
 1

Title: Automatic Multi-functional Integration Program (AMFIP) towards All-optical
Mechanobiology Interrogation

Qin Luo1, +, Justin Zhang2, +, Gaoming Lin1, +, Miao Huang3, Mai Tanaka4,5, Sharon Lepler4,5,
Juan Guan5,6,7, Dietmar Siemann4,5, Xin Tang3,5, *

1Department of Electrical and Computer Engineering, Herbert Wertheim College of
Engineering (HWCOE), University of Florida (UF)
2Hillsdale High School, San Francisco, CA
3Department of Mechanical and Aerospace Engineering, HWCOE, UF
4Department of Radiation Oncology, College of Medicine, UF
5UF Health Cancer Center (UFHCC), UF
6Department of Physics, College of Liberal Arts and Sciences, UF
7Department of Anatomy and Cell Biology, College of Medicine, UF
+These authors contributed to the work equally
* Corresponding author: Xin Tang, Ph.D. (xin.tang@ufl.edu)

Abstract:
Automatic operations of multi-functional and time-lapse live-cell imaging are necessary for
biomedical studies of active, multi-faceted, and long-term biological phenomena. To achieve
automatic control, most existing solutions often require the purchase of extra software
programs and hardware that rely on the manufacturers’ own specifications. However, these
software programs are usually non-user-programmable and unaffordable for many laboratories.
µManager is a widely used open-source software platform for controlling many optoelectronic
instruments. Due to limited development since its introduction, µManager lacks compatibility
with some of the latest microscopy equipment. To address this unmet need, we have developed
a novel software-based automation program, titled Automatic Multi-functional Integration
Program (AMFIP), as a new Java-based and hardware-independent plugin for µManager.
Without extra hardware, AMFIP enables the functional synchronization of µManager, the
Nikon NIS-Elements platform, and other 3rd party software to achieve automatic operations of
most commercially available microscopy systems, including but not limited to Nikon. AMFIP
provides a user-friendly and programmable graphical user interface (GUI), opening the door to
expanding the customizability for many hardware and software. Users can customize AMFIP
according to their own specific experimental requirements and hardware environments. To
verify AMFIP's performance, we applied it to elucidate the relationship between cell spreading
and spatial-temporal cellular expression of Yes-associated protein (YAP), a mechanosensitive
protein that shuttles between cytoplasm and nucleus upon mechanical stimulation, in an
epithelial cell line. We found that the ratio of YAP expression in nucleus and cytoplasm
decreases as the spreading area of cells increases, suggesting that the accumulation of YAP in
the nucleus decreases throughout the cell spreading processes. In summary, AMFIP provides
a new open-source and charge-free solution to integrate multiple hardware and software to
satisfy the need of automatic imaging operations in the scientific community.

Keyword: Automatic Multi-functional Integration Program (AMFIP); Automatic operations;
Live cell imaging; µManager plugin; Synchronization of multiple optoelectronic devices;
Optogenetics; YAP/TAZ Mechanobiology; Cell traction microscopy

Introduction:
Automatic operations of multi-functional and time-lapse live-cell imaging are essential for
biomedical research on dynamic, multi-faceted, and long-term biological questions. Successful

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 2

automatic operations require streamlined functional coordination of multiple microscope
hardware and imaging software systems that are produced by different manufacturers of
optoelectronic systems. Most manufacturers usually provide their own hardware-specific
drivers and software. Despite their high price, these expensive drivers and software are often
non-user-programmable and incompatible with 3rd party hardware, which significantly limits
the full utilization of hardware functionalities and the necessary coordination between different
devices. To address this unmet need, we have developed a novel software-based automation
program, titled Automatic Multi-functional Integration Program (AMFIP), through Java
programming language (Fig. 1). Compared with other programs available to researchers,
AMFIP functions as a hardware-independent controlling hub, enabling the functional
coordination of multiple hardware and software systems to achieve automatic multi-functional
and time-lapse data acquisition on most commercially available imaging systems. AMFIP is
developed based on the µManager platform and entails multiple advantages (Table 1).

First, AMFIP achieves software-based automation without adding any extra hardware. To
achieve automatic operations, some existing solutions require extra single-board
microcontrollers to coordinate multiple hardware and software systems. These
microcontrollers generate analog and digital signals to modulate optoelectronic devices. For
example, the NI data acquisition card (DAQ; National Instrument Corp.) is utilized to control
the frame acquisition of the camera and switch of the laser channels.[1] An Arduino-based
system is applied to modulate selective-plane illumination microscopy (SPIM).[2] However,
these hardware-based solutions need additional purchases of expensive adaptive drivers at
prices around the $1000s for some optoelectronic devices, such as the Nikon A1R controller.
Our hardware-independent AMFIP program avoids such additional expenses by implementing
a home-built Java-based script that coordinates all devices through software communications
alone. Traditionally, to transmit modulatory signals from the NI digital-analog converters
(DAC) card into some optoelectronics hardware, particular physical ports are needed, such as
Communication (COM) port or Peripheral Component Interconnect (PCI) port. However, these
ports are not always present in many commercial devices, such as the Nikon LU-N4 laser units
used by many research laboratories. Thus, additional purchases are needed for researchers to
control the new hardware components that contain these ports.[3] AMFIP bypasses these
hardware constraints and accomplishes automatic modulations by leveraging the software
communications between the Nikon NIS-Elements software platform (Element) that
exclusively controls Nikon’s hardware and the hardware equipment from 3rd party
manufacturers.

Second, compared to other existing solutions, AMFIP supports a wider range of hardware,
including but not limited to non-µManager-supported hardware. As an open-source software
package, µManager has been applied to manipulate optoelectronic devices.[4]–[6] Researchers
have developed various user-defined µManager plugins to achieve specific tasks. However,
due to the rapid upgrades of equipment in the market, most existing µManager plugins lack
speedy enough development to provide sufficient compatibility with the latest microscopy
equipment. For example, a recently developed µManager plugin, MultiFRET, can achieve
automatic acquisition and analysis of fluorescent images, but relies on µManager-supported
instruments.[7] Due to the same restriction, another newly developed plugin, Easier Micro-
Manager User (EMU), can offer only limited functions to control µManager-supported optical
hardware, e.g., modulation of laser and filter wheels, and acquisition processes, e.g., time series
or z-stack imaging.[8] In contrast, our AMFIP can work with non-µManager-supported
instruments, providing more choices on new hardware to be included in microscope systems.
We have demonstrated that AMFIP enables automatic operations such as modulations of the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 3

Nikon laser channels and multi-functional imaging (Results (F)), which have been previously
unattainable by the µManager platform. [4]

Third, Java-based AMFIP enables user-programmable and automatic operations. Specifically,
AMFIP has a user-friendly GUI and is programmable to perform operations that meet the
experiment-specific requirements. Prior to experiments, researchers can flexibly specify the
functions needed for their experiments and input the required parameters. Next, AMFIP
coordinates all hardware and software involved in the experiments and executes the specified
functions automatically. In case unexpected accidents occur during the course of experiments,
researchers can flexibly pause functions without any loss of acquired data and resume the
experiments at any time after clearance of the accidents. For comparison, an existing
MATLAB-based GUI[9] can automatically accomplish an 18-hour data acquisition, but it
cannot pause the experiments in case of unexpected accidents. Instead, AMFIP achieves
automation of the entire experiment while providing users with safe and flexible control. These
features are desired for both new and experienced users.

In summary, our AMFIP program provides a charge-free and hardware-independent solution
for multi-functional and long-term image acquisition in biomedical research. To achieve
automatic control of multiple optoelectronic hardware, AMFIP coordinates µManager with the
Elements platform and other 3rd party software. Its user-friendly GUI allows researchers to
flexibly customize and program AMFIP to meet different experimental requirements.

Results:

A. Graphical User Interface (GUI) of AMFIP
A user-friendly and easily understandable program will benefit new users to effectively start
their research activities. Based on the Application Program Interface (API) of µManager that
prompts users with all inputs of experimental parameters and essential functions available,
AMFIP presents such an all-in-one graphical user interface (Fig. 2) to prescribe and implement
multi-functional data acquisition, such as coordination of multiple field-of-views (FOVs),
selections of microscope objectives, and modulation of multiple laser channels.
Simultaneously, AMFIP preserves full access to other 3rd party software and allows real-time
adjustments to achieve customized configurations.

B. Design Rationale and Structure of AMFIP
The workflow of AMFIP follows a model-GUI-controller paradigm that consists of 3
compartmentalized and interconnected logical components: the model (data), the GUI, and the
program controller (Fig. 3). This paradigm of compartmentalized components enables smooth
implementation of new functions by allowing the users to customize any component(s) without
interfering with others. For example, users can flexibly change the GUI of AMFIP to a new
layout without modifying the model or program controller.

At the beginning of experiments, users input experimental parameters into the GUI. Once
finished, the controller retrieves the data from the GUI, updates the model, and saves the data
to local hard disk. Alternatively, users can select a previously saved .JSON configuration file.
This selection will restore a previously saved configuration into the input fields of the GUI, but
will not execute them right away. This feature gives the user the full control to adjust any values
of experimental parameters if needed. Alternatively, if a user is entering a new configuration,
she/he can choose to save the current configuration for future use. This feature is designed to
enable robust repeatability for experiments that take place at different time points and allow

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 4

other users to replicate and corroborate experiments. Next, the program controller retrieves the
inputted data from the model and conducts the data-specified experiments accordingly.

For complex experiments where users want to frequently pause the experimental procedure to
adjust for new conditions/samples, such as adding a pharmacological drug into the cells,
AMFIP allows users to inform the hardware when to pause and resume in a user-determined
manner (Fig. 2). Once manipulation of the conditions/samples is done, users can restore the
experiment progress by clicking the “resume” button on the GUI (Fig. 2). The program will
automatically pick up where it left off and continue the pre-defined procedure. AMFIP also has
a manual pause function incorporated that can be used by users to pause whenever they desire.
This feature may serve as an emergency stop.

C. Functional Synchronization of Nikon NIS-Elements and µManager
Nikon NIS-Elements platform is a single and universal software that exclusively controls
Nikon’s hardware. Currently, it is the only commercially available software that controls the
Nikon A1R confocal microscope system for 3D image acquisition. However, utilizing its full
automatic imaging functionalities requires purchases of additional Nikon hardware and
software. Additionally, the built-in macro inside Elements only achieves automatic image
acquisition with limited functionalities.[10] To overcome this restriction, we designed the user-
friendly GUI of AMFIP so that users can directly input and compile a sequence of macro
commands into a single text field. A macro consists of a sequence of executable commands
that utilize a set of predefined functions in Elements, e.g., the switch of laser channels,
adjustment of laser intensity, or acquisition of 3D z-stack images. This text field generates a
*.mac file that is saved in a specified directory in the local computer. This *.mac file can be
loaded into Elements to execute predefined functions of the hardware. However, a macro only
controls the internal functions of Elements and is incompatible with non-Nikon hardware and
software.

To overcome this limitation and to achieve automatic operations, AMFIP enables the functional
synchronization of macros and µManager (Fig. 3). To use the program, we first set a
configuration that defines an automatic sequence of motor-stage movements through the GUI.
For each FOV to which the motor-stage moves, a script in AMFIP will activate Elements and
run a series of commands in the macro editor to execute the experiment-specific functions of
the Nikon A1R confocal microscope, such as laser illumination and fluorescent imaging. Upon
the completion of image acquisition at each FOV, the macro will generate a blank report and
save it into a user-defined file directory. Meanwhile, AMFIP continues checking for this blank
report file. Once the program finds this report file, the motor-stage moves to the next FOV and
the program deletes the previous file. This process will be automatically repeated in a
programmable manner until all pre-selected FOVs are imaged and saved.

D. Race-hazard-free Coordination between SpinView and µManager
AMFIP can utilize the Blackfly camera that is controlled by SpinView, a GUI provided by
FLIR©, to conduct bright-field image acquisition. However, since SpinView cannot directly
communicate with other 3rd party software without additional programming, a race hazard
between imaging and stage movement may occur during experiment processes. To avoid this
potential hazard and achieve safe operations, AMFIP connects SpinView and µManager via
Java codes.

Specifically, AMFIP contains a home-built script that controls the keyboard and the cursor of
PC to manipulate SpinView (Fig. 3). After µManager executes several automatic operations,

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 5

such as motor-stage movements and the switch of microscope objectives, the Java code
launches SpinView automatically to acquire and save a bright-field image within 1 second. To
avoid the condition that SpinView-regulated image acquisition is perturbed by µManager-
regulated stage movement, we pre-allocate a waiting time (usually ~ 2 seconds) during which
µManager pauses its operations. This pre-allocated waiting time is sufficient for the operations
of SpinView and does not overtly extend the duration of the total experiment. After each image
has been captured and saved, µManager resumes its own predefined tasks and repeats this cycle
till the completion of the experiment. AMFIP is flexible in adding user-compiled scripts either
before or after the start of macro in Elements, allowing different experiment requirements to
be met in a crosstalk-free manner.

E. Connections between MATLAB and µManager for Automatic Cell Detection
AMFIP coordinates with MATLAB to realize precise detection of cell samples and timely
prevention of motor-stage drift during experiments (Fig. 4). The first function aims to find all
FOVs that contain cells of interest and guide the XY-plane movement of the motor stage to
these spots. The second function is to monitor the current coordinates of FOV and to ensure
that the cells of interest are captured even if their positions drift during experiments. To achieve
frequent and real-time communications between µManager and MATLAB, AMFIP connects
the two software by implementing its Java codes.

Similar to the control of SpinView, AMFIP utilizes Java code to control the keyboard and the
cursor of PC to operate on the interface of MATLAB. For precise detection of cell samples, we
designed four steps:

(1) Use a Blackfly S BFS-U3-70S7M camera to take a bright-field image at 10´ magnification
under the control of µManager.

(2) Launch the MATLAB program by AMFIP to read the image and to distinguish cells from
non-cell matters by image processing, such as dilating, smoothing, edge detection, and
segmentation.

(3) Edit the image, remove incorrect markers on non-cell matters, and add new markers on
detection-missed cells on the user-friendly MATLAB GUI.

(4) Analyze the edited image by the MATLAB program to generate a text-format list of the
coordinates of the selected markers that locate on the cells’ centroid. This text-format list can
be read by µManager to guide the movement of the motor-stage on the XY-plane.

For the second function, i.e., monitoring the coordinates in situ, the MATLAB program
maintains a specified directory to temporarily save and transfer all captured images one by one.
At any given moment, there is only one image file present in this directory. AMFIP constantly
monitors this directory, reads this image, and transfers this image to a destination folder. During
this process, the MATLAB directory constantly contains only the latest image that is used to
accurately update the current coordinates of FOV. This monitoring function is combined with
the AutoFocus functions (Z-axis) provided by the Elements to ensure precise 3D time-lapse
imaging for long-term biomedical experiments.

F. Multi-functional and long-term imaging of Beas2B (B2B) cell line that expresses Yes-
associated-protein (YAP)
To verify the capability of AMFIP in practical experiments, we designed and conducted a series

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 6

of multi-channel and long-term image acquisition experiments to elucidate the dynamics of
cell spreading - a fundamental mechanobiological phenomenon. Specifically, in this
experiment, we aimed to co-track the spatial-temporal dynamics of YAP expression in cells
and the traction force applied by cells throughout the process of cell spreading on a 2D hydrogel
substrate. As a mechano-sensitive protein in cells, YAP, along with transcriptional coactivator
with PDZ-binding motif (TAZ), shuttles between the nucleus and cytoplasm depending on the
specific mechanical signals received, such as the cell traction and microenvironment
stiffness.[11] However, the quantitative relationship between the ratio of YAP expression in
the nucleus/cytoplasm and cell traction during cell spreading remains unknown, largely due to
the lack of tools that enables simultaneous recording of real-time YAP expression and cell
traction. In this work, we combined AMFIP, YAP-expression human bronchial epithelial B2B
cells [12], and traction force microscopy to fill this knowledge gap.

We found that, during the spreading process of single B2B cells on the 2 kPa hydrogel
substrate, YAP expression in the nucleus decreases in comparison to that in the cytoplasm (n
= 5; Figs. 5A & 5C). For B2B cells that flattened down from suspension state to adherent state
during the first 9 hours of experiment, the average normalized ratio of YAP nucleus/cytoplasm
intensity (N/C ratio) changed from 1 to 0.76 ± 0.045 (n=5; p-value = 0.0002***; Figs. 5C1 &
5C2), while the average normalized cell spread area steadily increased from 1 to 1.81 ± 0.141
(p-value < 0.0001****; Fig. 5C1) and the average normalized nucleus spread area
simultaneously augmented from 1 to 2.00 ± 0.136 (p-value = 0.0079**; Fig. 5C2). The results
suggest that YAP in the nucleus of single B2B cells may translocate into the cytoplasm as the
spread areas of both the cell body and the nucleus increase throughout the cell spreading
process.

To validate that the changes in the YAP N/C ratio are independent of the changes in cell
morphology, we calculated the normalized ratio of nucleus-projected-area/cell-projected-area
during cell spreading. We found that this ratio approximately changed from 1 to 1.19 ± 0.043
over time (p-value = 0.6398 (ns (not significant)); Fig. 5C3), with a trend-line slope of 0.0004.
The results suggest that the sizes of both nucleus and cell body may increase proportionally.
Based on this evidence, we reason that the decline of YAP N/C ratio may not be a result of the
disproportionality between the changes of nucleus area and cell spread area. We suppose that
the decrease of the YAP N/C ratio in single B2B cells throughout the cell spreading process
may be caused by the translocation of YAP from the nucleus to the cytoplasm.

As the control, we examined the single B2B cells that did not spread (n=4) in the same
experiments. We found that the average normalized YAP N/C ratio nearly maintained a
constant value at 1 ± 0.031 (p-value = 0.7422 (ns); Figs. 5D1 & 5D2), while the average
normalized cell spread area increased from 1 to 1.35 ± 0.064 (p-value =0.0113*; Fig. 5D1) and
the average normalized nucleus spread area rose from 1 to 1.51 ± 0.106 (p-value = 0.0010***;
Fig. 5D2). These results suggest that non-spreading single B2B cells expand by a smaller
degree (43% of the increase) in size compared with spreading cells (91% of the increase), while
their ratio of nucleus-projected-area/cell-projected-area almost remains stable. For non-
spreading single cells, the average normalized nucleus-projected-area/cell-projected-area ratio
increased from 1 to 1.13 ± 0.048 (p-value = 0.1519 (ns); Fig. 5D3), with a trend-line slope of
0.0227. We reason that fewer YAP, if any, shuttles from nucleus to cytoplasm in non-spreading
single B2B cells in comparison to spreading single cells throughout the adhering-to-spreading
processes.

Together, the results suggest that the YAP N/C ratio in B2B single cells may depend on the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 7

spreading state of cells - after 8-9 hours of experiment, the average normalized YAP N/C ratio
is 0.74-0.76 in spreading cells and is 0.99-1.00 in non-spreading cells (p-value = 0.0113*; Figs.
5C1 & 5D1). These mechanobiological results suggest that a nucleus-to-cytoplasm
translocation of YAP may occur in response to the spreading states of B2B single cells (Fig.
5). In this experiment, AMFIP demonstrates the verified multi-functionality and stability for
data acquisition that require minimum manual operations.

Discussion:
In this work, we introduce a verified automation program (AMFIP) to overcome the limitations
of the latest solutions for image acquisition in biomedical research (Table 1). Currently, most
manufacturers of optoelectronic hardware provide their own software with limited charge-free
opportunities for functional customization and automation.[13] These software programs
exclusively control manufacturers-specified hardware and require additional financial
expenses to coordinate with different microscopy systems.[13], [14] In contrast, AMFIP
functions as a control hub that coordinates multiple software programs to enable modulation
of different microscopy systems. Taking our experiments described above as an example,
AMFIP can automatically integrate and execute the following functions in a user-defined
sequence (Fig. 3). First, AMFIP communicates with µManager to modulate the movement of
the XY motor-stage. Second, the Java code of AMFIP activates SpinView to acquire and save
a bright-field image. Third, the MATLAB program embedded in AMFIP automatically
generates a list of coordinates of FOVs based on the acquired bright-field image. Finally,
AMFIP reads this list and guides the movement of the XY motor stage based on the coordinates
that are constantly updated by the cell detection program.

Further, the execution of specified Java code embedded in AMFIP functions as a bridge
connects the user’s inputs into AMFIP with the functional and automatic implementation of
3rd party software. Therefore, once users develop the Java-code-enabled coordination between
AMFIP and other 3rd party software, these coordination activate the existing automatic
functions inside these 3rd party software. As a result, users can leverage the existing
customizability and automation inside many commercial software programs, such as a macro
in Elements, and do not need to compile additional home-built functions starting from scratch,
which is either time-consuming or technically challenging.

In addition to verifying the performance of AMFIP, we chose co-tracking the YAP N/C ratio
and cell traction as an example because mechanistic elucidation of the mechanosensitive
YAP/TAZ will deepen our understanding of tissue development, healthy homeostasis, and
cancer progression.[15], [16] The nuclear accumulation of YAP/TAZ dominates their active
interactions with transcription factors, such as TEADs, RUNXs, and p73, to regulate the
transcription of specific genes that influence cell proliferation, migration, and survival.[15],
[17] In particular, emerging evidence suggests that YAP/TAZ show oncogenic effects in most
cancer types and tumor-suppressive effects in some cases. In the former case, high protein and
mRNA levels of YAP/TAZ are found to be associated with the poor prognosis of cancer
patients.[18]–[22] As the mechanical microenvironment of tumors is dramatically different
from that of healthy tissues[23]–[31], we suppose that mechanosensitive YAP/TAZ may be
aberrantly expressed in the neoplasia niche and activate the oncogenes to promote malignant
transformation. Our AMFIP enables visualization of the real-time interplay (a “dance”)
between YAP N/C ratio and cell mechanics and provides one step further towards
understanding how YAP/TAZ mediates tumor biology. These AMFIP-enabled in vitro results
may inform the future directions of in vivo research and ultimately guide the innovation of new
cancer therapies.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 8

Conclusion:
In summary, we have developed AMFIP, a hardware-independent and software-based program
for automatic data acquisition that is applicable to many microscopy systems and
optoelectronic hardware. We have verified the capability of AMFIP by demonstrating the
relationship between YAP dynamics and cell spreading states in a human epithelial cell line.
We believe AMFIP is a reliable platform that could benefit the scientific community. The
source code of AMFIP is charge-free and available to the public on GitHub (link: http://). We
hope users will develop and expand more new functions based on AMFIP to enhance their
specific automatic operations in research.

Materials and Methods:

1. Hardware and Software
Hardware systems used for experiments include a commercial fluorescent confocal microscope
system (Nikon A1R HD25), a monochrome camera (BFS-U3-70S7M-C FLIR©), and a
desktop computer that is installed with a 64-bit Microsoft© Windows 10 Pro operating system.
The Nikon confocal microscope system consists of multiple components: Ti2-E inverted
microscope, LU-N4 laser unit (405 nm, 488 nm, 561 nm, and 640 nm laser channels), confocal
controller, standard fluorescence detector (4 photomultiplier tubes (PMT) and 6 filter cubes),
and a scan head (2 galvano scanners and 1 resonant scanner). AMFIP controls the confocal
imaging components, such as the laser unit, confocal controller, detectors, and scan head,
through activating the Elements. Ti2-E inverted microscope comprises a LED Lamp-house for
illumination, motorized XY stage, 6 motorized epi-fluorescence filter turrets, 7 motorized
condenser turret, 6 motorized nosepieces, and a Stage joystick. AMFIP controls the Ti2-E
inverted microscope through coordinating with µManager.

Confocal 3D image stacks and videos are acquired by the confocal microscope system. The
Ti2-E inverted microscope works independently to the acquisition of bright-field images by
the monochrome camera. The Dialamp (a white LED equipped on the Ti2-E microscope)
serves as a light source for bright-field imaging.

Three software systems are involved to automatically coordinate these devices: (1) SpinView,
which controls the BFS-U3-70S7M-C camera; (2) Nikon NIS-Elements, which controls the
whole confocal system; and (3) µManager, a 3rd party software, which controls the
independent operation of Ti2-E microscope. AMFIP controls all these three software systems
through the IntelliJ IDEA platform.

2. AMFIP Guideline

2.1 Setting up the programming environment.
The following steps show how to set up the software environment to program and implement
AMFIP:
2.1.1 Download and install µManager software from https://micro-

manager.org/wiki/Download%20Micro-Manager_Latest%20Release. The latest
version µManager 2.0-gamma is recommended because of its active development and
maintenance.

2.1.2 To coordinate µManager with optoelectronic hardware: (1) Connect all needed
optoelectronic hardware to a desktop computer and turn on these hardware systems. (2)
Add the adaptive drivers called “device adaptor” of the optoelectronic hardware
provided by either µManager or the hardware manufacturer into the µManager

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 9

directory; (3) Go to “Devices->Hardware Configuration Wizard”, check “Create new
configuration”, and click “Next”; (4) Find the names of connected hardware in
“Available Devices”, click “Add”; (5) A confirmation window pops up. Check their
properties and click “OK”; (6) A “Peripheral Devices Setup” window pops up. Select
all needed peripheral devices of parent devices(the connected hardware) and click
“OK”. These peripheral devices are configured in the list of “Installed Devices”. Click
“Next”; (7) Select the default devices and click “Next”; (8) (optional) Set delays for
devices without synchronization capabilities and click “Next”; (9) (optional) Define
position labels for state devices, such as filters and objectives, and click “Next”; (10)
Save the new configuration file, restart µManager, select this configuration file in
“Micro-Manager Startup Configuration” and click “OK”.

2.1.3 Enable the control of all connected and configured optoelectronic hardware by
µManager. For example, we control the Nikon Ti2-E microscope by µManager in our
lab. The adaptive driver of Ti2-E microscope is “Ti2_Mic_Driver.dll ‘’ located in the
“Nikon\Ti2-SDK\bin” of the Ti2 Control software’s directory. This software can be
downloaded
fromhttps://www.nikon.com/products/microscopesolutions/support/download/softwar
e/biological/. Ti2 Control Ver 1.2.0 rather than the latest version is recommended
because of its better compatibility with µManager in Microsoft Windows 10 operating
system.

2.1.4 Download and install IntelliJ IDEA from
https://www.jetbrains.com/idea/download/#section=windows for the development of
Java-based software.

2.1.5 Download and install Java Development Kit (JDK) from
https://www.oracle.com/java/technologies/javase-jdk15-downloads.html. JDK 14.0 or
higher version is recommended for programming AMFIP.

2.1.6 Set up software configuration in IntelliJ to allow developing µManager-based
programs. First, open IntelliJ and go to “Settings->Compiler->Annotation Processors”.
Check the box of “Enable annotation processing”. Second, go to “Project Structure-
>Artifacts” and create a JAR(Empty) file. The output directory should be the
mmplugins folder on the µManager directory. Third, go to “Project Structure-
>Libraries”, add “mmplugin” and “plugins/Micro Manager” folder from the directory
of µManager.

2.1.7 Click “add Configuration” and create an application with the following information: “
Main class: ij.ImageJ; VM option: -Xmx3000m -Dforce.annotation.index=true; Work
directory: µManager directory; Use classpath of module: the name of current project”.

2.1.8 Click “Run” in IntelliJ to launch µManager. Click “OK” and the main interface of
µManager appears.

2.2 Use of GUI (Fig. 2):
The following steps show how to input pre-defined experimental parameters into the GUI of
AMFIP and start a multi-task experiment.
2.2.1 Open µManager, the GUI of AMFIP is under “Plugins->Automation”.
2.2.2 Define the number of FOVs to which XY motor-stage moves by clicking “Add Point”

or “Remove Point”. Input the coordinates of each FOV into text fields under
“Coordinate Panel”. Alternatively, retrieve the saved configurations, i.e., JSON files
with a list of previous experimental or pre-defined parameters, including the
number/coordinates of FOVs, imaging conditions, and data acquisition parameters.

2.2.3 Input a quantitative value into the “Total Experiment Time” text field to define the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 10

entire duration of the experiment. Click “Additional Time Configurations”, and input
quantitative values into “Start Time”, “Time Interval” and “End Time” for each
specified FOV. For each FOV, click “Pause” to program the time when the experiments
should automatically stop. The experiments can be resumed by manually clicking
“Resume”.

2.2.4 Modulate microscope objectives, DiaLamp, and excitation/emission filters for each
FOV by inputting predefined quantitative values into the three sub-panels below
“Coordinate Panel”.

2.2.5 Next, click “Save Configuration” to keep a record. Under the submenu of “Devices”,
the window of “Device Property Browser” presents a list of quantitative values as a
reference, e.g., value “1” for the configuration of microscope objective refers to
switching to 10´ objective for current FOV.

2.2.6 Once all parameters are fed into the GUI, click “Enter” to start a task.
2.2.7 In case some unexpected conditions occur during the experimental process, click

“Pause” to temporarily stop the experiment. The experiment can be resumed by clicking
“Resume”.

2.3 Use of home-built Java code to coordinate µManager, NIS-Elements, and SpinView:
The following steps show how Java code is applied to automatically coordinate µManager with
other software.
2.3.1 Open the AMFIP’s Java project in IntelliJ and go to “src”. Scripts are created in

“CameraScript” and “ElementsScript” .java files.
2.3.2 Go to “Main->Executor”, add two statements: “CameraScript.main()” and

“ElementsScript.main()” into “scheduleTaskForAPoint” function.
“ElementsScript.main()” activates Elements and runs a predefined macro.
“CameraScript.main()” activates SpinView to automatically capture and save the
bright-field images.

2.3.3 To control NIS-Elements by Java code, maximize the window of Elements to enclose
the window of AMFIP GUI, and enable cursor-based activation of Elements functions.
To activate SpinView, place the icon of this software into the taskbar and control the
camera by Java code.

2.3.4 Initiate part 2.2.5. Once XY motor-stage moves, Elements and SpinView are launched
and will enable automatic hardware operations following the predefined commands in
Java code.

2.4 Use of MATLAB program for cell detection
Automatic cell detection is achieved by our MATLAB program embedded in AMFIP. The
following steps show how our MATLAB program cooperates with AMFIP to achieve cell
detection function during the experiment.
2.4.1 Our MATLAB program is integrated into the AMFIP package (GitHub: Http://). Unzip

this package, move the MATLAB program to the specified working folder for bright-
field images, and add this folder to the MATLAB path.

2.4.2 Create a text file named “data.txt” in this folder.
2.4.3 Run the installed AMFIP to start the experiment in IntelliJ IDEA. In the GUI of AMFIP,

the user sets up the original FOV, where the first 10´ bright-field image is taken. After
the camera finishes taking the first 10´ bright-field image, our MATLAB program will
be activated by AMFIP.

2.4.4 A figure window of the first 10´ bright-field image and a MATLAB GUI pop up. On
the figure window, the centroids of detected cell islands are shown with red marks “*”.
Click the “DELETE” button on the MATLAB GUI and select unwanted red marks on

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 11

the figure window to delete unwanted spots. Once blue circles surround the unwanted
red marks, the coordinates of deleted spots are removed. After deletion of all unwanted
spots, re-click the “DELETE” button to stop the delete function. Click on the figure
window to add red marks directly. All existing and added coordinates of spots are
saved.

2.4.5 After editing, click the “QUIT” button on the MATLAB GUI. The MATLAB program
stops, and MATLAB’s interface is minimized by AMFIP. The final coordinates are
saved in a text-format list, named “data.txt”. µManager uses this list for the following
steps during the experiment.

2.4.6 The coordinates mentioned in step 2.4.5 are used to guide 40´ bright-field acquisition.
For each FOV, the MATLAB program is activated by AMFIP and begins to analyze
the acquired 40´ image for cell islands’ drifting.

2.4.7 If the cell island’s position has drifted in a 40´ image, AMFIP will need new
coordinates to replace the current coordinates. First, the MATLAB program informs
AMFIP and AMFIP manipulates the XY motor-stage back to the original FOV through
µManager. Second, AMFIP controls the camera to take a 10´ bright-field image. Third,
AMFIP activates the MATLAB program to analyze this image to form a new list of
coordinates.

In this analysis, our MATLAB program calculates the distance between the position with
drifting and each position in the new list respectively. It will compare all values to get a
minimum distance value. If the minimum distance is smaller than 90 µm (the maximum
distance of adjacent spots on square lattice pattern. Fig.4), this minimum distance value will
be accepted, and its corresponding coordinates will replace the coordinates of the position with
drifting. AMFIP uses the edited coordinates for 40´ bright-field image acquisition and carries
on the following operations automatically. If the minimum distance is larger than 90 µm, which
means that the cell island in this position has dissolved and disappeared, AMFIP will skip this
position and carry on the operation on the next position automatically.

3. Cell line generation
Generation of endogenously tagged mNeonGreen21-10/11 cell lines was performed in the human
bronchial epithelial cell line (Beas2B) as previously described.[12] Briefly, the DNA sequence
coding the 11th strand of fluorescence protein mNeonGreen2 is inserted into the gene of interest
(i.e., YAP genomic locus) through the CRISPR-Cas9 gene-editing system, and it complements
the 1-10th strand of mNeonGreen2 to emit fluorescence and cells with the tagged protein of
interest can be collected through fluorescence-activated cell sorting. As a result, mNeonGreen2
is tagged to YAP whenever the cell expresses YAP in the context of its native gene regulatory
network. The “knock-in” cell lines are ready to be used without additional exogenous
transfections and can be stably maintained for generations. Correct integration of
mNeonGreen211 was confirmed by genomic sequencing and by reduction in fluorescence upon
gene knockdown.

4. Cell Lines Maintenance
The Beas2B cell line was maintained in humidified incubators with 5% CO2 at 37 °C. Beas2B
and endogenously tagged derivatives were cultured in RPMI-1640 medium supplemented with
10% FBS and penicillin-streptomycin at 100 µg/mL. All cell lines were tested for mycoplasma
every 3 months using MycoAlert Mycoplasma Detection Kit (Lonza, Basel, Switzerland). All
cells used were <20 passages from thaw.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 12

5. Cell Imaging
The following steps show how to achieve a multi-functional and long-term image acquisition
using AMFIP to observe traction dynamics and YAP dynamics of the YAP-B2B cell line.
5.1 Turn on the Nikon A1R confocal microscope system following a specific sequence:

LU-N4 laser unit, confocal controller, Ti2-E microscope controller, and Ti2-E inverted
microscope.

5.2 In the Ti2-E inverted microscope, switch to 10´ objective and the light-path on the right
side for bright-field imaging to identify the cells of interest. Using the 10´
magnification, open µManager and move XY motor-stage by joystick to find
appropriate FOVs containing both single cells and multiple adjacent cells that grow
well on the substrate. For each 10´ FOV, switch to 40´ objective, adjust XY motor-
stage again to have the specified FOVs in the center, and record coordinates of selected
FOVs.

5.3 Input these coordinates and predefined experimental parameters into the GUI of
AMFIP. For the experiment described in Results F, 40´ objective and 5% of DiaLamp
intensity are applied.

5.4 Launch the Elements platform, open the FITC channel, and switch to the resonant
scanner for fast-speed imaging. In the experiment described in Results F, fluorescent
images captured in the FITC channel display the YAP dynamics of B2B cells that
express YAP: mNeonGreen21-10/11. Slowly adjust the knob of the Z-plane and record
the highest and the lowest Z position to form a z-stack that covers the overall z-height
of cells that start adhering to the substrate.

5.5 Open DAPI channel and close FITC channel. In the experiment described in Results F,
fluorescent images captured in the DAPI channel present displacement of beads that
can be used to calculate traction dynamics. Next, slowly adjust the knob to change the
Z-plane and record the highest and the lowest Z position to generate a z-stack that
covers the interface between the top surface of the substrate and cell bottom.

5.6 In the macro editor, to generate z-stack images for both laser channels, write specified
commands and input (a) 4 quantitative values collected from previous steps and (b) an
appropriate step size of z-plane to generate sufficient numbers of frames for a 3D z-
stack image. Next, switch back to galvano scanner for high-resolution imaging. To
avoid photobleaching of fluorophore and capture images that have low noise, we set
the exposure time to 4 seconds for the above experiments.

5.7 Complete the rest of the commands in macro to achieve the following functions in
sequence:

a. Close DiaLamp and switch to the light-path on the left side for fluorescent
imaging.

b. Switch to the FITC laser channel and start z-stack image acquisition.
c. Switch to the DAPI laser channel and start a z-stack image acquisition of beads.
d. Save the two z-stack images to a specified directory for data analysis.
e. Switch back to the light-path on the right side and turn on the DiaLamp that

allows µManager to take a bright-field image.
5.8 Back to the GUI of AMFIP. To avoid photobleaching, set the time interval for image

acquisition of each FOV to 30 minutes. Next, set the total duration of the experiment to
12 hours or above. Next, click “Enter” to start the imaging process.

5.9 For each time interval (i.e., 30 minutes for the experiment described here), AMFIP
automatically executes the following operations in sequence:

a. Move XY motor-stage to each pre-selected FOV.
b. Take and save separate z-stack images for FITC and DAPI channels through

Elements.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 13

c. Capture and save a bright-field image through µManager.
d. After all imaging processes are completed in one FOV, AMFIP automatically

instructs XY motor-stage to move to the next FOV and repeat the previous
operations.

Each imaging condition of multi-channel images is listed below:
a. Bright-field image: magnification: 40´; DiaLamp intensity: 5%; exposure time:

1s.
b. Z-stack image of DAPI channel: magnification: 40´; laser intensity: 30%; gain

of photomultiplier tube: 125; exposure time: 4s; step size: 5 µm; the range of Z-
plane: 10 µm.

c. Z-stack image of FITC channel: magnification: 40´; laser intensity: 50%; gain
of photomultiplier tube: 70; exposure time: 4s; step size: 2 µm; the range of Z-
plane: 30~40 µm.

6. Images Processing and Analysis
The ratio of fluorescence intensity between nucleus and cytoplasm (N/C ratio) is widely used
in live-cell experiments for the analysis of protein dynamics and cell functions. To examine
the relationship between YAP N/C ratio and cell-area/nucleus-area ratio, we analyzed time-
lapsed images of spreading cells and non-spreading cells (Figs. 5C1-5D3). The following steps
show how to use Fiji ImageJ to process and analyze the acquired confocal and BF images.[32]
6.1 Launch Fiji ImageJ, open all BF images from one FOV, and concatenate them into a

stack. Next, open the confocal z-stack image of YAP from the same FOV.
6.2 Scale down and fit the size of the BF image stack to the size of the confocal image. Go

to “Image->Overlay->Add Image”, select the BF image as “image to add”. Next, Set
the value of opacity to 50 and click “OK”. This process allows us to overlap the BF
image on the confocal image.

6.3 Locate the cell being examined and align the cell boundary in the BF image with similar
shaped YAP fluorescence in the confocal image.

6.4 Go to “Analyze->Set Measurement”, and check functions: “Area”, “Mean grey value”,
and “Integrated density”. For the experiment described in Results F, “Area” measures
the area of the selected region of interest (ROI) from the image being processed. “Mean
grey value” presents the relative YAP density of the ROI in this experiment. “Integrated
density” displays the relative YAP intensity of the ROI which is the product of the data
from “Area” and “Mean grey value”.

6.5 Choose “Freehand selection” on the main interface of ImageJ, first carefully select the
ROI of the nucleus of the examined cell and click “Analyze->Measure”. A “Results”
window pops up. Second, select a new ROI of the cell boundary of the same cell and
redo “Analyze->Measure”.

6.6 Repeat step 6.5 for every frame of the confocal image stack. Next, copy the data from
the “Results” window and paste it into an excel file for data analysis.

6.7 To determine the YAP density in the cytoplasm, first calculate the difference between
the nucleus area and the cell-body area which represents the cytoplasm area. Second,
calculate the difference between the integrated density of the cell-body and the nucleus.
This value represents the relative intensity of YAP in the cytoplasm. Third, calculate
the YAP density by dividing the YAP intensity in the cytoplasm by the cytoplasm area.

6.8 To calculate the YAP N/C ratio, divide the YAP density of the nucleus by the YAP
density of the cytoplasm.

6.9 Organize the data groups into three columns: YAP N/C ratio, cell area, and nucleus
area. Each row of a column represents different time points for imaging. To minimize
the influence of photobleaching and the discrepancy of multiple cells, we apply

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 14

normalization to the data by dividing all the values of each column with respect to the
first value of that column, which is the data processed based on the image taken at the
beginning of the experiment with no photobleaching.

6.10 Repeat step 1 to step 9 for all cells being studied. Next, form and analyze multiple line
charts based on the processed data (Figs. 5C1-5D3).

7. Statistics Analysis
We applied a student’s t-test to evaluate the statistical significance of the data (shown in Figs.
5C & 5D). To execute this t-test, we input two different data groups for comparison. The
calculation generates a p-value that indicates whether there is a significant difference between
the two data groups (i.e., p-value > 0.05 means not significant; p-value ≦ 0.05 means
significant; “*” means p-value ≦ 0.05, “**” means ≦ 0.01, “***” means ≦ 0.001, “****”
means ≦ 0.0001). For both spreading and non-spreading cells, we formed four data groups:
normalized YAP N/C ratio, normalized cell area, normalized nucleus area, and normalized
nucleus-area/cell-area ratio. We compared the data of each group after 8.5 hours and 9 hours
with the data of the same group after 0 hours and 0.5 hours. The calculated p-value indicated
whether there is a significant statistical difference between the data at the beginning of cell
spreading and the data at the end of cell spreading. Next, we compared the YAP N/C ratio of
spreading cells after 8.5 and 9 hours with the YAP N/C ratio of non-spreading cells at the same
time points through t-test.

Acknowledgements:
This project is financially supported by Cancer Pilot Award from UF Health Cancer Center
(awarded to Drs. Xin Tang and Dietmar Siemann) and the start-up package of Dr. Xin Tang.
We sincerely appreciate the intellectual discussions with and the technical supports from Dr.
Jonathan Licht (UFHCC), Dr. Rolf Renne (UFHCC), Dr. Hitomi Yamaguchi Greenslet (MAE,
UF), Dr. David Hahn (University of Arizona), Dr. Jack Judy (ECE, UF), Dr. Weihong Wang
(Oracle Corporation), Dr. Youhua Tan (Hong Kong Polytechnic University), and Support
Team of Nikon (Drs. Jose Serrano-Velez, Larry Kordon, and Jon Ekman). We are deeply
grateful for the generous and effective supports from all members of Tang’s, Siemann’s, and
Guan’s research laboratories and all staff members of the MAE Department.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 15

Figures and Captions:
Figure 1: Rationale of AMFIP development. Automatic and customizable control of multiple
imaging conditions to acquire spatial-temporal biological information is a capability needed in
many research laboratories. In this work, AMFIP, a software-based solution, is developed to
achieves customizable and automatic control of generic microscopy systems. In contrast, other
software-based solutions, such as µManager plugins, and hardware-based solutions, such as
micro-controllers, only control limited hardware and provide restricted functions.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 16

Figure 2: The Diagram of the GUI of AMFIP. (1) Input X, Y, Z coordinates for each FOV.
(2) Specify objective type for each FOV. (3) Specify DiaLamp intensity for each FOV (Used
for BF images). (4) Specify desired filter cubes for each FOV. (5) Universal time and laser
configurations for each FOV in the experiment. (6) Light Path Control. (7) Buttons to add or
remove points. (8) Button to open up the laser configurations window. (9) Button to open up
additional time configurations window. (10) Enter button to signal the start of the specified
experimental procedure.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 17

Figure 3: The Workflow of implementing AMFIP in a typical experiment. (1) A MATLAB
program detects the cells of interest and generates a coordinate list of FOVs. (2) The GUI of
AMFIP reads the coordinates to guide the movement of the XY motor-stage. Users input pre-
defined experimental parameters and initiate µManager to modulate the Nikon Ti2-E
microscope. (3) Java code in AMFIP activates Elements and SpinView to manipulate the A1R
confocal microscope system and Blackfly S camera. The MATLAB program reads the latest
bright-field image to update the coordinates of current FOVs. (4) AMFIP automatically
conducts these operations in sequence for multi-functional biological imaging.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 18

Figure.4: A representative view of MATLAB operation interface for automatic cell
detection and stage-drift prevention. (A) Interface to edit marks of detected cell islands. Red
marks are the centroids of detected cell islands while blue circles are unwanted marks (B)
Pattern of detected cells. The detected cells are marked with green rectangles. (C) Detection
Control UI with “DELETE” and “QUIT” buttons. The grey button means that its statement is
inactivated. Click the button and its function is activated.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 19

Figure 5: Relationship between YAP N/C ratio and cell spreading states of single B2B
cells. (A) 10-hr time-lapse image stack that contains overlapped fluorescent YAP images and
bright-field cell images of a single spreading cell. Note: The shapes of the cell (in blue contour)
and nucleus (in red contour) transform from roundness to flatness. Normalized YAP N/C ratio
decreases from 1 at 0th hour to 0.56 at 10th hour. (B) 10-hr time-lapse image stack of a non-
spreading single cell. Note: The shape of the cell maintains rounded. Normalized YAP N/C
ratio changes from 1 at 0th hour to 1.04 at 10th hour. (C) YAP N/C ratio versus nucleus/cell-
body area of spreading cells (n=5). The average normalized YAP N/C ratio (red bold line; n=5)
changes from 1 to 0.76 ± 0.045 (p-value = 0.0002***; C1). In parallel, the average normalized
cell area (blue bold line; n = 5) increases from 1 to 1.81 ± 0.141 (p-value < 0.0001****; C1)
and the average normalized nucleus area (green bold line) changes from 1 to 2.00 ± 0.136 (p-
value = 0.0079*; C2). The average normalized nucleus-projected-area/cell-projected-area ratio
approximately remains constant at 1 ± 0.043 (p-value = 0.6398 (ns (not significant))), with a
trend-line slope of 0.004 (C3). (D) YAP N/C ratio versus nucleus/cell-body area of non-
spreading cells (n=4). The average normalized YAP N/C ratio (red bold line) practically stands
at 1 ± 0.031 (p-value = 0.7422 (ns); D1), and the average normalized cell area (blue bold line)
increases from 1 to 1.35 ± 0.064 (p-value =0.0113*; D1). The average normalized nucleus area
(green bold line) rises from 1 to 1.51 ± 0.106 (p-value = 0.0010***; D2) The average
normalized nucleus-projected-area/cell-projected-area ratio changes from 1 to 1.13 ± 0.048 (p-
value = 0.1519 (ns)), with a trend-line slope of 0.0227 (D3).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 20

Table 1: Comparison between AMFIP and other existing software- and hardware-based
solutions. AMFIP coordinates µManager with 3rd party software, such as Elements and
SpinView, to manipulate both µManager-supported and non-µManager-supported hardware,
such as Nikon A1R confocal microscope system. In contrast, other software-based solutions,
such as MultiFRET and EMU, modulate limited µManager-supported hardware, e.g., Nikon
TE2000 microscope. AMFIP does not require the purchase of additional hardware. Most
hardware-based solutions, such as µSPIM and mmSIM, require NI DAQ card to control

 Software-based solutions

Hardware-based solutions

 AMFIP
(Developed in this work)

MultiFRET
[7]

EMU
[8]

µSPIM
[3]

mmSIM
[1]

Key hardware
used for
automatic
operations

Nikon Ti2-E inverted
microscope (µManager-
supported hardware)
Blackfly camera
(µManager-supported
hardware)
Nikon A1R confocal
microscope system
(non-µManager-
supported hardware)

Nikon TE2000
microscope
(µManager-
supported
hardware)

Only
µManager-
supported
hardware

Laser from Omicron
and Cobolt (µManager-
supported hardware)
E-665 Piezo Amplifier
(µManager-supported
hardware)
ORCA-flash Camera
(non-µManager-
supported hardware)

Olympus
IX71
microscope
(µManager-
supported
hardware)

Software
available for
coordination

µManager,
Nikon NIS-Elements,
SpinView

Only µManager

Additional
hardware to
coordinate with
optoelectronic
devices

Do not need to purchase any additional hardware

Need to purchase NI DAQ card
(PCI/COM ports required)

Achieved
automatic
functionalities

Modulation of motor-
stage, objectives, filter
wheel, light path, and
laser
Bright-field imaging and
confocal microscopy
imaging (time-lapse or
z-stack)
Fluorophore bleaching

High-
throughput
Förster
Resonance
Energy Transfer
(FRET) image
acquisition

High-
throughput
Förster
Resonance
Energy
Transfer
(FRET)
image
acquisition

Modulation of motor-
stage
Selective Plane
Illumination
Microscopy Imaging

Modulation
of motor-
stage, laser,
and filter
wheel
Structured
illumination
microscopy
(SIM)
imaging

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 21

References Cited:

[1] B. R. Masters, “Structured Illumination Microscopy,” Springer Ser. Opt. Sci., vol. 227,

pp. 233–260, 2020.
[2] P. G. Pitrone et al., “OpenSPIM: An open-access light-sheet microscopy platform,” Nat.

Methods, vol. 10, no. 7, pp. 598–599, 2013.
[3] D. Saska, P. Pichler, C. Qian, C. L. Buckley, and L. Lagnado, “µSPIM Toolset: A

software platform for selective plane illumination microscopy,” J. Neurosci. Methods,
vol. 347, no. September 2020, p. 108952, 2021.

[4] A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of
microscopes using manager,” Curr. Protoc. Mol. Biol., no. SUPPL. 92, pp. 1–17, 2010.

[5] A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman,
“Advanced methods of microscope control using µManager software,” J. Biol. Methods,
vol. 1, no. 2, p. 10, 2014.

[6] N. Stuurman, N. Amdodaj, and R. Vale, “µManager: Open Source Software for Light
Microscope Imaging,” Micros. Today, vol. 15, no. 3, pp. 42–43, 2007.

[7] M. Ramuz et al., “A Software Tool for High-Throughput Real-Time Measurement of
Intensity-Based Ratio-Metric FRET,” 2019.

[8] J. Deschamps and J. Ries, “EMU: Reconfigurable graphical user interfaces for micro-
manager,” bioRxiv, pp. 1–13, 2020.

[9] Q. L. Pham et al., “Open-source matlab-based graphical user interface (gui) for
computer control of microscopes using µmanager,” arXiv, no. May, 2019.

[10] F. Buggenthin et al., “An automatic method for robust and fast cell detection in bright
field images from high-throughput microscopy,” BMC Bioinformatics, vol. 14, no. 1,
2013.

[11] S. Dupont et al., “Role of YAP/TAZ in mechanotransduction,” Nature, vol. 474, no.
7350, pp. 179–183, 2011.

[12] S. Feng, S. Sekine, V. Pessino, H. Li, M. D. Leonetti, and B. Huang, “Improved split
fluorescent proteins for endogenous protein labeling,” Nat. Commun., vol. 8, no. 1, 2017.

[13] K. W. Eliceiri et al., “Biological imaging software tools,” Nat. Methods, vol. 9, no. 7,
pp. 697–710, 2012.

[14] A. E. Carpenter, L. Kamentsky, and K. W. Eliceiri, “A call for bioimaging software
usability,” Nat. Methods, vol. 9, no. 7, pp. 666–670, 2012.

[15] S. Piccolo, S. Dupont, and M. Cordenonsi, “The biology of YAP/TAZ: hippo signaling
and beyond,” Physiol. Rev., vol. 94, no. 4, pp. 1287–1312, 2014.

[16] W. Hong and K.-L. Guan, “The YAP and TAZ transcription co-activators: key
downstream effectors of the mammalian Hippo pathway,” in Seminars in cell &
developmental biology, 2012, vol. 23, no. 7, pp. 785–793.

[17] F. Zanconato, M. Cordenonsi, and S. Piccolo, “YAP/TAZ at the Roots of Cancer,”
Cancer Cell, vol. 29, no. 6, pp. 783–803, 2016.

[18] Y. Wang, Q. Dong, Q. Zhang, Z. Li, E. Wang, and X. Qiu, “Overexpression of yes-
associated protein contributes to progression and poor prognosis of non-small-cell lung
cancer,” Cancer Sci., vol. 101, no. 5, pp. 1279–1285, May 2010.

[19] M. Xie et al., “Prognostic significance of TAZ expression in resected non-small cell
lung cancer,” J. Thorac. Oncol., vol. 7, no. 5, pp. 799–807, May 2012.

[20] Y. Guo et al., “Functional and clinical evidence that TAZ is a candidate oncogene in
hepatocellular carcinoma,” J. Cell. Biochem., vol. 116, no. 11, pp. 2465–2475, 2015.

[21] P. Cheung et al., “Regenerative Reprogramming of the Intestinal Stem Cell State via
Hippo Signaling Suppresses Metastatic Colorectal Cancer,” Cell Stem Cell, vol. 27, no.
4, pp. 590-604.e9, 2020.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

 22

[22] H. Li et al., “Inhibition of YAP suppresses CML cell proliferation and enhances efficacy
of imatinib in vitro and in vivo,” J. Exp. Clin. Cancer Res., vol. 35, no. 1, pp. 134-z,
2016.

[23] H. T. Nia, L. L. Munn, and R. K. Jain, “Physical traits of cancer,” Science (80-.)., vol.
370, no. 6516, 2020.

[24] X. Tang et al., “A mechanically-induced colon cancer cell population shows increased
metastatic potential,” Mol. Cancer, vol. 13, p. 131, May 2014.

[25] C. R. Pfeifer, C. M. Alvey, J. Irianto, and D. E. Discher, “Genome variation across
cancers scales with tissue stiffness–An invasion-mutation mechanism and implications
for immune cell infiltration,” Curr. Opin. Syst. Biol., vol. 2, pp. 103–114, 2017.

[26] X. Tang et al., “Mechanical force affects expression of an in vitro metastasis-like
phenotype in HCT-8 cells,” Biophys. J., vol. 99, no. 8, pp. 2460–2469, 2010.

[27] J. Liu et al., “Soft fibrin gels promote selection and growth of tumorigenic cells,” Nat.
Mater., vol. 11, no. 8, pp. 734–741, 2012.

[28] V. Hughes, J. Wiggins, and D. Siemann, “Tumor oxygenation and cancer therapy – then
and now,” Br. J. Radiol., vol. 92, p. 20170955, 2019.

[29] S. Dykes, V. Hughes, J. Wiggins, H. Fasanya, M. Tanaka, and D. Siemann, “Stromal
cells in breast cancer as a potential therapeutic target,” Oncotarget, vol. 9, no. 34, pp.
23761–23779, 2018.

[30] V. S. Hughes and D. W. Siemann, “Failures in preclinical and clinical trials of c-Met
inhibitors: Evaluation of pathway activity as a promising selection criterion,”
Oncotarget, vol. 10, no. 2, pp. 184–197, 2019.

[31] X. Tang, Q. Wen, T. Kuhlenschmidt, M. Kuhlenschmidt, P. Janmey, and T. Saif,
“Attenuation of cell mechanosensitivity in colon cancer cells during in vitro metastasis,”
PlosONE, vol. 7, no. 11, p. e50443, 2012.

[32] J. Schindelin et al., “Fiji: An open-source platform for biological-image analysis,” Nat.
Methods, vol. 9, no. 7, pp. 676–682, 2012.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437936doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437936

