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ABSTRACT  

Multiplexed imaging technologies enable the study of biological tissues at 

single-cell resolution while preserving spatial information. Currently, high-dimension 

imaging data analysis is technology-specific and requires multiple tools, restricting 

analytical scalability and result reproducibility. Here we present SIMPLI (Single-cell 

Identification from MultiPlexed Images), a novel, flexible and technology-agnostic 

software that unifies all steps of multiplexed imaging data analysis. After raw image 

processing, SIMPLI performs a spatially resolved, single-cell analysis of the tissue 

slide as wells as cell-independent quantifications of marker expression to investigate 

features undetectable at the cell level. SIMPLI is highly customisable and can run on 

desktop computers as well as high-performance computing environments, enabling 

workflow parallelisation for large datasets. SIMPLI produces multiple tabular and 

graphical outputs at each step of the analysis. Its containerised implementation and 

minimum configuration requirements make SIMPLI a portable and reproducible 

solution for multiplexed imaging data analysis.  

SIMPLI is available at: https://github.com/ciccalab/SIMPLI. 
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MAIN 

A detailed investigation of tissue composition and function in health and 

disease requires spatially resolved, single-cell approaches that precisely quantify cell 

types and states as well as their interactions in situ. Recent technological advances 

have enabled to stain histological sections with multiple tagged antibodies that are 

subsequently detected using fluorescence microscopy or mass spectrometry1. High-

dimensional imaging approaches such as imaging mass cytometry (IMC)2, 

multiplexed ion beam imaging (MIBI)3, co-detection by indexing (CODEX)4, 

multiplexed immunofluorescence (mIF, including cycIF)5 and multiplexed 

immunohistochemistry (mIHC)6,7 enable quantification and localisation of cells in 

sections from formalin-fixed paraffin-embedded (FFPE) tissues, including clinical 

diagnostic samples. This is of particular value for mapping the tissue-level 

characteristics of disease conditions and for predicting the outcome of therapies that 

depend on the tissue environment, such as cancer immunotherapy. For example, a 

recent IMC phenotypic screen of breast cancer subtypes revealed the association 

between the heterogeneity of somatic mutations and that of the tumour 

microenvironment8. Similarly, a CODEX-based profile of FFPE tissue microarrays 

from high-risk colorectal cancer patients correlated PD1+CD4+ T cells with patient 

survival9. 

The analysis of multiplexed images requires the conversion of pixel intensity 

data into single-cell data, which can then be characterised phenotypically, quantified 

comparatively and localised spatially back in the tissue. Currently available tools are 

technology-specific and cover only some steps of the whole analytical workflow 

(Table 1). For example, several computational approaches have been developed to 

process raw images and extract single-cell data either interactively (Ilastik10, 
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CellProfiler411, CODEX Toolkit4) or via command line (imcyto12, 

ImcSegmentationPipeline13). Distinct sets of tools can then perform cell phenotyping 

(CellProfiler Analyst14, Cytomapper15, Immunocluster16) or analyse cell-cell spatial 

interactions (CytoMap17, ImaCytE18, SPIAT19, neighbouRhood20).  Similarly, a few 

tools enable direct pixel-based analysis through pixel classification10 or quantification 

of pixel positive areas11. Despite such a variety of tools, none of them can perform all 

of the required analytical steps in a common pipeline. Two exception are 

histoCAT++21 and QuPath22, which however have been developed specifically for 

interactive use and are not well suited for the analysis of large datasets. Moreover, 

all of these tools relies on ad hoc configuration files and input formats, making the 

analysis challenging for users with limited computational skills and restricting the 

scalability, portability and reproducibility in different computing environments.  

Here we introduce SIMPLI (Single-cell Identification from MultiPLexed Images), 

a tool that combines processing of raw images, extraction of single-cell data, and 

spatially resolved quantification of cell types or functional states into a single pipeline 

(Table 1). This is achieved through the integration of well-established tools and 

newly developed scripts into the same workflow, enabling ad hoc configurations of 

the analysis while ensuring interoperability between its different parts. SIMPLI can be 

run on desktop computers as well as on high-performance-computing environments, 

where it can be easily applied to large datasets due to automatic workflow 

parallelisation. To demonstrate the flexibility of SIMPLI to work with different 

technologies and experimental conditions, we analyse the phenotypes and spatial 

distribution of cells in different tissues (human colon, appendix, colorectal cancer) 

using multiplexed images obtained with distinct technologies (IMC, mIF, CODEX). 
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Table 1. Features of representative tools for the analysis of multiplexed imaging data 
 

Computational tool Image 
processing 

Cell 
segmentation 

Cell phenotyping Spatial analysis Pixel 
analysis Parallelisation Imaging 

technologies preselected unsupervised homotypic heterotypic 

SIMPLI � � � � � � � � 1-6 

CODEX Toolkit4 � � � � � � � � 3 

CellProfiler411 � � � � � Partial � � 1-6 

HistoCAT++21 � � � � � � � � 1,2,4,5 

QuPath22 � � � � � � � � 1-6 

Cytomapper15 Partial � � � � � � � 1-5 

Ilastik10 � � � � Partial � Partial � 1-6 

ImcSegmentationPipeline13 � � � � � Partial � � 1 

Imcyto12 � � � � � � � � 1 

SPIAT19 � � � � � � � � 2,5,6 

Giotto23 � � � � � � � � 1-6 

ImaCytE18 � � � � � � � � 1 

CellProfiler Analyst14 � � � � � � � � 1-6 

Immunocluster16 � � � � � � � � 1 

NeighbouRhood20 � � � � � � � � 1- 5 

CytoMAP17 � � � � � � � � 2 

 
For each tool, reported are the steps of the analytical workflow that it can perform, whether it can be parallelised and the 

multiplexed imaging platform it can be applied to (1: IMC; 2: mIF; 3: CODEX; 4: MIBI; 5: mIHC; 6: spatial transcriptomic 
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visualisation). A method was considered compatible with a given imaging technology if this was reported in the original publication 

or other studies. 
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RESULTS 

Overview of the SIMPLI analytical workflow 

SIMPLI performs the analysis of multiplexed imaging data in three steps 

(Methods, Fig. 1), further divided into stand-alone processes (Supplementary Fig. 1). 

Each process can be run independently or even skipped with the possibility of using 

alternative input data at each point of the workflow. 

The first step of SIMPLI consists of raw data processing (Fig. 1a). Data can 

be single or multichannel images or text files from a variety of high-dimensional 

imaging technologies. After data extraction, pixel values for each marker can be 

normalised by rescaling their values in each sample to allow the user to apply the 

same thresholds for background noise reduction across samples. Alternatively, 

sample-specific thresholds can be applied directly to individual, non-normalised 

images to minimise the effect of non-uniform staining. Finally, masks of specific 

tissue compartments or markers are derived for subsequent use. The obtained 

images can then be analysed at the cell (Fig. 1b) and pixel (Fig. 1c) levels.  

The cell-based analysis aims to investigate the qualitative and quantitative cell 

composition of the tissue and is formed of (1) single-cell data extraction, (2) cell 

phenotyping and (3) spatial analysis of cell-cell distances (Fig. 1b).  To extract cell 

data, SIMPLI implements single-cell segmentation with either a conventional 

approach based on CellProfiler411 or a deep learning approach based on StarDist24. 

The former enables deterministic filtering based on cells size and shape, as well as 

marker intensities. The latter applies pre-trained models (either provided by SIMPLI 

or supplied by the user) to identify cells with high accuracy. After cell segmentation, 

SIMPLI produces the masks of each individual cell together and calculates the 
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expression values for each marker. Cells belonging to tissue compartments or 

positive for certain markers can then be identified based on their overlap with 

previously derived tissue compartment or marker masks. Cell functional phenotypes 

can be further characterised with two alternative approaches. The first applies 

unsupervised clustering to all cells or preselected subsets of cells (for example those 

mapping to specific tissue compartments or positive for certain markers) using 

marker expression levels. This leads to the unbiased classification of cells into 

clusters with similar expression profiles indicating similar phenotypes. The second 

approach identifies cells with designated phenotypes by applying combinations of 

user-defined thresholds to the expression values of the markers of interest. These 

thresholds can be identified through an expert guided examination of the original 

images using the visualisation plots produced by SIMPLI. Finally, a spatial analysis 

of the distance between cells within the imaged tissue leads to the identification of 

cell aggregations of the same (homotypic) or different (heterotypic) cell types. In the 

case of homotypic aggregations, SIMPLI identifies groups of cells of the same type 

within a user-defined distance and visually localises them as clusters in the tissue 

image. In the case of heterotypic aggregations, SIMPLI computes the distance 

distribution between distinct cell types and compares them across cell types and 

experimental conditions. 

The pixel-based approach implemented in SIMPLI enables quantification of 

areas positive for a specific marker or combination of markers, independently of their 

association with cells (Fig. 1c). The obtained marker-positive areas are then 

normalised over the area of the whole image, or those of specific tissue 

compartments or positive for certain markers using the predefined masks, to allow 

comparisons across samples. The pixel-based analysis is useful for the investigation 
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of tissue features that are not detectable at the cell level. For instance, extracellular 

or secreted proteins cannot be quantified with approaches dependent on cell 

segmentation. In addition, being completely cell agnostic, the pixel-based analysis 

can provide an independent validation of cell-based observations.  

SIMPLI generates tables, plots and images as outputs of each process, thus 

enabling the visualisation of results at each step of the analysis. 
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Figure 1. Schematics of the SIMPLI workflow  
 

 

a. Raw images are extracted from IMC or MIBI data or directly imported from other 

imaging technologies. After their optional normalisation, these images are 

thresholded to remove the background noise and produce tissue compartment or 

marker masks. The resulting images can be analysed using a cell-based or a pixel-

based approach.  

b. In the cell-based analysis, single cells are segmented with deterministic or deep 

learning models and phenotyped using unsupervised or supervised approaches. The 

distribution of cells in the tissue can then be investigated through a spatial analysis 

of homotypic or heterotypic aggregations.  

c. In the pixel-based approach, areas positive for user-defined combination of 

markers are measured and normalised over the area of the whole image or of the 

masks defining compartments or areas positive for certain markers.  
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IMC quantification of secreted and cell-associated IgA in human colon 

To test its performance and versatility, we applied SIMPLI to four case studies 

describing the analysis of multiplexed tissue images of diverse origin, size and 

resolution and obtained with different technologies (Table 2).  

As a first case study, we used SIMPLI to compare the levels of secreted and 

cell-associated immunoglobulin A (IgA), the major immunoglobulin isotype in 

intestinal mucosa25, from IMC-derived multiplexed images of normal human colon. 

We stained six colon sections (CLN1-CLN6, Supplementary Table 1) with 26 

antibodies marking T cells, macrophages, dendritic cells and B cells as well as 

stromal components (Supplementary Table 2) and ablated one region of interest 

(ROI) per sample. 

Using SIMPLI, we extracted and normalised the 28 single channel images (26 

antibodies and two DNA intercalators) for each of the six ROIs and combined them 

into a single image per ROI (Fig. 2a). This normalisation enabled selection of a 

single threshold for each marker to be used across all samples, thus reducing the 

complexity of the analysis configuration. By applying these thresholds to the E-

cadherin and vimentin expression, we obtained the masks for the epithelium and the 

lamina propria, respectively (Fig. 2b). We used these masks to assign cells to the 

two compartments and normalise marker values or positive areas in the downstream 

analyses.  

We then used the pixel-based approach to quantify both the IgA expressed by 

the plasma cells resident in the diffuse lymphoid tissue of the lamina propria as well 

as the secreted IgA undergoing transcytosis to traverse the epithelial compartment 

(Fig. 2b).  As expected, most secreted IgA was localised in the epithelial crypts with 

only minimal presence of IgA+ area in the surface epithelium (Supplementary Fig. 
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2a). Quantification of the normalised IgA+ areas in the two compartments 

(Supplementary Fig. 2b) confirmed higher IgA+ levels in the lamina propria than in 

the epithelium (Fig. 2c). To assess the impact of image normalisation, we repeated 

the same analysis starting from the raw images and applying sample-specific 

thresholds to remove the background noise. The resulting IgA levels correlated 

linearly with those obtained from normalised images (Supplementary Fig. 2c), 

showing that data normalisation has no impact on the results, 

Next, we quantified the IgA+ plasma cells in the lamina propria using the cell-

based approach. First, we performed single-cell segmentation with the deterministic 

approach and retained only cells overlapping for at least 30% or their area with the 

lamina propria mask (Fig. 2d). We verified that varying the threshold of the overall 

had a minimal impact on the proportion of cells assigned to the lamina propria 

(Supplementary Fig. 2e). We then identified IgA+ plasma cells, T cells, macrophages, 

and dendritic cells resident in the lamina propria according to the highest overlap 

between the cell area and the mask of each immune cell population (Fig. 2e). Again, 

we verified that the relative proportion of these cell populations changed only 

minimally varying the threshold of the overlap with the lamina propria mask 

(Supplementary Fig. 2e). Finally, we quantified the four immune cell populations 

across the six samples and observed that IgA+ plasma cells constitute approximately 

25% of all identified immune cells (Fig. 2f). This is consistent with previous 

quantifications of the fraction of plasma cells over the total mononucleated cells in 

the lamina propria of healthy individuals26.  

The relative proportion of IgA+ plasma cells positively correlated with the 

normalised IgA+ area in the lamina propria, demonstrating that the quantification 
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from the single-cell analysis is supported by the cell agnostic measurements at the 

pixel-level (Fig. 2g). 
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Table 2. Description of the case studies used to test SIMPLI. 
 

Case 
study  

Imaging 
technology 

Analysed 
samples (n) 

Channels 
(n) 

ROI 
(mm2) 

Resolution 
(µm/pixel) 

HPC 
platform 

CPU 
time (h) 

Elapsed 
real time (h) 

RAM 
(GB) Processes 

1 
(Fig.2) IMC 6 28 1.00 1.00 SGE 00:20:41 00:06:10 4.1 

• Raw data processing 
• Cell masking 
• Single-cell quantification 
• Pixel intensity comparison 

2  
(Fig.3) IMC 1 28 1.00 1.00 SLURM 00:06:25 00:05:30 4.2 

• Raw data processing 
• Cell masking 
• Unsupervised clustering 
• Expression thresholding 
• Homotypic cell distances 

3  
(Fig.4) mIF 1 7 5.45 0.50 SLURM 00:11:45 00:08:23 16.7 

• Thresholding & masking 
• Expression thresholding 
• Heterotypic cell distances 

4  
(Fig.5) 

CODEX 35 58 1.13 0.38 SGE 02:32:35 00:26:01 22.5 • Expression thresholding 
• Heterotypic cell distances 

 
 
For each case study, listed are the imaging technologies used to generate the tissue images, the number of samples and markers 

used, the size of the analysed region of interest (ROI), the resolution of the obtained images, the high performance (HPC) platform 

and the computational resources employed to perform the analysis. These include the central processing unit (CPU) time and the 

elapsed real time, as well as the maximum random access memory (RAM) memory used. Finally, the specific analytical processes 

performed in each case study are also listed (single cell segmentation was performed in all of them). SGE: Sun Grid Engine; 

SLURM: Simple Linux Utility for Resource Management. 
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Figure 2. IgA quantification in human colon mucosa 

 

a. IMC image of a representative sample (CLN6) of normal colon mucosa after 

extraction and normalisation of raw data.  

b. Masks defining the lamina propria and the epithelial compartments overlaid with 

IgA+ areas. Lamina propria and epithelial masks were obtained by thresholding the 

vimentin and E-cadherin channels, respectively. 

c. Comparison of normalised IgA+ areas in the lamina propria and epithelial 

compartments in CLN1-CLN6. Normalised areas were measured as the proportion of 

IgA+ area over the lamina propria and epithelium masks, respectively. Distributions 

were compared using a two-sided Wilcoxon test. 
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d. Outlines of the cells in the lamina propria. After single-cell segmentation, all cells 

overlapping with the lamina propria mask by at least 30% of their area were 

considered as cells resident in the lamina propria. 

e. Outlines of immune cells resident in the lamina propria identified according to the 

highest overlap between their area and the masks for IgA+ cells, T cells, 

macrophages and dendritic cells. 

f. Relative proportions of T cells, IgA+ cells, macrophages and dendritic cells over all 

immune cells in the lamina propria across CLN1-CLN6.  

g. Correlation between normalised IgA+ area and the proportion of IgA+ cells over 

the total immune cells in in the lamina propria in CLN1-CLN6. Pearson correlation 

coefficient R and associated p-value are shown. 

Scale bar in all images = 100μm. 
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Localisation of T follicular helper cells in IMC images of a germinal centre 

As a second case study, we used SIMPLI to localise the immune cell 

populations within a FFPE section of healthy human appendix (APP1, 

Supplementary Table 1). After staining the tissue section with the 28 markers (26 

antibodies and two DNA intercalators) used previously (Supplementary Table 2), we 

performed IMC and used SIMPLI to extract and normalise the single channel images 

from the raw IMC data for the ROI. The resulting combined image revealed a 

germinal centre in the B cell area and follicle-associated epithelium forming the 

boundary with the appendiceal lumen (Fig.3a).  

We performed single-cell segmentation with both approaches implemented in 

SIMPLI and observed high overlap (Supplementary Fig. 3a), indicating good 

concordance between the two methods. We then classified the 7573 cells from 

CellProfiler4 in immune and epithelial cells based on the highest overlap with the 

corresponding masks obtained in the data extraction step (Fig. 3b). Using both 

phenotyping approaches available in SIMPLI, we characterised the phenotypes of T 

cells, that overall constituted approximately 27% of all cells (Fig. 3c). First, we 

applied unsupervised clustering using seven markers of T cell function 

(Supplementary Table 2). After inspection of the resulting clusters at different 

resolution levels, we selected 0.25 resolution which returned five distinct cell clusters 

(Fig. 3d). Based on the marker expression profiles, we assigned cluster 1 to CD4+ T 

cells, cluster 2 to CD8+CD45RO+ T cells, cluster 3 to CD4+CD45RA+ T cells, cluster 

4 to CD4+CD45RO+ T cells and cluster 5 to CD4+PD1+ T cells (Fig. 3e). The latter 

likely represented a set of PD1+ T follicular helper cells known to be located in the 

germinal centre27. Interestingly, at higher resolution, cluster 5 was further divided into 

two smaller clusters showing PD1 high and low expression (Supplementary Figure 
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3a). Similarly, clusters 1 and 2 were further divided into smaller subpopulation based 

on CD4 and CD45RO expression levels, respectively (Supplementary Figure 3a).  

We re-identified these PD1+ T follicular helper cells with the second 

phenotyping approach based on expression thresholding of CD4 and PD1 (Fig.1b). 

Starting from all T cells, we first extracted CD4+ T cells (≥0.1 CD4 expression, Fig. 

3f) and, within those, we further identified PD1+ cells (≥0.15 PD1 expression, Fig. 

3g). Both thresholds were chosen after manual inspection of the histological images. 

The expression profile of the resulting PD1+CD4+ T cells (Fig 3h) closely 

recapitulated that of cluster 5 (Fig. 3e). We repeated the same analysis for clusters 1 

to 4 confirming the high overlap between cells in unsupervised clusters and those re-

identified using marker expression thresholds (Supplementary Fig. 3b). Moreover, 

these cells showed similar expression profiles (Supplementary Fig. 3c) and spatial 

localisation (Supplementary Fig. 3d), indicating that cell phenotypes identified with 

unsupervised clustering can be confirmed through user-guided thresholding of 

marker expression. 

Finally, we investigated the spatial localisation of PD1+ T follicular helper cells 

within the ROI by analysing their homotypic aggregations. This allowed us to localise 

a single high-density cluster containing 84% of PD1+CD4+ T cells within the germinal 

centre (Fig. 3i). This distribution of PD1+CD4+ T cells was in accordance with the 

localisation of T helper cells in the in the follicles of secondary lymphoid organs27 

and was confirmed by the histological inspection of the tissue image (Fig. 3j). 
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Figure 3. Single-cell characterisation of T cells in a human germinal centre 
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a. IMC image of a normal appendix (APP1) showing a central germinal centre with 

the columnar epithelium delimiting the appendiceal lumen.  

b. Outlines of T cells, B cells, macrophages, dendritic and epithelial cells identified 

through the highest overlap with the respective masks. 

c. Proportions of T cells, B cells, macrophages, dendritic and epithelial cells over all 

cells. 

d. UMAP plot of 1,466 T cells grouped in five clusters resulting from unsupervised 

clustering according to the expression of seven markers of T cell function 

(Supplementary Table 2). Cluster 5 (circled) corresponds to PD1+CD4+ T cells. 

e. Expression profiles of the five clusters identified in (d). The mean intensity value of 

each marker across all cells is reported. The colour scale was normalized across all 

markers and cells. 

f. Density plots of CD4 expression in T Cells. Cells with ≥0.1 CD4 expression were 

considered as CD4+ T cells.  

g. Density plot of PD1 expression in CD4+ T cells. Cells with ≥0.15 PD1+ expression 

were considered as PD1+CD4+ T cells. Thresholds for CD4 and PDL1 were identified 

through histological inspection of the PD1 channel images. 

h. Expression profiles of the PD1+CD4+ T cells and rest of T cells. For both 

populations, the mean intensity value of each marker across all cells is shown. The 

colour scale was normalized across all markers and cells. 

i. Position map of T cells within the ROI. The area of a high-density cluster of ≥5 

PD1+CD4+ T cells per 10,000�m2 is highlighted in red. 

j. IMC image showing the localisation of the PD1 signal within the ROI.  

Scale bar for all images = 100μm. 
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mIF analysis of spatially resolved cell-cell interactions in rectal cancer  

As a third case study, we applied SIMPLI to the spatial analysis of mIF-

derived images of a rectal cancer sample (CRC1, Supplementary Table 1) stained 

with anti CD8, PD1, Ki67, PDL1, CD68, GzB and DAPI antibodies (Supplementary 

Table 2). We focused on a 5mm2 ROI that was rich in T cells at the invasive margins 

of the tumour (Fig. 4a). This allowed us to characterise the cell-cell interactions 

between PDL1+ cells and PD1+CD8+ T cells at the tumour boundary in a larger ROI, 

supporting the scalability of SIMPLI to the analysis of large regions (Table 2).  

After image pre-processing and single-cell segmentation, we identified PDL1+ 

and PD1+CD8+ cells by applying expert-defined thresholds to PDL1 (≥0.01), CD8 

(≥0.01), and PD1 (≥0.005) expression levels, respectively. We extracted 2026 PDL1+ 

cells (Fig. 4b) and 3177 CD8+ cells, 94 of which also expressed PD1 (Fig. 4c). The 

two sets of PDL1+ and PD1+CD8+ cells constituted 3.7% and 0.2% of all cells in the 

analysed region, respectively (Fig. 4d). 

We characterised the spatial relationship between these cells, focusing on the 

ones in close proximity to each other. Using the Euclidean distances between their 

centroids, we identified 35 PDL1+ cells and 21 PD1+CD8+ T cells at a distance lower 

than 12μm apart, which corresponded to twice the maximum cell radius length. We 

considered these cells proximal enough to be engaging in PD1-PDL1 mediated 

interactions. By comparing PD1+CD8+ T cells proximal to PDL1+ cells and PD1+CD8+ 

T cells distal to PDL1+ cells, we found no difference in the expression of cytotoxicity 

(GzB) or proliferation (ki67) markers (Fig. 4e). This is in line with the broad range of 

cytotoxic activity in this T cell subset observed in colorectal cancer28. On the 

contrary, PDL1+ cells proximal to PD1+CD8+ T cells expressed higher levels of CD68 

than PDL1+ cells distal to PD1+CD8+ T cells (Fig. 4f),  suggesting spatial proximity 
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between PDL1+ macrophages and PD1+CD8+ T cells. To validate this observation, 

we identified 1392 macrophages by applying an expert-defined threshold to CD68 

expression (≥0.01, Fig. 4g) and classified them as PDL1- and PDL1+ cells, 

respectively using 0.1 PDL1 expression threshold. Comparing the distance of the 

resulting two populations from the nearest PD1+CD8+ T cells, we confirmed that 

PDL1+CD68+ macrophages were significantly closer to PD1+CD8+ T cells than PDL1-

CD68+ macrophages (Fig. 4h). By inspecting the imaged tissue at 40x magnification, 

we confirmed the localisation of PDL1+CD68+ macrophages in close proximity to 

PD1+CD8+ cells, as well as the presence of both PD1+CD8+GzB- T cells and 

PD1+CD8+GzB+ T cells proximal to PDL1+ cells (Fig. 4i). 
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Figure 4. Characterisation of PDL1+ and PD1+ cells at the tumour invasive margins 
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a. CD3 immunohistochemistry (main image) and sequential mIF image (zoom-in, 20x 

magnification) of a rectal cancer sample (CRC1). The mIF image corresponded to a 

5mm2 tissue area at the invasive margins of the tumour and was obtained by 

combining the pre-processed images of seven markers. Scale bar = 50µm. 

b. Density plot of PDL1 expression in CD8- cells. Cells with ≥0.01 PDL1 expression 

were considered as PDL1+ cells.  

c. Density plots of CD8 and PD1 expression in T cells. Cells with ≥0.01 CD8 

expression and ≥0.005 PD1 expression were considered as PD1+CD8+ T cells. 

Expression thresholds were identified through histological inspection of PDL1, CD8 

and PD1 channel images and are indicated as dotted lines in the corresponding 

plots. 

d. Proportions of PD1+CD8+ cells, PD1-CD8+ T cells and PDL1+ cells over total cells. 

e. Comparison of the mean intensity of GzB and Ki67 between PD1+CD8+ T cells 

proximal and distal to PDL1+cells. Proximal PD1+CD8+ T cells were defined as those 

at less than 12μm from a PDL1+ cell. 

f. Comparison of the mean intensity of CD68 and Ki67 between PDL1+cells proximal 

and distal to PD1+CD8+ T cells. Proximal PDL1+ cells were defined as those at less 

than 12μm from a PD1+CD8+ T cell. 

Distributions in (e) and (f) were compared using a two-sided Wilcoxon test. 

g. Density plots of CD68 and PD1 expression in all cells. Cells with ≥0.01 CD68 and 

PDL1 expression were considered as PDL1+CD68+ cells. 

h. Comparison of distance of PDL1+ and PDL1-CD68+ macrophages to the nearest 

PD1+CD8+ T cell. 
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i. High resolution (40x magnification) mIF image of PD1+CD8+ T cells in close 

proximity to PDL1+CD68+ cells. Zoom in images show each marker separately and 

merged. Scale bar = 20µm.   

All distributions were compared using a two-sided Wilcoxon test. 
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Comparison of cell distances in CODEX images of colorectal cancer subtypes 

As a fourth case study, we used SIMPLI to compare the distances between 

immune cells and tumour or endothelial cells in CLR (Crohn’s-like reaction) and DII 

(diffuse inflammatory infiltration) colorectal cancer subtypes9. The high-dimensional 

imaging data derived from 35 colorectal cancer samples (Supplementary Table 1) 

and were obtained using CODEX with a 56 marker panel9 (Supplementary Table 2). 

Such a large number of antibodies enabled the identification and spatial localisation 

of T cells, B cells, plasma cells, macrophages, NK cells, granulocytes, dendritic cells, 

tumour cells, neuroendocrine cells, smooth muscle, nerves, lymphatic and blood 

vessels (Fig 5a). 

After single-cell segmentation, we quantified the main cell types identified in 

the original study9 by applying expert-defined thresholds to the expression of 

markers representative of each population (CDX2, MUC1 or cytokeratin for tumour 

cells; CD34 or CD31 for endothelial cells; vimentin for stromal cells; CD11c for 

dendritic cells; CD38 for B cells; CD3 and CD4 for CD4+ T cells; CD3, CD4 and 

FOXP3 for Tregs; CD3 and CD8 for CD8+ T cells, CD68 for macrophages). The 

obtained relative proportions of immune cells across all samples were highly 

concordant with those reported the original study9 (Fig 5b).  

We then measured the distances of the main immune cell types from tumour 

cells and blood vessels by performing a heterotypic spatial analysis. First, we 

calculated the distances of each macrophage, CD8+ T cell, CD4+ T cell, Treg and B 

cell to the nearest tumour cell or endothelial cell using the coordinates of the cell 

centroids. From these, we derived the corresponding distance distributions from the 

nearest tumour cell or endothelial cell in each sample. Finally, we compared the 

resulting distributions between CLR and DII colorectal cancer subtypes. After 
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correcting for multiple testing, we considered biologically relevant only differences 

between the median distances of the two subtypes bigger than 8µm, corresponding 

to the diameter of B and T lymphocytes29. With this approach, we found that Tregs 

were significantly closer to tumour cells in DII (median distance = 22.4µm) compared 

to CLR (35.6µm, Fig 5c). On the contrary, B cells were more proximal to blood 

vessels in CLR (33.5µm) than in DII (43.3µm, Fig 5d). We further supported these 

results with a permutation test, where we re-labelled randomly the identities to all 

cells in each sample for 10000 times to derive an expected distribution of differences 

in distances between CLR and DII cells. The comparisons of observed values to the 

expected distributions, confirmed that Tregs were significantly closer to tumour cells 

in DII (Fig.5e) while B cells were more proximal to blood vessels in CLR (Fig 5f). We 

supported the distinct spatial distributions of B cells in CLRs (Fig 5g) and DII (Fig 5h) 

through independent histological image inspection.  

This novel result, not reported in the original study, showcases the discovery 

potential of the quantitative analysis of spatial relationships between cell populations 

implemented in SIMPLI. Additionally, the SIMPLI graphical representations of the 

tissue composition as an overlay of cell boundaries color-coded by cell populations 

greatly facilitates the visual inspection of their spatial interactions in their original 

tissue context. 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.04.01.437886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.01.437886
http://creativecommons.org/licenses/by/4.0/


 28

Figure 5. Spatial localisation of immune cells in two colorectal cancer subtypes 
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a. CODEX images of two representative CLR (CRC_12_24) and DII (CRC_31_16) 

colorectal cancer samples. 

b. Proportions of CD8+ T cells, CD4+ T cells, Tregs, macrophages, dendritic cells, B 

cells and other mixed immune cell populations across the 35 analysed samples. Cell 

types were identified by applying expert-defined thresholds to the expression 

intensity of representative markers and normalised over the total non-cancer cells. 

These thresholds were derived through histological inspection of the channel 

images. The cell proportion corresponding to each population from the original 

study9 is reported in brackets. 

Distance distribution of Tregs to the nearest tumour cell (c) and of B cells to the 

nearest endothelial cell (d) of CLR and DII samples. Distances between cell pairs 

were calculated using the cell centroids coordinates and the resulting distributions 

were compared between CRC subtypes using a two-sided Wilcoxon test. Benjamini-

Hochberg FDR correction was applied for testing over ten cell type comparisons. 

Only differences of at least 8µm and with FDR <0.1 were considered significant. 

Dashed lines represent the medians of the distributions. 

Distribution of the expected differences between the median distances of Tregs to 

the nearest tumour cell (e) and of B cells to the nearest endothelial cell (f) in CLR 

and DII samples. Expected values were calculated with a permutation test, where 

cell identities were randomly reassigned for 10000 times within each sample. The 

resulting median values were compared to the observed differences with a two-tailed 

permutation test adjusted for multiple hypothesis testing with the Benjamini-

Hochberg correction. 
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Single-cell outlines of B cells and blood vessels (upper panel) and associated 

images (lower panel) form a representative CLR (CRC_17_34) (g) and DII 

(CRC_15_29) (h) sample. Scale bar = 100μm.   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.04.01.437886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.01.437886
http://creativecommons.org/licenses/by/4.0/


 31

DISCUSSION  

SIMPLI is an open-source, customisable and technology-independent tool for 

the analysis of multiplexed imaging data. It enables the processing of raw images, 

the extraction of cell data and the spatially resolved quantification of cell types or 

functional states as well as a cell-independent analysis of tissues at the pixel level, 

all within a single platform (Table 1).  

In comparison to currently available software, SIMPLI increases the portability, 

scalability and reproducibility of the analysis (Table 2). Moreover, it can easily 

accommodate specific analytical requirements across a wide range of tissues and 

imaging technologies at different levels of resolution and multiplexing through user-

friendly configuration files. SIMPLI interoperates with multiple software and 

programming languages by leveraging workflow management and containerisation. 

This makes the inclusion of new algorithms, features and imaging data formats easy 

to implement, such as alternative methods of cell-segmentation, pixel and cell 

classification or a Graphical User Interface for interactive data visualisation  

Multiplexed imaging methods have proven to be a powerful approach for the 

study of tissues through the in-depth characterisation of cell phenotypes and 

interactions. SIMPLI represents an effort to make these analyses more accessible to 

a wider community. This will enable exploitation of highly multiplexed imaging 

technologies for multiple applications, ranging from basic life science and 

pharmaceutical research to precision medical use in the clinics.   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.04.01.437886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.01.437886
http://creativecommons.org/licenses/by/4.0/


 32

ONLINE METHODS 

SIMPLI description and implementation 

SIMPLI’s workflow is divided into three steps (raw image processing; cell-based 

analysis; pixel-based analysis), which are constituted of multiple stand-alone 

processes (Fig. 1 and Supplementary Fig. S1). Processes can be executed 

sequentially or independently from the command-line or through a configuration file 

that can be edited with any text editor. This allows the user to skip some of them and 

use alternative input data for downstream analyses. Additionally, parameters and 

options can be specified through the same configuration files without the need to 

setup tool-specific input files in any specific directory structure. 

Raw data from IMC or MIBI experiments (.mcd or .txt files) are converted into 

single or multi-channel .tiff images with imctools30. Data from other multiplexed 

imaging platforms may be supplied directly as raw single or multi-channel tiff images 

(Supplementary Fig. 1a).  Raw images can be thresholded individually to minimise 

the effect of non-uniform staining and then used directly for the cell- and pixel-based 

analyses. Alternatively, they can be first normalised across samples by rescaling 

pixel values of each channel up to the 99th percentile of the distribution using the 

EBImage31 package and custom R scripts. Normalised images can then be 

processed with CellProfiler411 to generate thresholded images and masks of tissue 

compartments or markers to be used in the following steps. 

Pixel-based and cell-based analyses can be run as single workflows or in 

parallel within the same run. Both of them provide multiple outputs of the various 

processes, including tabular text files, visualisation plots and comparisons across 

samples (Supplementary Fig. 1).  
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The cell-based analysis is composed of cell data extraction, cell phenotyping 

and spatial analysis (Supplementary Fig. 1b). The extraction of cell data starts with 

single-cell segmentation using CellProfiler411 or StarDist24 with scikit-image32 used 

for feature extraction. In the latter case, default models or user-provided trained 

models can be used. Cell segmentation returns (1) single-cell data consisting of the 

marker expression values and the coordinates of each cell in the ROI and (2) the 

ROI segmentation mask marking all the pixels belonging to each cell with its unique 

identifier. Cells mapping to tissue compartments or positive for certain markers can 

then be identified based on their overlap with the tissue compartments or marker 

masks derived in the previous step. These cells are visualised in the ROI as outlines, 

while their proportions are quantified in barplots and boxplots. 

All cells, or only those in specific tissue compartments or positive for certain 

markers can be further phenotyped using two approaches. The first consists of 

unsupervised clustering based on the marker expression values using Seurat33. 

Cells are represented as nodes in a k-nearest neighbour graph based on their 

Euclidean distances in a principal component analysis space. This graph is then 

partitioned into clusters using the Louvain algorithm34 at user-defined levels of 

resolution leading to the unsupervised identification of cell phenotypes. Clusters of 

cell phenotypes are plotted as scatterplots in Uniform Manifold Approximation and 

Projection (UMAP)35 space. The second phenotyping approach is based on user-

defined thresholds of marker expression values that can be combined using logical 

operators for the identification of designated cell phenotypes. The distributions of 

cells are represented as density plots based on the marker expression levels. In both 

phenotyping approaches, the expression profiles of the cell types are plotted as 
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heatmaps, their proportions quantified in barplots and boxplots and their locations in 

the ROI visualised as cell outlines. 

Once cell populations and phenotypes have been identified, the spatial 

analysis investigates the distance between cells of the same (homotypic 

aggregations) or different (heterotypic aggregations) types. In the homotypic 

analysis, clusters of cells of the same type within a user-defined distance are 

identified with DBSCAN36 as implemented in the fpc37 R package. These homotypic 

cell aggregations are visualised as position maps, reporting cell location and high-

density clusters in the ROI. In the heterotypic analysis, the cell distances, defined as 

the Euclidean distances between cell centroids, are computed using custom R 

scripts and visualised as density plots. The homotypic and heterotypic spatial 

analyses can be run in parallel or singularly on one or more sets of cells. 

The pixel-based analysis quantifies areas positive for user-defined 

combination of markers using the EBImage31 package with custom R scripts 

(Supplementary Fig. 1c). These measurements are performed starting from the 

thresholded images produced in the raw image processing step (Supplementary Fig. 

1a). The marker positive areas obtained in this way are then normalised over the 

area of the whole image or specific tissue or marker compartments. The resulting 

normalised positive areas can then be quantified in barplots and boxplots.  

SIMPLI is implemented as a Nextflow38 pipeline employing Singularity 

containers39 hosted on Singularity Hub40 to manage all the libraries and software 

tools. This allows SIMPLI to automatically manage all dependencies, irrespective of 

the running platform. Nextflow also manages automatic parallelisation of all 

processes while still allowing the selection of parts of the analysis to execute.  
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Sample description 

Six FFPE blocks of normal (non-cancerous) colon mucosa (CLN1-CLN6), one 

of normal appendix (APP1), and one of rectal cancer (CRC1) were obtained from 

eight individuals who underwent surgery for the removal of colorectal cancers 

(Supplementary Table 1). All blocks were reviewed by an expert pathologist (MRJ). 

All patients provided written informed consent in accordance with approved 

institutional guidelines (University College London Hospital, REC Reference: 

20/YH/0088; Istituto Clinico Humanitas, REC Reference: ICH-25-09).  

 

Staining and IMC ablation of human colon mucosa and appendix  

Four µm-thick sections were cut from each block of samples CLN1-CLN6 and 

APP1 with a microtome and used for staining with a panel of 26 antibodies targeting 

the main immune, stromal and epithelial cell populations of the gastrointestinal tract 

(Supplementary Table 2). The optimal dilution of each antibody in the panel was 

identified by staining and ablating FFPE appendix sections. The resulting images 

were reviewed by a mucosal immunologist (J.S.) and the dilution giving the best 

signal to background ratio was selected for each antibody (Supplementary Table 2). 

To perform the staining for IMC, slides were dewaxed after a one-hour incubation at 

60°C, rehydrated and heat-induced antigen retrieval was performed with a pressure 

cooker in Antigen Retrieval Reagent-Basic (R&D Systems). Slides were incubated in 

a 10% BSA (Sigma), 0.1% Tween (Sigma), and 2% Kiovig (Shire Pharmaceuticals) 

Superblock Blocking Buffer (Thermo Fisher) blocking solution at room temperature 

for two hours. Each antibody was added to a primary antibody mix at the selected 

concentration in blocking solution and incubated overnight at 4°C. After two washes 

in PBS and PBS-0.1% Tween, the slides were treated with the DNA intercalator Cell-
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ID™ Intercalator-Ir (Fluidigm) (containing the two iridium isotopes 191Ir and 193Ir) 

1.25 mM in a PBS solution. After a 30-minute incubation, the slides were washed 

once in PBS and once in MilliQ water and air-dried. The stained slides were then 

loaded in the Hyperion Imaging System (Fluidigm) imaging module to obtain light-

contrast high resolution images of approximately four mm2. These images were used 

to select the ROI in each slide. For CLN1-CLN6, 1 mm2 ROIs were selected to 

contain the full thickness of the colon mucosa, with epithelial crypts in longitudinal 

orientation. For APP1, a one mm2 ROI containing a lymphoid follicle in its whole 

depth alongside a portion of lamina propria and of epithelium was selected. ROIs 

were ablated at a o µm/pixel resolution and 200 Hz frequency. 

 

IMC data analysis of human colon mucosa 

Twenty-eight images from 26 antibodies (Supplementary Table 2) and two 

DNA intercalators were obtained from the raw .txt files of the ablated regions in 

CLN1-CLN6 using the data extraction process. Pixel intensities for each channel 

were normalised to the 99th percentile in all samples and Otsu thresholding was 

performed on the normalized images with a custom CellProfiler4 pipeline, which was 

employed also to generate the masks for the lamina propria (using the Vimentin 

channel including all <75-pixel large negative areas) and the epithelium (starting 

from the Pan-keratin and E-cadherin channels, dilatating the images with a three-

pixel disk and the filling up of all <75-pixel large negative areas). These masks were 

then added into a sum image, which underwent dilatation with a three-pixel disk and 

filling up of all <25-pixel large negative areas. Positive features outside of the lamina 

and epithelium were removed with an opening operation using a 150-pixel radius 

and the lamina propria mask was subtracted from the sum image to generate the 
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final mask for the epithelial compartment. These masks and the thresholded images 

were used as input for the pixel-based and cell-based analysis processes. The IgA 

masks employed for the pixel analysis were generated using a three-class global 

Otsu thresholding with two background classes after applying a Gaussian filter with a 

1.5-pixel large radius. 

To evaluate the effect of normalisation on the downstream analysis, sample 

specific thresholds were manually selected for IgA, E-Cadherin, Pan-Keratin and 

Vimentin and applied to the raw images. The resulting thresholded images were 

used to generate lamina propria and epithelial masks for each sample individually. 

Pixel-level analysis was performed on the IgA masks derived from either the 

normalised or the raw images and IgA+ areas in the tissue, lamina propria and 

epithelium were measured and normalised over the areas of the three 

compartments. 

Cell-level analysis started with CellProfiler4 segmentation first on DNA1 with 

global Otsu thresholding to identify the cell nuclei. Then, cells were identified by 

radially expanding each nucleus for up to 10 pixels over a membrane mask derived 

from the IgA, CD3, CD68, CD11c and E-cadherin channels. After inspection by an 

expert histologist (JS), only cells overlapping with the lamina propria mask by at least 

30% were retained.  

Cell identities were assigned according to the highest overlap of the cell area 

with marker-specific thresholds defined by an expert histologist (JS): ≥15% of the IgA 

mask for IgA cells; ≥15% of the CD3 mask for T cells; ≥25% of the CD68 mask for 

macrophages; ≥15% of CD11c mask for dendritic cells.  

 

IMC data analysis of human appendix 
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Images from the same 26 antibodies and two DNA intercalators used in the 

colon mucosa  (Supplementary Table 2) were obtained from the raw .txt files of the 

ablated region in APP1, normalised to the 99th percentile and thresholded with 

CellProfiler4 as described above. For the cell-based analysis, nuclei were identified 

using the DNA1 channel and cells were isolated through watershed segmentation 

with the nuclei as seeds on a membrane mask summing up CD45, Pan-keratin and 

E-cadherin thresholded images. 

Cells were assigned to the epithelium or to immune cell populations if they 

overlapped for ≥10% with the following masks: CD3 mask for T cells; CD20 and 

CD27 masks for B cells; CD68 mask for macrophages; CD11c mask for dendritic 

cells; E-cadherin+ and Pan-keratin+ masks for epithelial cells. 

T cells were further phenotyped using unsupervised clustering at resolutions 

between 0.1 and 1.0, with 0.05 intervals and based on the cell marker intensity for 

CD3, CD45RA, CD45RO, CD4, CD8, Ki67 and PD1. The resulting clusters were 

manually inspected and the clustering with the highest number of biologically 

meaningful clusters (resolution = 0.25) was chosen. Clusters were re-identified using 

mean intensity thresholds defined by an expert histologist (JS) for the following 

markers: CD3 >0.06 for cluster 1; CD8a >0.125 for cluster 2; CD45RA >0.125 for 

cluster 3; CD4 >0.125 and CD45RO >0.15 for cluster 4; and CD4 > 0.1 and PD1 

>0.15 for cluster 5.  

Homotypic aggregations of CD4+PD1+ T cells (cluster 5, resolution = 0.25) 

were computed using a minimum of five points per cluster and a reachability 

parameter corresponding to a density of at least 5 cells/mm2.  

 

CD3 staining and mIF of human rectal cancer  
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Two 4 µm thick serial sections were cut from CRC1 FFPE block using a 

microtome. The first slide was dewaxed and rehydrated before carrying out HIER 

with Antigen Retrieval Reagent-Basic (R&D Systems). The tissue was then blocked 

and incubated with the anti-CD3 antibody (Dako, Supplementary Table 2) followed 

by horseradish peroxidase (HRP) conjugated anti-rabbit antibody (Dako) and stained 

with 3,3' diaminobenzidine (DAB) substrate (Abcam) and haematoxylin. Areas with 

CD3+ infiltration in the proximity of the tumour invasive margin were identified by a 

clinical pathologist (M. R-J.) 

The second slide was stained with a panel of six antibodies (CD8, PD1, Ki67, 

PDL1, CD68, GzB, Supplementary Table 2), Opal fluorophores and 4’,6-diamidino-2-

phenylindole (DAPI) on a Ventana Discovery Ultra automated staining platform 

(Roche). Expected expression and cellular localisation of each marker as well as 

fluorophore brightness were used to minimise fluorescence spillage upon antibody-

Opal pairing. Following a one-hour incubation at a 60°C, the slide was subjected to 

an automated staining protocol on an autostainer. The protocol involved 

deparaffinisation (EZ-Prep solution, Roche), HIER (DISC. CC1 solution, Roche) and 

seven sequential rounds of: one hour incubation with the primary antibody, 12 

minutes incubation with the HRP-conjugated secondary antibody (DISC. Omnimap 

anti-Ms HRP RUO or DISC. Omnimap anti-Rb HRP RUO, Roche) and 16 minute 

incubation with the Opal reactive fluorophore (Akoya Biosciences). For the last round 

of staining, the slide was incubated with Opal TSA-DIG reagent (Akoya Biosciences) 

for 12 minutes followed by Opal 780 reactive fluorophore for our hour (Akoya 

Biosciences). A denaturation step (100°C for 8 minutes) was introduced between 

each staining round in order to remove the primary and secondary antibodies from 

the previous cycle without disrupting the fluorescent signal. The slide was 
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counterstained with DAPI (Akoya Biosciences) and coverslipped using ProLong Gold 

antifade mounting media (Thermo Fisher Scientific). The Vectra Polaris automated 

quantitative pathology imaging system (Akoya Biosciences) was used to scan the 

labelled slide. Six fields of view, within the area selected by the pathologist, were 

scanned at 20x and 40x magnification using appropriate exposure times and loaded 

into inForm41 for spectral unmixing and autofluorescence isolation using the spectral 

libraries. 

 

mIF data analysis 

After spectral unmixing and merging of six 20x fields of view for a total of 

>5mm2 ROI (Table 2), one single-tiff image was extracted for each marker and its 

intensity was rescaled from 0 to 1 with custom R scripts. The resulting single-tiff 

images were pre-processed to remove the background noise with Otsu thresholding 

in CellProfiler4 and used for cell segmentation by applying a global threshold to the 

DAPI channel and selecting all objects with a diameter between four and 60 pixels. 

PD1+CD8+ cells, CD68+ cells and PDL1+
 cells were then identified using mean 

intensity thresholds of 0.01 for CD8, 0.005 for PD1, 0.01 for CD68 and 0.01 for 

PDL1. All thresholds were inspected by an expert histologist (JS).  

The distributions of minimum distances between PDL1+ cells and PD1+CD8+ 

cells were calculated from the coordinates of the centroids of each cell in the image. 

All PDL1+ cells and PD1+CD8+ cells at a distance from each other lower than double 

the maximum cell radius (24 pixels = 12 µm) were considered as proximal. All other 

cells were classified as distal. 

 

CODEX data analysis 
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A published dataset of colorectal CODEX images9 was downloaded from The 

Cancer Imaging Archive (https://doi.org/10.7937/tcia.2020.fqn0-0326). It consisted of 

processed CODEX data from 35 colorectal cancer samples divided in two groups 

(CLR and DII) according to the peritumoral inflammatory levels and the presence of 

tertiary lymphoid structures9. For each sample, four .tiff images were available 

representing four 0.6mm spots from two 70-core tissue microarrays. These images 

were hyperstacks of 58 channels including 56 antibodies (Supplementary Table 2) 

and two DNA markers with a resolution of 377 nm/pixel. After manual review of all 

140 spots, one representative image per sample was selected, having the best focus 

and containing both tumour and peritumoural immune infiltrates.  

The single-channel tiff files for each selected image were extracted and the 

pixel intensities were rescaled from 0 to 1 with a custom R script. Using SIMPLI, 

single-cell segmentation was performed in each of the 35 images by applying a 

global threshold to the HOECHST channel to identify the nuclei and retaining all 

objects with a diameter between 5 and 40 pixels. Each nucleus was then expanded 

by 5 pixels in all directions to define the cell area.  

Resulting single cells were assigned to ten phenotypes according to the mean 

cell expression of CDX2 >0.15 or MUC1 >0.15 or cytokeratin >0.15 for tumour cells; 

CD34 >0.15 or CD31 >0.15 for endothelial cells; vimentin >0.1 for other stromal 

cells; CD11c >0.3 for dendritic cells; CD38 >0.26 for B cells; CD4 >0.13 and CD3 

>0.1 for CD4+ T cells; CD4 >0.12 and FOXP3 >0.5 and CD3 >0.1 for Tregs; CD8 

>0.16 and CD3 >0.1 for CD8+ T cells, and CD68 >0.11 for macrophages. The 

heterotypic spatial analysis was performed by calculating the minimum distances of 

macrophages, CD8+ T cells, CD4+ T cells, Treg cells, and B cells to tumour cells and 

endothelial cells using the coordinates of the cell centroids.  
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DATA AVAILABILITY 

The data that support the findings of this study are available from the corresponding 

author, F.D.C., upon request. 

 

CODE AVAILABILITY 

SIMPLI’s code, documentation and an example dataset are available at 

https://github.com/ciccalab/SIMPLI. The software code is protected by copyright. No 

permission is required from the rights-holder for non-commercial research uses. 

Commercial use will require a license from the rights-holder. For further information 

contact translation@crick.ac.uk.  
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