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Abstract 

Activating mutations in the driver oncogene KRAS occur in 32% of lung adenocarcinomas, 

leading to more aggressive disease and resistance to therapy in preclinical studies. However, 

the association between KRAS mutational status and patient outcome or response to 

treatment remains unclear, likely due to additional events modulating RAS pathways. To 

obtain a broader measure of RAS pathway activation beyond KRAS mutation only, we 

developed RAS84, a transcriptional signature optimised to capture RAS oncogenic activity in 

lung adenocarcinoma. Using RAS84 to classify lung cell lines, we show that RAS 

transcriptional activity outperforms KRAS mutation to predict resistance to chemotherapy 

drugs in vitro. We report that 84% of lung adenocarcinomas show clear transcriptional 

evidence of RAS oncogenic activation, falling into four groups characterised by coincident 

mutation of STK11/LKB1, TP53 or CDKN2A. Given that 65% of these RAS pathway active 

tumours do not have KRAS mutations, we find that the classifications developed when 

considering only KRAS mutant tumours have significance in a much broader cohort of 

patients. Critically, patients in the highest RAS activity groups show adverse clinical outcome 

and reduced response to chemotherapy. The stratification of patients using gene expression 

patterns linked to oncogenic RAS signalling activity instead of genetic alterations in cancer 

genes could ultimately help clinical decision making. 
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Introduction 

The RAS oncogenes are mutated in close to 20% of all human cancers, acting as drivers of 

tumour formation and progression. Point mutations occur mainly in codons 12, 13 and 61 of 

the three isoforms HRAS, KRAS and NRAS, decreasing the GTPase activity of their encoded 

proteins and resulting in the accumulation of the GTP-bound, active conformation. KRAS is 

the most mutated RAS isoform, with particularly high prevalence in pancreatic ductal 

adenocarcinoma (88%), colorectal adenocarcinoma (50%) and lung adenocarcinoma 

(32%)1. The extensive literature describing the role of mutant KRAS in proliferation, survival, 

metabolism and motility supports its significant role in tumour aggressiveness, metastasis 

and resistance to chemotherapy2–5. However, there is a lack of consensus in published studies 

regarding the predictive value of KRAS mutations for patient outcome or response to 

treatment with chemotherapy6–8. KRAS mutants can also modulate the tumour 

microenvironment by regulating the expression of numerous cytokines9. Moreover, we have 

demonstrated that KRAS mutation promotes the expression of PD-L1, leading to immune 

evasion in models of human and mouse lung adenocarcinoma10. However, although it is clear 

that KRAS mutation does not preclude response to PD-1 immune checkpoint blockade11,12, no 

consistent link between KRAS mutation and resistance to immunotherapy or PD-L1 

expression has been shown in the clinic13–1611,12. Therefore, KRAS mutational status cannot be 

used as a predictive factor to select patients for specific therapy regimens17, with the 

exception of EGFR-targeted therapy, where KRAS mutations are negatively linked to response 

to EGFR inhibition in colorectal cancer18. 

The stratification of patients uniquely on the mutational status of KRAS may have 

complicated the study of RAS mutants in large cohorts of patients. For instance, in The Cancer 

Genome Atlas (TCGA), 74% of the lung adenocarcinoma (LUAD) tumours are mutated in 

one or more genes from the broader RAS pathway, taken as running from receptor tyrosine 

kinases to ERK MAP kinases and phosphoinositide 3-kinases19. Here we propose a novel 

method of stratification based on RAS-regulated transcriptional activity which predicts 

outcome and response to treatment in lung adenocarcinoma and other solid cancers. We 

derived a gene expression signature, RAS84, and applied machine learning techniques to 

build a classifier to stratify patients according to the expression of RAS84 in their tumour. 

Using this method, we discovered that RAS transcriptional activity predicted clinical outcome 

in lung adenocarcinoma and several other solid cancers, where KRAS mutation alone did not. 
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When applied to a cohort of chemotherapy-treated patients, our classifier predicted poor 

response in subjects with the highest RAS84 level of expression. We anticipate that the use 

of RAS84 to stratify patients will validate observations that were made in preclinical models 

of KRAS-mutant cancers, but not confirmed in clinical studies. Our method will offer the 

possibility to study the impact of oncogenic RAS activity in large cohorts of patients and may 

help to predict sensitivity to treatment associated with oncogenic RAS activity. 
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Results 

Other members of the RAS pathway signalling network in addition to KRAS can be altered 

and affect RAS pathway activity. To overcome this issue, we used RAS pathway 

transcriptional activity as a fingerprint of RAS oncogenic activity. To derive our meta-

signature, we identified several RAS gene expression signatures previously established in 

different models from published data as well as our own hitherto unpublished data 

(Supplementary table 1). We selected studies performed in mouse models or human cell 

lines, where RAS activity was modulated using different methods, such as RNA interference 

or inhibition or over-expression of the mutant proteins, and where different isoforms and 

mutants were represented (KRAS mutants G12D, G12V, G12C, G12A, G13D, Q61H, HRAS 

mutant G12D). The datasets also represented several organs (lung, pancreas, colon, breast, 

kidney and prostate). To mitigate the possibility of confounding signal from tumour 

infiltrating immune cells, we removed all genes present in two immune signatures20,21. We 

also assessed the overlap between the gene signatures. Although all were composed of RAS-

target genes, we observed little commonality between the signatures (Supplementary Figure 

1a). 

RAS84 construction using lung cell line expression data 

Our initial goal was to measure RAS pathway activity in tumour cells. We therefore 

mapped the established signatures to lung cancer cell line data from the Broad Institute 

Cancer Cell Line Encyclopedia (CCLE)22 to determine which ones accurately measured 

oncogenic RAS activity in samples exempt of stroma and immune cells and where KRAS 

mutation is known to be a prevalent cancer driver. We first cleaned up the signatures by 

removing genes with low expression or variance across the cell lines (Supplementary Figure 

1b). We removed cell lines with oncogenic RAS pathway mutations other than KRAS (BRAF, 

EGFR, ERBB2, FGFR1, FGFR2, FGFR3, HRAS, JAK2, KIT, NRAS & RET) from the analysis, 

since these mutations may drive RAS signalling and confound the analysis. For each 

signature, we clustered the filtered CCLE lung cancer cell line signature expression matrix 

into three groups. We named the clusters RAS-high and RAS-low according to the mean 

expression of the signature genes within the groups and categorised as “unclassified” the 

group of samples with intermediate mean expression (Supplementary Figure 1c). We used 

the distribution of KRAS mutations across the RAS-high and RAS-low clusters to assess the 
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ability of the signature to capture RAS oncogenic activity (Figure 1a). We reasoned that the 

signatures measuring RAS oncogenic activity in the lung cell line dataset would show 

enrichment of KRAS mutations in the high group given its role in tumour development in the 

lung. To highlight the specificity of the signatures to measure RAS oncogenic activity, we also 

assessed a RAS addiction signature23 and several other oncogenic signalling pathway 

signatures24,25. The RAS addiction signature was derived from KRAS mutant cell lines 

dependent on RAS signalling to maintain cell survival. This signature is therefore expected 

to capture RAS-dependency but not RAS oncogenic activity. We identified "RAS pathway", 

"KRASG13D134" and "HRAS" as the best-performing signatures to enrich KRAS mutants in 

the RAS-high group (p-value < 1e-5) (Figure 1b). We refined these three signatures by 

selecting the genes driving the clustering of the RAS-high and RAS-low groups. We ran a 

differential gene analysis between these groups to identify signature genes upregulated in 

the RAS-high group of cells (FDR < 0.05) (Supplementary Figure 1d). From these genes, we 

constructed our meta RAS activity signature, RAS84, and tested it against the CCLE lung 

cancer cell line data (Figure 1c, Supplementary table 2). RAS84 successfully placed 36 out 

of 42 KRAS mutant lines into the RAS-high group, with six unclassified and none in RAS-low. 

When compared with other RAS and oncogenic signatures, RAS84 gave the most statistically 

robust separation of the KRAS mutant cell lines from the RAS-low group (Figure 1b and 

Supplementary Figure 1e). We ran a differential analysis to identify RAS-high dependent 

transcriptional changes when compared to RAS-low (2182 genes, fdr< 0.05, -1>LFC>1). 

We found ERK1 and ERK2 cascade and MAPK cascade GO terms (GO:0070371, p-value 4e-

7; GO:0000165 p-value 9e-6) to be enriched in these genes (Supplementary table 3). 

Using cell line gene expression and KRAS mutation data from lung cancer cell lines, we 

thus demonstrated the ability of RAS expression signatures to measure oncogenic RAS 

activity in a lung cancer context. We constructed a meta-signature from the best-performing 

signatures and demonstrated that it performed better than previous signatures at measuring 

RAS oncogenic activity by classifying KRAS mutant cell lines as RAS oncogenic signalling 

activated (RAS-high). 

RAS84 expression predicts drug sensitivity and resistance in vitro 

To determine whether RAS84 expression was associated with anticancer drug response, 

we analysed drug sensitivity data obtained from the Genomics of Drug Sensitivity in Cancer 

project (GDSC) and The Cancer Therapeutics Response Portal (CTRP) in the context of RAS 
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high and low CCLE cell lines. We identified drugs with differential drug responses across the 

two groups (GDSC fdr < 0.05, -1 > log2(delta IC50) > 1) (Figure 2a, Supplementary Figure 

2a and Supplementary table 4-5).  We tested for enriched drug target terms within the drugs 

showing differential response (hypergeometic fdr< 0.05_) (Figure 2b). We found RAG-high 

cell lines were sensitive to drugs targeting ERK MAPK and EGFR signalling and protein 

stability and degradation. We were encouraged to see sensitivity to ERK MAPK and EGFR 

signalling inhibition, confirming high dependence to RAS signalling in these cell lines. 

Conversely, we found RAG-high cell lines to be resistant to drugs targeting DNA replication, 

Mitosis and Chromatin histone acetylation.  DNA replication and mitosis are common 

chemotherapy targets indicting that RAS84 activity is associated with chemotherapy 

resistance in vitro. We also tested for KRAS mutation (Figure 2c) and RAS pathway mutation 

dependent drug responses (Figure 2d). We found both mutant groups were sensitive to just 

three drugs targeting ERK MAPK signalling. We did not observe resistance to any drugs in 

these comparisons. This result shows RAS84 better captures RAS-driven drug response than 

KRAS mutation alone or wider RAS pathway mutants, highlighting the importance of our 

transcriptional approach. 

RAS84 expression is associated with KRAS mutation in lung adenocarcinoma 

To further validate RAS84 beyond cell lines, we applied it to clinical LUAD expression data 

from TCGA (512 samples)26. Given the increased heterogeneity in signature expression 

observed in patient tumour samples when compared to the cell line data, we explored the 

clustering of the patients beyond the three groups previously explained. We clustered the 

patients into five groups (Figure 3a) and found a low KRAS mutation count (6%) in the 

cluster with the lowest RAS84 expression (chi-square p-value 1.05e-08). The other clusters 

all had high levels of KRAS mutation, between 25 and 45% (Figure 3b). We regrouped the 

patients   using the signatures described above and found RAS84 to better segregate KRAS 

mutations across the groups (Figure 3c). We labelled each RAS activity group (RAG) RAG-0, 

RAG-1, RAG-2, RAG-3 and RAG-4 ordered low to high by mean RAS84 expression. To ensure 

RAS84 expression was predominantly tumour-driven we looked at RAS84 expression in the 

stoma of five NSCLC samples27 (Supplementary Figure 3a) and found minimal expression. 

We assigned a RAS84-Index (RI) value to each patient, defined as the mean expression of 

the RAS84 genes. To further characterise these groups, we tested if any other reported 

genomic alteration19 exhibited a non-random distribution across the five clusters. We 
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identified eight alterations enriched in one or more of the RAGs (Figure 3d) (chi-square, FDR 

< 0.05) (Supplementary Figure 3b) and used these cluster associated alterations to 

characterise each of the five RAGs (Figure 3a). STK11, KEAP1, RB1, TP53, ATM and CDKN2A 

(p-values: <2e-16, 6e-7, 3e-4, 5e-11, 5e-3 and 8e-4) are tumour suppressors whereas EGFR 

and CTNNB1 (p-values: 2e-09 and 0.01) are proto-oncogenes. The underrepresentation of 

KRAS mutants characterised RAG-0, but interestingly this group contained a high number of 

tumour suppressor mutants (KEAP1, RB1 and TP53) as well as CTNNB1 mutants, which 

could explain how the tumours initiated. Due to the high level of p53 alterations (~70%), 

we refer to these as P tumours. In addition to frequent KRAS mutations, many EGFR 

mutations also characterised RAG-2 and RAG-3, suggesting the genes driving these clusters 

reflected RAS pathway activation through upstream receptor tyrosine kinase (RTK) 

activation. EGFR and KRAS mutations are mutually exclusive28,29. TP53, STK11/LKB1 and 

CDKN2A were identified as co-mutational partners of KRAS in NSCLC where the tumour 

suppressor gene mutations tend to be mutually exclusive30. Along with high KRAS mutation 

rates and RAS84 expression, RAG-1 was characterised by STK11/LKB1 mutations (KL 

tumours) and RAG-4 by CDKN2A mutations (KC tumours). TP53 was frequently altered in 

several of the clusters, with RAG-3 having the highest rate of p53 alteration (hence KP 

tumours) after the RAS silent RAG-0. The RAG-2 cluster had modest levels of p53 (TP53) 

alteration (~40%) and more beta catenin (CTNNB1) alterations than the other RAS active 

clusters, but still only about 5%. We refer to these as K tumours, as selective co-occurring 

mutations are not obvious. We validated the patterns of KRAS, EGFR and TP53 mutations 

across our RAGs in an independent lung adenocarcinoma cohort of 87 patients (Seoul cohort, 

GSE40419) (chisq test p-values, EGFR 0.0002, KRAS 0.0014, TP53 0.1) (Figure 3e). 

Interestingly, we did not observe any significant association between specific KRAS amino 

acid mutational changes and RAG, suggesting that specific mutations do not drive RAS 

activity heterogeneity in distinct ways in the context of lung adenocarcinoma (Figure 3b).  

To determine if RAS84 expression reflected RAS-MAPK signalling activity we looked at 

ERK1/2 (T202, Y204) and MEK1 (S217, S221) phosphorylation levels within each RAG. We 

used The Cancer Proteome Atlas (TCPA) reverse-phase protein arrays (RPPA) data31 for 349 

of the TCGA LUAD patients and found an increase in phosphorylation of one or both proteins 

in all RAGs when compared to RAG-0 (Figure 3f). At the expression level we found an 

enrichment of genes associated with the GO term ‘ERK1 and ERK2 cascade’ when comparing 

RAG-4 to RAG-0 (GO:0070371, p-value 0.0003) (Supplementary table 6). We also looked at 
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the proliferation score distributions across the five groups and did not observe a correlation 

with RAS84 expression (Supplementary Figure 3c).  

We were also interested in identifying which RAS84 genes were driving the RAGs. We 

focused on genes most variant across the clusters and, via correlation analysis 

(Supplementary Figure 3d), found seven gene clusters capable of discriminating the five 

RAGs (Figure 3g). RAG-4 was characterised by higher expression of genes in cluster 2 when 

compared to the other RAGs, RAG-3 by the expression of genes in cluster 5 but not 2, RAG-

2 by the up-regulation of genes in clusters 6 but not 5 and to an extent the over-expression 

of cluster 1. RAG-1 patients could be identified by high expression of cluster 3 and low 

expression of cluster 6, RAG-0 by low expression of cluster 3. We found two clusters whose 

expression pattern across the five RAGs mirrored that seen in the enriched alterations.  

Hence, we have demonstrated that RAS84 outperformed previous signatures in classifying 

KRAS mutant lung adenocarcinoma tumours as active for RAS-driven transcription. We 

identified five RAGs characterised by distinct associated mutational profiles and we showed 

RAS84 expression to be reflected at the protein level. 

RAS84 expression is clonal 

The prognostic value of RAS84 makes it an attractive potential biomarker. A reliable 

biomarker should ideally, not be affected by the region of sampling and therefore not remain 

refractory to the intra-tumour heterogeneity observed in most cancers. Recent analyses of 

signatures derived for prognostication in lung cancer indicate that up to 70% of NSCLC 

tumours32 and 40% of LUAD tumours33 may be subject to sampling bias. To assess the intra-

tumour heterogeneity of RAS activity in lung adenocarcinoma, we classified samples from 

the multi-region TRACERx cohort into our five RAS classification groups (102 samples from 

41 patients)34. To classify the samples, we trained a support-vector machine (SVM) classifier 

using the TCGA LUAD classification results (see methods) and used it to assign RAG labels 

to the TRACERx samples (Figure 4a). This classifier will allow the stratification of new patient 

samples outside of cohort datasets enabling the clinical application of RAS84. 

Of the 41 patients, 28 (68%) had multi-region RNA-seq gene expression data available. Of 

these 28, 16 (57%) patients had all regions falling within the same RAG, 13 of which 

clustered contiguously (Figure 4a). Twelve (43%) patients had regions that spanned RAGs 

suggesting a degree of RAS activity heterogeneity in some patients. All but three of these 

patients (CRUK0017, CRUK0024 and CRUK0060) span neighbouring RAGs indicating a 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.02.437896doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.437896
http://creativecommons.org/licenses/by/4.0/


East et al. Results 

 10 

degree of relatedness in RAS activity across the tumour. CRUK0017 spanned three RAGs 

R1:RAG-0; R2:RAG-3; R4:RAG-2. This patient is reported as sub-clonal for KRAS mutation 

by TRACERx (PhyloCCF R1:0; R2:0.84; R4:0.65). Interestingly, the KRAS non-mutated 

region (R1) fell into RAG-0. We observed that the intra-tumour distances for RAS84, within 

these group-spanning tumours, were still small when compared to the inter-tumour distance 

distribution (Figure 4b). 

We assessed the intra- and inter-tumour expression variance of RAS84 genes by comparing 

them to gene-sets previously annotated for expression heterogeneity in the TRACERx lung 

adenocarcinoma cohort. Biswas and colleagues classified all expressed genes into four groups 

depending on their intra- and inter-tumour expression variance33. We found a significant 3.2 

fold enrichment of RAS84 genes in the low intra-tumour, high inter-tumour expression 

variance group (Fisher's exact p-value 9.06e-6) (Figure 4c, Supplementary table 7). This 

shows RAS84 genes tended to be enriched for genes robust to sampling bias. 

Altogether, these data demonstrate that RAS activity is predominantly clonally expressed 

in lung adenocarcinoma, likely reflecting the oncogenic driving capability of the RAS 

pathway. 

RAS84 predicts survival and response to chemotherapy in lung adenocarcinoma 
patients 

RAS oncogenic activity promotes tumour progression and metastasis but the mutational 

status of KRAS is not reliably associated with outcome6,7,35 (Figure 5a). To determine whether 

RAS84 had prognostic value in lung adenocarcinoma, we ran a univariate Cox proportional-

hazards analysis comparing overall survival across the TCGA LUAD RAGs (n=493, 265 stage 

I, 117 stage II, 79 stage III and 25 stage IV). We found RAG-4 to be significantly associated 

with negative outcome when compared to RAG-0 (Figure 5b-c, Supplementary Figure 4a-f). 

We also fitted a univariate Cox proportional-hazards regression model to the RI values. We 

found a significant positive association with outcome, showing increased RAS84 expression 

was a predictor of poor overall survival (coxph HR 2, p-value 0.00042). To visualise the 

ability of RI to predict outcome we used the model to predict survival time given a two-fold 

increase or decrease in RI values (Figure 5d). Since we observed a slight over-representation 

of stage III tumours and an under-representation of stage I tumours in RAG-4 

(Supplementary Figure 4g-h) we confirmed these findings in a multivariate Cox proportional-

hazards analysis in an independent lung adenocarcinoma cohort of 103 patients (60 stage I, 
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19 stage II and 24 stage III) (Uppsala cohort, GSE81089). We first clustered the patients into 

five groups as previously described and ran the multivariate analysis across the RAGs and RI 

values including TNM stage, World Health Organization (WHO) performance status, smoking 

history, sex and age in the model. We found RAG to be a significant predictor of outcome 

(ANOVA LRT p-value 0.032) and specifically RAG-4, RAG-3 and RI to be significantly 

associated with poor outcome (Figure 5e-h, Supplementary figure 4i-j). We repeated these 

multivariate analyses with patient clusters derived using the signatures previously described 

(Figure 1). We found RAS84 to be the only signature significantly predicting outcome (Figure 

5i, Supplementary table 8). This shows RAS84 had prognostic qualities in early stage lung 

adenocarcinoma beyond known clinical predictors and suggests RAS activity promotes 

tumour progression in human lung adenocarcinoma. 

Given that we observed a chemotherapy drug resistance phenotype in vitro, we ran a PFS 

multivariate Cox proportional-hazards analysis using the TEMPUS cohort of adenocarcinoma 

patients (n=94, 5 Stage I, 17 Stage II, 31 Stage III and 41 Stage IV). We selected patients 

who had received first line chemotherapy treatment and constructed PFS intervals using 

patient records (see methods). We classified the patient tumours using associated RNA-Seq 

data and our SVM classifier. We modelled PFS with RAG labels along with stage, the 

administration of radiotherapy, age and sex covariates. We found RAG to be a significant 

predictor of PFS after chemotherapy (ANOVA LRT p-value 0.043). Specifically, patients in 

RAG-3 and RAG-4 had a poor response when compared with RAG-2 (p-value 0.006, 0.027; 

HR 3.04, 2.84) (Figure 5j). We also ran the same multivariate analysis testing KRAS mutation 

as a predictor of PFS. As previously shown7,8, KRAS mutation did not predict response to 

chemotherapy (Supplementary figure 4k). This result shows the potential of RAS 

transcriptional activity to predict response to chemotherapy where KRAS mutation status 

alone does not. 

We thus demonstrate the prognostic value of RAG classification and RI quantification in 

500+ lung adenocarcinoma patients from two independent cohorts, benchmarked against 

the failure of KRAS mutational status or previous RAS signatures to predict patient outcomes. 

We also show RAG classification as a predictor of response to chemotherapy, thus 

demonstrating that RAS84 adds value to current clinical risk factors and response 

biomarkers. 
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RAS84 predicts RAS-MAPK activity across cancer types 

The degree to which RAS activity is important in tumourigenesis and cancer progression 

varies across different tissues19, with some cancers known to be driven largely by RAS 

mutations (e.g. pancreatic, colorectal and lung cancers36,37) and others not (e.g. uveal 

melanoma38, glioblastoma39, kidney cancer40). To determine how RAS84 varied across cancer 

types, we quantified it against all 32 TCGA solid cancers in a pan-cancer analysis. To compare 

samples across cancers, we calculated an RI value for each sample (Figure 6a). We identified 

two distinct cancer populations from the distribution of mean RI values per-cancer (Figure 

6b, Supplementary Figure 5a). We found four of the top five RAS mutated cancers known to 

be RAS-driven (RAS mutation frequency: pancreatic adenocarcinoma (PAAD) 71%, colon 

adenocarcinoma (COAD) 50%, rectum adenocarcinoma (READ) 49% and lung 

adenocarcinoma (LUAD) 31%) in the highly RAS active group (Supplementary figure 5b). 

We also found KRAS mutation to be over-represented within this group (hypergeometric p-

value < 2e-16). The other cancers found in the high RI group were stomach adenocarcinoma 

(STAD) (8.9% RAS mutated), bladder urothelial carcinoma (BLCA) (8.3%), head and neck 

squamous cell carcinoma (HNSC) (5.8%), cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC) (5.2%), lung squamous cell carcinoma (LUSC) (3.5%) and 

oesophageal carcinoma (ESCA) (1.2%). RAS is not significantly mutated in these cohorts 

when compared to those with a lower RAS mutation ratio (Supplementary figure 5b). In 

order to explain the presence of these cancers in the highly RAS active group, we looked at 

the correlation between RAS pathway alteration status and mean RI across the cohorts. We 

defined RAS pathway alteration status as the number of patients with at least one alteration 

in a RAS pathway gene (as defined in TCGA driver pathway analysis19) leading to pathway 

activation. We identified a pan-cancer correlation (spearman coefficient 0.432, p-value 

0.0135) (Figure 6c). Stomach (STAD), bladder (BLCA), head and neck squamous cell 

(HNSC), oesophageal (ESCA) and lung squamous cell (LUSC) cancers all had RAS pathway 

alteration rates above 50% and fell within the 99% confidence interval suggesting RAS 

pathway alterations other than RAS are driving activity in these cancers. The high RI values 

in endocervical (CESC) remain unexplained since the high frequency of PIK3CA mutation 

(28.5%) in this cancer is not significantly associated with RI (Supplementary figure 5c).  

Skin cutaneous melanoma (SKCM) and thyroid carcinoma (THCA) mean RI were lower 

than predicted by their RAS pathway alteration ratio (Figure 4c, indicated in orange). 

Interestingly, NRAS is the main mutated isoform of RAS in these two cancers. However, RAS 
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mutation does not correlate with RI in SKCM (Supplementary figure 5d) and shows a 

significant inverse correlation in THCA (Figure 6d) suggesting RAS is not the main driver of 

RAS activity in these cancers. Interestingly THCA and SKCM have the highest proportion of 

BRAF mutation (57% and 50%) compared with the next most common, colon (10%). We 

found BRAF mutation to be significantly associated with high RI values (Wilcox p-value THCA 

<2e-16, SKCM 2e-3) (Figure 6e) suggesting BRAF to be a key driver of oncogenic RAS 

activity in these two cancers. Given the lower than expected mean RI values it is possible that 

BRAF activation does not capture the full complexity of RAS pathway activation, possibly due 

to the use of multiple effector enzyme families by RAS proteins.  

We measured a moderate RI in mesothelioma (MESO), kidney renal clear cell carcinoma 

(KIRC), prostate adenocarcinoma (PRAD), kidney renal papillary cell carcinoma (KIRP), 

kidney chromophobe (KICH) and liver hepatocellular carcinoma (LIHC) (Figure 6c, indicated 

in blue). All fall below the lower 99% CI indicating they have higher than expected mean RI 

values given their RAS pathway alteration ratio. The absence of RAS pathway alterations 

suggests that these cancers activate RAS via other mechanisms than the RAS pathway 

alterations considered here.   

To further validate that RAS84 expression could predict high RAS activity in RAS mutants 

in individual cancers, we looked at pan-RAS mutation (KRAS, NRAS, HRAS) distributions 

across RI values per cohort (Supplementary Figure 5d). We identified a significant positive 

association between RAS mutations and RI in pancreatic (PAAD), LUAD, head and neck 

squamous (HNSC), thymoma (THYM), breast invasive carcinoma (BRCA), uterine 

carcinosarcoma (UCS), and uterine corpus endometrial carcinoma (UCEC) (Wilcoxon 

fdr<0.05) (Figure 6d, Supplementary table 9), reinforcing the idea that RAS84 can predict 

RAS activity within these cancers. For two cancers, thyroid (THCA) and testicular germ cell 

tumours (TGCT), we observed a negative association of RAS mutation with RI. As mentioned 

previously, THCA has high BRAF mutation levels with some NRAS but few KRAS mutations. 

TGCT is characterised by low levels of both KRAS (8%) and NRAS (3%) mutations. The 

higher RI activity in the RAS wild type group suggests that there may be a strong activator of 

RAS signalling in these samples, or a negative feedback loop in the mutants that is not 

apparent from the mutational data.  

To determine if RAS84 had prognostic qualities in cancers other than LUAD, we ran Cox 

proportional-hazards regression analyses of overall survival against RI values on cohorts 

within our highly RAS active cancer group. We were able to identify a prognostic association 
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with RAS84 expression for CESC and PAAD (p-value <0.05). Overall survival data with 

predicted outcome given a two-fold increase and decease in RI are shown in the survival plots 

(Figure 6f-g). This result shows RAS activity to be a possible prognostic indicator in other 

RAS-driven (pancreatic - PAAD) and RAS pathway active (cervical - CESC) cancers.  
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Discussion 

The importance of mutations in RAS oncogenes in tumourigenesis, cancer progression and 

resistance to treatment has been demonstrated in numerous model systems in vitro and in 

vivo. However, the mutational status of KRAS has neither prognostic nor predictive value in 

human lung cancer, limiting the possibilities to anticipate patient survival and to adapt 

treatments. From this, one might be tempted to conclude that lung adenocarcinomas lacking 

a KRAS mutation have acquired functionally similar patterns of signalling network activation 

to those with KRAS mutations. However, the development here of a transcriptional measure 

of oncogenic RAS activity has allowed us to distinguish significant differences in outcome 

and response to chemotherapy between lung adenocarcinoma patients. We also show that a 

high proportion of KRAS wild type tumours do exhibit the characteristics of RAS pathway 

activation. This analysis will facilitate the study of the effect of RAS on survival, cancer 

progression and resistance to treatment in patients and could ultimately inform clinical 

decisions. 

Several groups previously developed “RAS-addiction” or “MEK-sensitivity” signatures 

using RNA interference against RAS, MEK inhibitor or farnesyltransferase inhibitor (when 

RAS-specific inhibitors were not available) to investigate resistance to RAS pathway targeted 

therapy23,41–43. Others have also reported approaches to assess RAS activity in tumours from 

expression data. Bild and colleagues mapped several transformation signatures to expression 

data from lung tumours and identified a population of patients with deregulation in RAS, 

Src, β-catenin and Myc activity and poor survival24. Sweet-Cordero and colleagues assessed 

the enrichment of a KrasV12 tumour signature derived from a mouse cancer model in human 

tumours, observing an enrichment of the signature in human lung adenocarcinoma, but not 

specifically in KRAS mutants44. Nagy and colleagues reported a prognostic value in NSCLC 

using the mean expression of the top 5 deregulated genes in KRAS mutants versus non-

mutants to segregate patients45. Way and colleagues used a machine learning approach and 

trained their classifier to detect KRAS, HRAS and NRAS mutations and copy number variation 

across cancers using the TCGA pan-cancer dataset 46. Of the five published RAS signatures we 

tested, just two predicted outcome in univariate survival analysis24,41, but only RAS84 

conserved its prognostic value when corrected for tumour stage in the same cohort. This 

finding suggests we were able to extract the RAS-target-genes which capture RAS activity 

and not only tumour aggressiveness. 
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We chose to derive our meta-signature in lung cancer because lung adenocarcinoma is 

known to be RAS-driven with a 30% KRAS mutation rate, but also has 26% patients that are 

RAS pathway wild type (no genetic alterations on any of the broader RAS pathway members), 

thus, presenting a potentially wide RAS-activity dynamic range. Our method offers an 

alternative approach to previously published methods in that it does not rely on the initial 

segregation of RAS mutant and wild type patients. We started from genes expressed in RAS 

active conditions, and we identified those that were good markers of KRAS mutants 

compared with non-activated RAS pathway tumours. This approach makes our method also 

sensitive to RAS active tumours driven by non-KRAS mutations. This nuance lacked in 

previously published attempts and could explain the greater performance of our approach 

over others to capture the aggressiveness induced by oncogenic RAS activity. Moreover, using 

cell line data in the initial derivation of the signature provided a pure tumour cohort, free 

from the complexities of the tumour micro-environment, which could have introduced noise 

in identifying the driver genes, thus demonstrated by the low expression of RAS84 in stromal 

and immune cells. 

Our analysis shows that 84% of lung adenocarcinomas exhibit clear evidence of RAS 

pathway activation independent of KRAS mutation status. We show that RAS-pathway-

mutation burden is associated with RAS84 activity in our pan-cancer analysis, demonstrating 

the influence of other RAS-pathway-member mutations. However, there are undoubtedly 

other indirect mechanisms driving RAS oncogenic activity in KRAS wt tumours, such as 

epigenetic regulation, inter-exonic variants, influence of the tumour microenvironment and 

growth factor expression, negative feedback loop regulation, metabolic regulation or others. 

Using a transcriptional approach presents the advantage of being agnostic to all upstream 

regulation and negates the complete characterisation of all drivers affecting RAS signalling. 

We identified four groups with different degree of RAS84 activity. The coincident mutations 

we observed in RAG-1 to -4 have previously been associated with specific phenotypes by 

Skoulidis et al. in a cohort of KRAS mutant lung cancer30. Our classification includes KRAS 

wt patients (representing 70% of all LUAD), thus broadening the clinical benefits of 

stratification to all patients.  

Many studies over the years described the role of mutant KRAS in cancer progression, 

which might be expected to affect patient survival5. Oncogenic RAS promotes cell 

proliferation47–52, suppresses apoptosis53, shifts the metabolic program of cancer cells to 

sustain hyperproliferation54,55, promotes angiogenesis56, increases inflammation57,58 and 
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remodels the extracellular matrix59,60. Moreover, RAS promotes immune evasion by impairing 

antigen presentation61, recruiting immunosuppressive cells62,63 and inducing immune 

checkpoint ligand expression10. Despite extensive literature describing how oncogenic RAS 

increases tumour aggressiveness, these findings do not reflect patients’ survival or response 

to treatment. An analysis of 227 patients with surgically resected NSCLC showed no 

association between RAS mutation and relapse64; a meta-analyse of 29 studies had shown no 

relation between RAS mutation and survival in lung cancer65. The discrepancy between 

laboratory experiments and observations made in the clinic could be explained by the fact 

that some KRAS wt tumours can still activate the RAS pathway due to events other than RAS 

oncogene mutations, such as BRAF or EGFR mutation. Multiple factors can affect RAS activity 

from one tumour to another in human cancer, unlike in the controlled isogenic systems 

typically used in laboratory studies where the only perturbation is the RAS mutation. Based 

on transcriptional activity, our approach is thus at least partially agnostic to a precise position 

in the signalling network of genomic alterations, explaining its superiority to predict 

outcome. Additionally, RAS84 expression appears broadly clonal, showing that RAS activity 

is generally an early driver event in lung adenocarcinoma. This observation is an essential 

consideration for developing clinical biomarkers when assessing tumour RAS activity from a 

single biopsy.  

Adjuvant therapy is currently the first-line treatment for patients with early-stage lung 

cancers66. Although KRAS mutant promotes resistance to chemotherapy in isogenic 

experiments in vitro and in vivo2–5, it has no predictive value in patients with lung cancer6,7. 

Using an independent cohort of lung adenocarcinoma (TEMPUS), we show that RAG-3 and 

-4 patients have a worse progression-free survival in response to first-line chemotherapy. This 

result is supported by the resistance to 23 chemotherapy drugs we observed in RAS-high lung 

cell lines in vitro. In both analyses, the classification based solely on the mutational status of 

KRAS did not reveal increased resistance to chemotherapy in KRAS-mutant cell lines or 

tumours. We also compared the response to drugs in cell lines mutated on any RAS pathway 

members versus all RAS pathway wt. Interestingly, this classification was not sufficient to 

predict resistance to chemotherapy, suggesting that other events –perhaps non-genetic– also 

affect the RAS oncogenic activity we capture in our approach. Surprisingly, RAG-2 showed 

the best response to chemotherapy. The absence of coincident mutations on tumour 

suppressor genes may explain the better response observed in this group than other RAGs. 
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We also evaluated the RAS activity signature across different cancer types. In a pan-cancer 

analysis across all cancer types, we demonstrated high signature expression in tumours 

known to be RAS-driven, and we showed RAS84 expression to be predictive of RAS pathway 

mutation burden across cancer types. We predicted nine cancer types to be highly RAS 

pathway active, almost all of which had a high representation of mutations in RAS pathway 

genes. Five cancer types (liver hepatocellular carcinoma, kidney renal clear cell and papillary 

carcinomas, prostate adenocarcinoma and mesothelioma) with low RAS pathway mutation 

burden classified as moderate RAS pathway activity, indicating that events other than 

genomic alterations activate RAS signalling in these cancers. In addition, the relationship 

between RAS84 expression and RAS pathway gene mutations is different in cancers with very 

high BRAF mutation levels, such as thyroid carcinoma and melanoma, which score as only 

moderate for RAS pathway activity. This suggests that the oncogenic RAS pathway’s output 

varies depending on the mutated gene, with the BRAF mutation not being equivalent to KRAS 

mutations. This might be expected from our knowledge of the bifurcating nature of the RAS 

pathway with multiple effector enzyme families directly targeted by RAS proteins. Our results 

show a great variability of RAS activity amplitude across cancers, highlighting the importance 

of assessing RAS activity per cancer cohort. Interestingly, the correlation between RAS84 

expression and overall survival in pancreatic cancer, where 95% of tumours are mutated on 

KRAS, shows the direct link between RAS transcriptional activity and tumour aggressiveness.  

Our finding that RAS84 correlates with resistance to chemotherapy needs to be validated 

in a larger cohort with more early-stage patients. Predicting response to chemotherapy in 

these patients is crucial to inform clinical decisions regarding the benefit of adjuvant 

therapies. It would be interesting to evaluate whether RAS84 predicts response to other 

treatments such as targeted therapy and immunotherapy. Defining the predictive ability of 

RAS84 for immunotherapy would be particularly relevant since we and others have shown 

that mutant KRAS protein can modulate the expression of immuno-suppressive proteins9,10. 

Skoulidis and colleagues showed that KRAS and STK11/LKB1 co-occurring mutations are 

associated with poor response to PD-1 blockade in NSCLC patients67. In our classification, 

RAG-1 is enriched in STK11/LKB1 mutants, suggesting that this tumour group could be 

refractory to immune checkpoint blockade (ICB). In the same study, the authors showed that 

KRASm; TP53m tumours responded better to anti-PD-L1. RAG-3, and to a lesser extend RAG-

4, are enriched in TP53 mutants, suggesting that these tumours could respond to ICB. About 
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20% of patients with NSCLC respond to ICB. The predictive value of RAS84 classification in 

response to ICB should be investigated in a following-up study. 

The current large number of genes in RAS84 is a limitation to translating our classifier to 

a clinical assay. We kept the original 84 identified genes to capture the complexity in RAS-

target expression adequately. However, it is conceivable to reduce the number of these genes 

by identifying key RAG-classification drivers and develop an assay that would be more suited 

to the clinic.  

RAS84 captures RAS oncogenic activity in tumour samples better than the mutational 

status of KRAS when applied to cohorts of lung adenocarcinoma patients and other cancer 

types. We believe that the stratification of patients based on RAS84 expression will facilitate 

the study of the effect of RAS on survival, cancer progression and resistance to treatment in 

patients and could ultimately help clinical decision making.
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Methods 

Selection of the founder gene sets 

We selected gene sets from several published data: the RAS addiction signature contained 

380 genes upregulated in 5 KRAS-dependent cell lines (4 lung cell lines and 1 pancreatic cell 

line) compared with 5 KRAS-independent cell lines (4 lung cell lines and 1 pancreatic cell 

line)23; the KrasLA signature contained 89 upregulated genes in mouse lung tumours induced 

by the spontaneous recombination of KrasLA2 allele compared with normal lung and 

expressed in human lung tumours44; the HRAS transformation signature contained 245 genes 

correlating with the classification of HMEC samples into oncogene-activated/deregulated 

versus control24; the RAS pathway signature contained 105 genes previously curated from 3 

studies including HRAS transformation, KrasLA and a signature of Salirasinib-treated human 

cancer cell lines42,43; the MSigDB signature is the HALLMARK_KRAS_SIGNALING_UP meta-

signature from MSigDB, which contained a list of 200 genes identified from overlaps between 

KRAS-related gene sets in other MSigDB collections25. We also generated a gene set from in-

house data. The data was previously generated using the colon cancer cell line HCT116, 

which carries a KRASG13D mutation, and its isogenic cell lines Hke3 and Hkh2 where the 

KRASG13D allele was deleted by homologous recombination68. An Affymetrix analysis was 

performed on parental and recombined cell lines, and on sh-KRAS and sh-control in the 

HCT116 cell line. KRASG13D68 was derived by selecting the genes upregulated (L2FC>1.5) 

when KRASG13D was expressed in all three experiments: HCT116 sh-KRAS versus control (6 

days), Hke3 versus HCT116 and Hkh2 versus HCT116. We also identified a number of other 

oncogenic expression signatures to use as controls throughout the analysis (Supplementary 

table 10). 

CCLE 

The CCLE microarray expression and mutation data were obtained from the CCLE legacy 

repository hosted at The Broad (https://data.broadinstitute.org/ccle_legacy_data). We 

selected lung-derived cell line data. We labelled the cell lines as either KRAS mutation 

positive, RAS pathway mutation positive or RAS pathway mutation negative. Cell lines were 

labelled as RAS pathway mutation negative if they had no mutation in a RAS pathway gene 

member defined in Sanchez-Vega and colleagues19. We removed cell lines with mutations in 
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RAS pathway members other than KRAS from further analysis selecting 166 cell lines. We 

filtered the RAS signatures for genes relevant in the context of lung cancer. We modelled the 

log COV of expression against the mean log2 expression across all genes using loess 

regression. Signature genes with positive residuals with respect to the fit and a log2 mean 

expression value > 6 were selected. 

We mapped each of the signatures to the cell line expression data and clustered the cell-

lines using hierarchical clustering with a Ward.D2 agglomeration method. We split the 

resultant dendrograms into three clusters, labelling each high, low and unclassified for 

signature expression. The labels were assigned based on ranked mean cluster expression. To 

assess the performance of each of the signatures we calculated the significance of association 

of high and low clusters with KRAS mutation using a chisq test. To further refine each of the 

top 3 performing signatures, we ran a differential analysis between the high and low clusters 

using the Limma package from Bioconductor. We selected signature genes with an fdr < 0.05 

as those driving the clustering. We merged the differential genes for each signature tested to 

form our meta-signature, RAS84. We identified RAS-high dependent transcriptional changes 

between RAS-high and RAS-low groups by limma (3.40.2) analysis on CCLE RMA normalised 

intensity estimates. Genes with a RAS group mean intensity estimate < 6 in both groups were 

removed from the analysis. Differential genes were selected by FDR < 0.05 and absolute LFC 

> 1. We ran the GO analysis using the clusterProfiler (3.12.0) package from Bioconductor 

testing all Biological Process terms from org.Hs.eg.db_(3.8.2) (FDR < 0.001) 

CCLE Drug Sensitivity Screen 

We obtained drug sensitivity data from GDSC (IC50) (v1 367,  v2 198 compounds)69 and 

CTRP (AUC) (v1 185, v2 481 compounds)70 for the CCLE cell lines. We clustered the VST 

normalised RAS84 CCLE RNA-Seq data into two clusters, RAS high and RAS low. We tested 

for significant differences in drug response values across the two RAS activity clusters by 

linear model correcting for any KRAS mutation status effect (< 0.05 fdr). We analysed each 

of the two release versions separately for each of the two data repositories.  We identified 

enriched compound target pathways in the GDSC results by hypergeometric test using the 

TARGET_CATEGORY annotation provided (< 0.05 fdr). We also tested for oncogenic KRAS 

mutant dependent and oncogenic KRAS pathway dependent drug responses in the GDSC 

data. We used genotype data from the CCLE. We called the RAS pathway as mutated if any 

of the pathway genes contained a mutation19. 
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Patient Data sets 

TCGA Pancancer Data 

All TCGA RNA-Seq gene-level read-counts were downloaded using the TCGAbiolinks 

(TCGAbiolinks_2.8.4) package from Bioconductor 71 (legacy=TRUE). Raw counts were VST 

normalized using the varianceStabilizingTransformation function within DESeq2 

(DESeq2_1.20.0) from Bioconductor72. Normal samples were removed prior to analysis. To 

compare across the cancer cohorts, we z-score normalized samples and genes. Mutation data 

were obtained from Sanchez-Vega and colleagues19 and specific KRAS mutation data was 

downloaded from TCGAbiolinks and integrated with the expression data. Survival and 

proliferation data were obtained from Thorsson and colleagues73. RAS84 gene annotations 

were mapped to the RNA-Seq feature ids (Supplementary table 2). 

Seoul lung adenocarcinoma cohort, GSE40419 

RNA-Seq RPKM values for 87 adenocarcinoma patients were downloaded from GEO using 

the getGEO function from the GEOQuery Bioconductor package. RPKM values were log2 

transformed prior to cluster analysis. Mutation data were obtained from Seo and colleagues74. 

Where multiple features existed per-gene the one with the maximum mean expression value 

across the cohort was selected. 

Uppsala II RNA-Seq 

RNA-Seq gene-level read-counts and clinical data were downloaded from the Gene 

Expression Omnibus (GEO GSE81089). The raw counts were VST normalised using the 

varianceStabilizingTransformation function within DESeq2 (DESeq2_1.20.0) from 

Bioconductor72. Ensembl gene annotations were obtained using the biomaRt package from 

Bioconductor. The 103 stage I, II, & III adenocarcinoma samples were selected prior to further 

analysis (column histology:ch1 == 2, stage.tnm.ch1 != 7). RAS84 gene annotations were 

mapped to the RNA-Seq feature ids (Supplement table 2). In the case of IER3, which maps 

to multiple features in this dataset, the feature with the largest mean VST value across all 

samples was selected (ENSG00000137331). 
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TRACERx 

 RNA-Seq gene-level read-counts were obtained for the TRACERx 100 patient cohort. 

The counts were VST normalized using the varianceStabilizingTransformation function 

within DESeq2 (DESeq2_1.20.0) from Bioconductor72. The 102 adenocarcinoma samples 

were selected (Histology == “Invasive adenocarcinoma”). The counts were further z-score 

normalised prior to SVM classification. RAS84 gene annotations were mapped to the RNA-

Seq feature ids (Supplement table 2). 

Lambrechts scRNA-Seq 

 Log2 CPM normalised scRNASeq data for B, T, fibroblasts, alveolar, EC and myeloid 

cells from five lung carcinomas were obtained from ArrayExpress (E-MTAB-6149). 

TEMPUS CLINIC-GENOMICS 

 TEMPUS clinic-genomics is a retrospective lung cancer cohort Tempus clinic-genomic 

database containing 1,711 patients. Clinical data were extracted from the Tempus real-world 

oncology database of longitudinal structured and unstructured data from geographically 

diverse oncology practices, including integrated delivery networks, academic institutions, 

and community practices. All data were de-identified in accordance with the Health 

Insurance Portability and Accountability Act (HIPAA). The database extract was retrieved 

and de-identified in 2018 and contained cohorts with patients records spanning from 1990-

2018. We identified 108 adenocarcinoma patients from the TEMPUS database with first line 

chemotherapy treatment and matched RNA-seq molecular data. We calculated a progression 

free survival interval from the associated patient clinical histories. We took the start time of 

treatment as time zero. We used a recorded recurrence event, a reported progressive disease 

outcome, a progression in reported tumour stage, death or the administration of an 

alternative therapy as an end-point to progression free interval. In the cases of repeated 

chemotherapy treatment, we took a gap between treatments of > 6 months as a PFS end 

point. In the absences of any endpoint events we censored on the last follow up time if no 

neoplasm was recorded or the last reported outcome if it was one of stable disease, 

progression free or partial response. We also integrated stage, the administration of radio 

therapy, age and sex data. We applied VST and z-score normalisation to the RNA-Seq gene 

level counts across all 633 adenocarcinoma patients in the cohort. We classified patients into 

RAG groups using our SVM classifier. 
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RAG Classification 

The RAS84 TCGA LUAD VST expression matrix was clustered using hierarchical clustering 

with a Euclidian distance measure and a ward.D2 agglomeration method (hclust function, 

R). We split the dendrogram into five clusters and labelled them RAG-0 to RAG-4 based on 

their mean RAS84 expression value across all samples, lowest to highest. We also calculated 

an RI value for each sample, defined as the mean VST value across the RAS84 genes. We 

repeated this analysis for each of the original founder signatures. We assessed the 

performance of each of the signatures by testing for statistically significant differences in the 

observed KRAS mutation frequencies across the five groups using a chi-squared test 

(chisq.test function, R). We tested all somatic variants reported in Sanchez-Vega and 

colleagues19 (N>10) for significant frequency differences across the RAS84 clusters using a 

chi-square test (fdr < 0.05). Mosaic plots were generated using the vcd package from R 

(vcd_1.4-4). Specific KRAS mutation genotypes were tested individually against a 

background of all remaining samples using a chi-squared test. The Seoul cohort (GSE40419) 

was clustered in the same way as the TCGA samples. KRAS, EGFR and TP53 mutations were 

tested for significant differences in observed frequencies across the five RAGs using a chi-

squared test. To identify RAG driver genes, we identified genes with the largest deviation in 

expression from the mean across all samples. We first calculated RAG mean expression values 

per gene. We then scaled these values to the mean across all samples to calculate a RAG 

deviation value. Genes with an absolute deviation of > 1 were selected. These genes were 

clustered across RAG mean values by hierarchical clustering using Pearson’s correlation and 

ward.D2 agglomeration (cor and hclust function, R). We identified RAG dependent 

transcriptional changes by comparing RAGs 1-4 to RAG-0 correcting for tumour purity in the 

model since we were interested in tumour specific effects. Tumour purity CPE values were 

obtained from75. Differential genes were identified using DESeq2 (1.24.0) (fdr<0.05) and 

shrunken LFC values were generated using the lfcShrink function with type=“ashr”76. The 

genes were further filtered using the shrunken LFC values prior to GO analysis (absolute 

shrunkenLFC > 1). Go analysis was carried out using goseq (1.36.0) from Bioconductor, 

accounting for the length bias inherent in RNA-Seq results. Only terms associated with 

‘Biological Process’ were considered and enriched p-values were corrected using Benjamini 

& Hochberg correction (FDR< 0.05). 
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RPPA 

We obtained level 4 normalised TCPA LUAD RPPA data from 

https://tcpaportal.org/tcpa/download.html. We identified 349 samples in common between 

the TCPA LUAD RPPA cohort and our classified TCGA LUAD cohort. We found 216 assayed 

proteins with values across all samples. We fitted a linear model across the RAGs against 

RAG-0 as the control for each protein assay. A Benjamini & Hochberg FDR multiple testing 

correction was applied across all tests (lm and p.adjust functions from R). 

Lung adenocarcinoma OS and PFS analysis 

We fitted a univariate Cox proportional-hazard model to RAG labels and TCGA LUAD 

overall survival data to test RAG as a predictor for outcome. We also fitted a univariate Cox 

proportional-hazard regression model using RI as a continuous predictor of outcome. We ran 

OS univariate and multivariate Cox proportional-hazard analysis against RAG and RI in the 

Uppsala cohort. Overall survival time was calculated by subtracting the surgery date from the 

vital date (columns vital.date.ch1 - surgery.date.ch1). We compared a reduced coxph model 

including TNM stage, World Health Organization (WHO) performance status, smoking 

history, gender and age covariates (columns stage.tnm.ch1, ps.who.ch1, smoking.ch1, 

gender.ch1 and age.ch1) to a full model including either RAG labels or RI values, using LRT 

with AVOVA.  We accounted for possible non-linear age effects by applying a restricted cubic 

spline to age using the rcs function from the rms R package (rcs( age, 3 )). We performed a 

PFS multivariate coxph analysis using the TEMPUS patients. We constructed a reduced model 

using stage, radiotherapy, gender and age covariates applying a restricted cubic spline as 

above. We compared this model to a full model including RAG labels using LRT with anova. 

In our pancancer analysis we fitted univariate Cox proportional-hazard regression models to 

RI and overall survival data from each TCGA cancer cohort from our high RAS activity cancer 

group. We identified cancers where RI was a significant predictor of outcome (p-value < 

0.05).  Kaplan-Meier curves were produced as above. These analyses were carried out using 

the coxph function from the survival R package (survival_3.1-11). Kaplan-Meier curves were 

produced using the ggsurvplot function from the survminer R package (survminer_0.4.4). In 

the case of the RI analysis the Kaplan-Meier curves were generated using predicted survival 

data from the coxph model given a 2-fold increase or decrease in RI. 
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Pan Cancer RAS84 analysis 

To compare RAS84 expression pan-cancer we z-score normalized the previously VST 

normalised RNA-Seq TCGA data (see section: TCGA Pancancer Data) and merged across the 

32 cohorts. To assess RAS activity per sample we calculated an RI value for each sample, 

defined as the mean expression across the RAS84 genes. To identify high and low RAS active 

tumours we plotted the distributions of the mean RI values per cohort. From the observed 

bimodal distribution of cancer RI mean values, we calculated kernel density estimates 

(density function, R) and split the tumours at the minima between the two population 

maxima (mean RI value 0.53) (Supplementary figure 5a). We identified variants enriched in 

the high RAS activity tumours by hypergeometic test (fdr < 0.05). To obtain a RAS pathway 

mutation view we calculated a RAS pathway mutation burden percentage for each sample. 

We labelled samples as being RAS pathway mutated if they had a mutation in any gene 

defined in the RAS pathway by Sanchez-Vega et al. We tested for a significant correlation 

between RAS pathway mutation burden and mean RI using a Pearson’s correlation test.  

To test for an association between RI values and RAS mutation status, per cancer, we ran 

Wilcoxon tests across the RAS mutated and non-mutated groups. We merged the oncogenic 

mutation calls for KRAS, HRAS and NRAS prior to testing. Cancers with a total RAS mutation 

count < 5 were excluded from the analysis. False discovery rates were calculated to account 

for multiple testing. We identified significant cancers by FDR < 0.05.  

SVM classifier 

To facilitate the RAS classification of lung adenocarcinoma RNA-Seq samples we 

constructed an SVM classifier. We used the RAG labels derived from the LUAD TCGA cluster 

analysis as class labels and the TCGA LUAD RAS84 expression matrix as training data. The 

raw gene-level counts were first VST and z-score normalized. We constructed a Radial Sigma 

SVM using the caret R package72. The train function was used to optimize the classifier using 

a cv resampling strategy with 10 iterations. The classifier was validated against a pre-selected 

test subset of patients. 

TRACERx classification 

We classified the samples using the z-score VST RAS84 expression matrix and our SVM 

classifier constructed from the TCGA analysis results and detailed in the classifier methods 

section above. We called the presence SNVs in each of the groups (PhyloCCF score > 0.05). 
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We calculated a sample distance matrix from the VST expression matrix using Euclidian 

distance. We plotted the density of distance measures for intra- and inter-tumour distances. 

We determined the degree of enrichment of RAS84 genes with stable intra-tumour 

expression, but high inter-tumour variance was assessed relative to the distributions of all 

expressed genes, in-line with the methods presented in Biswas and colleagues33. 
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Figure 1. In vitro RAS signature derivation. (a) Contingency tables showing the number of RAS 

pathway wild type and KRAS mutant cell lines per RAS-high and RAS-low groups for each signa-

ture. RAS pathway wild type cell lines are those with no oncogenic mutation in any RAS pathway 

member. RAS-high cell counts are shown in red, RAS-low in blue. The boxplots show the RI distri-

butions for the RAS-high and low groups. RAS addiction is presented here as a control signature. 

(b) Log-likelihood values from a GLM fit (family=binomial) of KRAS mutation status across the 
three RAS activity groups for each of the signatures. This shows RAS84 to be the signature that per-

forming the best at segregating KRAS mutants across the RAS activity groups. (c) Heatmap show-

ing our RAS84 meta signature genes mapped to filtered (see method) CCLE lung cell line data. Cell 
lines are shown as rows, genes as columns. Groupings of high, medium and low RAS activity are 

shown as separate clusters, KRAS mutational status is indicated in dark red on the right and parent 

signature gene membership is indicated in grey at the bottom of the map.
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Figure 2. In vitro anti-cancer drug screen. (a) Volcano plots showing differences in IC50 values 

between RAS high and low CCLE cell lines. Drugs with enriched target annotations in the signifi-

cant sensitive and resistant groups are highlighted. Drugs with an absolute log2 fold change > 1 
and fdr < 0.05 are shown in dark grey. Results from both GDSC1 & 2 are shown. (b) Drug target 
annotation enrichment in sensitive and resistant drugs from GDSC1 & 2 (fdr < 0.05) in the RAS 
high CCLE cell lines, determined by hypergeometic test. Target terms enriched in the sensitive 
drugs are shown in blue, the resistant in red. The number of drugs in each group is indicated by 

the size of the point. All tested targets are shown. (c,d) Volcano plots showing differences in IC50 

values between KRAS mutant and wild type cell lines and RAS pathway mutated and wild type cell 

lines. Drugs with enriched target annotations in the significant sensitive and resistant groups are 
highlighted.
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Figure 3. LUAD classification by RAS84. (a) Heatmap showing clustered RAS84 genes and TCGA 

LUAD cohort patients. Patients are shown as rows, genes as columns. Patients have been clustered 
into five RAS activity groups (RAGs) by hierarchical clustering using a ward.D2 agglomeration 
method. Aggregate RAS84-Index (RI) scores are shown to the right of the main heatmap. Genome 
variants with a significant non-random distribution across the RAGs are shown in the nine columns 
on the right (chi-square fdr < 0.05). These mutations are used to characterise the five clusters 
shown by the labels on the right (P, TP53; KL, KRAS/LKB1(STK11); K, KRAS; KP, KRAS/TP53; KC, 
KRAS/CDKN2A). KRAS mutants are shown in dark red. Parent signature membership is shown in 
grey at the bottom of the heatmap. (b) The percentage of KRAS mutations per RAG broken down 

by specific KRAS mutation type. (c) Log-likelihood values from a GLM fit (family=binomial) of 
KRAS mutation status across the five RAGs. (d) Bar plots showing the percentage of patients per 
RAG with EGFR, TP53, STK11 mutations, CDKN2A deletion, KEAP1, RB1, ATM and CTNNB1 mu-

tations found to be significantly associated with any one RAG (fdr < 0.05). (e) EGFR, KRAS and 
TP53 mutation percentages found to be significantly associated with any one RAG from the Seoul 
cohort. (f) Boxplots showing The Cancer Protein Atlas (TCPA) RPPA MEK1 and ERK1/2 phosphoryl-
ation level distributions across RAGs. Significance levels are shown compared to RAG-0 derived by 
linear model fit. (g) Heatmap showing variant mean RAS84 gene expression clusters across the five 
RAGs.

Figure 3
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Figure 4

Figure 4. Intra-tumour RAS84 heterogeneity. (a) Heatmap showing RAS84 gene expression 

across the TRACERx multi-region cohort. The samples have been classified into the five RAGs using 
an SVM classifier. Contiguous samples from the same patient are indicated by the grey shades just 
at the top of the heatmap. Gene mutation status is indicated at the top, KRAS in red, EGFR and 
TP53 in grey. Per-patient regions are indicated by the rows at the bottom of the heatmap. KRAS 
mutants are shown in red, wild type in green. Patients with regions spanning multiple RAGs are 
indicated with an asterisk. Identifiers are given on the left in the three cases where regions did not 
fall into adjacent RAGs. (b) Intra- (orange) and inter-tumour (grey) sample Euclidian distant dis-
tributions. The maximum intra-patient distance for patients with samples spanning different RAGs 

are indicated with an asterisk. (c) Plot showing the enrichment of RAS84 genes in genes previously 
classified as low for intra-tumour expression variance and high for inter-tumour expression vari-
ance in the TRACERx lung adenocarcinoma cohort. This group is represented by quadrant 4 on the 
plot showing a 3.2x fold enrichment of RAS84 genes relative to all expressed genes (Fisher’s exact 
p-value 9.06e-6).
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Figure 5

Figure 5. RAS84 predicts survival in lung adenocarcinoma. (a) Kaplan-Meier plot showing over-

all survival data from the TCGA LUAD cohort for patients stratified by KRAS mutation (coxph p-val-
ue 0.23), the number of patients per group in indicated in brackets. (b) Kaplan-Meier plot showing 

overall survival data from the TCGA LUAD cohort for patients from RAG-4 and RAG-0 (coxph p-val-
ue 0.0001), the number of patients per group in indicated in brackets. (c) Kaplan-Meier plot show-

ing progression-free survival data from the TCGA LUAD cohort for patients from RAG-4 and RAG-0 
(coxph p-value 0.0017), the number of patients per group in indicated in brackets. d, Kaplan-Meier 
plot showing a Cox proportional-hazards regression fit of TCGA LUAD survival data to RI values. 
The grey survival curve shows the observed data. The blue survival curve is the predicted survival if 

the RI values decreased 2-fold. The red curve are the predicted survival values if the RI were to in-

crease 2-fold (coxph p-value 0.0004). e, Forest plot showing results from a multivariate Cox propor-
tional-hazards analysis of the Uppsala lung adenocarcinoma cohort (n = 103 patients). RAG along 
with TNM stage, World Health Organization (WHO) performance status, smoking history, gender 
and age were tested. RAG-3 and 4 were significant after multivariate correction (coxph p-value 
RAG-4 0.0088, RAG-3 0.024), hazard ratios and 5 and 95% confidence intervals are shown on a 
natural log scale. f, Kaplan-Meier plot showing overall survival data from the Uppsala cohort for 

patients from RAG-4 and RAG-0 (multivariate coxph p-value 0.0088), the number of patients per 
group in indicated in brackets. g, Kaplan-Meier plot showing overall survival data from the Uppsa-

la cohort for patients from RAG-3 and RAG-0 (multivariate coxph p-value 0.024), the number of 
patients per group in indicated in brackets. h, Kaplan-Meier plot showing a Cox proportional-haz-

ards regression fit of Uppsala survival data to RI values. The grey survival curve shows the observed 
data. The blue survival curve is the predicted survival if the RI values decreased 2-fold. The red 
curve are the predicted survival values if the RI were to increase 2-fold (coxph p-value 0.036). i, 
Multivariate p-values and hazard ratios plotted for RAGs derived from RAS84 and the other RAS 

signatures. The p-values are plotted on a -log10 scale (coxph p-value RAS84 RAG-4 0.0088, RAS84 
RAG-3 0.024). j, Forest plot showing results from a multivariate Cox proportional-hazards analysis 
of PFS after chemotherapy in the TEMPUS lung adenocarcinoma cohort (n = 100 patients). RAG 
high and RAG_0 are compared to RAG medium. Tumour stage, whether the patient received radi-

otherapy or not and sex were also tested (coxph p-value RAG-high p-value 0.0018). Hazard ratios 
and 5 and 95% confidence intervals are shown on a natural log scale. 
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Figure 6

Figure 6. RAS Activity Pan-cancer. (a) RI plotted per-patient across the TCGA pan-cancer cohort. 

RNA-Seq gene counts were VST and z-score normalised per cohort. RAS mutants are highlight-
ed (KRAS in red, HRAS in blue and NRAS in orange). Relative RAS isoform mutation frequencies 
per-cohort are shown in the barchart to the right using the same colours. Frequencies of patient 
with a RAS gene amplification but no mutation are shown in grey. (b) A violin plot showing the 

distribution of mean RI across each TCGA cohort. The dotted orange line indicates the distribution 

minima separating the two cancer populations. (c) The ratio of patients with one or more RAS 

pathway mutations plotted against the mean RI for each cohort. A linear regression fit is shown in 
blue with a 99% confidence interval shown by the grey ribbon (spearman coefficient 0.432, p-value 
0.014). Highly RAS active tumours are shown in red, BRAF-driven tumours in orange and tumours 
with a RI value below the lower 99% CI are shown in blue. (d) Boxplots showing distributions of RI 
values for pan-RAS mutant and wild type patients. Significant cohorts are shown (linear model fit 
fdr < 0.05). (e) Boxplots showing distributions of RI values for THCA and SKCM split by BRAF mu-

tation status (linear model fit fdr < 0.05). (f) Kaplan-Meier plot showing a Cox proportional-haz-

ards regression fit of TCGA PAAD cohort survival data to corresponding RI values. The grey survival 
curve shows the observed data. The blue survival cure is the predicted survival if the RI values 

decreased 2-fold. The red curve are the predicted survival values if the RI were to increase 2-fold 
(coxph p-value 0.21). (g) Kaplan-Meier plot showing a Cox proportional-hazards regression fit of 
TCGA CESC cohort survival data to corresponding RI values. The grey survival curve shows the 
observed data. The blue survival cure is the predicted survival if the RI values decreased 2-fold. The 
red curve are the predicted survival values if the RI were to increase 2-fold (coxph p-value 0.018).
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