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 33 

Abstract 34 

Advances in genome sequencing have dramatically improved our understanding of the 35 

genetic basis of human diseases, and thousands of human genes have been associated with 36 

different diseases. Despite our expanding knowledge of gene-disease associations, and 37 

despite the medical importance of disease genes, their evolution has not been thoroughly 38 

studied across diverse human populations. In particular, recent genomic adaptation at 39 

disease genes has not been well characterized, even though multiple evolutionary processes 40 

are expected to connect disease and adaptation at the gene level. Understanding the 41 

relationship between disease and adaptation at the gene level in the human genome is 42 

severely hampered by the fact that we don’t even know whether disease genes have 43 

experienced more, less, or as much adaptation as non-disease genes during recent human 44 

evolution. Here, we compare the rate of strong recent adaptation in the form of selective 45 

sweeps between disease genes and non-disease genes across 26 distinct human populations 46 

from the 1,000 Genomes Project. We find that disease genes have experienced far less 47 

selective sweeps compared to non-disease genes during recent human evolution. This sweep 48 

deficit at disease genes is particularly visible in Africa, and less visible in East Asia or 49 

Europe, likely due to more intense genetic drift in the latter populations creating more 50 

spurious selective sweeps signals. Investigating further the possible causes of the sweep 51 

deficit at disease genes, we find that this deficit is very strong at disease genes with both low 52 

recombination rates and with high numbers of associated disease variants, but is inexistant 53 

at disease genes with higher recombination rates or lower numbers of associated disease 54 

variants. Because recessive deleterious variants have the ability to interfere with adaptive 55 

ones, these observations strongly suggest that adaptation has been slowed down by the 56 

presence of interfering recessive deleterious variants at disease genes. These results clarify 57 

the evolutionary relationship between disease genes and recent genomic adaptation, and 58 

suggest that disease genes suffer not only from a higher load of segregating deleterious 59 

mutations, but also an inability to adapt as much, and/or as fast as the rest of the genome. 60 

 61 
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variants, selective sweeps, environmental changes 64 

Introduction 65 

Advances in genome sequencing have dramatically improved our understanding of the genetic 66 

basis of human diseases, and thousands of human genes have been associated with different 67 

diseases (Amberger et al., 2019; Piñero et al., 2020). Despite our expanding knowledge of gene-68 

disease associations, and despite the fact that multiple evolutionary processes might connect 69 

disease and genomic adaptation at the gene level, these connections are yet to be studied. 70 

Different evolutionary processes have the potential to make the occurrence of disease genes and 71 

adaptation not independent from each other in the human genome. For instance, hitchhiking of 72 

deleterious mutations linked to advantageous mutations might increase the risk of disease-73 

causing variants at genes subjected to past directional adaptation. Disease genes might then 74 

appear to have experienced more adaptation than non-disease genes if this specific process was 75 

sufficiently widespread. Conversely, higher evolutionary constraint, and higher pleiotropy might 76 

reduce adaptation at disease genes compared to genes not involved in diseases (Otto, 2004). 77 

There is currently considerable uncertainty about how any of these non-exclusive evolutionary 78 

processes, or other processes, might have influenced adaptation at disease genes. It is even not 79 

well-known whether human non-infectious disease genes have similar, higher or lower levels of 80 

adaptation in human populations compared to genes not involved in diseases. Comparing levels 81 

of adaptation between disease genes and non-disease genes is a first important step toward better 82 

understanding the evolutionary relationship between non-infectious diseases and genomic 83 

adaptation. 84 

 85 

Multiple recent studies comparing evolutionary patterns between human disease and non-86 

disease genes have found that disease genes are more constrained and evolve more slowly (lower 87 

ratio of nonsynonymous to synonymous substitution rate, dN/dS, in disease genes) (Blekhman et 88 

al., 2008; Park et al., 2012; Spataro et al., 2017), An older comparison by Smith and Eyre-Waler 89 

(2003) found that disease genes evolve faster than non-disease genes (higher dN/dS), but we note 90 

that the sample of disease genes used at the time was very limited. 91 

 92 
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The significant increase of the number of known disease genes since these studies were 93 

completed makes it important to update the comparison of evolutionary patterns at disease and 94 

non-disease genes. More critically however, past studies all have in common an important 95 

limitation that justifies comparing disease genes and non-disease genes again.  Disease and non-96 

disease genes may differ by more than just the fact that they have been associated with disease or 97 

not. Disease and non-disease genes may also differ in many other factors other than their disease 98 

status. Such factors can be a problem when comparing adaptation in disease genes and non-99 

disease genes, because they, instead of the disease status itself, could explain differences in 100 

adaptation. For example, disease genes tend to be more highly expressed than non-disease genes 101 

(Spataro et al., 2017) (Figure 1). If higher expression happens to be associated with more 102 

adaptation in general, one might detect more adaptation in disease genes in a way that has 103 

nothing to do with disease, and just reflects their higher levels of expression. Many other factors 104 

may also be important. For example, immune genes, which often adapt in response to infectious 105 

pathogens, may further complicate comparisons if they are represented in unequal proportions 106 

between non-infectious disease and non-disease genes. Comparing genomic adaptation in disease 107 

and non-disease genes thus requires careful consideration of confounding factors. 108 

 109 

 110 
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 124 

 125 

 126 

Figure 1. Potential confounding factors in disease versus non-disease genes. 127 
Each potential confounding factor is detailed in the Methods. For each confounding factor, the 128 
boxplot shows on the y-axis the ratio of the average factor value for disease genes, divided by the 129 
average factor value for non-disease genes. The boxplot error bars are obtained by calculating 130 
the ratio 1,000 times, each time by randomly sampling as many non-disease genes as there are 131 
disease genes. 132 
  133 

 134 

Among other confounding factors, it is particularly important to take into account 135 

evolutionary constraint, i.e the level of purifying selection experienced by different genes. A 136 

common intuition is that disease genes may exhibit less adaptation because they are more 137 

constrained (Blekhman et al., 2008), leaving less mutational space for adaptation to happen in 138 

the first place. Less adaptation at disease genes might thus represent a trivial consequence of 139 

varying constraint between genes (Kim et al., 2007), which says little about a specific connection 140 
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between disease and adaptation. In the same vein, one might expect disease genes to be 141 

associated with higher mutation rates, and more frequent adaptation to follow as a trivial 142 

consequence of elevated mutation rates. Whether disease genes experience higher mutation rates 143 

is however still an open question (Osada et al., 2009; Eyre-Walker and Eyre-Walker, 2014). In 144 

any case, focusing specifically on disease and adaptation requires controlling for confounders 145 

such as constraint and mutation rate (see Methods, Results and Figure 1 for a complete list of 146 

confounders accounted for in this analysis). 147 

 148 

A specific evolutionary relationship may exist between adaptation and disease beyond the 149 

simple effect of constraint, mutation rate or other confounders. In an evolutionary context, once 150 

constraint and other confounding factors have been accounted for, we can imagine three potential 151 

scenarios for the comparison of adaptation between disease and non-disease genes. Under 152 

scenario 1, any potential difference in adaptation between disease and non-disease genes is 153 

entirely due to differences in constraint and other confounding factors. Under this scenario, there 154 

is no further evolutionary process linking disease and adaptation together. Therefore, there is no 155 

difference in adaptation between disease and non-disease genes once confounding factors have 156 

been accounted for. 157 

 158 

Under scenario 2, disease genes have more adaptation than non-disease genes. For 159 

example, as already mentioned above, deleterious mutations can hitchhike together with adaptive 160 

mutations to high frequencies in human populations (Birky and Walsh, 1988; Barreiro and 161 

Quintana-Murci, 2010; Chun and Fay, 2011). Other, less well established, cases can be imagined 162 

where past adaptation decreased the robustness of a specific gene, and subsequent mutations 163 

become more likely to be associated with diseases (Xu and Zhang, 2014). Scenario 2 thus favors 164 

a relationship between adaptation and disease, where past adaptation precedes and influences the 165 

likelihood of a gene being associated with disease. 166 

Under scenario 3, disease genes have less adaptation than non-disease genes even after 167 

accounting for confounding factors such as evolutionary constraint. Such a scenario might occur 168 

for example if disease genes happen to be genes that can be sensitive to changes in the 169 

environment, with a fitness optimum that can change over time, but where adaptation has not 170 

occurred yet to catch up with the new optimum. Such an adaptation lag (or lag load, to reuse the 171 
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terminology introduced by J. Maynard-Smith (1976)) may occur for example if higher pleiotropy 172 

at disease genes (Ittisoponpisan et al., 2017) makes it less likely for new mutations to be 173 

advantageous (Otto, 2004) (in addition to increasing the level of constraint already accounted for 174 

as a confounding factor).  Such an adaptation lag, with genes further away from their optimum, 175 

might make such genes more prone to accumulate disease variants that fall too far from the 176 

“normal” functioning range around the optimum. An adaptation lag may also occur if deleterious 177 

mutations interfere with and slow down adaptation at disease genes more than at non-disease 178 

genes (Assaf et al., 2015; Hill and Robertson, 1966). 179 

Even though uncovering the underlying evolutionary processes that govern the 180 

relationship between disease and adaptation will take a lot more work than the present analysis, it 181 

is important to find first which scenario is the most likely to be true, i.e whether disease genes 182 

have as much, more, or less adaptation than non-disease genes. Finding out which out of the 183 

three possible scenarios is true may give a preliminary basis to further hypothesize which 184 

evolutionary processes are more likely to dominate the relationship between disease and 185 

adaptation genome-wide. 186 

  187 

Here, we compare recent adaptation in mendelian disease and non-disease genes in order 188 

to disentangle the connections between adaptation and disease. We specifically compare the 189 

abundance of recent selective sweeps signals, where hitchhiking has raised haplotypes that carry 190 

an advantageous variant to higher frequencies (Smith and Haigh, 1974). Note that this means that 191 

we can only compare adaptation at specific loci between disease and non-disease genes that was 192 

strong enough to induce hitchhiking, hence we do not take into account polygenic adaptation 193 

distributed across a large number of loci that did not leave any hitchhiking signals (see 194 

Discussion). As mentioned above, confounding factors may affect the comparison between 195 

disease and non-disease genes. In contrast with previous studies, we systematically control for a 196 

large number of confounding factors when comparing recent adaptation in human disease and 197 

non-disease genes, including evolutionary constraint, mutation rate, recombination rate, the 198 

proportion of immune or virus-interacting genes, etc. (please refer to Methods for a full list of the 199 

confounding factors included). In addition to controlling for a large number of confounding 200 

factors, we estimate false positive risks (FPR) for our comparison pipeline that fully take into 201 

account the implications of controlling for many factors (see Methods and Results). 202 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437959doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437959
http://creativecommons.org/licenses/by/4.0/


8 
 

As a list of disease genes to test, we curate human mendelian non-infectious disease 203 

genes based on annotations in the DisgeNet and OMIM databases (Methods). We focus on 204 

mendelian disease genes rather than all disease genes including complex disease associations, 205 

because different evolutionary patterns can be expected between mendelian and complex disease 206 

genes based on previous studies (Blekhman et al., 2008; Quintana-murci, 2016; Spataro et al., 207 

2017). In total, we compare 4,215 mendelian disease genes with non-disease genes in the human 208 

genome. In agreement with scenario 3, we find a strong deficit of selective sweeps at disease 209 

genes compared to non-disease genes. We further test multiple potential explanations for this 210 

deficit, and find that higher pleiotropy at disease genes is unlikely to explain the less frequent 211 

occurrence of sweeps. In contrast, we find that the sweep deficit at disease genes strongly 212 

depends on recombination and the number of known disease variants at given disease genes. 213 

This suggests that segregating deleterious mutations at disease genes might interfere with, and 214 

slow down genetically linked adaptive variants enough to produce the observed lack of sweeps at 215 

disease genes. 216 

 217 

Results 218 

 219 

Controlling for confounding factors with a bootstrap test 220 

To compare disease and non-disease genes, we first ask which potential confounding factors 221 

differ between the two groups of genes. As expected, multiple measures of selective constraint 222 

are significantly higher in disease compared to non-disease genes. As a measure of long-term 223 

constraint, the density of conserved elements across mammals is slightly higher at disease genes 224 

compared to non-disease genes (Figure 1: conserved 50kb, conserved 500kb; Methods).  225 

As a measure of more recent constraint, we contrast pS, the average proportion of variable 226 

synonymous sites, with pN, the average proportion of variable nonsynonymous sites (Figure 1; 227 

Methods). If the coding sequences of disease genes are more constrained, we expect a drop of pN 228 

at disease genes, but no such drop of pS at neutral synonymous sites. Accordingly, pN is lower at 229 

disease compared to non-disease genes, while pS is very similar between the two categories of 230 

genes (Figure 1). Therefore, selective constraint was stronger in the coding sequences of disease 231 

genes during recent human evolution. 232 
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As another measure of recent constraint, we also use McVicker’s B estimator of background 233 

selection (McVicker et al., 2009). The amount of background selection at a locus can be used as 234 

a proxy for recent constraint, since it depends on the number of deleterious mutations that were 235 

recently removed at this locus. The lower B, the more background selection there is at a specific 236 

locus. In line with higher recent constraint at disease genes, B is slightly, but significantly lower 237 

at disease genes (Figure 1; Methods). Overall, we find evidence of higher constraint at disease 238 

genes. 239 

 240 

In addition to constraint, mutation rate could represent an important confounder. The proportion 241 

of variable neutral synonymous sites pS can be used to compare mutation rates, since the number 242 

of variable sites is proportional to the mutation rate under neutrality. As mentioned already, pS is 243 

very similar at disease and non-disease genes (Figure 1), suggesting that mutation rates are 244 

similar at disease and non-disease genes. This is further supported by the fact that multiple 245 

factors that could affect the mutation rate such as GC content or recombination are also similar at 246 

disease and non-disease genes (Figure 1; Methods). Aside from mutation rate and constraint, 247 

multiple other factors that could affect adaptation differ between disease and non-disease genes, 248 

notably including the proportion of genes that interact with viruses, the proportion of immune 249 

genes, or the number of protein-protein interactions (PPIs) in the human PPIs network. All these 250 

factors have been shown to affect adaptation (Methods), further showing the necessity to control 251 

for confounding factors when comparing adaptation at disease and non-disease genes.   252 

 253 

Less sweeps at disease genes 254 

For our comparison of disease and non-disease genes, we measure recent adaptation 255 

around human protein coding genes (Methods) using the integrated haplotype score (iHS, 256 

(Voight et al., 2006)) and the number of Segregating sites by Length (𝑛𝑆!, (Ferrer-Admetlla et 257 

al., 2014)) in 26 populations (The 1000 Genomes Project Consortium, 2015) (Methods). The iHS 258 

and 𝑛𝑆! statistics are both sensitive to recent incomplete sweeps, and have the advantage over 259 

other sweep statistics of being insensitive to the confounding effect of background selection 260 

(Enard et al., 2014; Schrider, 2020). To evaluate the prevalence of sweeps at disease genes 261 

relative to non-disease genes, we do not use the classic outlier approach, and instead used a 262 

previously described, more versatile approach based on block-randomized genomes to estimate 263 
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unbiased false positive risks for whole enrichment curves (Figure 2) (Enard and Petrov, 2020). 264 

We first rank genes based on the average iHS or 𝑛𝑆! in genomic windows centered on genes 265 

(Methods), from the top-ranking genes with the strongest sweep signals to the genes with the 266 

weakest signals. We then slide a rank threshold from a high rank value to a low rank value (from 267 

top 5,000 to top 10, x-axis on Figure 2). For each rank threshold, we estimate the sweep 268 

enrichment (or deficit) at disease relative to non-disease genes (Figure 2, y-axis). For example, 269 

for rank threshold 200, the relative enrichment (or deficit) is the number of disease genes in the 270 

top 200 ranking genes, divided by the number of control non-disease genes in the top 200. By 271 

sliding the rank threshold, we estimate a whole enrichment curve that is not only sensitive to the 272 

strongest sweeps but also to weaker sweeps signals (for example using the top 5,000 threshold; 273 

Figure 2). Using block-randomized genomes (Methods), we can then estimate an unbiased false 274 

positive risk (FPR) for the whole enrichment curve. This strategy makes less assumptions on the 275 

expected strength of selective sweeps. The approach also makes it possible to estimate a single 276 

false positive risk based on the cumulated enrichment (or deficit) over multiple whole 277 

enrichment curves (Methods). Here, we estimate a single false positive risk for both iHS and 𝑛𝑆! 278 

curves considered together, and also for multiple window sizes to measure average iHS and 𝑛𝑆! 279 

(from 50kb to 1Mb, Methods). 280 

 281 

To control for confounding factors (Figure 1), we compare sweep signals at disease genes with 282 

control non-disease genes that were chosen by a bootstrap test (Castellano et al., 2019; Enard and 283 

Petrov, 2020) because they match disease genes in terms of confounding factor values  284 

(Methods). Furthermore, control non-disease genes are chosen far from disease genes (>300kb; 285 

Methods). We do this to avoid choosing as controls non-disease genes that are too close to 286 

disease genes and thus likely to have the same sweep profile (especially in the case of large 287 

sweeps potentially overlapping both neighboring disease and non-disease genes). This, together 288 

with the large number of confounding factors that we match, tends to limit the pool of possible 289 

control genes (Methods). The statistical impact of a limited control pool is however fully taken 290 

into account by the estimation of a FPR with block-randomized genomes (Methods). 291 

 292 

Because they have experienced different demographic histories, we test different human 293 

populations from distinct continents separately. Specifically, we test African populations, East 294 
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Asian populations and European populations from the 1,000 Genomes Project phase 3 (The 1000 295 

Genomes Project Consortium, 2015). At this stage we must consider the fact that most gene-296 

disease associations in our dataset were likely discovered in European cohorts. Because disease 297 

genes in Europe may not always be disease genes in other populations, we cannot exclude the 298 

possibility that a sweep enrichment or a sweep deficit might be more pronounced in Europe, 299 

unless the evolutionary processes that make a gene more likely to be a disease gene predated the 300 

split of different human populations. Conversely, one might expect distinct selective patterns 301 

between disease and non-disease genes to be more visible in Africa. Indeed, more intense drift, 302 

due to the more severe bottlenecks experienced by ancestral Eurasian populations (The 1000 303 

Genomes Project Consortium, 2015), is expected to dilute true selective patterns among false 304 

positive signals more in Europe and East Asia, by creating a higher base level of drift noise. 305 

 306 

 307 
Figure 2. A stronger sweep deficit at disease genes in Africa than in East Asia and Europe. 308 
The figure shows the observed sweep enrichment/deficit score used to measure the false positive 309 
risk (FPR) in the real genome (red line), compared to the expected null distribution of the score 310 
estimated with block-randomized genomes (5,000 block-randomized genomes in Africa, 1,000 in 311 
East Asia and Europe; Methods). The FPR score is based on summing the difference between the 312 
number of genes in sweeps at disease genes and the number of genes in sweeps in control genes, 313 
over both iHS and 𝑛𝑆!, and different window sizes (Methods). A) FPR score in Africa, estimated 314 
summing over the ESN, GWD, LWK, MSL and YRI populations from the 1,000 Genomes 315 
Project. B) FPR score in East Asia, estimated summing over the CDX, CHB, CHS, JPT and 316 
KHV populations. C) FPR score in Europe, summing over the CEU, FIN, GBR, IBS and TSI 317 
populations.  318 
 319 

 320 

Using both iHS and 𝑛𝑆! sweep signals, we find a strong depletion in sweep signals at disease 321 

genes, especially in Africa with a low false positive risk (FPR=3.10-4 vs. 0.18 in East Asia and 322 

0.05 in Europe, Figure 2A, B and C respectively; Methods). Note that this FPR takes the 323 
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clustering of multiple genes in the same sweeps into account (Enard and Petrov, 2020). A 324 

stronger depletion in Africa suggests that the evolutionary processes linking disease and 325 

adaptation at the gene level predate the split of African and European populations, given that 326 

most gene-disease associations studies involved European cohorts. The stronger depletion in 327 

Africa also suggests that the same pattern might be present outside of Africa, but more hidden by 328 

genetic drift noise. It might indeed be harder to distinguish a deficit of true sweep signals at 329 

disease genes if it is swamped by an elevated level of false sweep signals occurring at random in 330 

the genome, due to more intense drift. Figure 3A, B and C show the sweep deficit curves at 331 

disease genes compared to control non-disease genes in Africa, East Asia and Europe, 332 

respectively. 333 

 334 

 335 

 336 
Figure 3. Deficit of iHS and 𝒏𝑺𝑳 sweep signals at disease genes. 337 
The figure shows the averaged whole enrichment curves and their averaged confidence intervals 338 
from the bootstrap test, averaged over both iHS and 𝑛𝑆! sweep ranks, and over all the 339 
populations from each continent (Methods). The y-axis represents the relative sweep enrichment 340 
at disease genes, calculated as the number of disease genes in putative sweeps, divided by the 341 
number of control non-disease genes in putative sweeps. The gray areas are the 95% confidence 342 
interval for this ratio. The number of genes in putative sweeps is measured for varying sweep 343 
rank thresholds. For example, at the top 100 rank threshold, the relative enrichment is the 344 
number of disease genes within the top 100 genes with the strongest sweep signals (either 345 
according to iHS or 𝑛𝑆!), divided by the number of control non-disease genes within the top 100 346 
genes with the strongest sweep signals. We use genes ranked by iHS or 𝑛𝑆! using 200kb 347 
windows, since 200kb is the intermediate size of all the window sizes we use (50kb, for the 348 
smallest, 1000kb for the largest; see Methods). A) Africa, average over the ESN, GWD, LWK, 349 
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MSL and YRI populations from the 1,000 Genomes Project. B) East Asia, average over the 350 
CDX, CHB, CHS, JPT and KHV populations. C) Europe, average over the CEU, FIN, GBR, IBS 351 
and TSI populations. 352 
 353 

Notably, the stronger depletion observed in Africa likely excludes the possibility that it could be 354 

mostly due to a technical artifact, where sweeps themselves might make it harder to identify 355 

disease genes in the first place. Sweeps increase linkage disequilibrium (LD) in a way that could 356 

make it more difficult to assign a disease to a single gene in regions of the genome with high LD 357 

and multiple genes genetically linked to a disease variant. This could result in a depletion of 358 

sweeps at monogenic disease genes, simply because disease genes are less well annotated in 359 

regions of high LD. However, if this was the case, because most disease gene were identified in 360 

Europe, we would expect such an artifact to deplete sweeps at disease genes primarily in Europe, 361 

not in Africa. This artifact is also very unlikely due to the fact that recombination rates are 362 

similar between disease and non-disease genes (Figure 1). Overall, these results support the third 363 

scenario where evolutionary processes decrease adaptation at disease genes. That said, it is 364 

important to note that we only detect a deficit of adaptation strong enough to leave hitchhiking 365 

signals. Our results do not imply that the same is true for adaptation that is too polygenic to leave 366 

signals detectable with iHS or 𝑛𝑆!. Note that the sweep deficit at disease genes in Africa is 367 

robust to differences in gene functions between disease and non-disease genes according to a 368 

Gene Ontology analysis (Methods) (Gene Ontology Consortium, 2021). 369 

 370 

A limited role of pleiotropy 371 

A deficit of strong adaptation (strong enough to affect iHS or 𝑛𝑆!) raises the question of what 372 

creates this deficit at disease genes. Because disease genes tend to be pleiotropic and many 373 

disease genes are involved in multiple diseases (see below), pleiotropy is a particularly attractive 374 

potential explanation for the lack of sweeps at disease genes. Pleiotropy is defined as the ability 375 

for a gene to affect multiple phenotypes. The involvement in multiple phenotypes may make it 376 

more difficult for mutations to emerge at pleiotropic genes without any adverse antagonistic 377 

effects (Otto, 2004). In addition to the higher selective constraint already accounted for, 378 

pleiotropy may thus also make it less likely for advantageous mutations to be advantageous and 379 

cause a sweep (Otto, 2004), with the advantage provided by changes at specific phenotypes 380 

being mitigated by the adverse effects on other phenotypes. 381 
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We can test the involvement of pleiotropy with our dataset by comparing sweeps at disease 382 

genes involved in multiple diseases, with sweeps at disease genes involved in only one disease. 383 

If pleiotropy decreases the rate of sweeps at disease genes, we predict that genes involved in 384 

multiple diseases should experience less sweeps than genes involved in only one disease. 385 

There are 1221 disease genes in our dataset associated with five or more diseases (five+ disease 386 

genes), and 1296 disease genes associated with only one disease according to the CUI (Concept 387 

Unique Identifiers) classification provided by DisGeNet (Methods). When comparing the five+ 388 

disease genes with one disease genes far away (>300 kb as when comparing all disease genes 389 

with control non-disease genes), we do not find significantly less iHS and 𝑛𝑆! sweep signals at 390 

five+ disease genes in Africa (FPR=0.46). This result makes it unlikely that pleiotropy can 391 

explain the sweep deficit at disease genes. 392 

 393 

 394 

A possible role of interference of deleterious mutations 395 

With pleiotropy likely having a limited role, we further test other possible explanations for the 396 

sweep deficit at disease genes. Another possibility is that adaptation may be limited at disease 397 

genes due to deleterious mutations interfering with and slowing down advantageous variants. 398 

This process has been mostly studied in haploid species (Peck, 1994; Johnson and Barton, 2002; 399 

Jain, 2019). In diploid species including humans, recessive deleterious mutations specifically 400 

have been shown to have the ability to slow down, or even stop the frequency increase of 401 

advantageous mutations that they are linked with (Assaf et al., 2015; Uricchio et al., 2019). 402 

Uricchio et al. (2019) in particular found evidence of decreased protein adaptation in the regions 403 

of the human genome with strong background selection and low recombination. The majority of 404 

disease variants are recessive (Amberger et al., 2019). Thus, if segregating recessive deleterious 405 

mutations are more common at disease genes, starting with the known disease variants 406 

themselves, then their interference could in theory explain the sweep deficit that we observe. 407 

This is true even despite the fact that we matched disease and control non-disease genes for 408 

multiple measures of selective constraint. Indeed, we use measures of selective constraint such as 409 

the density of conserved elements or the proportion of variable non-synonymous sites pN 410 

(Methods), that are indicative of the amount of deleterious mutations that get ultimately 411 

removed, but do not provide any detailed information on either the strength of negative selection, 412 
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or on dominance coefficients. Disease genes and control non-disease genes may have very 413 

similar densities of conserved elements and similar pN, and still very different distributions of 414 

selection and dominance coefficients of deleterious mutations. Unfortunately, disentangling 415 

selection from dominance coefficients is notoriously difficult, because different combinations of 416 

selection and dominance coefficients can result in the same patterns of genetic variation (Huber 417 

et al., 2018). Although directly comparing the actual total numbers of recessive deleterious 418 

mutations at disease and non-disease genes is therefore not possible, we can still use indirect 419 

comparison strategies. First, if an interference of deleterious mutations is involved, then this 420 

interference is expected to be stronger in low recombination regions of the genome, where more 421 

deleterious mutations are likely to be genetically linked to an advantageous mutation. Therefore, 422 

we predict that the sweep deficit should be more pronounced when comparing disease and non-423 

disease genes only in low recombination regions of the genome, where the linkage between 424 

deleterious and advantageous variants is higher. Conversely, the sweep deficit should be less 425 

pronounced in high recombination regions of the genome. Second, if the number of known 426 

disease variants at a given disease gene correlates well enough with the total number of 427 

segregating recessive deleterious mutations at this disease gene, then we should observe a 428 

stronger sweep deficit at disease genes with many known disease variants, compared to disease 429 

genes with few known disease variants. Based on these two predictions, the sweep deficit should 430 

be particularly strong at disease genes with both many disease variants AND lower 431 

recombination. As the number of disease variants for each disease gene, we use the number of 432 

disease variants as curated by OMIM/UNIPROT (Methods). 433 

 434 

For these comparisons we focus solely on African populations for which we found the strongest 435 

sweep deficit (Figure 2). We first compare disease and control non-disease genes both from only 436 

regions of the genome with recombination rates lower than the median recombination rate (1.137 437 

cM/Mb). In agreement with recombination being involved, we find that the sweep deficit at low 438 

recombination disease genes is much more pronounced than the overall sweep deficit found 439 

when considering all disease and control non-disease genes regardless of recombination (Figure 440 

4, FPR=2.10-4). Conversely, the sweep deficit at disease genes compared to non-disease genes is 441 

much less pronounced when restricting the comparison to genes with recombination rates higher 442 

than the median recombination rate (1.137 cM/Mb), and remains only marginally significant 443 
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(Figure 4, FPR=0.029). This provides evidence that genetic linkage may indeed be involved. 444 

Low recombination is however not sufficient on its own to create a sweep deficit, and we further 445 

test if the sweep deficit also depends on the number of disease variants at each disease gene. In 446 

our dataset, approximately half of all the disease genes have five or more disease variants, and 447 

the other half have four or less disease variants (Methods). In further agreement with possible 448 

interference of recessive deleterious variants, the sweep deficit is much more pronounced at 449 

disease genes with five or more disease variants (Figure 4, FPR=8.10-4). The sweep deficit at 450 

disease genes with four or less disease variants is barely significant compared to control non-451 

disease genes (Figure 4, FPR=0.032). In addition, disease genes with five or more disease 452 

variants, but with recombination higher than the median recombination rate, do not have a strong 453 

sweep deficit either (Figure 4, FPR=0.026). A higher number of disease variants alone is thus not 454 

enough to explain the sweep deficit. In a similar vein, disease genes with a recombination rate 455 

less than the median recombination rate, and with four or less disease variants, do not exhibit a 456 

strong sweep deficit (Figure 4, FPR=0.021). This confirms that low recombination alone is not 457 

enough to explain the sweep deficit at disease genes. Accordingly, disease genes with both low 458 

recombination AND five or more disease variants show the strongest sweep deficit (Figure 4, 459 

FPR=2.10-4). Disease genes with both high recombination AND less than 5 disease variants show 460 

no sweep deficit at all, with a sweep prevalence undistinguishable from control non-disease 461 

genes (Figure 4, FPR=0.74). The latter result is important, because it suggests that interference of 462 

recessive deleterious variants may be sufficient on its own to explain the whole sweep deficit at 463 

disease genes. Both higher linkage and more disease variants seem to be needed to explain the 464 

sweep deficit at disease genes. Note that these results are not due to introducing a bias in the 465 

overall number of variants by using the number of disease variants, because we always match the 466 

level of neutral genetic variation between disease genes and control non-disease genes with pS. 467 

The overall level of genetic variation is further matched thanks to pN and thanks to McVicker’s 468 

B, whose value is directly dependent on the level of genetic variation at a given locus (McVicker 469 

et al., 2009). 470 

 471 

 472 

 473 
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 474 
Figure 4. Sweep deficit as a function of recombination and disease variants number. 475 
The sweep deficit is measured as the FPR score per gene (to make all tested groups comparable) 476 
over all window sizes, and 𝑛𝑆! and iHS, as in Figure 1 (Methods). The different groups are 477 
separated according to recombination and numbers of disease variants so that they have 478 
approximately the same size (a half or a fourth of the disease genes). All deficits are measured 479 
using only African populations.  480 
 481 

 482 

Similar levels of sweep depletion in disease genes across MeSH disease classes 483 

Because we found an overall sweep depletion at disease genes, we further ask if genes associated 484 

with different diseases might show different patterns of depletion (always in African 485 

populations). We classify disease genes into different classes according to the Medical Subject 486 

Headings (MeSH) annotation for diseases in DisGeNet (Piñero et al., 2020). The MeSH 487 

annotations organize the disease genes into 24 broad disease categories that overlap with distinct 488 

organs or large physiological systems (for example the endocrine system).  We find significant 489 

(FPR<0.05) sweep depletions for all but one disease MeSH classes (FPR<0.05; Figure 5). The 490 

sweep deficit is mostly comparable across MeSH disease classes (Figure 5), suggesting that the 491 

evolutionary process at the origin of the sweep deficit is not disease-specific. This is compatible 492 

with a non-disease specific explanation such as recessive deleterious variants interfering with 493 

adaptive variants. The only non-significant deficit is for the MeSH term immune system 494 

diseases. Interestingly, there is evidence that past adaptation at disease genes in response to 495 

diverse pathogens has resulted in increased prevalence of specific auto-immune diseases 496 

(Barreiro and Quintana-Murci, 2010), and we can speculate that this is why we do not see a 497 

sweep deficit at those genes.  498 
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 499 
Figure 5. Sweep deficit per MeSH disease classes. 500 
The sweep deficit is measured as the overall FPR score per gene (Methods), to make all MeSH 501 
classes comparable even if they include different numbers of genes. 502 
 503 

 504 

Discussion: 505 

We found a depletion of the number of genes in recent sweeps at human non-infectious, 506 

mendelian disease genes compared to non-disease genes. Although more work is now needed, 507 

the lack of sweeps at disease genes already favors specific evolutionary processes over others. 508 

For example, it makes it unlikely that past adaptations increasing the occurrence of disease 509 

variants through hitchhiking would be the dominant process linking disease and adaptation at the 510 

gene level. The lack of sweeps at disease genes also seems to be unrelated to any difference in 511 

mutation accumulation between disease and non-disease genes, since we find no sign of a 512 

difference in mutation rates between the two categories of genes in the first place, and since we 513 

match metrics accounting for mutation rate in our comparisons (for example, GC content and 514 

pS). Instead, a lack of sweeps, once selective constraint has been controlled for, seems to favor a 515 

relationship involving a lag of adaptation at disease genes beyond simple constraint (measured 516 

by the amount of deleterious mutations that are removed). 517 

 518 
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Multiple mechanisms might explain such a lag of adaptation. A first possible hypothesis is that 519 

disease genes are genes that can be sensitive to the environment and whose fitness optimum can 520 

change during evolution when the environment changes. However, when this happens, 521 

adaptation then might take more time to chase the new optimum. Although higher pleiotropy is a 522 

tempting hypothesis to explain such a lag (Otto, 2004), genes involved in multiple diseases do 523 

not have a particularly pronounced sweep depletion compared to genes associated with only one 524 

disease. Completely excluding pleiotropy may however require more effort, notably by 525 

considering measures of pleiotropy other than the number of diseases a gene has been associated 526 

with. 527 

 528 

Another hypothesis is that disease genes may have a distribution of deleterious fitness effects 529 

that is different from other genes, but that the metrics of constraint that we used do not capture 530 

this difference. Specifically, we can imagine a case where disease genes have more currently 531 

segregating recessive deleterious variants than other genes, and where selective sweeps are 532 

impeded due to the interference of genetically linked recessive deleterious variants. The 533 

deleterious effects of these variants can reveal themselves when they hitchhike together with an 534 

advantageous variant that is just starting to increase in frequency (Assaf et al., 2015) . 535 

Accordingly, we find a marked sweep depletion when restricting the comparison to disease and 536 

non-disease genes in low recombination regions of the genome and with higher numbers of 537 

disease variants (Figure 4). All these comparisons are however indirect, and we do not quantify 538 

directly the amount of recessive deleterious mutations at disease or non-disease genes. Further 539 

verifying that recessive deleterious mutations impede sweeps more at disease than non-disease 540 

genes will require showing that recessive deleterious mutations are indeed more abundant at 541 

disease genes, ideally by also estimating dominance coefficients. That said, the majority of 542 

disease variants are known to be recessive and using the number of disease variants, as done in 543 

the present study, should be a good proxy of the actual number of segregating recessive 544 

deleterious mutations. Estimating dominance may prove challenging, since it is difficult to 545 

distinguish selection coefficient changes from dominance coefficient changes (Huber et al., 546 

2018). Again, our results provide preliminary evidence to further test in the future. 547 

 548 
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In addition to suggesting possible explanatory evolutionary scenarios, our results highlight a 549 

number of potential limitations and biases that also need to be explored in more detail. First, the 550 

lack of sweeps at disease genes suggests the possibility of a technical bias against the annotation 551 

of disease genes in sweep regions with high LD, as described in the Results. This bias is unlikely 552 

to be the dominant explanation for our results, because then we would expect a stronger sweep 553 

deficit at disease genes in Europe than in Africa, given that most disease genes were annotated in 554 

Europe. The recombination rate at disease genes is also not different from the recombination rate 555 

at non-disease genes (Figure 1). The increase of the sweep deficit when comparing disease and 556 

non-disease genes only in low recombination regions (Figure 4), where disease annotation would 557 

then be more difficult regardless of overlapping a sweep or not, also suggests that this bias is 558 

unlikely. That said, it will still be useful to further investigate in the future how much this 559 

potential bias might have contributed to our observations. 560 

Second, even though more intense genetic drift seems a reasonable explanation for the less 561 

pronounced sweep deficit at disease genes in Europe and East Asia than in Africa, this claim 562 

needs to be further tested, for example with population simulations reproducing past population 563 

demographic fluctuations. Such simulations would make it possible to test whether or not past 564 

bottlenecks in ancestral Eurasian populations were strong enough to erase the sweep deficit 565 

signal at disease genes in East Asia and Europe, by swamping it with random false positive 566 

sweep signals. 567 

 568 

 Further work is also required regarding the connection between the sweep deficit and polygenic 569 

adaptation not leaving hitchhiking signals. Our results could be explained by a general lack of 570 

adaptation at disease genes, or instead by a different balance between sweeps and polygenic 571 

adaptation at disease genes, with less sweeps but more polygenic adaptation that would be less 572 

affected by interference with deleterious variants. It may be possible to use recent polygenic 573 

adaptation quantification tools such as PALM (Stern et al., 2021) to compare its prevalence at 574 

disease and non-disease genes. 575 

 576 

Finally, there are multiple directions to further analyze the sweep deficit at disease genes that we 577 

have not explored in this manuscript. For instance, analyzing the sweep deficit as a function of 578 

the time of onset of diseases (early or late in life), might further provide clues to why the sweep 579 
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deficit exists in the first place. Preliminary comparison of the sweep deficit at specific MeSH 580 

disease classes (Figure 5) with known early (congenital diseases) or mostly late onsets (cancer, 581 

cardiovascular) however suggests that the average onset time of diseases might not make much 582 

of a difference. 583 

 584 

In conclusion, although our analysis reveals a strong deficit of selective sweeps at human disease 585 

genes, it also suggests that more work is needed to better understand the evolutionary processes 586 

at work, and the biases that may have skewed our interpretations. Despite these limitations, our 587 

comparison nevertheless already suggests that specific evolutionary relationships between 588 

disease genes and adaptation might be more prevalent than others, especially interference 589 

between recessive deleterious and adaptive variants. As an important follow-up question, it may 590 

now be important to ask how the sweep deficit at disease genes might have hidden interesting 591 

adaptive patterns in previous functional enrichment analyses, especially in gene functions that 592 

are often annotated based on disease evidence in the first place. For example, metabolic genes 593 

are believed to be of particular interest for adaptation to climate change. But metabolic genes are 594 

often found due to their role in metabolic disorders, and a strong representation of disease genes 595 

among all metabolic genes could then in theory mask any sweep enrichment. A sweep 596 

enrichment at metabolic genes might only become visible once controlling for the proportion of 597 

disease genes, in addition to the list of controls that we already use in the present analysis 598 

(Methods). Our results thus highlight the complexity of studying functional patterns of 599 

adaptation in the human genome. 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 
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Methods 611 

Disease gene lists 612 

We consider genes that are known to be associated with diseases as disease genes. We focus on 613 

protein-coding genes associated with human mendelian non-infectious diseases. Complex 614 

diseases are associated with several loci and environmental factors. Patterns of positive selection 615 

at complex disease and mendelian disease genes may differ (Blekhman et al., 2008), which is 616 

why we restrict our analysis to mendelian disease genes. We also restrict our analyses to non-617 

infectious disease genes, since interactions with pathogens are an entirely different problem. We 618 

nevertheless control for the proportion of genes that are immune genes or interact with viruses 619 

(see below), since it has been shown that immune genes and interactions with viruses drive a 620 

large proportion of genomic adaptation in humans (Enard et al., 2016; Castellano et al., 2019). 621 

Therefore, different proportions of immune and virus-interacting genes between disease and non-622 

disease genes might confound their comparison. Moreover, although diseases can be associated 623 

with non-coding genes, we only use protein-coding genes. We curate disease genes defined as 624 

genes associated with diseases according to both DisGeNet (Piñero et al., 2020) and OMIM 625 

(Amberger et al., 2019), to ensure that we focus on high-confidence disease genes. DisGeNet is a 626 

comprehensive database including gene-disease associations (GDAs) from many sources. In 627 

order to get disease genes with high confidence, we further only use GDAs curated by UniProt. 628 

These gene-disease associations are extracted and carefully curated from the scientific literature 629 

and the OMIM (Online Mendelian Inheritance in Man) database, which reports phenotypes 630 

either mendelian or possibly mendelian (Amberger et al., 2019). We also exclude all genes 631 

associated with infectious diseases according to MeSH annotation (disease class C01). In the 632 

end, we curate 4215 non-infectious mendelian disease genes from DisGeNet also curated by 633 

OMIM and Uniprot. Although we rely on GDAs from Uniprot to curate high-quality disease 634 

genes, we also include GDAs of DisGeNet from other sources when classifying disease genes 635 

into different MeSH classes and measuring pleiotropy, as long as a disease gene has at least one 636 

GDA curated by OMIM and Uniprot. We completely exclude GDAs that are only reported by 637 

CTD (Comparative Toxicogenomics Database) (Davis et al., 2021) in this study. This is because 638 

CTD includes a broad range of chemical-induced diseases that might only happen where people 639 

are exposed to these chemicals, especially some inorganic chemicals that may not be present in 640 

natural environments (Davis et al., 2021).  641 
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 642 

In order to study different types of diseases, we also divide disease genes into different 643 

classes according to the annotated MeSH classes in DisGeNet (Piñero et al., 2020). Those 644 

diseases without MeSH class are annotated as “unclassfied”. Genes belonging to more than one 645 

MeSH class are counted in each MeSH class where they are present. MeSH classes including 646 

less than 50 genes are not considered in this study. We classify all the non-infectious disease 647 

genes into 22 MeSH classes including Neoplasms (C04), Musculoskeletal Diseases (C05), 648 

Digestive System Diseases (C06), Stomatognathic Diseases (C07), Respiratory Tract Diseases 649 

(C08), Otorhinolaryngologic Diseases (C09), Nervous System Diseases (C10), Eye Diseases 650 

(C11), Male Urogenital Disease (C12), Female Urogenital Diseases and Pregnancy 651 

Complications (C13), Cardiovascular Diseases (C14), Hemic and Lymphatic (C15), Congenital, 652 

Hereditary, and Neonatal Diseases and Abnormalities (C16), Skin and Connective Tissue 653 

Diseases (C17), Nutritional and Metabolic Diseases (C18), Endocrine System Diseases (C19), 654 

Immune System Diseases (C20), Mental Disorders (F03) and "unclassified". 655 

 656 

Detecting selection signals at human genes 657 

All the analyses were conducted human genome version hg19. We use two different methods to 658 

detect selective sweeps in human populations: iHS (integrated Haplotype Score, Voight et al., 659 

2006) and 𝑛𝑆! (Ferrer-Admetlla et al., 2014). Both approaches are haplotype-based statistics 660 

calculated with polymorphism data. We use human genome data from the 1,000 Genomes 661 

Project phase 3, which includes 2,504 individuals from 26 populations (The 1000 Genomes 662 

Project Consortium, 2015). 663 

We measure iHS and 𝑛𝑆!  in windows centered on human coding genes (i.e. windows 664 

whose center is located half-way between the most upstream transcript start site and most 665 

downstream transcript stop site of protein coding genes). We use windows of sizes ranging from 666 

50 kb to 1,000 kb (50kb, 100kb, 200kb, 500kb and 1,000kb) since we do not want to presuppose 667 

of the size of sweeps, and since the size of the selective sweeps may vary between different 668 

genes. Moreover, to avoid any preconception related to the expected strength or number of 669 

sweep signals, we use a moving rank threshold strategy to measure the enrichment or deficit in 670 

sweeps at disease genes. For example, we select the top 500 genes with the stronger sweep 671 

signals according to a specific statistic (iHS or 𝑛𝑆!). We then compare the number of diseases 672 
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and non-disease genes within the top 500 genes with the strongest iHS or 𝑛𝑆! signals. This was 673 

repeated for different top thresholds and the corresponding ranks from top 5,000 to top 10 674 

(Figure 3). Genes are ranked based on the average iHS or 𝑛𝑆! in their gene centered windows. 675 

Both iHS and 𝑛𝑆! measure, individually for each SNP in the genome, how much larger 676 

haplotypes linked to the derived SNP allele are compared to haplotypes linked to the ancestral 677 

allele (Voight et al., 2006; Ferrer-Admetlla et al., 2014). For each window, we measure the 678 

average of the absolute value of iHS or 𝑛𝑆! over all the SNPs in that window with an iHS or 𝑛𝑆! 679 

value. The average iHS or 𝑛𝑆! values in a window provide high power to detect recent select 680 

sweeps (Enard and Petrov, 2020). 681 

 682 

Comparing recent adaptation between disease and non-disease genes 683 

We use a previously developed gene-set enrichment analysis pipeline to compare recent 684 

adaptation between disease and non-disease genes (Enard and Petrov, 2020) 685 

(https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline). This pipeline includes 686 

two parts. The first part is a bootstrap test that estimates the whole sweep enrichment or 687 

depletion curve at genes of interest (disease genes in our case). The second part is a false positive 688 

risk (also known as false discovery rate in the context of multiple testing) that estimates the 689 

statistical significance of the whole sweep enrichment curve using block-randomized genomes. 690 

 691 

To compare disease and non-disease genes, we first need to select control non-disease genes that 692 

are sufficiently far away from disease genes. In that way, we avoid using as controls non-disease 693 

genes that overlap the same sweeps as neighboring disease genes, thus resulting in an 694 

underpowered comparison.  The question is then how far do we need to choose non-disease 695 

control genes? Ideally, we would choose non-disease control genes as far as possible from 696 

disease genes in the human genome, further than the size of the largest known sweeps (for 697 

example the lactase sweep), which would be on the order of a megabase. However, because there 698 

are many disease genes in our dataset (4,215), there are very few non-disease genes in the human 699 

genome that are more than one megabase away from the closest disease gene. This is a problem, 700 

because the available number of potential control non-disease genes is an important parameter 701 

that can affect both the type I error, false positive rate, and type II error, false negative rate of the 702 

disease vs. non-disease genes comparison. Indeed, the smaller the control set, the more likely it 703 
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is to deviate from being representative of the true null expectation at non-disease genes. The 704 

noise associated with a small sample could go either way. Either the small control sample 705 

happens by chance to have less sweeps, and the bootstrap test we use to compare disease and 706 

non-disease genes will become too liberal to detect sweep enrichments, and to conservative to 707 

detect sweep deficits. Or the small control sample happens by chance to have more sweeps than 708 

a larger control sample would, and the bootstrap test becomes too conservative to detect sweep 709 

enrichments, and too liberal to detect sweep deficits. 710 

After trying distances between disease genes and control disease genes of 100kb, 200kb, 300kb, 711 

400kb and 500kb, we find that the sweep deficit observed at disease genes increases steadily 712 

from 100kb to 300kb (Table 1), showing that 100kb or 200kb are likely insufficient distances. 713 

Further than 300kb at 400kb, we do not observe much stronger sweep deficits than at 300kb, 714 

while at the same time the risks of type I and type II errors keep increasing due to shrinking non-715 

disease genes control sets. This would translate in a decreased power to possibly exclude the null 716 

hypothesis of no sweep enrichment or deficit in the second part of the pipeline, when estimating 717 

the actual pipeline FPR. Because of this, we set the required distance of potential control non-718 

disease genes from disease genes at 300kb. This is also the distance where there are still 719 

approximately as many control genes (3455) as there are disease genes that we can use for the 720 

comparison (3030; those genes out of the 4,215 disease genes with sweep data and data for all 721 

the confounding factors). 722 

 723 

 724 

minimal distance sweep deficit 
100kb -20889 
200kb -35009 
300kb -68928 
400kb -88546 

Table 1. Sweep deficit as a function of the minimal distance of control non-disease genes. 725 
The sweep deficit is measured by the FPR score, that is the cumulative difference between the 726 
number of genes in sweeps at disease and control non-disease genes, across window sizes, sweep 727 
summary statistics, and African populations (see the rest of the Methods).  728 
 729 

 730 
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Another important aspect of the bootstrap test (first part of the pipeline), aside from setting up 731 

the minimal distance of the control non-disease genes, is the matching of potential confounding 732 

factors likely to influence sweep occurrence. We choose non-disease control genes that have the 733 

same confounding factors characteristics as disease genes (for example, control non-disease 734 

genes that have the same gene expression level across tissues as disease genes). The precise 735 

matching algorithm is detailed in Enard & Petrov (2020). 736 

When comparing disease and non-disease genes with the bootstrap test, we control for the 737 

following potential confounding factors that could influence the occurrence of sweeps at genes: 738 

● Average overall expression in 53 GTEx v7 tissues (The GTEx Consortium, 2015) 739 

(https://www.gtexportal.org/home/). We used the log (in base 2) of TPM (Transcripts Per 740 

Million). 741 

● Expression (log base 2 of TPM) in GTEx lymphocytes.  Expression in immune tissues 742 

may impact the rate of sweeps. 743 

● Expression (log base 2 of TPM) in GTEx testis. Expression in testis might also impact the 744 

rate of sweeps. 745 

● deCode recombination rates 50kb and 500kb: recombination is expected to have a strong 746 

impact on iHS and 𝑛𝑆! values, with larger, easier to detect sweeps in low recombination 747 

regions but also more false positive sweeps signals. The average recombination rates in 748 

the gene-centered windows are calculated using the most recent deCode recombination 749 

map (Halldorsson et al., 2019). We use both 50kb and 500kb window estimates to 750 

account for the effect of varying window sizes on the estimation of this confounding 751 

factor (same logic for other factors where we also use both 50kb and 500kb windows). 752 

● GC content is calculated as a percentage per window in 50kb and 500kb windows. It is 753 

obtained from the USCS Genome Browser (Kent et al., 2002). 754 

● The density of coding sequences in 50kb and 500kb windows centered on genes. The 755 

density is calculated as the proportion of coding bases respect to the whole length of the 756 

window. Coding sequences are Ensembl v99 coding sequences. 757 

● The density of mammalian phastCons conserved elements (Siepel et al., 2005) (in 50kb 758 

and 500k windows), downloaded from the UCSC Genome Browser (Kent et al., 2002). 759 

We used a threshold considering 10% of genome as conserved, as it is unlikely that more 760 

than 10% of the whole genome is constrained according to previous evidence (Siepel et 761 
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al., 2005). Given that each conserved segment had a score, we considered those segments 762 

above the 10% threshold as conserved. 763 

● The density of regulatory elements, as measured by the density of DNASE1 764 

hypersensitive sites (in 50kb and 500kb windows) also from the UCSC Genome Browser 765 

(Kent et al., 2002). 766 

● The number of protein-protein interactions (PPIs) in the human protein interaction 767 

network (Luisi et al., 2015). The number of PPIs has been shown to influence the rate of 768 

sweeps (Luisi et al., 2015). We use the log (base 2) of the number of PPIs. 769 

● The gene genomic length, i.e. the distance between the most upstream and the most 770 

downstream transcription start sites. 771 

● The number of gene neighbors in a 50kb window, and the same number in 500kb window 772 

centered on the focal genes: it is the number of coding genes within 25kb or within 773 

250kb. 774 

● The number of viruses that interact with a specific gene (Enard and Petrov, 2020). 775 

● The proportion of immune genes. The matched control sets have the same proportion of 776 

immune genes as disease genes, immune genes being genes annotated with the Gene 777 

Ontology terms GO:0002376 (immune system process), GO:0006952 (defense response) 778 

and/or GO:0006955 (immune response) as of May 2020 (Gene Ontology Consortium, 779 

2021). 780 

● The average number of non-synonymous variants PN in African populations, and the 781 

number of synonymous variants PS. We matched PN to build control sets of non-disease 782 

genes with the same average amount of strong purifying selection as disease genes. Also, 783 

PS can be a proxy for mutation rate and we can build control sets of non-disease genes 784 

with similar level of mutation rates. 785 

● McVicker’s B value which can be used to account for the effect of background selection 786 

on rates of adaptation and especially weak adaptation (McVicker et al., 2009). 787 

 788 

Similar to the selection of control genes far enough from disease genes, the matching of many 789 

confounding factors decreases the number of non-disease genes that can effectively be used as 790 

controls. This further increases the risk of type I and type II errors of the bootstrap test, as      791 

previously described. In addition, the bootstrap test only provides p-value for each tested sweep 792 
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rank threshold separately, in the whole enrichment (or deficit) curve (Figure 2). It does not 793 

provide any estimate of the significance of the whole curve, which is needed to estimate the 794 

significance of a sweep enrichment or deficit without making too many assumptions on how 795 

many sweeps are expected or how strong they are. 796 

To address the increased type I and type II error risks of the bootstrap test, as well to get an 797 

unbiased significance estimate for whole enrichment curves, the second part of our pipeline 798 

conducts a false positive risk analysis based on block-randomized genomes (Enard and Petrov, 799 

2020). Briefly, we re-estimate many whole enrichment curves reusing the same disease and 800 

control non-disease genes used in the first part of the pipeline by the bootstrap test, but after 801 

having randomly shuffled the locations of genes or clusters of neighboring genes in sweeps at 802 

those disease and control non-disease genes. To do this, we order the disease and control non-803 

disease genes as they appear in the genome. We then define blocks of neighboring genes, whose 804 

limits do not interrupt clusters of genes in the same putative sweep. Then, we randomly shuffle 805 

the order of these blocks. Because we do not cut any cluster of genes that might be in the same 806 

sweep, the resulting block-randomized genomes preserve the same clustering of the genes in the 807 

same putative sweeps as in the real genome. With this approach, we look at the exact same set of 808 

disease and control non-disease genes and just shuffle sweep locations between them. Thus, by 809 

using many block-randomized genomes, we can estimate the null expected range of whole 810 

enrichment curves while fully accounting for the extra variance expected from having a limited 811 

sample of control non-disease genes. We can then estimate a false positive risk (FPR) for the 812 

whole enrichment or deficit curve by comparing the real observed one with the distribution of 813 

random curves generated with block-randomized genomes. 814 

 815 

To measure the FPR for a curve, we need to define a metric to compare the real curve with the 816 

randomly generated ones. In figure 1, we show relative enrichments at each sweep rank 817 

threshold, the number of disease genes in sweeps divided by the number of control non-disease 818 

genes in sweeps. As a summary metric for the curve, we could then use the sum of the relative 819 

enrichments over all thresholds. However, the issue with this approach is that a relative 820 

enrichment is the same whether we have 2 disease genes in sweeps and one control non-disease 821 

gene in sweeps, or we have 200 disease genes in sweeps and 100 control non-disease genes in 822 

sweeps. Thus, although relative enrichments are convenient for visualization on a figure, they are 823 
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not adequate to measure the FPR. Instead of the relative enrichment, we use the difference 824 

between disease and non-disease genes, that is, the number of disease genes in sweeps, minus the 825 

average number of control non-disease genes across control sets built by the bootstrap test. We 826 

then use as a metric for a whole curve the sum of differences over all the rank thresholds. We use 827 

this sum of differences to estimate the enrichment or deficit curve FPR, as the proportion of 828 

block-randomized genomes where the sum of differences exceeds the observed sum of 829 

differences for an enrichment (one minus this proportion for a deficit). 830 

 831 

Importantly, although so far we have described the case where we measure the FPR for one 832 

enrichment curve, nothing prevents us from calculating a single sum of differences over an entire 833 

group of enrichment or deficit curves. This way, we can measure a single FPR for any number of 834 

curves considered together. In our analysis, we measure a single FPR adding iHS and 𝑛𝑆! curves 835 

together, and also adding together the curves for 50kb, 100kb, 200kb, 500kb and 1000kb 836 

windows (ten curves in total, 2 statistics*5 window sizes). 837 

 838 

Sweep deficit at high and low recombination disease genes, and at high and low disease 839 

variant number disease genes 840 

To generate Figure 4, we separate disease genes in groups of approximately the same size based 841 

on their recombination rate and numbers of disease variants annotated in OMIM/Uniprot. We 842 

separate the disease genes into two groups of equal size, those with recombination lower than 843 

1.137 cM/Mb, and those with recombination higher than this value. To count the disease variants 844 

at each disease gene, we count not only the OMIM/Uniprot disease variants for that gene, but 845 

also all the other OMIM/Uniprot disease variants that occur in a 500kb window centered on that 846 

gene. We do this because the recessive deleterious variants form other nearby disease genes may 847 

also interfere with adaptation. Half of disease genes have less than five OMIM/Uniprot disease 848 

variants, and half have five or more. 849 

 850 

Impact of functional differences between disease and non-disease genes on the sweep deficit 851 

The sweep deficit at disease genes could be due to a different representation of gene functions at 852 

disease genes compared to control non-disease genes. In this case, disease genes would have less 853 

adaptation not because they are disease genes, but because the gene functions that are enriched 854 
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among disease genes compared to non-disease happen to experience less adaptation. We can test 855 

this possibility using Gene Ontology (GO) (Gene Ontology Consortium, 2021) functional 856 

annotations as follows. If GO gene functions that are enriched in disease genes experience less 857 

adaptation independently of the disease status of genes, then we can predict that non-disease 858 

genes with these functions should also experience less adaptation than non-disease genes that do 859 

not have these GO functions. In total, we find that 3,097 GO annotations are enriched in disease 860 

genes compared to confounding factors-matched controls (bootstrap test P≤0.01). In our dataset, 861 

half of non-disease genes have 20 or more of these GO annotations, and half have less than 862 

twenty (very few have none). We find no difference in the sweep prevalence between the two 863 

groups (20 or more annotations vs. less than 20 annotations at least 300kb away; FPR=0.15). The 864 

sweep deficit at disease genes is therefore unlikely to be due to the gene functions that are more 865 

represented in disease genes compared to controls. In addition, such a scenario would not explain 866 

the lack of sweep deficit observed at disease genes with high recombination rates and low 867 

numbers of disease variants (Figure 4). 868 
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