𝐰 ⋅ 𝐲−)

||𝐰|| ; (4)

by constraining the decision rule to satisfy |𝐰 ⋅ 𝐲𝑖 + 𝑏| ≥ 1 or similar criteria and substituting on equation

(4), one can show that maximizing the margin — and therefore obtaining an optimal model — is equivalent to a

quadratic programming problem with ||𝐰|| as the cost function to be minimized (mathematical details are discussed

by Mahmoudi et al.13):

𝑚𝑎𝑥 𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑚𝑎𝑥 2
||𝐰|| (5)

SVM models were cross-validated using each of the 5 sequences as a fold, and their mean classification accuracy

(hits / misses) served as a summary test statistic. This was compared against an empirical null model in a non-

parametric rank-based test, by estimating the probability distribution of average classification accuracy given 𝐻0

via Monte-Carlo simulations: surrogate data is computed by randomly shuffling the class labels of the training data

partition 5000 times, and 5-fold cross-validation is again conducted for each permutation. Then, a p-value for that

particular subject and class combination can be calculated as the proportion of random results equal or greater to

the original classification accuracy.
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We also explored the effect of different delays between stimulus onset and volume labeling (from 0 s to 10 s,

every 2 s), instead of assuming a single optimal HR peak;14 although, based on common practice, a delay of 4 s was

fixed a priori for all group-level statistical inference, avoiding inflation of type-I error.

2.4.5 Group inference

For every contrast, per-subject permutation tests are brought together to be assigned an average p-value, and to

estimate effect size on classification accuracy (signal-to-noise ratio) compared to the null distribution according to

Cohen’s D statistic.

Contrasts for which sample evidence of successful multivariate decoding above chance levels was observed were

further selected for discovery of anatomical clusters. Failing contrasts are also inspected, but only to serve as

qualitative reference for the true merits of the good ones; we warn against doing anatomical inference in real

applications in the absence of model evidence. Our conservative expectation is that, while parameter inspection

should only be justified for successful classifiers; the features driving such models still may or may not display

coherence among different participants, placing an extra statistical safeguard before drawing conclusions.

To this end, we employed yet another non-parametric test with 5000 sign permutations using FSL 4.0’s ran-

domise72 with the Threshold-Free Cluster Enhancement,73 operating on the group of SVM weight vectors in a 2-tail

test (after L2-normalization, i.e. vectors are unitary, transformation to the standard 1 mm MNI-152 space and

spatial smoothing with a 5 mm FWHM gaussian kernel). In the case of univariate analysis, input data to TFCE

were the group of GLM contrasts of parameters (both positive and negative effects, also transformed to the 1 mm

MNI-152 space). Given a parameter map ℎ(𝑣), the TFCE statistic at some voxel 𝑣 is defined as the integral (in the

Lebesgue sense) of cluster size 𝑠(𝑣, ℎ) times the cluster-defining “height” ℎ:

𝑇 𝐹𝐶𝐸(𝑣) = ∫
ℎ(𝑣)

ℎ=0
𝑠(𝑣, ℎ)ℎ 𝑑ℎ (6)

Equation (6) is often modified for fMRI and EEG data, where the default is to favor ℎ, squaring it, while

taking the square root of 𝑠. Since all possible cluster-forming thresholds are considered, TFCE is regarded as

a more principled (as well as more powerful and specific) alternative to other nonparametric cluster-informed

inference methods, while still providing strong family-wise error (FWE) control;74 as expected of permutation-

based approaches. We set a cutoff significance value of 0.01 in the corrected 1 − 𝑝_𝑣𝑎𝑙𝑢𝑒 brain maps. Under TFCE,

surviving voxels are interpreted as belonging to some signal-containing cluster, but no guarantee exists as to where

the exact clusters lie (although adjacency of many such surviving voxels may make this visually obvious).
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3 Results

3.1 Behavior

Ground truth

R
e
sp

o
n

se

(by emotion)

χ2 = 1300, dof = 9, p-value = 6.9 ⋅ 10-283

(by stimulus)

χ2 = 1400, dof = 120, p-value = 3.2 ⋅ 10-225

Figure 3: Confusion matrices with the group joint frequency of responses obtained during preparatory picture validation. For datasets true
to their purpose, a strong diagonal should be observed, indicating agreement between subjective perception and preset categories. This
is quantified with Pearson’s 𝜒2 tests, whose results are displayed below each contingency table. Top: when grouping stimuli by emotion.
Bottom: grouping only by picture, to detail the fine-grained structure of errors, Holm-corrected p-values are shown for the only two stimuli
with 𝑝 > 0.05, according to one-tail binomial tests under the hypothesis that the correct category is only assigned to 1/4th of all Bernoulli
trials, presupposed to be statistically independent.

Prior to entering the MRI machine, 15 of the 16 participants were asked to answer a brief randomized stimuli

categorization task using the same faces they would later experiment inside the scanner. Faces could be assigned to

one of four classes with a computer mouse: angry, happy, neutral or sad. A Pearson’s 𝜒2 test for association strength

between intended emotion and subjective interpretation assigned a probability of 6.9 ⋅ 10−283 to the possibility that

participants were categorizing stimuli at random. A similar test was performed separating by stimulus as opposed to

emotion class; nonetheless, the p-value remained very low at 3.2⋅10−225. Both results are shown in Figure 3. Despite

variability recognizing among different basic emotions, our success rates turn out to be similar to those reported

in independent validations of other datasets.75,76 Similarly, per-participant 𝜒2 tests (with Bonferroni correction for

FWE) revealed that even the worst-performing participant had a probability of less than 5 ⋅ 10−8 of being involved

in guesswork.

With regard to instantaneous responses during the task, we ran binomial tests to quantify success probability

detecting face gender and image change, assuming statistical independence and a chance level of 50%. Figure 4
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shows the aggregate of hits through time. Errors, in red, are comparatively low. A probability of 1.95 ⋅10−60 (Holm-

corrected) of finding such hits/misses ratio by chance was found for the worst participant, and the probability for

the worst block type (including pseudo-faces and dim-stimulation) is even smaller.

Participant’s reaction times (RTs) were analyzed as well, as a measure of attention to the task. Each curve in

Figure 4 corresponds to the RTs of some subject. The superimposed dotted black line projects the relevant part

of a general linear mixed-effects model (GLMM). GLMM is a generalization of GLM regression which uses two

— as opposed to one — design matrices to account for random effects. This is specially suitable to hierarchical

factorial designs; since the variance of measurements at some time 𝑡 could come from intrinsic differences among

participants, whose personal variance is captured by the random effects. The model was fitted using the participant

factor as a random effect, and block lapse and block class as fixed effects. The aim is to find the effect of time upon

RTs, because big changes would signify disengagement from the task. On the contrary, we observed a negligible,

downward slope (0.11 ms faster RTs every 30 s block).

Moreover, a post-hoc Tukey test for a one-way ANOVA of RTs was inspected, using block types as factor levels.

The only emotion to elicit considerably different reaction times was anger (angry vs neutral p=.014, angry vs happy

p=.03). No significant difference was found between reacting to pseudo-faces vs to fixation crosses. However, we

measured extremely large differences between reacting to any type of visuofacial stimulus and any type of non-

visuofacial stimuli, for which not only stimulus complexity is lower, but task complexity is also lower (telling gender

vs noticing any change at all).

trial

p
a
rt

ic
ip

a
n
ts

misses hits

Binomial test for worst participant: p-value (Holm-corrected) = 1.95 ⋅ 10-60

Binomial test for worst block class: p-value (Holm-corrected) = 1.55 ⋅ 10-209

trial
time = -0.00011⋅trial + X⋅block + U⋅participant + 0.58

R
e
a
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p-values : 1.52⋅10-9 2.42⋅10-80 
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Figure 4: Instantaneous performance during the task. Each notch in the horizontal axis represents 10 consecutive trials; i.e., a 30 s block.
Each sequence is delimited by the 120-trial-long marks. Left: ratio between hits and misses as a function of time. Right: per-subject reaction
time, and a linear fit according to a GLMM. Each solid curve stands for the LOESS polynomial fit of a different participant and its confidence
interval at 95%. The dotted line shows the almost-null linear trend from the GLMM. The actual GLMM is shown underneath, with explicit
values for important parameters together with their respective p-values.

All these lines of behavioral evidence converge towards the conclusion that participants understood the task and

that stimuli were correctly observed in general. Accordingly, no participant or block type was discarded for analysis

of the fMRI data after this screening.

3.2 Visual stimulation and face perception

All contrasts meant to distinguish between high and low visual stimulation and between face and pseudo-face

perception presented strong evidence of successful decoding using the multivariate model, both on an individual

and on a group-level basis. In the case of visual stimulation, all p-values on classification accuracy per contrast

(both individual and average) were found to be lesser than 2⋅10−4: the smallest result that could have been obtained

with 5000 permutations. In other words, no classification accuracy greater to the models’ was ever found by chance.
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Moreover, we found extremely huge group effects; always greater than Cohen’s 𝐷 = 6.5 (dim vs neutral) and as

big as 𝐷 = 7.6 (dim vs happy). Similarly, face perception compared to a pseudoface perception baseline always

resulted in a 𝑝 < 2 ⋅ 10−4; both individually and as group means. Cohen’s statistic ranged from 𝐷 = 5.2 (scrambled

vs neutral) to 𝐷 = 6.8 (scrambled vs angry), also to great effect. Figure 5 displays hypothesis tests for a couple of

experimental contrasts, for the sake of illustrating the nature of results.

dim vs scrambled faces

scrambled faces vs neutral faces

Figure 5: All 9 contrasts related to simple visual perception and face perception (only 2 shown here) are strongly dissociable, according to
their brain-wide activity patterns. Embedded at the top-left corner of each subfigure: time series of group-mean classification accuracy as a
function of labeling delay. Greater subfigure: hypothesis tests of classification accuracy for a preset labeling delay of 4 s (𝐻1: classification
accuracy is greater than chance performance). The rainbow-colored dots at the bottom stand for the cross-validated classification accuracy
of each participant, compared to their respective null distributions estimated from 5000 permutations of data labels.

Group analysis of model parameters is presented in figure 6. FWE-corrected “1 − 𝑝” anatomical maps for

the 5 visual-related contrasts are averaged and thresholded at 1 − 𝑝 > .99, in yellow. This is repeated for the 4

face-perception-related contrasts, shown in cyan.

Both univariate and multivariate approaches agree on two prominent, bilaterally-symmetric occipital clusters

whose activity correlates significantly with the presentation of our visual stimuli, relative to the “dim” fixation

cross: one posteromedial, encompassing part of the primary visual cortex (V1) and extrastriate areas like V2; which

become less specific in the univariate model, possibly reaching parts of ventral V3 (so-called VP) and color and

form-related V4. From there it crosses parenchymal boundaries to the medial posterior cerebellar lobe in its anterior
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portion. The second major cluster lies at the anterior medial occipital cortex, and on the univariate model is due to

anticorrelation. It includes a calcarine component at anterior V1, part of the V2 ring and then extends more dorsally

into the cuneus to motion-related V3a and, possibly, the midline section of form-related V3. Associated activity also

survives well into dorsal-stream regions, perhaps because of the moving fixation cross, particularly at Brodmann

area 7 of the superior parietal lobes (SPL). This is stronger for the univariate model, where noticeable parietal

anticorrelations were also present at the right precuneus, inside the postcentral sulcus to be precise. Finally, both

models also display a bilateral component at the posterior middle temporal gyrus — although more prominent on

the left hemisphere and for the univariate model — near or at the angular gyrus and suggestive of V5/MT. On the

anteroventral direction, the second cluster also extends bilaterally to the lingual gyri (LG), close to parahippocampal

gyri (PG) tissue. Interestingly, a whole stripe of medial occipital cortex is spared, making the two clusters distinct,

consistent with an unexpected effect of stimuli position on the activity of retinotopic cortical topology.

Face perception was related to two clusters: an anticorrelated, bilaterally-symmetrical pattern at V1 and V2

(roughly a subset of the first cluster described for visual stimulation). The second one comprises a bilaterally-

symmetrical portion of the inferior occipital gyri within the lateral occipital cortex (LOC), which has been dubbed

the “occipital face area” (OFA).28,29 The multivariate approach was able to consistently localize the fusiform

face area (FFA) at the right inferior temporal cortex as well, with important below-threshold evidence at its left

counterpart. In comparison, univariate analysis barely detected a small cluster of correlated activity at OFA;

whereas only 2/4 contrasts showed above-threshold evidence at FFA, which is why their average failed to make

their way into figure 6.

Figure 6: Average anatomical distribution of thresholded (𝑝𝐹𝑊𝐸 < 0.01) TFCE maps. Yellow: visual stimulation (average of corrected
p-values for the following contrasts: ”dim vs scrambled”, ”dim vs neutral”, ”dim vs angry”, ”dim vs sad”, ”dim vs happy”). Cyan: face
perception (average of ”scrambled vs neutral”, ”scrambled vs happy”, ”scrambled vs sad” y ”scrambled vs angry”). Two views of the T1w
MNI-152 template are included: 3D volume rendering of right hemisphere (on top), axial slices in radiological orientation (bottom). The
smaller 3D volumes include the same maps as the main 3D rendering of each model, but separated by contrast family and with an additional
lower threshold at 𝑝𝐹𝑊𝐸 < 0.5 in darker colors. This is to highlight model anatomical specificity at the minimum level that could still be
considered evidentiary. Full maps may be downloaded from https://identifiers.org/neurovault.collection:9492 .
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3.3 Emotion perception

Figure 7 is a compilation of group tests for the remaining 11 emotion-related contrasts in the form of a Venn

diagram, including block combinations which included neutral faces. Once again, the null classification accuracy

model is represented by the white probability distribution and true decoding success is in gray. We observed wide

variation in model success, yet this variability turned to be structured according to the emotions under probe; from

̄𝑝 = 0.05 and huge effects at 𝐷 = 3.3 (happy vs neutral), to ̄𝑝 = 0.85 and 𝐷 = −1.3 (anger vs sadness). It’s evident

from the diagram in Figure 7 that contrasts which included happiness in general outperformed their respective null

models. On the other hand, classification models that excluded this emotion did not. The importance of happiness

driving accurate prediction was further confirmed via qualitative inspection of confusion matrices.

Figure 7: Group aggregates of hypothesis tests on classification accuracy for all emotion combinations, together with their associated mean
p-value and effect size (Cohen’s D).

Group-level inference of model parameters resulted in suprathreshold clusters with high colocalization — even

among contrasts — with two possible anatomical spans. The two spatial configurations were contingent upon

whether neutral faces had been included in the classification problem. In their absence (“happy vs angry”, “happy

vs sad”, “happy vs angry vs sad”), detection of happiness consistently depended on activity at the occipital pole

and its midline and ventral surroundings (posterior V1, posterior V2, ventral V3, V4, V8) as well as anterior V2

(both dorsal and ventral) and V3. This is shown in yellow in figure 8. When also faced with the neutral facial

expression controls, SVM was forced to extend the search to higher-order and lower-order structures: both SPLs,

and anterior-LG/posterior-PG and the right LOC appear again. The same medial portions of posterior cerebellum

are also included. The only new cluster with respect to the first to be described for figure 6 is the posteromedial

thalamus, likely including both pulvinar bodies entirely. Although not shown in the figures, important subthreshold

evidence (𝑝𝐹𝑊𝐸 < .05) exists at the left amygdala (“happy vs neutral”, “happy vs angry”, “happy vs sad”), at

LOC/OFA (all contrasts) and the right inferior temporal sulcus in medial patches (happy vs angry vs neutral). All

successful subject-level SVM models gave prominent weighting to the ventromedial prefrontal cortex (orbitofrontal

cortex), however, the amount of clusters and parameter sign in that anatomical region were too heterogeneous to

accumulate the evidence at the group-inference level.
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As discussed in our methodological considerations, unsuccessful decoders returned considerably smaller or vir-

tually nonexistent anatomical clusters: the left posterior thalamus (“angry vs neutral”, “sad vs neutral”, “angry vs

sad vs neutral”), posterior V1 and V2 (“angry vs sad”, “angry vs sad vs neutral”) and small clusters in PG and the

quadrigeminal area in the brainstem (angry vs neutral). These are rendered in the three bottom rows of figure 8.

No suprathreshold cluster or voxel, correlated or anticorrelated, was found for any of the 6 emotion-related GLM

contrasts.
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Figure 8: Anatomical distribution of thresholded (𝑝𝐹𝑊𝐸 < 0.01) TFCE maps (SVM parameter vectors) for emotion perception contrasts, one
row per emotion combination. Contrasts in cyan color also included the neutral faces class. Slices are in radiological axial orientation in the
standard MNI-152 space. Full maps may be downloaded from https://identifiers.org/neurovault.collection:9492.
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4 Discussion

Results validate the feasibility of looking for multivariate correlations between functional neuroimaging and percep-

tual phenomena of varying complexity, and of turning learned data patterns into statistical-anatomical maps for

localization of task-related brain structures. This was shown for an extrinsically high-dimensional phase space using

all the available gray-matter information, which differs substantially from the routes taken by classical univariate

analysis and other MVPA studies. It is remarkable that an algorithm as modest as the kernel-less SVM can char-

acterize many psychological states of scientific interest in a purely data-driven approach, to the point of surpassing

the en masse linear regression methodology for its brain mapping features.

For instance, the neural correlates for the simple visual stimulation subexperiment (plus alleged stimulus-motion

artifacts) are largely identical according to both approaches (figure 6), not to mention consistent with the known

neurophysiology of vision, pointing in the direction of methodological validity for the multivariate pipeline. However,

remaining contrasts decidedly favoured the brain-wide multivariate analysis, sample size being equal. Classical

analysis notoriously failed to consistently discover the right FFA for the face perception subexperiment.

As to emotion perception, it might seem tempting to disparage the multivariate approach for its major reliance on

visual, rather than emotional areas other than the perivermian posterior cerebellar cortex77 and the parahippocam-

pal gyrus. However, the fact that perceived happiness reliably elicits a distributed activity fingerprint — which was

invisible to GLM — still counts as a victory point for our proposal. Whether this particular “happy interlocutor

state” is truly a noncollateral biological feature of social significance is hard to answer with our data. On one hand,

recent experiments using electrophysiological and calcium-imaging techniques on rodents have emphasized the ex-

istence of notorious motor and arousal-related information in areas traditionally thought of as sensory.78,79 On the

other, it may be argued that areas like V1 aren’t particularly concerned with constructing face or affect percepts,

yet the whole of their lower-order computation may be more readily leveraged by a statistical model about facial

expression; similar to how artificial vision and object recognition systems emulate cortical computations starting

from nothing but raw pixels. That would certainly pose a methodological challenge to our approach; which we

showed was alleviated to some extent by the diligent use of control stimuli (neutral faces).

This result is of great interest, in light of the incipient works on emotion as seen through the MVPA prism

and the relative looseness with which they have been conducted. Some of the literature from table 1 also included

anger and sadness-loaded stimuli, with better results than us;47–50 yet it raises reasons to be skeptical upon closer

inspection. For instance, the ROI-based, auditory study by Ethofer at al. reported average classification accuracies

(n=22) of 30% and >35% for sadness and anger respectively; among 5 emotions.47 Nonetheless, models were trained

only pair-wisely: that is, contrasting target emotion against an “everything else” metaclass. No empirical null model

was estimated. This one-vs-all scheme without nonparametric testing was repeated by Kotz et al. 50, yet here anger

showed the poorest results. Other issues include comparing against a scarce number of permutations, for instance,

in the study conducted by Said et al. 48.

In conclusion, we fail to find convincing reasons in previous works to suppose that our failure decoding anger and

sadness is due to a failure on our part; other than the choice of algorithm and input data. Perhaps results for these

two basic emotions could have improved, had we used a more localized search. Those affective-perceptual states
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might be genuinely underrepresented in the coarse fMRI data, or they may not be linearly separable or the system

dynamics may not be sufficiently stationary in the relevant dimensions. As argued in the Introduction, this study

aimed at testing the limits of linear SVM as a data-driven anatomical mapping tool, at the expense of decoding

performance. In that sense, and joined by the modest sample size, being able to retrieve just some emotional states

out of BOLD activity emanating from well-defined structures already cements the accomplishment of our goals.

We think our tooling and testimony have the potential to influence a plethora of noninvasive neuronal prediction

and “mind reading” studies, plus many more regarding the neurobiological segregation of cognitive, affective and

behavioral features of humans and other organisms.

The present work also suffers from limitations and future oportunity areas. Further analysis is required to char-

acterize the intrinsic dimensionality of each cluster system, for instance by use of covariance-matrix decomposition

methods, information-theoretic methods or topological/manifold embeddings. Similarly, system dynamics could

be studied and mathematically modelled to provide further characterization and understanding of each succesfully

decoded state, as well as the encompassing attractor set. It would also be interesting to extend the task to other

emotions, modalities and theoretical models of emotion; for instance, in order to be able to tell whether we have

a sufficient characterization of happiness (as opposed to appetitive hedonic valence generally, as posited by dimen-

sional theories of emotion). A second strand of further studies should explore these findings using more direct causal

interventions with a number of techniques, so as to assess the relevance of multivariate statistical connections.

5 Conclusions

The realization that some cognitive and affective states are not very localized, but might emerge from the joint

activity of distributed neuronal populations has led to the popularization of machine learning tecniques in cognitive

neuroscience; multivariate pattern classification in functional neuroimaging among them. Despite of it, to this date

such analyses by an large have perpetuated localizationist presuppositions, by exploring one brain subregion at a

time; or with no intention of deriving statistical maps to infer functional localization on populations (an important

feature of the classical mass-univariate analysis).

This work explored the extent to which MVPA can overcome those limits and applied it to a number of problems,

including the open problem of narrowing down the slippery substrate of emotional representation in the central

nervous system. We asked ourselves whether it’s possible to decode different basic emotions, the presence of face

percepts and simpler visual distinctions based on the multidimensional patterns of brain activity, as measured with

BOLD fMRI. If true, a classification algorithm might be able to distinguish brain images when perceiving one

emotion or another, and neuroanatomical maps of the most relevant structures might be obtained from successful

models.

Results of visual and face perception experiments demonstrate that commonplace functional MR imaging indeed

can be analysed in this mass and multivariate fashion, with arguably better results than classical mass univariate

analysis. Moreover, we discovered an anatomically-distributed pattern of information which apparently encodes for

happiness; which the multivariate algorithm learned to identify well-beyond prediction levels by chance, whereas

the univariate correlation analysis failed to replicate this. This suggests that at least certain forms of multivariate
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pattern classification analysis are a viable tool for mapping brain functions in a whole-brain, data-driven fashion;

and not merely a tool for hard-to-interpret disease diagnosis and prediction of psychological states.
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