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Abstract 29 

Background: Since 1999, West Nile virus (WNV) has moved rapidly across the United States, 30 

resulting in tens of thousands of human cases. Both the number of human cases and the 31 

minimum infection rate (MIR) in vector mosquitoes vary across time and space and are driven 32 

by numerous abiotic and biotic forces, ranging from differences in microclimates to socio-33 

demographic factors. Because the interactions among these multiple factors affect the locally 34 

variable risk of WNV illness, it has been especially difficult to model human disease risk across 35 

varying spatial and temporal scales. Cook and DuPage Counties, comprising the city of Chicago 36 

and surrounding suburbs, experience some of the highest numbers of human neuroinvasive cases 37 

of WNV in the United States. Despite active mosquito control efforts, there is consistent annual 38 

WNV presence, resulting in more than 285 confirmed WNV human cases and 20 deaths from the 39 

years 2014-2018 in Cook County alone.  40 

Methods: A previous Chicago-area WNV model identified the fifty-five most high and low risk 41 

locations in the Northwest Mosquito Abatement District (NWMAD), an enclave ¼ the size of the 42 

combined Cook and DuPage county area. In these locations, human WNV risk was stratified by 43 

model performance, as indicated by differences in studentized residuals.  Within these areas, an 44 

additional two-years of field collections and data processing was added to a 12-year WNV 45 

dataset that includes human cases, MIR, vector abundance, and land-use, historical climate, and 46 

socio-economic and demographic variables, and was assessed by an ultra-fine-scale (1 km spatial 47 

x 1 week temporal resolution) multivariate logistic regression model. 48 

Results: Multivariate statistical methods applied to the ultra-fine-scale model identified fewer 49 

explanatory variables while improving upon the fit of the previous model. Beyond MIR and 50 
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climatic factors, efforts to acquire additional covariates only slightly improved model predictive 51 

performance.  52 

Conclusions: These results suggest human WNV illness in the Chicago area may be associated 53 

with fewer, but increasingly critical, key variables at finer scales. Given limited resources, these 54 

findings suggest large variations in model performance occur, depending on covariate 55 

availability, and provide guidance in variable selection for optimal WNV human illness 56 

modeling.57 
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Introduction 58 

West Nile virus (WNV; Family Flaviviridae), a mosquito-borne disease originating from the 59 

West Nile region of Uganda, first arrived to the United States (U.S., New York, NY) in 1999. 60 

Once arriving in New York, the virus took only three years to traverse the contiguous U.S., 61 

reaching California in 2002 (1). The virus has now become one of the most widespread 62 

arboviruses in the world, and is present in every continent except Antarctica (2). In the 63 

Midwestern U.S., mosquitoes of the Culex (Cx.) genus are the main vectors for transmitting 64 

WNV (3). Culex mosquitoes are capable of feeding on several hosts to satisfy one blood meal, 65 

increasing the opportunity for multiple infections across species (4). Although primarily 66 

ornithophilic, prior studies indicate that Cx. species may shift feeding preferences to humans 67 

later in the summer months (5,6). 68 

From 1999-2018, there have been a total of 50,830 human cases resulting in 2,330 deaths across 69 

the US (7). At local scales, drivers of human disease, including WNV, vary in actual effect and 70 

magnitude from values reported in studies that more commonly assess disease dynamics at state, 71 

regional, or national scales (8). Previous studies have identified similar abiotic and biotic factors 72 

associated with human WNV illness, including prior weather conditions (weekly temperature 73 

and precipitation lags), mosquito infection and abundance, socio-demographic characteristics of 74 

the local population, and level of public awareness and education, but these were all at state or 75 

regional scales (9–17). 76 

Karki et al. (2020) and Ruiz et al. (2010) are two of the few studies to evaluate weekly 77 

spatiotemporal factors and their associations with human WNV illness at a smaller scale (1-km 78 

hexagonal spatial units), in a highly urban 2-county area (Cook & DuPage counties, 79 

encompassing the greater Chicago, IL area). This region consistently experiences one of the 80 
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highest annual WNV incidences in the country (20). While an excellent overall model fit was 81 

achieved by using a large number of explanatory variables (n=40), the relative importance of 82 

covariates and the resulting strength of disease prediction across the study area varied widely. 83 

Understanding how and why these relationships change at specific spatiotemporal locales has 84 

been a major conceptual challenge when modeling human WNV illness, and is the central focus 85 

for this study. 86 

The Northwest Mosquito Abatement District (NWMAD), occupying the northwest corner of 87 

Cook County, is one of Chicago’s four abatement districts responsible for mosquito control, and 88 

has an excellent long-term mosquito abundance and testing data throughout its jurisdiction. 89 

Human and environmental factors are heterogenous throughout the NWMAD, presenting a 90 

strong gradient of human population density, household size and age, socio-economic values, 91 

and land-use and land-cover, providing a highly representative enclave of the greater Chicago 92 

region.  93 

Specifically, the main objectives of this study were to: (i) evaluate and contrast key variables in 94 

this study to the larger Cook and DuPage model, (ii) assess the similarities and differences 95 

among locations that were predicted accurately by the larger model and those that were predicted 96 

poorly, and (iii) quantify the impact of newly acquired data on prediction of human WNV illness. 97 

The authors hypothesize that evaluating human WNV risk at an ultra-fine-scale (UFS) will 98 

improve overall model performance (as compared to broader scale models). Additionally, the 99 

authors hypothesize that by including several additional covariates that are specific to the UFS 100 

study area, the eco-epidemiologic relationships of human WNV transmission will be improved.  101 

Methods 102 

Ethics Statement 103 
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All data collected from the Illinois Department of Health (IDPH) were through a user 104 

agreement approved by the University of Illinois Institutional Review Board and the Illinois 105 

Department of Public Health Institutional Review Board. The human activity observation 106 

protocol was approved by the University of Illinois Institutional Review Board. Field collections 107 

and any use of generated data were approved by the University of Illinois Biosafety Committee.  108 

Study area 109 

This study was conducted within the NWMAD, a 605-km2 area that comprises the northwest 110 

suburbs of Chicago (Cook County, IL, Fig 1). The NWMAD study area is an enclave of the 111 

Cook & DuPage counties model, the previous research site conducted by Karki et al. (2020). 112 

Within the NWMAD study area, fifty-five 1-km hexagonal units were specially selected. These 113 

fifty-five 1-km units denote the “ultra-fine-scale” (UFS) study area and contained a total of forty 114 

human WNV cases from 2005-2016 (Table S1). By focusing on the spatiotemporal dynamics of 115 

WNV transmission in humans in this UFS study area, research efforts have focused on additional 116 

data collection, more than doubling the total amount of covariates related to WNV in the 117 

Chicago region than the previous Karki et al. (2020) study. Through these additional collection 118 

efforts, this study aims to better control, assess, and ultimately, understand the relationships 119 

among key predictors of human WNV disease at very fine scales. All model data were 120 

summarized and processed within 1-km diameter hexagons, as a neutral configuration in both 121 

size and shape, free of any political boundaries. Using statistical selection processes (described 122 

below), fifty-five of the 1,019 hexagons within the NWMAD were selected as the observational 123 

units for this study.  124 

 125 
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Fig 1. The UFS study area, contained within the Northwest Mosquito Abatement District 126 

(NWMAD), in relation to Cook and DuPage Counties. Overlaid are 1-km diameter hexagons, 127 

the observational units used in this study. Northwest Mosquito Abatement District comprises 128 

1,019 of the total 5,345 hexagons in all of Cook and DuPage Counties. 129 

Model covariates 130 

The Cook and DuPage model evaluated forty covariates derived from a variety of abiotic and 131 

biotic factors associated with human WNV transmission, including climate and weather records, 132 

mosquito infection, environmental land use, and socio-demographic census data. For this study, 133 

additional data processing and field collections resulted in forty-two additional independent 134 

variables, each determined to be ecologically- or epidemiologically-related to human WNV 135 

illness in our study areas of focus (Table 1). Each variable was independently calculated by 136 

hexagon and averaged for each Centers for Disease Control and Prevention (CDC) 137 

epidemiological week (18-38, Sunday-Saturday) of the years 2005 through 2016 (7). Previously 138 

collected data used in this study are explained in detail in Karki et al (2020) and can also be 139 

found in supplemental materials. 140 
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Cook/DuPage Model Ultra-fine-scale Model  Covariate Information 

Designation Description Notation 
 

Environmental Land Cover 

Proportion of developed open space  dospct X X  
Proportion of developed low intensity dlipct X X 

 
Proportion of developed medium intensity dmipct X X 

 
Proportion of developed high intensity dhipct X X  
Proportion of deciduous forests dfpct X X 

 
Proportion of evergreen forests efpct X X 

 
Proportion of mixed forests mfpct X X  
Proportion of barren land blpct X X 

 
Proportion of shrubs shrubspct X X 

 
Proportion of grassland glandpct X X  
Proportion of pasture pasturepct X X  
Proportion of cultivated land clpct X X 

 
Proportion of woody wetlands wwpct X X  
Proportion of herbaceous wetlands hwpct X X  
Proportion of total forest ftotpct 

 
X 

 
Proportion of total wetlands wtotpct 

 
X 

 
Proportion of open water owpct X X  
Normalized Difference Vegetation Index NDVI 

 
X 

 

Biological 

Minimum 
Infection Rate 

(MIR) 

MIR one week before mirlag1 X X 
 

MIR two weeks before mirlag2 X X  
MIR three weeks before mirlag3 X X 

 
MIR four weeks before mirlag4 X X 

 
Average MIR current week MIRmean  X  
Difference in weekly average MIR from 12-year average MIRdiff  X  
Vector Index current week Vector Index   X 

 
Vector Index one week before VIlag1  X  
Vector Index two weeks before VIlag2 

 
X  

Mosquito 
Abundance 

 Vector Index three weeks before VIlag3 
 

X 
 

Vector Index four weeks before VIlag4   X  
Light and gravid trap collection mean current week Trap_Mean  X  
Light and gravid trap collection mean one week before Trap_Meanlag1 

 
X 

 
Light and gravid trap collection mean two weeks before Trap_Meanlag2  X  
Light and gravid trap collection mean three weeks before Trap_Meanlag3  X  
Light and gravid trap collection mean four weeks before Trap_Meanlag4 

 
X 

 
Mosquito 

Biting Rates 
(HLC) 

Mosquitoes per visit mosquitoes per visit   X 
 

Culex spp. per visit Cx per visit   X 
 

Weather 

Temperature 

Average temperature current week tempc 
 

X 
 

Average temperature of one week before templag1 X X  
Average temperature of two weeks before templag2 X X 

 
Average temperature of three weeks before templag3 X X 

 
Average temperature of four weeks before templag4 X X  

Precipitation 

Mean January temperature Jantemp X X 
 

Average precipitation current week preci 
 

X 
 

Average precipitation of one week before precilag1 X X  
Average precipitation of two weeks before precilag2 X X 

 
Average precipitation of three weeks before precilag3 X X 

 
Average precipitation of four weeks before precilag4 X X  

Anthropogenic 

Socio-
demographic 

Percentage of White population whitepct X X  
Percentage of African American population blackpct X X 

 
Percentage of Asian population asianpct X X 

 
Percentage of Hispanic population hispanicpct X X  
Median household income Income X X 

 
Percentage of housing constructed before WWII hpctpreww X X 

 
Percentage of housing constructed post WWII (1945-
1969) 

hpctpostww X X 
 

Percentage of housing constructed from 1970-1989 hpct7089 X X  
Percentage of housing constructed in 1990 or later hpctpost90 X X 

 

Land change 
& 

manipulation 

Catch basin density CB   X  
Total area of building structures bldg_footprint_area_total  X  
Average area of building structures bldg_footprint_area_avg 

 
X 

 
Total perimeter of building structures Building_Footprint_peri_total 

 
X 

 
Average perimeter of building structures Building_Footprint_peri_avg  X  
Total area of residential lot Residential_lot_area_total 

 
X 

 
Average area of residential lot Residential_lot_area_avg 

 
X 

 
Total perimeter of residential lot Residential_lot_peri_total  X  
Average perimeter of residential lot Residential_lot_peri_avg 

 
X 

 
Ratio of total building area by total lot area total_bldg_area/total_lot_area 

 
X 

 
Ratio of average building area by average lot area avg_bldg_area/avg_lot_area  X  
Ratio of total building perimeter by total lot area total_bldg_peri/total_lot_area  X  
Ratio of average building perimeter by average lot area avg_bldg_peri/avg_lot_area 

 
X 

 
Number of buildings buildings  X  
Building density per mi.2 bldg_density   X  
Number of residents per building persons_per_bldg   X  

Human 
population 

 Total human population totpop X X  
Mean light pollution lightpol  X  

Activity 
Observations 

Senior Citizen Observations per visit Senior_obs per visit   X 
 

Adults Observations per visist Adults_obs per visit 
 

X 
 

Children Observations per visit Child_obs per visit  X  
Male Observations per visit Male_obs per visit 

 
X 

 
Female Observations per visit Female_obs per visit 

 
X 

 
Total Observations per visit Total_obs per visit   X  

Other 
Year yr X X 

 
Hexagon Designation hexid X X 

 
Total Covariates Evaluated 40 82  

141 List of covariates used previously in Cook & DuPage Counties WNV model and those newly 
acquired variables used in newly revised 55 hexagon UFS model. 

Table 1. Ecologically- and epidemiologically-related human WNV illness variables assessed. 
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Previously existing data 142 

Human illness  143 

Human WNV cases in Illinois were classified as either confirmed or probable, as reported to 144 

the IDPH by public health or licensed medical professionals (mandatory reporting of WNV 145 

cases is required in the state). Human cases were converted into binary form (presence/absence 146 

of illness) and weekly case rate, controlling for human population, for each hexagon.  147 

Abiotic Predictors 148 

Thirty meter resolution land cover from the 2011 United States Geological Survey (21) National 149 

Land Cover Database (NLCD) provided 30 m resolution classified raster data for the NWMAD.  150 

There were 15 unique land cover types, ranging from various forests and vegetation to built up 151 

urban space. Weekly mean temperatures and weekly precipitation totals, acquired from the 152 

PRISM Climate Group (22), were extracted for each hexagon in this study using ArcGIS 153 

10.5.1(23). 154 

Newly added data 155 

Abiotic Predictors 156 

Catch basin density: Due to the high preference for breeding in catch basins (e.g. sewers) by 157 

Culex pipiens, the density of catch basins (
# ����� ���	
�

�
	��
 �
����

) was calculated and assessed. The 158 

NWMAD provided point data for each catch basin within its jurisdiction. All point data were 159 

then aggregated to each hexagon using the spatial location join feature in ArcGIS. A combined 160 

total of 8,443 catch basins were recorded among all hexagons (min = 1, max = 543). 161 

Building and residential structures: Previous WNV studies in the Chicago area found a link 162 

between the density, size, and age of housing and human cases (9). Through high-resolution (1 163 

m) aerial imagery from ArcGIS and USDA (2018), every permanent structure (e.g. residence, 164 
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shed, garage, deck) was traced and converted to polygons in ArcGIS. The area and perimeter of 165 

each polygon was calculated and aggregated for each hexagon. Commercial and residential lots 166 

were provided by Cook County Data Catalog (2019), using 2016 tax appropriations. In total, 167 

there were a combined 22,892 lots with 24,468 buildings or permanent structures.  168 

Light pollution: A recent study by Kernbach et al. (2019) has linked increases in light pollution 169 

to WNV in the environment. Because the NWMAD consists of a metropolitan area with an 170 

abundance of artificial light, pollution values were evaluated. Light pollution was provided by 171 

the New World Atlas of Artificial Night Sky Brightness (27,28). Light pollution was acquired 172 

from 2014 data of the VIIRS DNB sensor on the Suomi National Polar-orbiting Partnership 173 

satellite. Pixel resolution was 0.75 km; mean value for each 1-km hexagon was calculated in 174 

ArcGIS. 175 

Biotic Predictors 176 

Historical mosquito abundance: The NWMAD consistently collected and diligently maintained 177 

their mosquito trapping and identification data throughout the study period. Once deployed, traps 178 

were usually checked at least twice a week. Over the 2005-2016 study period, there were a total 179 

of 59 traps used in the NWMAD, resulting in a total of 48,406 female Culex. spp. from 22 light 180 

traps, and 1,110,024 from 37 gravid traps. Weekly mosquito collections by trap were geocoded 181 

and interpolated across all hexagons via IDW and extracted using the zonal statistics as table 182 

function for each hexagon in ArcGIS. The regular maintenance, collection, and identification, 183 

frequency of mosquitoes caught, and distribution of traps within the NWMAD provided strong 184 

evidence that mosquitoes collected were representative for the remainder of the study area. 185 

Additionally, standard error values as a result of IDW methods were very low, and thus, the 186 

assumption for spatial dependency is satisfied (S1 Fig). Mosquito abundance was calculated as 187 
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the weekly cumulative number of captured female Culex spp. from each respective gravid trap 188 

(GT) and light trap (LT). Since Cx. pipiens and Cx. restuans are very difficult to morphologically 189 

identify, and with prior studies establishing these as the major Culex. species present in this area, 190 

all collected specimens from the genus Culex were pooled. 191 

Normalized Difference Vegetation Index (NDVI): Trees and shrubs are a major source of nectar 192 

and serve as resting places for mosquitoes, especially those that recently blood-fed (29). To 193 

evaluate the magnitude of all vegetation, NDVI was incorporated by hexagon, recorded as an 194 

average value at three timepoints of each year: CDC epidemiologic weeks 21 (3rd-4th week of 195 

May), 28 (2nd-3rd week of July), and 35 (4th week of August-1st week of September). These CDC 196 

epidemiologic weeks mark the center of each the three 8-week active WNV periods in the 197 

Midwest, represented as T1 = low WNV activity, T2 = high WNV activity, and T3 = moderate 198 

WNV activity. The best available Landsat 7 or 8 bands for each respective time period were 199 

acquired from EarthExplorer (30) and processed in ArcGIS. 200 

Human activity observations: To provide the most complete measurement of human risk to 201 

potential mosquito vectors in nature, this study attempted to quantify human exposure during 202 

crepuscular time periods. Human activity observations were conducted in public spaces inside 203 

each hexagon, during the crepuscular hours between 6-9:30pm, the preferred feeding period for 204 

Cx. pipiens/restuans. Observations were conducted within each hexagon for a total of ten 205 

minutes per visit. Specifically, a researcher remained stationary for 2 minutes, walked 2 minutes, 206 

remained stationary in the new position for 2 minutes, walked back to origination point for 2 207 

minutes, then remained stationary in the original position for 2 final minutes. Human exposure 208 

was determined as any period in time a person was outside of any building, vehicle, or enclosed 209 
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dwelling during the observation period. Observations were classified by apparent gender and age 210 

(child, adult, or senior citizen).  211 

Human landing catch (HLC): In conjunction with human activity observations, the number of 212 

human-seeking mosquitoes that attempted to blood-feed were collected via human landing catch 213 

methods for a fifteen-minute period at each hexagon weekly. To mitigate actual biting events, the 214 

researcher would expose only one limb (arm or leg) at a given time. Any mosquito that landed 215 

was collected via mechanical aspirator and transferred to a 2 ml collection vial. All collected 216 

mosquitoes were transported to the NWMAD within 2 hours and stored at -80°C. All mosquito 217 

specimens were identified to species within three days. Any mosquitoes identified as Culex spp. 218 

were sent to the Fritz Lab at the University of Maryland for species confirmation by Cx. pipiens 219 

group-specific primers via PCR. 220 

Vector Index: The vector index (VI) was calculated as an estimate of the relative number of 221 

WNV-infected mosquitoes. For this study, VI was calculated as the average number of pooled 222 

Culex spp. collected per trap-week multiplied by the proportion of mosquitoes infected with 223 

WNV. The following equation was modified from the CDC (2013): 224 

VI =∑ ��	��
�

	����
� ���.�������� , 225 

where ��	  = average density (number of mosquitoes per trap week) and ��	= estimated MIR 226 

(proportion of mosquito pools testing positive for WNV). Calculated weekly VI for each trap by 227 

week was then interpolated via IDW method for estimations across the NWMAD. 228 

Nuisance Factor and Human WNV Added Risk: The combination of human activity 229 

observations, serving as a proxy for potential mosquito bloodmeals, and HLC data, serving as a 230 

proxy for potential rate of mosquito biting, formed two unique WNV disease indices: the 231 

Nuisance Factor and Human WNV Added Risk. Since the majority of mosquitoes collected were 232 
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non-Culex, a quantitative index, nuisance factor, was created to provide a risk spectrum of 233 

encountering nuisance mosquitoes in a given hexagon. The following equation defines the 234 

nuisance factor: 235 

��	
��
� ��
��� �

����� ��	
���
���	

����
�

���	���
 ��	���
�
	

����

100
 

Nuisance factor values ranged from a low of 0 to a high of 32.3. To quantitatively estimate 236 

potential risk for exposure to disease within a given hexagon, the human WNV added risk factor 237 

was created. This index is defined by the following equation: 238 

����� ��� ����� ���� �  

����� ��	
���
���	

����
�  

���
� spp.

Hour

100
 

Human WNV added risk ranged from a low of 0 to a high of 1.44. 239 

Statistical methods 240 

Location selection 241 

Of the total 1019 hexagons within the NWMAD, fifty-five (5.4%) were selected as the 242 

maximum number of sites that our research team could visit for fifteen minutes each, weekly. 243 

The subset of fifty-five hexagons were selected based on two criteria: (1) human population was 244 

> 0, and (2) the previous Cook and DuPage model either predicted human WNV extremely well 245 

or extremely poorly, as determined by the 2005-2016 average residual output. Furthermore, the 246 

residual output was stratified by those locations that had or had not experienced a human case 247 

during the 12-year period. These processes created a performance spectrum consisting of five 248 

categories of hexagons: negative residuals without a human case (NR0), low residuals without a 249 

case (LR0), low residuals with a case (LR1), positive residuals without a case (PR0), and 250 

positive residuals with a case (PR1) (Table S1). No hexagons with negative residuals in the Cook 251 
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and DuPage model had experienced a human case. The spatial arrangements of these hexagons 252 

provide adequate coverage of the NWMAD’s jurisdiction (Fig 2). 253 

 254 

Fig 2. Location of the 55-hexagon study area within the Northwest Abatement District. 255 

Hexagons are labeled by field season visited for mosquito collections and human activity 256 

observations (color outline) and by total human cases from 2005-2016 (gray scale shaded 257 

interior).  258 

Model Selection 259 

Two seasons of field collections and processing of new data provided the UFS model with an 260 

additional 42 covariates not made available in the previous Cook & DuPage model. The 261 

generation of linear and logistic regression models began with a two-step selection process for 262 

the initial covariate inclusion: (1) conduct a univariate analysis with each predictor (independent 263 

variable) to the WNV disease outcome (binary = logistic, case rate = linear, dependent variable). 264 

Candidate variables for multivariate analysis were selected using slightly more conservative p-265 

value than Bursac et al. (2008), p-value ≤ 0.20 vs. ≤ 0.25). Models that create cut-off values of p-266 

value ≤ 0.1 for purposeful univariate covariate selection can erroneously prevent important 267 

variables from entering final models (33,34); (2) the final model, a generalized linear model with 268 

a Poisson distribution and probit link function, was selected using forward selection method, 269 

selecting the final model based on the Bayesian information criterion (BIC). Non-significant 270 

covariates were removed from the final model as a product of the iterative selection process. 271 

Secondarily, a receiver operating characteristic (ROC) curve was used to visualize overall model 272 

performance and Area Under the Curve (AUC) was calculated. All predictors were evaluated for 273 

multicollinearity using the PROC REG procedure (SAS Institute Inc. Cary, NC, USA) (S2 274 
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Table). Regression analyses were analyzed using the Fit Model feature in JMP 14.2.0 (SAS 275 

Institute Inc. Cary, NC, USA). Binary WNV case outcome was analyzed with as a nominal 276 

logistic personality. The continuous WNV case rate outcome was analyzed as a standard least 277 

squares personality. 278 

Model Comparisons 279 

Human WNV illness in the NWMAD was assessed under four model environments, each 280 

expressing a defined set of specific parameters. The four model environments were:  281 

1. MIR & Mosquito Abundance (contains no VI covariates),  282 

2. Vector Index (contains no MIR or mosquito abundance covariates),  283 

3. Best-Fit (best fit with all covariates in respective assessment), and 284 

4. Global (all covariates made available in respective assessment)  285 

As a comparison, the original Cook & DuPage model (Karki et al. 2020) was fit using only 40 286 

covariates. Each of these four model environments were assessed using four different covariate 287 

sets: 288 

1. All covariates (82 available covariates),  289 

2. Excluding HLC and human observations covariates (74 available covariates),  290 

3. Force-fitting HLC and human observations covariates (8 forced covariates, 82 available 291 

covariates), and  292 

4. Only the covariates made available to the Cook & DuPage 2019 model (control model, 293 

40 available covariates). 294 

Under each model environment and covariate set, the outcome of human WNV illness was 295 

analyzed using:  296 

1. Logistic regression (presence/absence human WNV illness) and  297 
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2. Linear regression (WNV case rate) methods.  298 

In total, there were 36 models assessed (Fig 3); models are named using the convention ExCyOz, 299 

where x is the model environment number (0-4, with number 0 assigned to the control 300 

environment), C is the covariate set number (1-4), and O is the outcome number (1-2). For both 301 

logistic and linear regression, each of the four model environments was fit using each of the four 302 

covariate sets. In addition, the control models using only the covariates from the final Cook & 303 

DuPage model applied to the UFS region were fit with and without force fitting HLC and human 304 

observation covariates. 305 

 306 

Fig 3. Flow diagram displaying how models were characterized, assembled, and compared 307 

in this study. Global models failed to converge and were excluded from the final results. The 308 

control model (optimal Cook & DuPage Counties (2019) model) was only used as a comparison 309 

for covariates made available only to that original model. Of the original 36 models initially 310 

assessed, 8 were removed, resulting in 28 final models assessed in this study. 311 

Half of the models were assessed under logistic and linear outcomes, respectively, and based on 312 

the # of Significant Covariates (quantity of variables included in final model with p<0.05) and 313 

Degrees of Freedom (the number of values in the final model that are free to vary). Overall 314 

model performance was determined by BIC. While BIC and Aikake’s Information Criterion 315 

(AIC) are both maximum likelihood estimators, BIC was chosen to determine model strength 316 

due to its stronger penalty term for covariate inclusion (35).  317 

Covariate Performance 318 
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Similarly to the model performance index, to evaluate the performance for all covariates across 319 

18 logistic and 18 linear models, each of the 82 covariates were standardized by creating the 320 

following index: 321 

��Covariate = 

������������ 
����


��� ������������
  322 

where: Significance Level = significance level of covariate in each of the 36 final models 323 

(p<0.001 = 4, p<0.01 = 3, p<0.05 = 2, included in the final model = 1), and Data Availability = 324 

resources required to acquire a respective covariate (level 1 = data widely available, no 325 

processing needed, level 2 = data available, requires minimal to moderate processing/analyses, 326 

level 3 = data available, requires extensive processing/analyses, level 4 = data not available, 327 

needs to be collected, processed, and analyzed, S3 Table). The final net prediction:availability 328 

tradeoff used to create the Data Availability variable are categorical and based on the authors’ 329 

personal experiences with data used in this study.  330 

Results 331 

Model Comparison 332 

The highest performing WNV human risk models were E3C4O3 (Cook & DuPage Best Fit, df = 333 

8, BIC = -227444) and E2C4O1 (Cook & DuPage + VI, df = 14, BIC = 576.2), for linear and 334 

logistic regressions, respectively (S4 & S5 Tables). 335 

The top five models that predicted human WNV cases strongest were represented by the control 336 

(E0, n=2), best-fit (E3, n=2) and vector index (E2, n=1) environments (Fig 4B, Table 2). These 337 

models’ corresponding covariate sets were represented by variables only available to the original 338 

Cook & DuPage models (C4, n=4), and force-fitting HLC covariates (C3, n=1) environments. 339 

 340 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.29.437618doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437618
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

Fig 4. Overall performance for each predictor and final model used in this study. Each of 341 

the 70 covariates used in the study, listed in alphabetic order by data availability/work load to 342 

acquire score (1-4), were evaluated by mean performance (A). Highest performing covariates are 343 

noted by enlarged label text and darker blue bar color. The overall performance for each linear 344 

and logistic model (n=14 for both) was evaluated by BIC value (B). Means for each outcome 345 

(��covariate = 0.48; �� linear = -193406; �� logistic = 670.9) are designated by vertical dashed lines. Details 346 

of scoring for each covariate and model are provided in 3 & S3 Tables. 347 
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Table 2. Overall assessment of performance for each model environment, covariate, and outcome combination. 348 

Modela Cumulative Significance Total # of Significant Covariates DF (lower is better) BIC value BIC value (lower is 
better) rank 

Regression Type 

E0C3O2 6 5 21 -227300 3 

Linear 

E0C4O2 6 5 15 -227354 2 
E1C1O2 7 4 13 -182037 11 
E1C2O2 7 4 13 -182037 12 
E1C3O2 7 4 19 -181982 14 
E1C4O2 7 5 17 -182001 13 
E2C1O2 8 4 8 -185362 7 
E2C2O2 10 4 7 -185373 6 
E2C3O2 7 3 12 -185322 10 
E2C4O2 10 5 9 -185347 8 
E3C1O2 6 2 4 -185389 5 
E3C2O2 8 3 4 -185395 4 
E3C3O2 6 2 9 -185344 9 
E3C4O2 10 6 8 -227444 1 
E4C1O2 

Global Models Excluded 
E4C2O2 
E4C3O2 
E4C4O2 
E0C3O1 4 4 21 683.40 9 

Logistic 

E0C4O1 3 3 15 632.30 3 
E1C1O1 4 3 30 742.50 12 
E1C2O1 5 4 34 768.70 14 
E1C3O1 9 7 32 757.70 13 
E1C4O1 7 6 21 653.30 6 
E2C1O1 4 3 26 692.70 10 
E2C2O1 7 4 23 661.10 7 
E2C3O1 4 3 26 696.60 11 
E2C4O1 5 5 14 576.20 1 
E3C1O1 5 3 19 634.60 4 
E3C2O1 8 5 21 640.40 5 
E3C3O1 5 3 23 672.70 8 
E3C4O1 8 6 12 580.80 2 
E4C1O1 

Global Models Excluded 
E4C2O1 
E4C3O1 
E4C4O1 

 

Detailed assessment of each model evaluated in this study. Overall model strength was determined by BIC value (by linear and 
logistic regression types), with the following characteristics denoted as follows: Cumulative Significance Total, sum of each 
variable score, denoted as: p<0.001 = 4, p<0.01 = 3, p <0.05 =2, included in model = 1; # of Significant Covariates = summation of 
included covariates with p-value<0.05; DF = degrees of freedom denoted in model; BIC value = overall model rank (best model = 
1, worst model = 14)/14 for each logistic and linear model group, respectively. 
aAll global models were excluded from analysis as they were all overfit and statistically biased 
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Covariate Performance 349 

Of the 82 available covariates, 70 (85.4%) were included at least once among a given model, 350 

excluding the overfit global models (individual predictor summaries located in S6 Table). Of the 351 

41 covariates (58.6%) that were greater than the mean covariate performance, seven were highly 352 

efficient (determined by natural break in the distribution), providing a crude estimation as most 353 

valuable variables for human WNV estimation (Fig 4A). These covariates are provided here in 354 

descending order of most importance: tempc (temperature (°C), �� = 1.15), preci (precipitation 355 

(mm), �� = 1.14), Yr (year, �� = 1.0), templag3 (temperature lagged by 3 weeks, �� = 0.92), blpct 356 

(barren land (%), �� = 0.92), precilag1 (precipitation lagged by 1 week, �� = 0.90), and VIlag4 357 

(vector index 4 weeks prior, �� = 0.88). All eight HLC and human observation covariates were 358 

included in at least one final model, but none performed highly (��each HLC Covariate = 0.25). 359 

Estimates and calculations for individual covariates are available in S3 Table. 360 

The eight HLC and human observation covariates provided significant differences (P ≤ 0.05) in 361 

observations and mosquito collections by hexagon type (Figs 5A & 5B). The indices, nuisance 362 

mosquito exposure and human WNV added risk, significantly differed by hexagon type (Fig 5C). 363 

Hexagons designated as PR1 (positive residual (underpredicted actual cases) with a prior human 364 

WNV case) were found to have the most human observations and collected mosquitoes (from 365 

both Culex and non-Culex spp.) per visit. This combination of factors provides hexagons among 366 

the PR1 type as the most “risky” in regard to human WNV added risk and increased nuisance 367 

mosquito exposure (Fig 5). 368 

 369 

Fig 5. Relationship of hexagon by type. Hexagon type (LR = low residual, PR = positive 370 

residual, NR = large, negative residual; 0 = no human case, 1 = human case) are detailed by 371 
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human observations per visit (A), mosquitoes collected per visit (B), and a product of the two 372 

former variables, nuisance factor and WNV added risk (C). Letters above each box and whisker 373 

plot designate significantly different groups by hexagon type, as calculated by Tukey’s HSD. 374 

Discussion 375 

In addition to model comparisons, this study evaluated the performance of the newly acquired 376 

VI in comparison to the more commonly used MIR in combination with mosquito abundance. 377 

Overall, when fit to the UFS study area, adding mosquito abundance and associated 4-week lags 378 

improved this model. When evaluating WNV prediction as a linear outcome, the best-fit model 379 

using only covariates available to the original Cook & DuPage model was the highest performing 380 

in WNV predictability. However, when evaluating WNV prediction as a binary outcome, VI and 381 

its associated 4-week lags replaced MIR as the best predictor of human WNV. While no model 382 

emphasizing MIR and abundance was selected as one of the best predictive models, at least one 383 

of these variables (and their associated lags) were represented in 4 of the 5 best models (control 384 

and best-fit, n=2 for each model). On the contrary, VI, as an emphasized model environment, 385 

was selected as the best performing logistic model. Both MIR and VI are critical components in 386 

predicting WNV. Under ideal settings, the VI is the preferred method for estimating the risk of 387 

mosquito infection, as opposed to MIR. However, deciding between the two biological indicators 388 

will be largely dependent upon the data availability for each model of interest. Our study 389 

suggests that if resources are limited, net model value leans in favor of using MIR. 390 

The addition of 42 new covariates required a significant allocation of resources but provided 391 

minimal benefits towards reducing variance in human WNV prediction. Fortunately, this study 392 

suggests that excellent disease prediction models can be achieved with conventional covariates 393 

that are publicly available, requiring little to no processing and/or analyses (data availability 394 
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scores ≤ 2, Fig 4B). However, any covariate used should be adjusted and properly designed for 395 

the highest spatial and/or temporal resolution possible, which may require additional efforts to 396 

accomplish.  397 

Extensive review of literature indicated no other studies have evaluated covariate strength given 398 

limited resources, particularly in the context of making decisions to acquire data. Therefore, the 399 

categorizations of covariates by resource allocation (values ranging from 1 (low) to 4 (high)) are 400 

based on the experiences of the authors during this study. These values are subjective and may 401 

vary across institution or research group, but they may be used as a general estimation in model 402 

selection and decision-making. For example, variables related to building and lot size (avg bldg. 403 

area: avg lot area, bldg. footprint area avg, bldg. footprint area total, bldg. footprint peri avg., 404 

bldg. footprint peri total, and total bldg. area: total lot area) were all ranked a value of 4 because 405 

of extensive data processing and review. The authors downloaded high resolution, cloud-free 406 

satellite images that were used as a basemap for digital tracing of every building structure 407 

(houses, businesses, sheds, detached garages, storage units, etc.) and lots (residential and 408 

commercial). This resulted in >47,000 structures and lots digitally traced manually. On the other 409 

hand, weather variables (e.g. preci, tempc) were ranked a value of 1 because very little resources 410 

were devoted to have the data in a “ready” state. The source of these data, PRISM Climate 411 

Group, allows for monthly summaries to be downloaded and extracted with one quick 412 

geostatistic process. 413 

This study also aimed to address a key missing index that few studies have evaluated: the 414 

relationship of human activity, mosquito exposure, and WNV disease risk. While the related 415 

variables did not greatly impact overall model strength, they did provide key insight into a 416 

potential key in WNV ecology – the areas that were previously underpredicted with recorded 417 
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human WNV (hex type: PR1) were consistently found to have the most human activity at 418 

crepuscular times, the most mosquitoes overall, and the most Culex mosquitoes. However, our 419 

results appear to contradict the findings of Read et al. (1994), who discovered that as reports of 420 

biting nuisance mosquitoes increased beyond 2 per minute, outdoor human activity rapidly 421 

declined. Our results indicate that as mosquito collections increased, human observations also 422 

increased (Fig 5). Not only is this a potentially dangerous combination that can foster 423 

environments ideal to mosquito-human spillover, previous modeling efforts failed to capture 424 

these cases. Future directions will target these highly susceptible locations and aim to capture 425 

any additional unaccounted variance. 426 

Like all disease modeling efforts, there are always reporting biases that directly affect true case 427 

prevalence. Unfortunately, many vector-borne diseases are largely underreported (37–40), as 428 

human cases are vastly overlooked or misdiagnosed, largely due to low severity in disease 429 

manifestation in a majority of cases (41,42). This creates difficulties in predicting when and 430 

where VBD incidence will arise. Specifically regarding WNV, it is estimated that about 80% of 431 

human infections are unreported, as clinical signs are minor or asymptomatic (43,44).  The 432 

remaining 20% of humans develop West Nile fever, and among this group, about 1% will 433 

develop severe and sometimes fatal neuroinvasive disease. In the Chicago area, models in both 434 

the UFS and Cook & DuPage locations have very high human WNV prediction capabilities. 435 

Despite having among the highest total number of human WNV cases in the U.S. (20), this 436 

region has more observational units denoted as non-cases than cases. That has resulted in models 437 

with excellent accuracy in predicting where there are no human cases, thus inflating the true 438 

accuracy of our models.  Nonetheless, while our models are able to reliably predict where human 439 
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cases are present, the magnitude of effect can be missed (e.g. “hot spots” with greater than 1 case 440 

may not be represented). 441 

Disease modelers need to be cognizant of saturating their efforts, both statistically and 442 

biologically. Statistically, additional and meaningful covariates will usually improve model fit 443 

parameters. However, the inclusion of too many variables can result in overfitting, resulting in 444 

models failing to converge (45–47). It is possible that no matter the amount of effort to improve 445 

model fit, there is an element of variability attributed with infected humans not seeking medical 446 

attention and thus, reducing true disease prevalence (48). 447 

Overall, when compared to the Cook & DuPage model, the best UFS models required fewer 448 

predictors and produced a stronger overall fit using most, if not all, the same covariates made 449 

available to both model types. Spending the resources (time, money, human-power, processing, 450 

analyses, logistic, etc.) to acquire additional covariates may not necessarily be worth the impact 451 

on improving human WNV modeling predictions. Rather, fine-tuning the traditional covariates 452 

(climatic, weather, and MIR, for example), to the highest spatiotemporal resolution possible may 453 

be the most efficient use of resources to minimize variance in VBD prediction models. 454 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.29.437618doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437618
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

Conclusions 455 

1. The factors and their overall effect on the prediction of human WNV cases differs across 456 

scale. Although improved, in comparison to the control Cook & DuPage model applied to 457 

the same study region, the “best fit” UFS model AUC = 0.89, suggesting newly 458 

unaccounted variances are present. 459 

2. Both vector index and MIR contribute to high performing human WNV prediction 460 

models under UFS study areas. In direct comparison, VI is favorable to MIR. However, 461 

given limited resources in acquiring and processing additional data, MIR is more efficient 462 

for predicting human WNV illness. 463 

3. The effort and resources required to acquire additional covariates, most of which are not 464 

publicly available, demonstrate a slight improvement in model prediction and appear less 465 

important in reducing variance. 466 

4. In addition to the conventional WNV covariates, namely weather and infection rates, 467 

land-use and land-cover and SES/demographic information are widely available with 468 

little to no processing or analyses required, and provide the breadth to develop excellent 469 

prediction models. However, any covariate utilized must be structured at the finest spatial 470 

and/or temporal resolution possible. 471 

5. Human exposure to mosquito biting rates provided minimal benefits to model prediction. 472 

More importantly however, these two covariates provided potentially key insight to the 473 

susceptibility of humans in locations where WNV is prevalent. Additionally, where 474 

WNV is less of a concern, these results provide insight into nuisance mosquito exposure 475 

that may lead to improvements in targeted control efforts.476 
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Supporting Information 620 

S1 Fig. Measurement of standard error associated with interpolated Culex species 621 

abundance by light (A) and gravid (B) traps (averaged for all traps), and mean MIR (C) 622 

for each of the 55 hexagons, from 2005-2016. The average weekly mosquito abundance 623 

multiplied by average weekly mean MIR created a third infection parameter, the vector index.  624 

S2 Table. Correlation matrices for each of the 82 covariates assessed in this study. Tables 625 

are grouped by anthropogenic (A), biological (B), environmental (C), weather (D), or other (E), 626 

as indicated in Table 1. 627 

S3 Table. Detail of scoring and categorization of covariates used across all models assessed 628 

in this study, organized by data availability/work load to acquire score. Scoring was denoted 629 

as follows: Cumulative Significance, p<0.001 = 4, p<0.01 = 3, p <0.05 =2, included in model = 630 

1; Data Availability/Work Load to Acquire, Data Unavailable/Fieldwork required = 4, Data 631 

available, but requires many resources to use = 3, Data available, but requires moderate 632 

resources to acquire = 2, Data readily available and requires little to no resources to use = 1; 633 

Covariate Value = Quotient of previous two columns. 634 

S4 Table. Model fit comparisons of the UFS hexagons, applying (A) newly acquired data 635 

(excluding HLC and human observations, covariate set 2), or (B) only the covariates made 636 

available to the previously published Cook & DuPage model (covariate set 4). Each model 637 

outcome was assessed using logistic (presence/absence WNV human illness case) and 638 

generalized linear (WNV case rates, controlling for human population) methods. Asterisks 639 

indicate level of statistical significance (* = p ≤ 0.05, ** = p ≤ 0.001, *** = p ≤ 0.0001 640 
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aLogistic regression outcome = human WNV presence/absence per hexagon, per week; GLM outcome = WNV 641 

human case rate (per hexagon, per week).  642 

bROC applies to only logistic regression 643 

cAs the final selected model in the Original Cook & DuPage paper (2019), this model environment was assessed 644 

only for the comparison to the Cook & DuPage models for this study and not applied to the UFS model. The original 645 

model covariates, eftpct and ehwpct, have 0 observations among the selected 55 hexagons and were removed.  646 

S5 Table. Model fit comparisons of the UFS hexagons, using best-fit models with additional 647 

human landing catch and human activity observations to incorporate added human risk. 648 

Human risk covariates were added to the UFS model by (A) best-fit integration (covariate set 1) 649 

and (B) force-fitting (covariate set 3). Asterisks indicate level of statistical significance (* = p ≤ 650 

0.05, ** = p ≤ 0.001, *** = p ≤ 0.0001 651 

aLogistic regression outcome = human WNV presence/absence per hexagon, per week; GLM outcome = WNV 652 

human case rate (per hexagon, per week).  653 

bROC applies to only logistic regression 654 

cAs the final selected model in the Original Cook & DuPage paper (2019), this model environment was assessed 655 

only for the comparison to the Cook & DuPage models for this study and not applied to the UFS model. The original 656 

model covariates, eftpct and ehwpct, have 0 observations among the selected 55 hexagons and were removed. 657 

S6 Table. Mean and standard error values for each predictor evaluated in this study. 658 

Values represent averages for all hexagons (pooled) over the entire study period (2005-2016). 659 
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