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Abstract

Dynamic resting state functional connectivity (RSFC) characterizes fluctuations
that occurs over time in functional brain networks. Existing methods to extract
dynamic RSFCs, such as sliding-window and clustering methods, have various lim-
itations due to their inherent non-adaptive nature and high-dimensionality including
an inability to reconstruct brain signals, insufficiency of data for reliable estimation,
insensitivity to rapid changes in dynamics, and a lack of generalizability across multi-
modal functional imaging datasets. To overcome these deficiencies, we develop a novel
and unifying time-varying dynamic network (TVDN) framework for examining dy-
namic resting state functional connectivity. TVDN includes a generative model that
describes the relation between low-dimensional dynamic RSFC and the brain signals,
and an inference algorithm that automatically and adaptively learns to detect dy-
namic state transitions in data and a low-dimensional manifold of dynamic RSFC.
TVDN is generalizable to handle multimodal functional neuroimaging data (fMRI
and MEG/EEG). The resulting estimated low-dimensional dynamic RSFCs manifold
directly links to the frequency content of brain signals. Hence we can evaluate TVDN
performance by examining whether learnt features can reconstruct observed brain sig-
nals. We conduct comprehensive simulations to evaluate TVDN under hypothetical
settings. We then demonstrate the application of TVDN with real fMRI and MEG
data, and compare the results with existing benchmarks. Results demonstrate that
TVDN is able to correctly capture the dynamics of brain activity and more robustly
detect brain state switching both in resting state fMRI and MEG data.
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1 Introduction

The human brain can be described as highly dynamic functional networks constructed from

a fixed structural structural network whose fluctuations over time form the basis for complex

cognitive functions and consciousness (Bassett et al., 2011; Deco & Jirsa, 2012; Shine et al.,

2015). This view of brain function highlights the importance of time sensitive descriptions

of brain network activity in understanding the functional relevance of alterations in network

structure that may underlie different behavioral states and conditions(Varela et al., 2001).

Recent experiments using fMRI data have demonstrated that global brain signals transition

between states of high and low connectivity strength over time (Zalesky et al., 2014) and

these fluctuations are related to coordinated patterns of network topology (Betzel et al.,

2016). Studies suggest that dynamic fluctuations in network structure relate to that in

cognitive function (Shine et al., 2015). Therefore, analyses of functional neuroimaging data

to examine time-varying reconfiguration of global network structure may provide a unique

opportunity to gain insights into the dynamics of functional brain networks, their association

with behavioral states, and their alterations in disease and therapeutic interventions.

To appropriately describe synchronous temporal fluctuations in neuroimaging data, many

data driven approaches have been used, especially with resting state functional connectivity

(RSFC) which describes how brain activity is correlated across regions when an explicit task

is not being performed. Many studies have shown that this functional connectivity provides

a powerful and informative framework for exploring brain organization (Bullmore & Sporns,

2009; Greicius, 2008; Shine et al., 2015). RSFC studies have been described both for blood-

oxygen level-dependent (BOLD) data measured with functional magnetic resonance imaging

(fMRI) (Biswal et al., 1997; Calhoun et al., 2001; Greicius et al., 2003) and for faster time

scale neural oscillatory network changes measured with magnetoencephalography (MEG)

(Englot et al., 2015; Ranasinghe et al., 2017) or electroencephalography (EEG) imaging

(Brookes et al., 2011; Dominguez et al., 2013; Hohlefeld et al., 2013).

Approaches for RSFC analyses include seed-based correlations (Lv et al., 2018), inde-

pendent component analysis (Beckmann et al., 2005) and dynamic mode decomposition

(Brunton et al., 2016; Kutz et al., 2016). Recent work has also focused on recovering the

static RSFC from underlying structural connectivity via graph methods like network dif-

fusion model (Abdelnour et al., 2014) and algebraic spectral graph expansions (Abdelnour

et al., 2018; Becker et al., 2018; Meier et al., 2016; Tewarie et al., 2020). However, few
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statistical methods have been proposed for the accurate estimation of dynamic changes in

functional network architecture (Shine et al., 2015). To date, most existing statistical tech-

niques for RSFC have assumed that the functional connectivity structure is stationary over

a dataset, which is in direct contrast to emerging data that suggests that the strength of

connectivity between regions is variable over time. Therefore, the development of statistical

methods that enable exploration of dynamic changes in functional connectivity is currently

of great importance to the neuroscience community.

The extension of current techniques to capture the dynamic changes in RSFC during

the scan period is a lively yet evolving topic. It is well known that the brain at rest is in

fact quite dynamic, with RSFC capable of changing over a matter of seconds to minutes

(Hutchison et al., 2013). This time varying pattern, namely dynamic resting state functional

connectivity, has been shown to constitute novel imaging biomarkers for identifying neuro-

logical dysfunctions such as schizophrenia, autism and various forms of dementia (Damaraju

et al., 2014; Filippi et al., 2019; Ma et al., 2014; Mash et al., 2019; Rashid et al., 2016, 2014;

Schumacher et al., 2019). For instance, it can identify early mild cognitive impairment

for dementia (Wee et al., 2016) and distinguishes Alzheimer’s Disease (AD) patients from

healthy controls (Schumacher et al., 2019). Thus, the dynamic component of RSFC may

serve as additional biomarker of neurological disorders - a key motivation of current work.

Currently, the most common approach to extract dynamic RSFC relies on the sliding-

window method, which generally consists of two steps: (1) divide signals into segments

of equal duration; (2) implement the traditional seed based method (Biswal et al., 1995;

Fox et al., 2005), independent component analysis (Allen et al., 2014; Calhoun et al., 2001;

van de Ven et al., 2004), or the dynamic mode decomposition method (Brunton et al., 2016;

Kutz et al., 2016) on the segments sequentially.

While the sliding-window is practically attractive since it enables the use of earlier static

methods in the dynamic context, it presents several limitations and trade-offs, which we will

discuss in Section 3.1. We present a unified solution for extracting dynamic RSFCs from

both fMRI and MEG data, which directly addresses these limitations. We call this method

the time-varying dynamic network (TVDN) framework. We develop a novel automatic and

provably statistically optimal inference algorithm based on the TVDN model to infer the

dynamics that underlie the model. We extract the stationary spatial features and detect the

dynamic brain state switches adaptively. The algorithm is able to divide the brain signals

into uneven segments, each of which contains brain activities in a stationary mental state.
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Once the parameters have been successfully inferred, the entire spatio-temporal noise-free

imaging signal can be reconstructed through a high dimensional linear forward model - a

feature that is rarely available in current methods. The algorithm involves a few tuning or

hyper-parameters, which are automatically selected to minimize the uncertainties of number

of switches across independent samples. We expect that the presented TVDN framework

will prove effective in robustly generating dynamic RSFC features that will serve as useful

biomarkers of neurological and neurodegenerative diseases.

2 Results

2.1 A new biologically constrained model of dynamic functional
connectivity

Current methods for dynamic functional connectivity (FC) analysis do not account for bio-

logical constraints or biophysically realistic models of brain activity and state switches. This

represents a lost opportunity to overcome some of the limitations noted in Section 3.1. Here

we propose a novel model of dynamic FC that relies on discrete and discontinuous “state

changes” in brain activity. Indeed, there is mounting evidence that the brain’s dynamics

results from its cycling through a number of micro-states separated by brain state switches,

such that while the FC between state switches may be considered stationary, their transi-

tions are subject to discontinuous, abrupt or non-smooth events. In addition to being more

biologically realistic, this approach allows us to benefit from several constraints, especially

the concept that the spatial features of brain activity might be stationary, while the cou-

pling between these stationary structures might be temporally dynamic. For instance, the

spatial structures may arise from the underlying structural connectivity, while the temporal

parameters describe the dynamic switching between brain networks over time. Therefore,

while the spatial structure of the FC patterns are considered stationary due to the linkage

with the structure of the brain, how these spatial features work together is allowed to vary

over time. It is further possible to constrain the dynamics of the temporal parameters.

Rather than randomly or continuously traversing through the latent state-space, RSFCs

most likely undergoes discrete and discontinuous shifts, resulting in the concept of “micro-

states”. Hence we impose piece-wise constancy to these temporally changing coefficients.

We show that using these powerful constraints, it is possible to overcome the trade-offs and

limitations currently pertinent to dynamic RSFC analysis.
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Let X(t) be a vector of the brain signals at time t from all brain regions of interest,

and X′(t) be the corresponding signal increment at time t. To incorporate the static spatial

and dynamic temporal features, we model the increment of signal at a specific imaging

acquisition time t as

X′(t) = A(t)X(t) and A(t) = UΛ(t)U−1. (1)

Here U represents the static spatial feature while Λ(t) represents the piece-wise dynamic

temporal feature. The rank of A(t) represents the number of brain states. This model

suggests that at each stationary state in between two brain switches, the brain signal follows

X(t) = U exp{Λ(t)}U−1X0,

where X0 is the initial signal strength. We discuss the motivation of the model in Section

4 in more detail.

Let Yj be the observed signal sampled at the jth time such that Yj = X(tj) + εj, and

let εj be random noise. Based on a sequence of Yj, j = 1, . . . , n across the acquisition

times, TVDN uses a kernel regression approach to estimate U and a brain state switch

detection method to capture the changes in Λ(t). Figure 1 shows a flowchart of the estima-

tion procedure. The purple ovals represent TVDN inputs, and red ovals represent TVDN

outputs. The blue rectangles represent the building blocks of TVDN, which we discuss in

detail in Section 4.3.3. In the following results we use Û, Λ̂(t) and Â(t) to denote the esti-

Figure 1: TVDN pipline. The purple ovals represent TVDN inputs, and red ovals repre-
sent TVDN outputs. The blue rectangules represent the building blocks of TVDN. Two
multimodality kernel examples are provided and will be discussed in Section 4.3.3.

mators for U, Λ and A(t), respectively. From (4) in Appendix, Re{Λ̂(·)}f is the estimator
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of growth/decay constant and Im{Λ̂(·)}f/2π is the estimator for the signal frequency in

Hertz, where Re{Λ̂(·)} and Im{Λ̂(·)} are the real and imaginary part of Λ̂(·) and f is the

signal sampling frequency.

We also implemented three sliding-window based approaches for the comparison. De-

tailed implementation procedure is discussed in Section 4.4.

2.2 Simulation study

We implement TVDN on brain signals simulated from Model (1). We also implemented

three sliding-window based approaches for the comparison on the same data. Detailed

simulation procedure and the implementation of the sliding window methods are discussed

in Section 4.5 and 4.4, respectively.

We plot the estimated switches in Figure 2 (a). The result shows that TVDN captures

the brain state switch accurately. To illustrate the estimation results, we reconstruct the

data by using estimated spatial and temporal features. We show the mean of the estimators

at selected brain regions and the 95% empirical confidence interval, that is 5% and 97.5%

quantiles of the estimators over 100 simulations in Figure 2 (b). Figure 2 (b) shows that

TVDN recovers the original noiseless sequence and the confidence intervals cover the true

signals.

We also plot the resulting switch locations from the sliding-window methods in Figure

9 in Section 4.5. Figure 9 (c) shows that none of the three methods correctly identify the

switches. In addition, the sliding-window based methods are sensitive to the window size

changes, which leads to substantial different results when varying the window sizes.

2.3 TVDN results for resting state fMRI data

We present the TVDN detection results from one fMRI sequence in Figure 3 (a). We also

obtain the growth/decay constant Re{Λ̂(·)}f and the signal frequency as Im{Λ̂(·)}f/2π,

where f = 0.5 Hz is the sampling frequency of the fMRI signal. It can be seen from Figure 3

(b) that the resting state fMRI brain signals are active in the frequency range between 0.001

and 0.007 HZ. We calculated the Pearson correlation between the weighted spatial features,

that is, column sum of ÛΛ̂(t), and the seven canonical networks from Yeo et al. (2011)’s

independent component analysis. As shown in Figure 3 (c), the subject’s weighted spatial

features have the strongest correlation with the limbic network in the first segment (0.38),
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Figure 2: The simulation results with three switches. TVDN detect the true brain state
switches and can reconstruct the true signal. The sliding-window methods are sensitive to
the window size. (a) Switch times. Red lines are the true switch times and the dots are the
estimated locations. (b) The black lines are the true X(t) at four selected regions. The red
solid and dash curves are the mean and median of the estimators and above and below blue
curves are the 95% empirical confidence intervals. The figures from left to right represent
the results of the estimators whose mean squared errors fall at the 0%, 25%, 50% and 75%
quantiles of the mean squared errors across all simulations.
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with the ventral attention network in the second (0.443), third (0.415), sixth (0.432) and

eighth (0.32) segments, with the dorsal attention network (0.24) in the fourth segment. This

changing correlation pattern is indicative of brain state switches over time, demonstrating

that different functional networks are operational at various times. In order to visualize

the changing spatial patterns, we plotted the weighted spatial features across the segments

on the brain surface in Figure 3 (d). The results again illustrate that the spatial pattern

reflecting brain state switches among frontal, parietal and occipital lobes over time.

We also plot, in Figure 11 in Appendix, the pair-wise connectivity measure in each

segment, defined by exp(−‖x1 − x2‖2), where x1,x2 represent signal sequences from two

brain regions. Figure 11 shows that the connectivity increases gradually over time. For

comparison we show analogous results from TVDOR, TVPCA and TVDMD methods with

different window sizes in Figure 12 in the Appendix. The latter results suggest that these

existing sliding-window methods are sensitive to tuning parameters and do not give coherent

switch times when different window sizes are selected. Another representative example

similar to the above is given in Figure 13; its connectivity measures in Figure 14 and the

results from competing methods 15 in Appendix.

2.4 TVDN results for resting state MEG data

We evaluated TVDN on resting state MEG data, where we consider series of de-trended

MEG source signals with d = 68 ROIs. Note that for MEG data, we did not filter the source

signals because the high time resolution MEG data contain clear fluctuation trends that are

not overwhelmed by the noise.

We obtain the detection results as shown in Figure 4. We also obtain the growth/decay

constant Re{Λ̂(·)}f and the signal frequency as Im{Λ̂(·)}f/2π, where f = 60 is the sampling

frequency for the MEG signal. The results in Figure 4 (a) show that there are seven switches

in the signal. In addition, the brain is active in the frequency range between 0 to 6 Hz as

shown in Figure 4 (b). We also plot the correlation between the weighted spatial features

and the seven canonical network in Figure 4 (c). It can be seen that the subject’s weighted

spatial features have the strongest correlation with the visual network in the first segment

(0.31), with the dorsal attention network in the second (0.32), third (0.45), fifth (0.28)

and sixth (0.44) segments, with limbic network (0.29) in the seventh segment, and with

frontopartietal network (0.62) in the eighth segment. These correlation are larger than

those from the resting state fMRI (Figure 3). Finally, we view the weighted spatial features
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Figure 3: The results from the first fMRI dataset. (a) The the real sequences with switch
locations (black dash lines) detected by TVDN. (b) Changes of growth/decay constant

(Re{Λ̂(·)}f), changes of the frequencies (Im{Λ̂(·)}f/2π). (c) The Pearson correlation be-
tween the weighted spatial features and the seven canonical networks. (d) The weighted
spatial features across different segments detected by TVDN.

across the segments in Figure 4 (d). The results illustrate the characteristic brain state

activation patterns switching among parietal, frontal, temporal and occipital lobes over

time. We also plot, in Figure 16 in Appendix, the pair-wise connectivity measure in each

segment, which shows that the connectivity increases from the first to the third segment,

decreases from the fourth to the sixth segment, and increases again until the end of the time.

We further show the results from the existing sliding-window methods in Figure 17 in the

Appendix, which demonstrates that the sliding-window methods are sensitive to window

size selection. Another representative example is given in Figure 18, the corresponding
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connectivity measures in Figure 19 and results from competing methods in Figure 20 in

Appendix.

Figure 4: The results from the first resting state MEG dataset. (a) The the real se-
quences with switch locations detected by TVDN. The dash line is the detected brain state
switches. (b) Changes of growth/decay constant (Re{Λ̂(·)}f), changes of the frequencies

(Im{Λ̂(·)}f/2π). (c) The Pearson correlation between the weighted spatial features and
the seven canonical networks. (d) The weighted spatial features across different segments
detected by TVDN with eye-opening-closing labels.

2.5 TVDN results for task based MEG data

To validate the accuracy of brain state switch detection, we evaluate TVDN on MEG record-

ings during a simple eyes-open to eyes-close task-switching experiment, where six eye close

and open tasks blocks were performed within one minute and the switch times were manu-

ally labeled. In Figure 5, we show the detection results based on the MEG data from two

subjects. Clearly, the switch locations from TVDN are very close to the manually labeled

ones, which suggest TVDN can correctly identify the brain state switch times. Take the first

sample as an example, we obtain the growth/decay constant and the signal frequency with

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.01.438060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.01.438060


f = 120 be the sampling frequency for the two task based MEG signals. The brain is active

in the frequency between 0 to 12 as shown in Figure 21 (a) in Appendix, which is higher

than that from the resting state MEG. Furthermore, we obtain the band passed signals in

alpha band (8-12 HZ), and re-estimated the U and Λ based on the filtered the signals. We

then calculate the Pearson correlation between the re-estimated weighted spatial features

and the seven canonical networks. As shown in Figure 21 (b) in Appendix, although the

correlations with the visual network change over time, the switch patterns do not exactly

follow the eyes-open and eyes-close states. This implies there are micro-state changes that

are unrelated to the visual network during the data acquisition period. Moreover, the brain

views of the re-estimated weighted spatial features in Figure 21 (c) illustrate that the brain

state in alpha band switches in between inferior parietal and supra marginal in the parietal

lobe in most of the segment, while it switches to occipital lobe at the end of the time. We

also plot in Figure 22 in Appendix the pair-wise connectivity measure in each segment base

on the unfiltered signal, which shows that the connectivity decreases from the first to the

fourth segment, increases from the fourth to the fifth segment, and decreases again to the

end of the time. We further show the results from the TVCOR, TVPCA, and TVDMD

methods in Figure 23 in Appendix, which suggests none of the methods provide robust

result across the selected window sizes. Finally, base on the second sample, we show the

growth decay constants, signal frequency, correlations with the canonical networks and brain

views in Figure 24, the connectivity measures in Figure 22 and the results from competing

methods in Figure 26 in Appendix.

2.6 Comparison to benchmark methods

We implemented TVDN on 103 fMRI datasets. The distribution of the number of switches

and ranks are displayed in Figure 6 (a) and (b), respectively, which show around 50%

samples have eight switches and over 65% samples have seven distinct brain states (ranks)

in the resting state.

We further evaluate the correlations between TVDN spatial features with the seven

canonical networks from Yeo et al. (2011)’s independent component analysis under selected

κ and r. We extract the spatial features as the modulus of the first r columns of Û from each

subject, and project them to [0, 1] interval. We also implemented the TVPCA, TVDMD

methods to obtain the corresponding principle components and dynamic modes from each

segment as the spatial features, and calculated their correlations with the canonical net-
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Figure 5: TVDN captures the task-switching dynamics in two eyes-open to eyes-close task-
switching MEG records. The the real sequences with switch locations detected by TVDN.
The black dashed lines are the detected brain state switches. The red solid lines are the
manually labeled switch times.

works. We plot the distributions of the maximum correlations between the canonical net-

works and the spatial features from TVDN, TVPCA and TVDMD across 103 samples in

Figure 6 (c). It can be seen that although TVDN has far fewer spatial features compared

with TVPCA and TVDMD (each subject has only r spatial features), the distribution of

the maximum correlation is similar with those from TVPCA and TVDMD. In addition, we

plot the prediction errors versus the number of switches from TVDN and TVDMD in Figure

6 (d). To obtain the prediction error, for each segment in between two consecutive switch

points, we use the first half of the fMRI records as the training data to estimate A(t) in the

segments. Then we use the rest of the signals as the testing data, and calculate the related

prediction errors defined as

N−1test
∑
s

‖Ys − exp

{∫ s

0

Â(u)du

}
Ys0‖2/‖Ys‖2,

where Ys is the sth observed signals, Ys0 is first signal in the testing sample, Ntest is the

total number of testing sample (half of the signal length) and the summation is over the test

signals. We average the corresponding prediction errors across the segments and individuals
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for the TVDN and TVDMD methods. For the TVDN method, we further construct the

95% confidence bands of the prediction errors as 2.5 (lower) and 97.5 (upper) quantiles of

the erros in the 103 study samples. We do not show the 95% confidence band from TVDMD

because it almost covers the entire plotted area. Figure 6 (d) shows that TVDN has smaller

prediction error than TVDMD, especially when the number of switches is larger than four.

It also suggests that when the number of switches is small, each segment contains sufficient

samples to recover the large number of parameters in TVDMD. Therefore, when there are

less than four switches, TVDN and TVDMD perform equally well in prediction as the

confidence band cover both curves. However, when the number of switches is moderately

large, the sample in each segment is no longer enough to provide accurate estimations for

TVDMD parameters. Therefore, the more parsimonious TVDN method yields substantially

smaller prediction errors than the TVDMD method.

Figure 6: The distribution of the spatial features are similar from different approaches (c)
and the related prediction error from TVDN is smaller compare with those from TVDMD,
the only existing method that allows for the reconstruction of the signals (d). (a) The
distribution of the number of switches across samples. (b) The distribution of the brain
state across samples. (c) The distributions of the maximum correlation between the spatial
features from TVPCA, TVDMD, and TVDN methods with the canonical networks. (d)
The average related prediction errors from the TVDN and TVDMD methods. The shaded
area is the 95% confidence band from the TVDN method. The 95% confidence band from
TVDMD covers the entire plotted area, which we do not show.

To illustrate the robustness of TVDN, in Figure 7, we plot the distribution of the number

of switches from TVDN and the sliding-window methods when different kernel bandwidths
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and window sizes are selected, respectively. Note that the kernel bandwidth in TVDN serves

the same function as the window sizes in the sliding-window methods. For each window size,

we adjust the kernel bandwidth so that the lower 2.5% and upper 97.5% of the Gaussian

kernel correspond to the left and right endpoints of the window, respectively. It can be seen

that TVCOR, TVPCA and TVDMD are sensitive to the window size selection – the larger

the window size, the smaller the number of detected brain switches. In contrast, TVDN is

robust to the kernel bandwidth selection, with only small shifts of the distribution center

with increasing kernel bandwidth.

Figure 7: TVDN’s brain state switch detection is robust to the kernel bandwidth selection
but the sliding-window methods are sensitive to window size selection. The distribution
of the switch points when different window sizes (wsize) are chosen for the sliding-window
methods and different kernel bandwidths are chosen for TVDN. The kernel bandwidths are
adjusted so that the lower 2.5% and upper 97.5% of the Gaussian kernel correspond to the
left and right endpoints of the window, respectively.
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3 Discussion and Conclusion

We proposed a novel biologically-constrained model of brain state evolution during resting-

state functional recording, called the TVDN model. We presented an optimal algorithm

to infer the model’s parameters and to extract the spatial and temporal features from

resting state brain signals. The method relies on the assumption that while the spatial

signatures of RSFC, given by the eigenvectors of the forward model, are static, the evolution

of temporal features, given by the eigenvalues, is dynamic within the recording duration.

We developed an eigenvector estimation technique to extract consistent spatial features

across signal acquisition times. In addition, we proposed a dynamic programming-based

algorithm to detect temporal switches adaptively based on the signal oscillation patterns,

under the biologically-inspired assumption that state transitions are abrupt rather than

smooth in time. Using the inferred spatial and temporal features, we can reconstruct the

underlying mean signals that generate the noisy observations. This may be considered a

model-based smoothing operation, with several potential applications. Thus, our method

is a legitimate generative model of dynamic functional activity in the brain. In addition,

the ability to reconstruct noiseless signals gives the algorithm an opportunity to tune its

parameters using a reconstruction error metric to be minimized.

We evaluated the method on thorough simulated data, followed by a rigorous character-

ization of its performances on empirical fMRI and MEG data from the BIL laboratory at

UCSF. The simulation study shows that TVDN captures the true brain switch locations and

is able to recover the true signal that generates the observed ones. In the empirical study,

for comparison we implemented several competing technques, including TVCOR, TVPCA

and TVDMD methods. Compared with competing methods, TVDN produces smaller set

of spatial features but their correlations with the seven canonical networks have the same

distributions as those from the TVCOR, TVPCA and TVDMD methods. This suggests the

smaller set of spatial features from TVDN is sufficient to explain the brain connection pat-

terns. Furthermore, TVDN provides more robust temporal features, which are adaptive to

the signals and noises from different data and is insensitive to the tuning parameters, such as

kernel bandwidth. In addition, the evaluation on the eye-opening-closing task data shows

that TVDN captures the brain state switches accurately. More importantly, TVDN has

significantly smaller prediction errors than TVDMD does when predicting ”future” activity

in the same segment. Last but not least, the resulting temporal features include instan-
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taneous estimates of the active oscillation frequency of functional activity, thus imparting

the method with attributes of a model-based alternative to conventional time-frequency

analysis.

The ultimate solution to improving the estimation accuracy on fMRI data is to integrate

multi-modality data into the analysis. It is therefore highly advantageous that TVDN is

naturally able to handle multi-modality data. To understand this aspect intuitively, note

that the stationary spatial features are by design modality invariant, and can be shared

across multiple modalities. This imparts the TVDN framework with the ability to integrate

information from both fMRI and MEG to estimate the spatial features. These shared

spatial features will then be used to estimate the modality-specific temporal features, using

information from both fMRI and MEG at each step, which will certainly improve estimation

accuracy. While in this study we have shown how TVDN can operate seamlessly on both

fMRI and MEG, we have not integrated the two for the current analysis because the data

from paired samples are not available. Evaluating its performance on synchronized multi-

modality data would require larger collaborative studies involving both the fMRI and MEG

centers.

One question of clinical interest is whether the dynamic RSFC predicts clinical outcomes,

such as cognitive scores and disease risk. To address the question, the first and foremost

step is to extract subject-specific dynamic RSFC features. However, the dynamic RSFC

features from existing sliding-window methods give a set of RSNs of varying numbers across

subjects, which makes it difficult to explicitly define unique spatial and temporal features

for each subject. In contrast, TVDN extracts subject-specific dynamic RSFCs from both

the fMRI and MEG data, which generates explicit spatial and temporal features that can be

directly used to predict clinical outcomes. Evaluate the relationship between the dynamic

RSFC features and clinical outcomes may potentially generate novel biomarkers for disease

prediction.

3.1 Related methods

Sliding-window approaches are the most popular methods to extract dynamic RSFC from

brain imaging data. However, these approaches do not typically allow for reconstructing

the original brain signals in time or space, since they do not require a model of signal

generation. And the temporal resolution of the inferred dynamic FC is inherently limited

by the window length, which in turn is constrained by the requirement to have sufficient
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samples and signal-to-noise ratio within each window. In practice, this trade-off means that

only slow changes in brain dynamics can be detected or tracked. Furthermore, in almost

all current implementations, the sliding-window width is typically pre-specified and is not

adaptable to the signal statistics or sampling noise in real time. In addition, they do not

generate common features from the multiple modalities that may be available from a single

subject (e.g. fMRI and MEG). This impedes information sharing across modalities and

precludes benefiting from shared or redundant information between modalities.

Moreover, these methods typically suffer from very high data dimensionality, since at

each window, the brain state is given by an entire network or several high-dimensional

independent components - with no a priori notion of which features are actually evolving

and which are static. Therefore the ability to detect discrete brain state switches then

becomes dependent on the ability of unsupervised clustering algorithms like k-means or

hierarchical clustering, to overcome the so-called“curse of dimensionality”. Finally, most

dynamic extensions to static FC methods are purely data-driven and are not informed by

biologically plausible modes of dynamicity in the brain, since they do not constrain which

brain signal features can change dynamically and how - this aspect is discussed below.

Therefore, sliding-window approaches present several limitations that must be overcome to

gain further progress in critical neuroscience and clinical applications.

Several extensions of current methods have been proposed to address some of these

limitations. To improve the sliding-window seed-based correlation approach, Faghiri et al.

(2020) proposed a new metric replacing Pearson correlation between signals. Furthermore,

Vergara et al. (2020) propose a robust method to determine the number of brain states

from the sliding window methods. Hidden Markov models (Baum & Petrie, 1966) are

an another robust alternative to capture brain state switches in the frequency domain.

Vidaurre et al. (2017) and Quinn et al. (2018) used group level data to estimate the model

parameters, assuming that study subjects share the same latent structure. Vidaurre et al.

(2016) combined multivariate auto-regression model (Penny & Roberts, 2002) and hidden

Markov model to obtain brain transitions, assuming that brain oscillations depend on the

signals in a short time period prior to the current time. However, neither the improved

sliding window methods nor the hidden Markov models are able to extract both the static

spatial and dynamic temporal features. It is possible that further extension of these methods

to account for both static and dynamic features will prove worthwhile, but out of scope of

the current work.
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3.2 Limitations and future directions

In our implementation, the tuning parameters of TVDN for fMRI were selected to minimize

the average reconstruction error, and for MEG they were selected to minimize prediction

error from cross validation among brain regions. A better tuning strategy might be to use

cross-validation across individuals, where the data are split between training and testing

individuals, and the tuning parameters are selected to minimize the prediction error in the

testing individuals. However, because our switch detection relies on the entire time series of

the whole brain, there is no existing method to split the study samples and validate parame-

ter selection in the temporal switch detection procedure. Furthermore, a smaller prediction

error may not necessarily imply a better prediction of disease states, like neurodegenerative

disease risk. When the disease outcomes are available, an appropriate parameter selection

strategy would be to select the tuning parameters that minimize the disease prediction error.

Additional data and further research along these lines are ongoing in our laboratory.

Generally, fMRI signals have lower signal-to-noise ratio and temporal resolution than

source-reconstructed MEG signals, which limits the former’s sample size available for pa-

rameter estimation. Hence, the brian state switching patterns extracted by TVDN from

MEG appear clearer than from fMRI, with larger correlation with canonical networks. This

suggests that MEG imaging could be a more informative technique to capture dynamic

RSFC than fMRI. It is possible that alternative smoothing approaches than the one taken

here might prove more effective on fMRI. It is possible that deconvolution of the hemody-

namic response function might be helpful on fMRI data, an aspect that was not considered

here.

4 Method

Dynamic RSFC contains separable spatial and temporal components (Geerligs et al., 2015).

The spatial features of the dynamic RSFC capture the links among brain regions (Alexander-

Bloch et al., 2010; Brier et al., 2014; Geerligs et al., 2015; Sanz-Arigita et al., 2010; Van

Den Heuvel et al., 2009). The temporal features characterize the mental state evolvement

of brain activities (Di et al., 2013; Gonzalez-Castillo et al., 2015; Kitzbichler et al., 2011;

Moussa et al., 2011; Shirer et al., 2012). Furthermore, the spatial features are constrained by

the stable brain structures, and hence they must be consistent over the signal sampling time

and across the image modalities. Moreover, different modalities have distinct temporal res-
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olutions, and therefore the temporal features are distinct across the modalities. Considering

these characteristics of the spatial and temporal features, we develop a novel methodology

to extract the time invariant spatial features and time varying temporal features.

4.1 Time-varying dynamic network

Let Xi(t) be the brain signal at time t on the ith brain region of interest (ROI), X ′i(t) be the

derivative Xi with respect to t with t ∈ [0, T ], representing the increment of brain activity

at time t. Furthermore, let d be the number of ROIs, we write X(t) = {X1(t), . . . , Xd(t)}T,

and X′(t) = {X ′1(t), . . . , X ′d(t)}T. In practice, instead of the true signal, we observe a

noisy signal at n discrete acquisition time points. Denote tj as the jth acquisition time, to

accommodate the noisy data, we write

Yj = X(tj) + εj, (2)

where εj, j = 1, . . . , n, are independent mean zero random errors. Furthermore, we assume

X′(tj) = A(tj)X(tj), (3)

where A(tj) is a time-varying unknown matrix of size d × d. We name model (2) and

(3) together the time-varying dynamic network (TVDN) model, where the dynamics of

resting state functional connectivity is captured by the time-varying matrix A(t). Model

(3) is a direct extension of the dynamic mode decomposition model (Brunton et al., 2016;

Kutz et al., 2016). To see the connection, first note that (3) is equivalent to X(tj+1) =

{A(tj)∆t + I}X(tj), where ∆t is the unit measurement time and I is an identity matrix.

When A(t) is a fixed matrix over time, we can treat A(tj)∆t+I as a constant matrix. Then

model (3) reduces to the dynamic mode decomposition model extensively studied in Brunton

et al. (2016) and Kutz et al. (2016). Furthermore, when A(·) is a fixed matrix, model (3)

is also a network diffusion model (Abdelnour et al., 2014), where A(·) = −βL explains

how brain activations from different ROIs are coupled together to generate new signals via

the structural connectivity given by the matrix Laplacian L and the diffusivity constant β.

Algebraic graph relationships have also been proposed, such that A may be given by the

eigenvectors of structural (Abdelnour et al., 2018) or functional connectivity matrix (Becker

et al., 2018), after a suitable transformation of the eigenvalues. While these approaches do

not readily accommodate time-varying features of A, they point to an important property of

the eigenvectors of A, which may be considered as resting state networks (RSN) (Abdelnour
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et al., 2018, 2014). Because these RSNs represent static brain connections or other non-

dynamic brain substrates, we propose the following constraints that together constitute the

TVDN model:

1. The eigen-decomposition of A(tj) is in the form of

A(tj) = UΛ(tj)U
−1,

where we fix the eigenvector U but allow the eigenvalues to depend on time. Under this

formulation, U may be considered as a set of spatial features that are stationary over

time. The absolute magnitudes of the (time-varying) eigenvalues govern the relative

importance of each of the RSNs.

2. We then impose the condition that dynamicity in RSFCs arise from discrete and poten-

tially discontinuous shifts (“brain state switches”) in activity, which we accommodate

by allowing the eigenvalues, i.e. diagonal elements of Λ(t), to be piece-wise constant

functions of time, reflecting the phenomenon that the brain has a tendency to stay

within, with sporadic cycling between the RSNs (Vidaurre et al., 2017). Therefore, let

τ 0 = (τk, k = 0, 1, . . . ,M,M + 1; τ0 = 0, τM+1 = T ) be a set of true switching points,

dividing the signal to M + 1 stationary segments, we write

Λ(t) = Λ(τk) if τk−1 < t ≤ τk, and Λ(τk) 6= Λ(τk+1),Λ(τk) 6= Λ(τk−1).

Such formulation suggests that when t ∈ (τ0k−1, τ0k], Λ(t) has a constant value at

Λ(τ0k). And the values of Λ(·) are different at distinct time points that fall into two

consecutive segments constructed by the switching points.

3. The number of nonzero eigenvalues in Λ(·) represents the number of intrinsic mental

states in the task free brain activity data. It is well known that only a few RSNs are

typically operational in the brain, and canonical RSFC can be well captured by 7-20

such RSNs (Yeo et al., 2011). In prior graph theoretic models also, A(·) are assumed

to be low rank matrices (Abdelnour et al., 2018; Raj et al., 2019). It is therefore

plausible to assert that the number of such RSNs or brain sates is quite small. Hence

our final constraint is that

rank(Λ(t)) ≤ r � d.

20

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.01.438060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.01.438060


4.2 Model interpretations

Since A(t) is constant in a given segment, the solution of the ordinary differential equation

(3) in the k-th segment is given by X(t) = U exp{Λ(t)}U−1X0k, where X0k is the initial

value at the kth segment and Λ(t) is a constant matrix in the kth segment. Let us define

the real and imaginary components of the j-th eigenvalue as λj = γj + i2πfj. Then the

underlying signal in the k segment satisfies

X(t) =
r∑
j=1

Uj exp{(γj + i2πfj)(t− τ0k−1/n)}{(U−1)j}TX0k, (4)

where (U−1)j is the jth row of U−1. The real term γj is interpreted as a coefficient that

determines the growth or decay of the signal during this segment, and the imaginary com-

ponent fj is interpreted as the oscillation frequency of the mode (Kunert-Graf et al., 2019)

in cycles per sample interval, which is 2 seconds for fMRI data and 1/60 seconds for MEG

data). Therefore, when an estimator for Λ(t), say Λ̂(t), is available for the kth segment,

we can directly infer the grow/decay constant in the segment as Re{Λ̂(t)}f) and the signal

frequency as Im{Λ̂(t)}f/2π.

It is worth mentioning that in situations where mulitple modalities are available for

the same subject, e.g. fMRI and MEG, the spatial features U may be considerd to be

shared between the modalities. In those cases TVDN will be able to aggregate the signals

to generate a common estimator for U across the modalities. Then this common estimator

will be used to obtain the modality specific temporal features Λ(t), where the information

borrowing is clearly embedded in the estimation through sharing U. Augmentation with

multi-modal data can potentially improve estimation accuracy.

4.3 Estimation of the spatial and temporal features

We estimate the spatial feature U through a kernel based method and detect the critical

points for brain state switches via a switch detection algorithms.

4.3.1 Notation

Let t1, . . . , tn denote n signal acquisition time points. We denote Mr and Mr×r be the first

r column and the first r × r block of M, respectively. Furthermore, define |M| be the

cardinality of an arbitrary set M. Let ‖M‖F be the Frobenius norm of matrix M. For a
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vector a, let ‖a‖1, ‖a‖2 be its L1, L2 norm, respectively. Let M−1 be the generalized inverse

of matrix M.

4.3.2 B-spline smoothing

To obtain a proper estimator for X(t) and X ′(t) from the noisy observation Y (t), we first

de-noise the signals through the B-spline smoothing as follows

Γ̂ = argminΓ

n∑
j=1

‖Yj − ΓB(tj)‖22,

=
n∑
j=1

YjB(tj)
T

{
n∑
i=1

B(tj)B(tj)
T

}−1
and

X̂(tj) = Γ̂B(tj), X̂
′(tj) = Γ̂B′r(tj),

where B(·) is the bth order B-spline basis with N interior knots and X̂ and X̂′ are the

smoothed version of X and X′, respectively.

4.3.3 Estimation of the spatial features U

On these smoothed signals, we estimate at any time point of interest ts the matrix A(ts)

by minimizing

L{A(ts)} =
n∑
j=1

{
X̂′(tj)−A(ts)X̂(tj)

}T {
X̂′(tj)−A(ts)X̂(tj)

}
Kh(tj − ts), (5)

where Kh(|x|) = 1/hK(|x|/h) is a kernel function with h be the bandwidth. Here Kh(|x|)
is a deceasing function of |x|. Hence when estimating A(ts), Kh(|x|) weighs the samples

higher when they are closer to ts. The width h of the kernel controls how “local” the

estimator of A(t) is; if it is large, then the estimator of A(t) would hardly change over

time, and it would reduce to the DMD model (Kunert-Graf et al., 2019). A typical choice

of Kh(|x|) is the Gaussian density function with standard deviation h. The bandwidth h is

often selected to satisfy h→ 0 when n→∞ so that even if n grows, when estimate A(ts),

the amount of information used in the estimation remains fixed. In Figure 8, we show the

weights Kh(t − 180) across t ∈ [1, 360] in seconds for fMRI and weights Kh(t − 30) across

t ∈ [1, 60] in seconds for MEG when the rule-of-thumb bandwidth h (page 48 in Silverman

(1986)) was selected.
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Figure 8: The weights Kh(t− 180) across t ∈ [1, 360] in seconds for fMRI (left) and weights
Kh(t− 30) across t ∈ [1, 60] in seconds for MEG (right) when the rule-of-thumb bandwidth
h.

Minimizing L{A(ts)} has a close form solution for A(ts) as

n∑
j=1

X̂′(tj)X̂(tj)
TKh(tj − ts)

[
n∑
j=1

{X̂(tj)X̂(tj)
T}Kh(tj − ts)

]−1
,

which is the Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964) regularly used to

estimate functions at specific time points.

To account for the fact that M =
∑n

j=1{X̂(tj)X̂(tj)
T}Kh(tj − ts) can be a low rank

matrix, we replace the matrix inverse above with a truncated-rank inverse such that all

eigenvalues of M below a threshold value are set to zero and removed from the pseudo-

inverse. Formally, define a truncation function ρλ as ρλ(M) = B1diag{σjI(σj > λ), j =

1, . . . ,min(m,n)}BT
2 , where B1, B2 are the left and right singular vectors and σj is the jth

singular value of M. Here we choose a truncation threshold b0 = O(h2r + n−1/2N1/2h2d),

which is in the order of ‖X̂WX̂T −XWXT‖F/n with W = diag{Kh(tj − ts), j = 1, . . . , n}
for a specific time point ts. Here, the first order h2r comes from the kernel smoothing and

the second term n−1/2N1/2h2d comes from the B-spline smoothing. When n → ∞ and

n−1/2N1/2 → 0 as n → ∞, the error ‖X̂WX̂T −XWXT‖F/n and in turn the quantity b0

go to 0 when sufficient samples are collected overtime.

Â(ts) =
n∑
j=1

X̂′(tj)X̂(tj)
TKh(tj − ts)ρ−1b0

[
n∑
j=1

{X̂(tj)X̂(tj)
T}Kh(tj − ts)

]
,

The truncation function is specially designed for the high correlated sequences where the

XWXT is a low rank matrix, but X̂WX̂T can be full ranked due to the additional es-

timation error ‖X̂WX̂T − XWXT‖F/n. Using the truncation function helps to remove

spurious eigenvalues, which not only improves the estimation accuracy but also stabilizes

the computation.
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When X is full row rank matrix, we can show that ‖
∑

s∈MS
Â(ts) − A(ts)‖F/|MS| =

Op(h
2r + n−1N1/2dr), which goes to 0 when sample size increases under mild conditions.

Here, the first term h2r is the order of the estimation error in the kernel regression procedure

and the second term n−1N1/2dr is the order of the error from the B-spline smoothing proce-

dure. When h→ 0 and n−1N1/2 → 0 as n→∞, the estimation error of
∑

s∈MS
Â(ts)/|MS|

vanishes along with the increment of the sample size. This suggests that we need sufficient

samples to recover the underlying true parameters. This fact also explains the phenomenon

in the real data analysis that the reconstruction of the MEG signals is better than that of the

fMRI signals. Therefore, we extract the estimator for U as the eigenvector of
∑

s∈MS
Â(ts),

denoted as Û.

4.3.4 Brain-state switch detection

Define Mr· as the first r rows of matrix M, and Mr×r as the first r× r block matrix of M.

Because

X′(t) = A(t)X(t) = Ur·Λr×r(t)(U
−1)r·X(t),

after obtaining Û we reduce the data dimension as

(U−1)r·X
′(t) = Λr×r(t)(U

−1)r·X(t). (6)

It is worth mentioning that multiplying both sides by (U−1)r·X(t) projects the d di-

mensional ROIs to a lower r dimensional space. Furthermore, Λr×r(t) is a diagonal matrix,

which contains only r unknown parameters. Such dimension reduction procedure is crucial

for speeding up and stabilizing the switch detection algorithm, which makes the brain state

switch detection practically feasible for signals from a large number of ROIs.

Let X̃′(t) = (U−1)r·X
′(t) and X̃(t) = (U−1)r·X(t), we obtain the estimator for true

switch number M and locations τk’s through minimizing a modified Bayesian information

criteria defined as

MBIC(τ ,M) =
M∑
k=0

L(τk + 1, τk+1) + 2rlog(n)κ(M + 1),

where κ is a constant, and

L(τk + 1, τk+1) = −
τk+1∑

s=τk+1

log[Φ{X̃′(s)− Λ̂kX̃(s),0, Σ̂k}]
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with Φ(x, a, s) be the multivariate normal density function with mean a and variance covari-

ance matrix s evaluated at x. To solve the minimization problem, we iterate over all possible

segmentations of the sequence. For the samples in a given segment, say s ∈ (τk + 1, τk+1],

we obtain Λ̂k as

Λ̂k = argminΛk

τk+1∑
s=τk+1

{X̃′(s)−ΛkX̃(s)}T{X̃′(s)−ΛkX̃(s)},

subject to the fact that Λk is a r × r diagonal matrix, and obtain Σ̂k as the estimated

sample covariates defined as

Σ̂k =

τk+1∑
s=τk+1

{X̃′(s)− Λ̂kX̃(s)}{X̃′(s)− Λ̂kX̃(s)}T/(τk+1 − τk).

We then find the best segmentation, that is the best (τ,M) that minimizes MBIC(τ ,M) as

the estimated locations and number of the switch points. In short, we obtain the estimators

as

(τ̂ , M̂) = argminτ,MMBIC(τ ,M).

We employ the dynamic programming algorithm as detailed in Dynamic programming algo-

rithm as follows (Jackson et al., 2005; Killick et al., 2012) to efficiently evaluate all possible

segmentations and obtain τ̂ and M̂ . The dynamic programming algorithm finds the opti-

mal value recursively, avoiding re-computing the L over overlapped segments (Bellman &

Roth, 1969; Bement & Waterman, 1977; Du et al., 2016a; Yau & Zhao, 2016). The compu-

tational cost is O(n2Mmax) and storage is O(nMmax), where Mmax is the maximum number

of switches points in the signal (Du et al., 2016b).

4.3.5 Tuning parameter selection

We choose rank r so that the first r modulus of the eigenvalues of
∑

t Â(t) comprise 80%

of the total sum of them, where the summation is taken over a random subset of times.

Furthermore, we select the bandwidth for kernel in (5) to be the rule-of-thumb bandwidth

times 0.5. Moreover, for the resting state fMRI data, we select κ to minimize the variation

of the number of switches across the subjects. For the resting state MEG data we select

κ through resampling over acquisition time. More specifically, for a given κ, we select five

subsamples, where the jth sample contains data at times 5t + j with j = 1, . . . , 5 and

t = 1, . . . , (n − 5)/5. Since the five sequences are in conjunction with each other, they

should have similar numbers of switches.
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Dynamic programming algorithm
Input: (1) Lmin, the minimum distance between two change points; (2) Mmax, the
maximum number of change points; (3) κ value.

1. For 0 ≤ i ≤ n− Lmin + 1 and i+ Lmin ≤ j ≤ n+ 1, calculate L(ti, tj).

2. Initialize H (tj | 0) = L(tj+1, tn+1), j = 0, . . . , n− Lmin + 1.

3. For 1 ≤ s ≤Mmax and 0 ≤ i ≤ n− s− Lmin, update

H (ti | s) = min
i+Lmin≤j≤n−(s−1)

{L(ti + 1, tj) +H (tj | s− 1)} .

Record the locations of s change points that yield H (t0 | s), denoted by Ĵs.

4. For 1 ≤ s ≤Mmax, find

M̂ = argminsH (t0 | s) + 2rlog(n)κ(s+ 1).

The corresponding estimated switch point set is τ̂ = ĴM̂ .

Output: τ̂ and M̂ .

4.4 Sliding window approaches

We implement TVCOR, TVPCA and TVDMD as follows where we construct windows in

different sizes sliding by 4 frames in each step. Let Sl be the set of time point indices in the

sliding-window l, l = 1, . . . , L. For matrix (Yj, tj ∈ Sl), TVCOR calculates the pairwise

correlation between signals from different ROIs, TVPCA extracts the principle components,

TVDMD extracts the dynamic modes (Brunton et al., 2016; Kunert-Graf et al., 2019) from

the brain signals. Next we vectorize the resulting correlations, principle components and

dynamic modes and cluster them into four clusters, corresponding to the number of true

segments in the simulation. Finally, we obtain the switch locations as the time points where

the vectorized correlations, principle components and dynamic modes switch the cluster

memberships.

4.5 Simulation method

We construct A(t) = UΛ(t)U−1 for t = 1, . . . , 180, where Λ(s) are singular vectors and U

are eigenvalues and eigenvectors estimated from a functional magnetic resonance imaging

(fMRI). Here Λ(s) is a rank six matrix, which contains three switches at the 50, 99, 144th

time points. We simulate data from model (2) and (3), where εj = UΛ(1)U−1ξj/10, j =
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1, . . . , n and ξj is a sparse error vectors with 10% nonzero entries. Each nonzero element in

ξ(t) is independently generated from a normal distribution with standard error (t2 − t1)/8.

We simulate the data 100 times with the same set of parameters. Then we implement TVDN

to obtain the estimated spatial feature Û, the switch locations and the temporal features

Λ̂(s), where we select κ = 1.53 throughout the simulations to achieve satisfactory results.

In the left panel of Figure 9 (a), we plot the reconstruction errors defined as

n∑
s=1

‖Ys − exp

{∫ ts

0

Â(u)du

}
Y1‖22, (7)

when different ranks for Û are selected in the estimations. The results show that the

estimation error substantially drops from the setting when r = 4 to the setting when r = 6.

Furthermore, when r > 6, the reconstruction error starts to incline. The convex phenomenon

attributes to the tradeoff between the dimension reduction described in (6) and switch

detection accuracy: when selecting a larger r, the transformation (U−1)r·X(t) contains

more information in X(t), but it increases the estimation errors for the brain state switch

detection algorithm; on the other hand, selecting a smaller r improves the switch detection

accuracy, but (U−1)r·X(t) contains less information in the original data. On the right panel

in Figure 9 (a), we show the MBIC values when selecting κ = 1.53, which reaches the

minimum when three switches are selected.

We select six (the rank of A(s)) principle components and dynamic modes throughout

the simulations. Figure 9 (b) plots the distribution of the Hausdorrff distance between

the true and estimated switches for the different methods. A smaller Hausdorrff distance

implies a better estimation. It can be seen that the switches from TVDN have the smallest

Hausdorrff distance with the truth. There are several occasions that the sliding-window

approaches outperform the TVDN method. This is because we specify the true number of

segments in the sliding-window approaches, while we leave this parameter unknown in the

TVDN approach and allow TVDN to choose it adaptively. To illustrate the pattern in more

details, we plot the resulting switch locations from the sliding-window methods in Figure 9

(c). Figure 9 (c) shows that none of the three methods correctly identify the switches. In

addition, the sliding-window based methods are sensitive to the window size changes, which

leads to substantial different results when varying the window sizes.

Finally, we adopt the same simulation procedure while assume a time invariant A(s).

Then we implement TVDN on the resulting high dimensional sequences and reconstruct
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Figure 9: The simulation results with three switches. Here A(t) has six ranks. (a) Left:
the boxplot of the reconstruction error in (7) from 100 simulations when choosing different

ranks for Â(t) in the estimation. Right: the boxplot of the MBIC values at different
number of switches when κ = 1.53. (b) Hausdorrff distance between true switches and the
estimated switches. The window sizes (wsize) selected are 10 (left) and 20 (right) for the
sliding-window based methods. (d) Chang point locations for window sizes 10 (top) and 20
(bottom) for the TVCOR (left), TVPCA (middle) and TVDMD (right) methods.

the observed data. We show the mean of the estimators and 95% confidence intervals in

Figure 10 in Appendix. The results show that even if A(s) is stationary over time, TVDN

correctly extracts the spatial and temporal features from the brain signals.

4.6 Data and preprocessing

4.6.1 fMRI data

Resting state fMRI data from 103 health subject was acquired at the UCSF Neuroimaging

Center using a Siemens 3T TIM TRIO scanner using a T2∗-weighted AC-PC aligned echo

planar imaging (EPI) sequence with the following parameters: TR = 2000 ms, TE = 29 ms,

flip angle = 75, FOV = 240 x 240, slice thickness = 3.5 mm. Each fMRI was recorded over

six minutes with 0.5 HZ sampling rate. Preprocessing included slice-timing correction (Cox

& Hyde, 1997), image realignment to correct for motion (Jenkinson & Smith, 2001), and

intensity normalization. The head-motion parameters were estimated before any spatiotem-

poral filtering was used (Jenkinson et al., 2002). After regression of nuisance signals, fMRI

was coregistered on the T1-weighted anatomical image, and the resulting time-series were

normalized to MNI space with the non-linear registration from ANTS (Avants et al., 2009).
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Following time series extraction, data were detrended and a bandpass filter was applied

between 0.009 and 0.08 HZ. To remove the boundary effect from the filtering procedure, we

remove the first 25 sampling points. Hence, the total length of the signal is 155.

4.6.2 MEG data

MEG data was acquired in the Biomagnetic Imaging Laboratory at University of Califor-

nia, San Francisco (UCSF) with an Omega 2000 whole-head MEG system from CTF Inc.

(Coquitlam, BC, Canada) with 1200 Hz sampling rate. For resting state data analysis, two

subjects were instructed simply to keep their eyes closed and stay awake. We collected 4

trials per subject, each trial of 1-min length with a sampling rate of 1200 Hz. We randomly

chose 10 seconds or equivalently 12000 time samples for brain source reconstructions for

each subject. Additionally, for one subject, MEG data was collected across two sessions

for a an eye-opening-closing task. To measure eye opening and closing, two pairs of Elec-

trooculography (EOG) electrodes were placed to the left and right of the eye during MEG

scans. A potential difference was recorded when the subject blinked eyes and a signal peak

occurred in the EOG channel of scanned data. We manually labeled EOG peaks to indi-

cate time periods of eye opening and closing for TVDN analyses. Across both resting and

eye-opening task, all MEG sensor locations were co-registered to each subject’s anatomical

MRI scans. The leadfield for each subject was calculated in NUTMEG (Dalal et al., 2004)

using a single-sphere head model (two spherical orientation leadfields) and an 8 mm voxel

grid. Each column was normalized to have a norm of unity. The data were digitally filtered

to remove DC offset and any other noisy artifact outside of the 1 to 45 Hz bandpass range.

To infer the neuronal activity in the source space from the MEG recordings, which were

in sensor space, source localization was performed using time-frequency optimized adaptive

beamforming (Dalal et al., 2004) using the custom-built open source NUTMEG software

tool. Since this study focuses on the cortical areas and only the sources belonging to the 68

cortical regions were selected based on the Desikan-Killiany parcellations. The time-course

of activity in each of the 68 brain regions was estimated by averaging the time-course of

source activity estimated from voxels within a 20 mm radius of its centroid.

The resting state MEG data was down sampled to 600 HZ, while the eye-opening-closing

MEG was down sample to 1200 HZ in our analysis.
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Appendix

A Additional simulation results
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Figure 10: The simulation results with no switch. Here A(t) has six ranks. The black lines
are the true X(t) at four selected regions. The red solid and dash curves are the mean and
median of the estimators and above and below blue curves are the 95% empirical confidence
intervals. The figures from left to right represent the results of the estimators whose mean
squared errors follow on the 0%, 25%, 50%,75% quantiles of the mean squared errors across
all simulations. The confidence intervals are narrow because the simulated random errors
have small variabilities.

B fMRI additional results

Figure 11: The pairwise connectivity over 90 ROIs from the first fMRI example.
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Figure 12: The brain state switch detection is not robust across different window size
selections for the sliding-window approaches on the first fMRI example.

C MEG additional results
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Figure 13: The results from the second fMRI sample. (a) The the real sequences with switch
locations detected by TVDN. The horizontal line is the acquisition time. (b) Changes of

growth/decay constant (Re{Λ̂(·)}f), changes of the frequencies (Im{Λ̂(·)}f/2π). (c) The
Pearson correlation between the weighted spatial features and the seven canonical networks.
(d) The weighted spatial features across different segments detected by TVDN.
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Figure 14: The pairwise connectivity over 90 ROIs from the second fMRI example.

Figure 15: The brain state switch detection is not robust across different window size
selections for the sliding-window approaches on the second fMRI example.
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Figure 16: The pairwise connectivity over 68 ROIs from the first MEG resting state example.

Figure 17: The brain state switch detection is not robust across different window size
selections for the sliding-window approaches on the first MEG resting state example.
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Figure 18: The results from the second resting state MEG record. (a) The the real sequences
with switch locations detected by TVDN. The horizontal line is the acquisition time. (b)

Changes of growth/decay constant (Re{Λ̂(·)}f), changes of the frequencies (Im{Λ̂(·)}f/2π).
(c) The Pearson correlation between the weighted spatial features and the seven canonical
network. (d) The weighted spatial features across different segments detected by TVDN.
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Figure 19: The pairwise connectivity over 68 ROIs from the second MEG resting state
example.

Figure 20: The brain state switch detection is not robust across different window size
selections for the sliding-window approaches on the second MEG resting state example.
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Figure 21: The results from the first eye-opening-closing MEG record. (a) Changes of

growth/decay constant (Re{Λ̂(·)}f), changes of the frequencies (Im{Λ̂(·)}f/2π). (b) The
Pearson correlation between the weighted spatial features and the seven canonical networks.
(c) The weighted spatial features across different segments detected by TVDN with eye-
opening-closing labels.

Figure 22: The pairwise connectivity over 68 ROIs from the first MEG eyes-open and eyes-
close example.
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Figure 23: The brain state switch detection is not robust across different window size
selections for the sliding-window approaches on the first MEG eye-opening-closing example.

Figure 24: The results from the second eye-opening-closing MEG record. (a) Changes

of growth/decay constant (Re{Λ̂(·)}f), changes of the frequencies (Im{Λ̂(·)}f/2π). (b)
The Pearson correlation between the weighted spatial features and the seven canonical
networks. (c) The weighted spatial features across different segments detected by TVDN
with eye-opening-closing labels.
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Figure 25: The pairwise connectivity over 68 ROIs from the second MEG eyes-open and
eyes-close example

Figure 26: The brain state switch detection is not robust across different window size selec-
tions for the sliding-window approaches on the second MEG eye-opening-closing example.

39

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.01.438060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.01.438060


References

Abdelnour, F., Dayan, M., Devinsky, O., Thesen, T. & Raj, A. (2018). Functional

brain connectivity is predictable from anatomic network’s laplacian eigen-structure. Neu-

roimage 172, 728–739.

Abdelnour, F., Voss, H. U. & Raj, A. (2014). Network diffusion accurately models the

relationship between structural and functional brain connectivity networks. Neuroimage

90, 335–347.

Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L.,

Lalonde, F., Lenroot, R., Giedd, J. & Bullmore, E. T. (2010). Disrupted modu-

larity and local connectivity of brain functional networks in childhood-onset schizophrenia.

Frontiers in systems neuroscience 4, 147.

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T. & Calhoun,

V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral

cortex 24, 663–676.

Avants, B. B., Tustison, N. & Song, G. (2009). Advanced normalization tools (ants).

Insight j 2, 1–35.

Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M.

& Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during

learning. Proceedings of the National Academy of Sciences 108, 7641–7646.

Baum, L. E. & Petrie, T. (1966). Statistical inference for probabilistic functions of finite

state markov chains. The annals of mathematical statistics 37, 1554–1563.

Becker, C., Pequito, S., Pappas, G., Miller, M., Grafton, S., Bassett, D.

& Preciado, V. M. (2018). Spectral mapping of brain functional connectivity from

diffusion imaging. Scientific Reports 8.

Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M. (2005). Investiga-

tions into resting-state connectivity using independent component analysis. Philosophical

Transactions of the Royal Society B: Biological Sciences 360, 1001–1013.

40

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.01.438060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.01.438060


Bellman, R. & Roth, R. (1969). Curve fitting by segmented straight lines. Journal of

the American Statistical Association 64, 1079–1084.

Bement, T. & Waterman, M. (1977). Locating maximum variance segments in sequential

data. Journal of the International Association for Mathematical Geology 9, 55–61.

Betzel, R. F., Avena-Koenigsberger, A., Goñi, J., He, Y., de Reus, M. A.,
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