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ABSTRACT

Livestock farming is currently undergoing a digital revolution and becoming increasingly data-driven. Yet, such data often reside
in disconnected silos making it impossible to leverage their full potential to improve animal well-being. Here, we introduce a
precision medicine approach, bringing together information streams from a variety of life domains of dairy cattle to predict eight
common and economically important diseases. Dairy cows are part of a highly industrialised environment. The animals and
their surroundings are closely monitored and environmental, behavioural and physiological observations are readily accessible
yet seldomly integrated. We use random forest classifiers trained on data from 5,828 animals in 166 herds in Austria to
predict occurrences of lameness, acute and chronic mastitis, anoestrus, ovarian cysts, metritis, ketosis (hyperketonemia) and
periparturient hypocalcemia (milk fever). To assess the importance of specific cattle life domains and individual features for
these predictions, we use multivariate logistic regression and feature permutation approaches. We show that disease in dairy
cattle is a product of the complex interplay between a multitude of life domains such as housing, nutrition or climate, and identify
a range of features that were previously not associated with increased disease risk. For example, we can predict anoestrus
with high sensitivity and specificity (F1=0.72) and find that housing, feed and husbandry variables such as barn design and
time on pasture are most predictive of this disease. We also find previously unknown associations of features with disease risk,
for example humid conditions, which significantly decrease the odds for ketosis. Our findings pave the way towards data-driven
point-of-care interventions and demonstrate the added value of integrating all available data in the dairy industry to improve
animal well-being and reduce disease risk.

1 Introduction
During the previous decades, precision medicine for humans has been recognised as one of the most promising new approaches
to understand health and disease1–3. In precision medicine, information from many sources is combined to get a holistic picture
of an organism and its surroundings and find tailor-made treatments for diseases. In livestock farming, precision medicine
has been conducted under the umbrella of precision livestock farming4, 5 (PLF). As the health of livestock has large economic
implications, the determination of risk factors for diseases is a frequent application in PLF. Additionally, PLF holds great
promise to steer livestock farming into a more environmentally sustainable direction5, 6 by enabling preventive interventions
and reducing animal losses. Animal well-being is increasingly being considered an important economic factor as well, as
consumers get more conscious about the origins of the products they buy7, 8. Since dairy cows are part of a highly industrialised
environment, the animals and their surroundings are closely monitored and environmental, behavioural and physiological
observations are measured in routine assessment9, 10. The digitisation and integration of information from these different
sources has large potential to determine risk factors and arrive at actionable information allowing. Therefore, the main goal of
this study is the improved health and herd management on dairy farms by enabling individualised data-driven point-of-care
interventions through the integration of information from a multitude of different sources around a farm.

Previous studies have often focused on finding relationships between isolated areas of dairy cow husbandry, such as nutrition
or milk parameters and disease outcomes (see for example Oehm et al. 201911, Roche et al. 201912 and Polsky et al. 201713 for
some recent reviews). In this publication, we show that aggregating data from a range of diverse sources to predict diseases in
dairy cattle improves prediction accuracy compared to predictions using less diverse data, leads to new insights about important
factors that influence disease incidence and creates value by re-using existing data pools14. We show that no single factor
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predicts disease incidence alone. Diseases are indeed a result of a complex interaction between multiple influencing factors
from all life domains of the animals.

Several machine learning (ML) approaches have been considered for the prediction of breeding values15, insemination
success16, feed intake17 and calving18, as well as milk yield19–21, modelling of physiological and behavioural animal parame-
ters22, 23 and estimating BCS24, 25 – see also Cockburn 202026 for a recent review. The literature on the prediction of diseases is
frequently based on black-box sensor systems in which prediction algorithms are used that are of commercial interest and not
publicly known or evaluated26 or the reported sensitivity and specificity of prediction algorithms varies widely9. Diseases for
which successful applications of ML approaches have been reported include lameness27–29, mastitis30–33, metabolic status, i.e.
ketosis (hyperketonemia) and periparturient hypocalcemia (milk fever)34–38, infectious diseases39, 40 and oestrus detection41.
To our knowledge, no studies describing the application of ML approaches for the prediction of anoestrus, metritis and ovarian
cysts exist to date.

We analyse 22,923 observations of 5,828 animals on 166 dairy farms in Austria from the years 2014 to 2016. Each
observation has 138 features, derived from eleven different life domains of the animal, showcased in fig. 1. Our features
include information that has a long been known as relevant for the assessment of dairy cattle fitness and disease prediction,
such as breeding values and information about animal breeds42 and dairy herd improvement (DHI) assessment information
expanded by body and conformation assessments43, 44. We combine this information with extensive information on husbandry
and management conditions of the cattle, such as barn architecture and manure removal practices, as well as farm management,
such as type and duration of pasturing and information about the milking system. Furthermore, we add detailed information
about feed composition, such as the dietary proportion of crude fibre and concentrates and metabolic indicators. We use
information from weather services to add environmental factors such as the average rainfall and temperature. Lastly, we add
information about the current lactation state of the animal as well as its parity.

This information is used to predict a range of common dairy cattle diseases that are of high economic relevance, such as
ketosis, lameness and mastitis. Information about the occurrence of these diseases are obtained from diagnoses by veterinarians,
observations at calving or culling reasons. In addition, we add observations based on lameness scoring and ketosis tests to label
diseases (see sec. 4.1). We will refer to all these disease labels as "diagnosis" in the remainder of this work, regardless of origin.

We train a random forest classifier on these diagnosis labels to predict the corresponding disease in unlabelled data, i.e. in
data in which we removed the diagnosis information and which the algorithm has not seen during training. To train the random
forests, we use a total of 138 features from 11 categories aggregated from 6 different sources (see tab. 5 for an overview of the
available features and data origin). The training routine for the random forests are described in section 4.2. Furthermore, for
all diagnoses we test two versions of our data set: one including all observations, and one including only observations from
animals which were lactating at the time of observation (19703 observations). The reasoning behind this division is the large
metabolic change a cow undergoes between lactation and dry periods. Therefore observations from the dry period might not be
suited to predict diseases that occur during lactation.

2 Results & discussion
In the following, we report our results on the quality of the predictions of different diseases and discuss how these findings
relate to other machine learning approaches proposed in the literature. We then report which variables and life domains showed
a particularly high predictive value for different diseases and discuss these results.

2.1 Disease prediction accuracies
Our data set contains 22,923 observations of healthy (59.6% of observations) and sick cows (40.4% of observations), including
information on herd living and environmental conditions46, individual cow feed47, milk and physical parameters such as feed
energy content, test-day milk yield or animal weight, and 56 diagnosis codes (see sec. 4.1 and46 for more details on the data).
The eight most prevalent diagnoses in our data set are lameness (39.6% of all diagnoses), acute mastitis (11.2%), anoestrus
(8.7%), ovarian cysts (7.6%), periparturient hypocalcemia (7.3%), ketosis (7.1%), chronic mastitis (3.6%) and metritis (3.4%;
see tab. 1 for diagnosis frequencies). Diagnoses frequencies in our data set do not reflect true prevalences of the respective
diseases in dairy cattle. This is due to the aggregation of diagnoses data with several other data sets of observations through
matching of observation and diagnoses dates (see sec. 4.1) During the matching process, diagnoses that do not have matching
observations are excluded. Data on true disease prevalences in a comparable setting is given in Egger-Danner et al. 201248.
Lameness is most likely over-represented in our data, since we combine the clinical diagnoses with lameness scores to create
a positive diagnosis label. Similarly, we combine clinical ketosis diagnoses with subclinical diagnoses based on elevated
ketone body levels in ketosis tests. Nevertheless, since animals subjected to ketosis tests are not drawn from a representative
sample, the number of subclinical ketosis diagnoses is not representative and the number of diagnoses is on the lower end of the
prevalence spectrum reported in literature, which ranges from 6.6 %49 to 47.2 %50.
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Figure 1. Eleven sources of information, shown here as leafs on a tree, are aggregated to predict common dairy cattle diseases
using a random forest classifier45.

diagnosis N observations %
lameness 3670 39.6
acute mastitis 1037 11.2
anoestrus 803 8.7
ovarian cysts 705 7.6
periparturient hypocalcemia 673 7.3
ketosis 657 7.1
chronic mastitis 335 3.6
metritis 318 3.4
other 1062 11.5

Table 1. Frequency of diagnoses for the eight most frequent
diseases. The percentages denote the share of the diagnoses
among all observations with a diagnosis contained in the data
set.

Prediction sensitivity, specificity and F1 score for the
eight selected diseases and two data set versions (dry and
lactating cows or only lactating cows) are listed in Tab. 2.
All our classifiers generally achieve high prediction speci-
ficities due to the low prevalence of most diagnoses and the
high number of true negatives. Of higher interest are the
sensitivities, which are typically substantially lower than
the specificities. Prediction performance differs between
the two data set versions. Predictions achieve the highest
F1 score for anoestrus in both versions (F1 score of 0.720
excluding dry period and 0.731 in the full data set, respec-
tively). Similar prediction accuracies for anoestrus in both
data sets are expected, since anoestrus cannot occur in dry
cows. As the only existing other study51 that investigates
anoestrus in dairy cattle focuses on the the detection of
oestrus behaviour rather than the prediction of anoestrus, a
direct comparison between prediction performance is im-
possible. It is worth noting that the predictor achieves a similarly high F1 score for anoestrus as for lameness, even though the
amount of available observations is less than a third of the observations available for lameness.

Prediction of lameness works similarly well in both data sets (F1 score of 0.672 vs. 0.715) with a sensitivity of 0.631 in the
full data set. Sensitivity is similar to Ghotoorlar et al.27 and slightly outperforms the approach presented by Warner et al.28.
Deep-learning based lameness detection29 with videos of moving animals as input clearly outperform all other approaches with
a sensitivity of 97.51%.

Prediction of acute and chronic mastitis only achieves moderate F1 scores due to low sensitivity in both data sets (F1=0.416
and F1=0.339 in the full data set and F1=0.327 and F1=0.452 in the reduced data set which excludes lactating cows), even
though the number of observations with these diagnoses is comparable to the number of observations of anoestrus. Combining
both diagnoses into a general "mastitis" diagnosis did not improve prediction sensitivities. It is worth noting that chronic mastitis
is the only condition for which the predictor trained on the reduced data set yielded a higher sensitivity than the one trained on
the full data set. Two of the four existing studies on the application of ML algorithms to mastitis phenomenology30, 31 do not
predict disease incidence and a direct comparison with our approach is not possible. The other two approaches outperform
our approach with sensitivities of >93%33 and 97.7%32 respectively. Both studies use neural net based approaches applied

3/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436798doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436798
http://creativecommons.org/licenses/by-nc/4.0/


to milking information. Information about milking systems and routines – which is present in our data set – does not seem
to appropriately capture the causes for mastitis. We assume that adding information about hygiene and udder cleanliness to
account for the infectious nature of the disease has the potential to improve prediction accuracies in this context.

Prediction of ketosis works significantly better if the full data set is used (0.701 vs. 0.449). The high F1 score in the full
data set is somewhat surprising, given there are only 673 observations of cows with ketosis in the data set. Existing studies on
the prediction of metabolic status using ML approaches are mostly not directly comparable to our approach, as they either
directly predict β -hydroxybutyrate levels34, 35, culling risk36 or cluster observations rather than predicting outcomes37. The
only comparable study38 uses random forests and support vector machines to predict poor metabolic status. In this study,
random forests achieved higher sensitivity (67.8-82.8%) but lower specificity (76.7-88.5%) than our approach (the support
vector machines performed similarly). Along the same lines, prediction of periparturient hypocalcemia works considerably
better if the full data set is used (F1=0.619 vs. F1=0.275). The stark difference between prediction performance using the full
and the reduced data set for both metabolic diseases evidences the high influence of the time before calving on the metabolic
fate of the cows. The moderately high prediction performance is somewhat surprising, given there were only 293 observations
of periparturient hypocalcemia in the data set.

Prediction of ovarian cysts achieves moderate F1 scores of F1=0.482 and F1=0.464 in the full and the reduced data set
respectively. Prediction of metritis works a bit better with F1 scores of F1=0.611 and 0.500 in the full and reduced data set,
respectively. Again, the moderately successful prediction of metritis is surprising, given that there are only 265 observations of
metritis in the data set. There are no other studies that try to predict the incidence of ovarian cysts or metritis in dairy cattle
based on machine learning approaches that our results could be compared to.

excluding dry period full data set
diagnosis F1 score sensitivity specificity F1 score sensitivity specificity N diagnoses
anoestrus 0.720 0.635 0.986 0.731 0.635 0.989 753
lameness 0.672 0.564 0.951 0.715 0.631 0.939 3361
ketosis 0.449 0.317 0.994 0.701 0.678 0.975 355
acute mastitis 0.327 0.203 0.995 0.416 0.277 0.992 830
chronic mastitis 0.452 0.312 0.996 0.339 0.291 0.981 312
ovarian cysts 0.464 0.411 0.966 0.482 0.433 0.961 668
periparturient hypocalcemia 0.275 0.175 0.995 0.619 0.553 0.978 293
metritis 0.500 0.490 0.980 0.611 0.496 0.994 265

Table 2. Prediction F1 scores, sensitivity, specificity, diagnosis prevalence and number of observations for the eight most
prevalent diseases in our data set. The random forests were trained with hyper-parameters optimised for each disease group
(see Tab. 4).

For the remainder of this work, we will focus our analysis on the five diseases for which we achieved prediction performances
with F1 scores ≥ 0.5: lameness, anoestrus, ketosis, periparturient hypocalcaemia and metritis. Since the random forests
performed considerably better on the full data set, we use the full data set going forward. The exception to this is the analysis of
anoestrus: a closer inspection of feature importances of the random forest using the full data set (see section 2.2 below for a
more detailed description) revealed that the high prediction performance could almost exclusively be attributed to the features
that reflect a farm-based bias in disease reporting (see sec. 4.1 for details). The classifier for the data set which only includes
observations of lactating cows achieved a similarly high performance (F1=0.720 vs. F1=0.731 in the full data set) and only
relies on reporting bias to a much smaller extent. Therefore, in the following analysis of anoestrus, we exclude observations
from dry cows.

2.2 Feature importances and disease risk
In the following, we investigate the influence of feature groups and single features on the five diseases that achieved a prediction
performance of at least F1=0.5. We calculate the permutation importance52 of all 138 features over 1,000 repeats. To give a
first overview over feature importances, we grouped the features into the eleven categories that are illustrated in Fig. 1 (see
sec. 4.1 for more details). We calculate the cumulative permutation importance of all features in a given category. Due to
possible correlations between features, the sum of all permutation importances is not guaranteed to be one, so we normalise
permutation importances by the sum of all permutation importances and report contributions to overall permutation importance
in %. Results for the eleven feature groups and five diseases are shown in Tab. 3.

In general, no single feature category dominates for any disease and two or more categories are usually necessary to explain
more than 50% of the contributions to permutation importance to a disease. Housing and feed have the largest contributions
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feature category lameness [%] anoestrus [%] ketosis [%] periparturient hypocalcemia [%] metritis [%]
housing 28.2 30.8 23.4 12.5 10.6
feed 18.7 26.8 26.3 13.9 23.1
environment 11.1 6.7 12.2 2.5 11.4
milk 1.5 4.7 6.6 13.7 8.1
lactation stage 0.4 1.5 6.3 25.9 2.1
husbandry 12.7 13.1 8.6 4.2 4.7
age 10.9 8.7 1.0 19.8 2.4
physique 4.0 2.7 5.8 5.0 5.2
breeding values 1.9 4.1 3.3 1.9 3.3
breed 0.6 0.2 1.9 0.4 0.9
diagnosis source 9.9 8.7 4.6 0.3 28.5

Table 3. Cumulative permutation feature importance contributions for the eleven feature categories and five diseases with a
prediction F1 score of ≥ 0.5.

to feature importance across all five diseases. Notably, environmental features – which up to this point have gotten relatively
little attention in dairy cattle health research, evidenced by the lack of studies – have a moderately high contribution to all
diagnoses except periparturient hypocalcemia. Milk- and lactation -related feature contributions show a large variance with
contributions depending on disease type: on the high end, milk- and lactation-related features have a contribution of 13.7% and
25.9% respectively to periparturient hypocalcemia prediction feature importance and 6.6% and 6.3% to ketosis diagnoses. In
addition, milk-related features also contribute 8.1% to permutation importance in metritis prediction. On the low end, milk- and
lactation-related features have next to no contribution to lameness and anoestrus. Lameness and anoestrus are on the other
hand considerably influenced by husbandry, as is ketosis. Age (which includes parity) plays a major role in the prediction of
lameness (10.9%) and periparturient hypocalcemia (19.8%) and next to no role in the prediction of other diseases. Physical
indicators such as BCS, play only a minor role for permutation importances for all diseases. Interestingly, breed also only
has insignificant contributions to permutation importance, even though there is significant variance of breeds in the data set,
with 3327 Fleckvieh, 1376 Braunvieh and 1061 Holstein animals. The diagnosis source (veterinarian, state control association
employee, observation near culling or calving, or based on lameness score/ketosis test) has significant contributions to all
diseases except for periparturient hypocalcemia. This is expected since farms seem to over- or under-report certain diagnoses
based on their dominating diagnosis source.

On its own the permutation importance of a feature does not provide any information about the effect of a feature on the
disease risk for a given disease. The permutation importance only provides information about the importance of the presence or
absence of a feature (in case of a categorical feature) or high/low value of a feature (in case of a numerical feature) for the
prediction of the disease. Nevertheless, a given feature can be associated with a decreased or increased risk for a disease. To
investigate the direction of the association of a single feature to disease risk, we use multivariate logistic regression. Details
of the logistic regression model are described in sec. 4.3. We report the permutation importances of the 50 most important
individual features and their respective odds ratios for lameness, anoestrus, ketosis, periparturient hypocalcemia and metritis
from the logistic regression in the supplement in Tables 17, 18, 19, 20 and 21.

In the following, we discuss the importance for prediction and influence on disease risk of single features, focusing on
features with high importance which are associated with significant reductions or increases of the odds of diseases. Our aim is
to compare the effects we find for individual features with known effects in the literature and to highlight features that are of
great importance in our analysis yet have not been addressed in the existing literature so far. We focus on the 50 most important
features for each of the five diseases, including features that rank below 50 only in cases where they play a prominent role
in the literature. All odds ratios reported in the following analysis have a significance level of at least p < 0.05, we report
95% confidence intervals in square brackets next to the odds ratios. The individual p− values for all features are listed in the
corresponding tables in the appendix.

2.2.1 Lameness
Lameness is characterised by an abnormal gait that is often caused by pain or discomfort. Lameness can be caused by a range
of individual conditions, such as digital dermatitis, or other foot and claw disorders53. In the diagnosis used for this analysis,
these individual conditions are summarised in an overarching "lameness" diagnosis, which is characterised by a lameness score,
based on an assessment of animal mobility behaviour54 or a veterinarian’s diagnosis.

In a recent meta study11, Oehm et al. identify five robust risk factors for lameness: parity, body condition score (BCS), herd
size, days in milk, and claw overgrowth. Of these risk factors we find parity (OR=2.25 [2.17; 2.33]), body condition score
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(OR=0.71 [0.68; 0.73]) and herd size (OR=1.16 [1.11; 1.21]) ranking highly among the most important features for disease
prediction (see tab. 17). Days in milk ranks relatively low with a feature importance of 0.12±0.19% and claw overgrowth is
not assessed in the available data. Odds ratios for BCS show a very similar association of high BCS with decreased disease
risk (OR=0.71 [0.68; 0.73]) and an association of larger herd sizes with increased risk (OR=1.16 [1.11; 1.21]). This is also
consistent with the association of good muscularity score – which is highly correlated with BCS (R2 = 0.59) – with decreased
disease risk (OR=0.62 [0.60; 0.65]). On the other hand, large chest girth is associated with an increased risk for lameness
(OR=1.26 [1.20;1.32]). Contrary to existing research55, 56, animal body weight decreases the odds for lameness (OR=0.84 [0.80;
0.89]), but does not rank highly among feature importances (rank 127). The strong association of parity on the risk for lameness
in our analysis (OR=2.25 [2.17; 2.33]) lies within the confidence interval reported by the meta study (OR=1.63 [0.77; 3.46]).

In our analysis, a high yearly precipitation decreases the odds of lameness (OR=[0.80 [0.77; 0.84]) and mean relative
humidity has a moderately detrimental effect (OR=1.09 [1.05; 1.14]). This is contrary to two reports about increased lameness
of cows due to softer claws in high-moisture environmental conditions57, 58. We find that both a high standard deviation in
temperature as well as a high mean yearly temperature increase the odds for lameness much stronger (OR=1.40 [1.34; 1.46] and
OR=1.23 [1.18; 1.29], respectively). This is in line with research that suggests a connection between heat stress and increased
standing time13, which is argued to be a major risk factor for lameness59, 60. Consistent with this finding, a high number of
yearly low temperature days is associated with a decreased risk for lameness in our analysis (OR=0.89 [0.86; 0.93]). Somewhat
counter-intuitively, a high number of high-wind days increases the odds of lameness (OR=1.18 [1.13; 1.22]).

Chopped straw litter in free-stalls for lactating and dry cows is associated with a significantly increased risk of lameness
(OR=1.54 [1.41; 1.69] and OR=1.63 [1.49:1.79]) (consistent with a decrease in risk if other litter is used (OR=0.80 [0.72;
0.88])). As these features do not significantly correlate with other housing or husbandry features, that could explain the effect,
the relation to lameness is not obvious to us. Similarly, slits in the stable floors and the absence of open-air areas increase
the odds of for lameness across the board, in line with literature that finds increased prevalence of lameness in pigs kept on
slatted floors61. Other important housing features are deep bed cubicles and deep litter cubicles, which are both associated
with a significantly decreased disease risk for lameness (OR=0.39 [0.36; 0.43] and OR=0.56 [0.48; 0.64], respectively). To our
knowledge, none of these two has been reported before to be associated with increased or decreased risk of lameness in dairy
cattle.

Other housing features that are related to a reduced lameness risk are related to the milking system of the farm: the existence
of an automated milking switch-off (OR=0.70 [0.63; 0.77]), pipe milking stalls (OR=0.47 [0.39; 0.56]) and a higher milking
vacuum (OR=0.87 [0.84; 0.91]). Of these features, pipe milking stalls are moderately to strongly correlated with tie stalls for
heifers (R2 = 0.62) and lactating cows (R2 = 0.76), which in turn reduce the odds for lameness (OR=0.64 [0.53; 0.78] and
OR=0.71 [0.60; 0.83], respectively). This result is in line with literature62, 63 that reports a significantly reduced prevalence
of lameness for cows kept in tie stalls vs. cows kept in free.stalls. A higher milking vacuum is weakly correlated with both
pipe milking stalls (R2 = 0.22) and tie stalls for lactating cows (R2 = 0.21), which could explain why this feature is related to
reduced odds for lameness. The existence of an automated milking switch-off is weakly correlated to "other" litter types in
free-stalls for lactating cows (R2 = 0.20), dry cows (R2 = 0.20) and heifers (R2 = 0.18), which are related to reduced odds of
lameness.

A high Total Merit Index is associated with a moderately decreased lameness risk (OR=0.78 [0.74; 0.81]), which is
consistent with the fact that longevity, which is combined with the auxiliary trait feet and legs from conformation scoring, is a
highly weighted trait in the TMI64. The fitness index itself, also including longevity, ranks low (145) but also reduced the odds
for lameness (OR=0.71 [0.68; 0.74]. A high claw trimming frequency is associated with an increased lameness risk (OR=1.18
[1.06; 1.32]). Nevertheless, it is possible that in this case causality is reversed, since farms with lameness problems in their
herds will prioritise claw trimming. Lastly, the annual herd milk yield average is an indicator for production intensity of a farm
and is associated with a slightly decreased risk for lameness (OR=0.88 [0.84; 0.92]). Organic farms also have a comparatively
lower incidence of lameness (OR=0.61 [0.54; 0.68]). Similarly, separated ration types of staple forage and concentrate feed,
which are associated with a decreased risk for lameness (OR=0.65 [0.60, 0.71]) are possibly also an indicator for a less intense
production.

2.2.2 Anoestrus
Anoestrus is a diagnosis that indicates the absence of oestrus signs in an animal. This can be caused by both silent ovulation,
i.e. the absence of oestrus signs alltogether, or by a failure in oestrus detection on the side of farm management65. In our data
set, anoestrus diagnosis are a combination of all of these underlying causes that could lead to a failure of the cow of entering
oestrus or a failure of the farmer to detect oestrus.

In accordance to the literature66–68, we find that a high production intensity, i.e. high milk yield, is associated with an
increased risk for anoestrus. This can be explained by the inherently low expression of oestrus signs in high-production dairy
cows69. A range of features in our analysis is associated with a high production intensity and shows associations with increased
or decreased risk for anoestrus accordingly. Features associated with an increased risk are the test-day milk yield of the animal
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(OR=1.52 [1.37; 1.70]), annual herd milk yield average (OR=1.65 [1.50; 1.80]) and herd size (OR=1.37 [1.26; 1.48]). As
oestrus is expected relatively early in the lactation of a cow, the association of a high number of days in milk with a low risk for
anoestrus (OR=0.61 [0.56; 0.68]) is consistent. Similarly, the association of increased anoestrus risk with the season autumn
(OR= 2.04 [1.76; 2.36]) is most likely associated to management choices and the pregnancy cycle of cows as cows kept on
alpine pastures are expected to enter oestrus in autumn – but could also be related to increased heat stress during the summer
months70. The contribution of breeding values to the prediction of oestrus is consistent with breeding targets and the relation of
high milk yield to increased risk of anoestrus: the fitness index – which contains a fertility component – is associated with
decreased risk of anoestrus (OR=0.76 [0.69; 0.83]) while the milk index is associated with an increased risk (OR=1.34 [1.23;
1.47]).

Estrus detection is frequently based on the observation of increased movement activity of cows71, 72. In this context, the
strong association of the absence of open air areas for animals with an increased risk of anoestrus (OR=2.95 [2.48; 3.52] for
lactating cows and OR=3.83 [3.08; 4.77] for dry cows) might be an indicator for increased difficulties in oestrus detection
for cows that have limited opportunities for movement. Regarding animal housing, the strong association of outdoor climate
housing with open fronts with increased disease risk (OR=3.20 [2.68; 3.82]) is noteworthy. This barn design is neither strongly
correlated to high intensity farms (R2 = 0.21 with yearly milk yield per cow), nor to the absence of open-air areas for animals
(R2=0.15 with the absence of open-air areas for lactating cows). There is no explanation for this association in the existing
literature either.

There are a range of features relating to animal nutrition that play an important role in the prediction of anoestrus in cows.
The emergent pattern shows that features related to an energy-rich nutrition are associated with an increased anoestrus risk,
whereas features related to a high amount of crude fibres in rations are related to a decreased anoestrus risk. Specifically, the
total amount of nitrogen free extracts (OR=1.96 [1.78; 2.17]), the content of metabolisable energy in rations (OR=1.66 [1.46;
1.88]), the content of utilisable protein (OR=1.45 [1.30; 1.62]), the total amount of undegraded dietary protein (OR=1.74 [1.58;
1.92]), the dietary proportion of concentrates (OR=1.42 [1.27; 1.60]) and the total amount of ether extracts (OR=1.44 [1.32;
1.157]) all are associated with an increased risk of anoestrus. Moreover, staple forage types that contain energy-rich ingredients
in addition to grass silage, hay, grass and field forage silage are associated with an increased risk of anoestrus: corn silage
(OR=1.72 [1.40; 2.13]) or corn (OR=2.29 [1.85: 3.07]). On the other hand, the total amount of crude fibre (OR=0.85 [0.77:
0.93]) and the total amount of crude ash (OR=0.65 [0.58; 0.72]) in rations is associated with a decreased risk of anoestrus, as is
the time on pasture of lactating cows (OR=0.81 [0.62; 1.07]), the dietary proportion of grass silage (OR=0.61 [0.56; 0.67]) and
partial mixed ration type for forage (OR=0.56 [0.46; 0.70]). In general, animals that mobilise a large amount of body mass at
the beginning of lactation seem to be at higher risk for anoestrus73, 74. Under these conditions, the association of high-energy
rations with increased risk for anoestrus might be interpreted as a reflection of an already occurring preventive management
intervention to prevent anoestrus in at-risk cows. To clarify this relationship further, ration change protocols in farms in relation
to the identification of animals at risk of metabolic or fertility disorders would need to be investigated in more detail. Findings
in the literature about a relation between BCS and anoestrus are not always consistent12. Nevertheless, a range of studies reports
an association of a decrease of risk of anoestrus with higher BCS75, 76, which is consistent with our findings (OR=0.83 [0.76:
0.90]).

There are very few reports about the influence of environmental factors such as precipitation, wind and ambient temperature
on oestrus. One study reports that lower conception rates are associated with increased rainfall70, but it is questionable if
conception rates can be directly associated with oestrus. In any case, we find that mean yearly precipitation is associated
with a marked decrease in the risk for anoestrus (OR=0.50 [0.44; 0.57]). Temperature effects do not rank high in the feature
importances and contradict the literature, which reports a positive correlation between oestrus activity77: yearly temperature is
associated with a significantly increased risk of anoestrus (OR=2.99 [2.60; 3.43], p < 0.001, rank 111, not listed in table) and,
accordingly, the number of low temperature days is associated with a decreased risk (OR=0.61 [0.54; 0.68], p < 0.001, rank 88,
not listed in table). Nevertheless, the literature also reports a negative correlation of conception rate with ambient temperature70.
There are no reports about the influence of wind on oestrus activity in the literature. In our analysis, the number of high wind
days both ranks highly in the feature importances and is associated with an increased risk of anoestrus (OR=1.29 [1.19; 1.40]).

In our analysis, parity is associated with an increased risk for anoestrus (OR=1.45 [1.34; 1.58]). In the literature, there are
conflicting reports about the relationship between parity and anoestrus as there are both reports of decreased oestrus intensity
for multiparous cows78 as well as an increase in mounting behaviour with parity77.

2.2.3 Ketosis
Ketosis is caused by a negative energy balance during high milk production, and is most likely to occur during the first weeks
of lactation. A negative energy balance leads to an increased mobilisation of body fat, resulting in a ketone mobilisation that
is higher than its utilisation. Symptoms of ketosis are reduced milk yield, loss of body weight, reduced appetite, fever and a
high count of ketone bodies in the milk. Ketosis is divided in sublinical ketosis – a high count of ketone bodies without other
symptoms – and clinical ketosis, where animals exhibit the previously described symptoms. In this analysis we combine both
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diagnoses into one ketosis label.
Some features related with a high-intensity production environment are associated with an increased risk of ketosis: large

herd sizes increase the odds of ketosis OR=1.37 [1.26; 1.48], which is consistent with reports in the literature79, 80, while the
annual herd milk yield average is not significantly associated with an increase or decrease of the odds of ketosis (OR=1.08 [0.98;
1.19]. Features related to the body condition of the cows rank highly among the important features and almost unanimously
are positively associated with risk for ketosis (OR=2.38 [2.14; 2.64] for body weight, OR=1.96 [1.79; 2.14] for chest girth,
OR=1.58 [1.43; 1.75] for waist circumference and OR=1.70 [1.56, 1.87] for BCS). This is consistent with ubiquitous reports
about an association between high BCS and risk of ketosis46, 50, 81–83.

Parity ranks 51th in the feature importance for prediction of ketosis and is associated with a moderately increased risk for
ketosis (OR=1.45 [1.35; 1.57]). This is consistent with the literature which mostly reports increasing risk for ketosis with
parity50, 79, 84, 85.

Two studies find an association between higher milk fat percentage and lower milk protein percentage50, 83 or high milk
fat-protein ratio46 and an increased risk of clinical ketosis. Our analysis also finds an association between high milk fat
percentage and ketosis risk (OR=1.54 [1.39; 1.70]) and high milk fat-protein ratio (OR=1.53 [1.40; 1.68], rank 170). In addition,
our analysis finds that a high milk protein percentage is also related with an increased risk of ketosis (OR=1.43 [1.25; 1.65]).
In the literature, high test-day milk yield is associated with an increased risk for ketosis50, 86, whereas our analysis finds a
relation with a decreased risk (OR=0.80 [0.67; 0.97]). Reports on the relation of SCC and ketosis are scarce. One study finds no
association of SCC with ketosis50, whereas we find an association of increased risk of ketosis with high SCC (OR=1.63 [1.46;
1.82]). We also report a moderate association of milk urea content with a decreased risk of ketosis (OR=0.89 [0.78; 1.02]).

Two studies report a negative association between high ketosis incidence and high ambient temperature-humidity index87 at
calving or high temperature79 at calving, respectively. This contradicts our findings, which show an association of high mean
yearly temperature (OR=1.23 [1.11; 1.35]), temperature deviation (Or=1.89 [1.71; 2.09]) and high mean relative humidity
(OR=1.39; 1.26; 1.54) with increased clinical ketosis risk. To our knowledge, there are no reports of associations of other
environmental parameters with ketosis in the literature. In our analysis, we find a marked association between precipitation and
a decreased risk of ketosis (OR=0.46 [0.41; 0.52]) as well as the standard deviation of humidity (OR=0.80 [0.73; 0.87]).

Features related to cow energy intake are of great importance for ketosis prediction across the board. Most notably, all
features related to a high energy and protein content in rations fed to the animals in the time before the diagnosis are associated
with a decreased risk of ketosis (OR=0.57 [0.51; 0.63] for the dietary proportion of concentrates, OR=0.49 [0.44: 0.54] for
the amount of crude ash in rations, OR=0.45 [0.41; 0.51] for the amount of crude fat in rations, OR=0.85 [0.78: 0.93] for the
amount of nitrogen free extracts in rations, OR=0.48 [0.43; 0.54] for the amount of undegraded protein in rations, OR=0.64
[0.59; 0.70] for the amount of metabolisable energy in rations and OR=0.74 [0.68; 0.81] for the ruminant nitrogen balance).
On the other hand, year-round feeding of corn silage is associated with an increased risk of ketosis (OR=1.43 [1.15; 1.77]),
as is feeding of silages with a high energy content (OR=2.24 [1.86; 2.70]). In addition, a feed distribution system for high
performance feed that is neither on demand nor exact allotment or manual allotment two times a day is associated with a
marked increase in ketosis risk (OR=2.54 [2.07; 3.10]). The literature about the influence of concentrate feed intake in relation
to ketosis is inconsistent, reporting both positive and negative associations of large amount of concentrate feed with ketosis
risk88 and complicated relations between the management of feed intake and ketosis risk89. The information on rations used in
this study only reports ration composition and not the amount of feed actually consumed by the animals. Therefore, to untangle
the complicated inter-dependencies of nutrient intake and feed intake management, a more detailed recording of the actual feed
consumed by the animals is probably needed.

Features related to animal housing are less significant for the prediction of ketosis than for other diseases and are also not
reported in the literature. Nevertheless, a range of features are of importance and are associated with moderately decreased or
increased risk of ketosis. Notably, two features related to the housing of young stock are associated with increased ketosis
incidence: chopped straw as litter for calf free-stalls, lying mats in calf free-stalls, as well as a free-stall housing system that is
not deep or high bed cubicles, deep litter or sloped floors (OR=2.56 [2.02; 3.25], OR=1.33 [1.08; 1.63], and OR=1.64 [1.32;
2.03], respectively). Chopped straw as litter in free-stalls for lactating cows is also associated with an increased risk (OR=1.80
[1.49; 2.17]). manure removal: slurry with solid flooring is associated with an increased risk for ketosis (OR=1.27 [1.08; 1.50]),
whereas a walkway floor in the free-stall for dry cows that is neither solid concrete (with or without slits) nor rubber mats is
associated with a decreased risk (OR=0.62 [0.49; 0.79]).

2.2.4 Periparturient hypocalcemia
Postparturient hypocalcemia is a disease that is characterised by low blood calcium levels. Similar to ketosis, periparturient
hypocalcemia occurs early in lactation when calcium demand for milk production is increased and results in restlessness,
followed by an inability to stand and, finally, unconsciousness and death.

Consistent with ubiquitous reports in the literature90, 91, the by far most important feature for the prediction of periparturient
hypocalcemia is parity, which is strongly related with an increase of periparturient hypocalcemia risk (OR=2.39 [2.23; 2.55]).

8/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436798doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436798
http://creativecommons.org/licenses/by-nc/4.0/


This is due to the decreased ability of cows to absorb calcium with increasing age. In addition, we find that days in milk are
also associated with an increased risk of periparturient hypocalcemia (OR=2.22 [2.06; 2.40]).

Periparturient hypocalcemia is caused by an imbalance between the availability and the demand for calcium. Accordingly,
nutrition-related features play a key role in the prediction of periparturient hypocalcemia: in line with recent observations
in the literature92, the total amount of crude fibre in rations (OR=0.70 [0.64; 0.75]) is associated with a decreased risk of
periparturient hypocalcemia. This is also true for the total amount of undegraded protein (OR=0.63 [0.56; 0.70]) and crude
protein (OR=76 [0.70; 0.82]) are associated with a decreased risk of periparturient hypocalcemia. Furthermore, on-demand
high performance feed distribution and partial mixed rations are also associated with decreased odds (OR=0.70 [0.59; 0.84]
and OR=0.79 [0.65; 0.96], respectively), while total mixed rations are associated with increased odds (OR=1.83 [1.33; 2.51]),
consistent with findings in literature that report detrimental effects of total mixed rations on animal welfare93. On the other
hand, features related to a high milk energy content are associated with increased periparturient hypocalcemia risk across
the board (milk protein percentage OR=1.26 [1.09; 1.45], milk fat percentage OR=1.15 [1.01; 1.30] and test-day milk yield
OR=1.24 [1.04; 1.49]). The association of high milk yield with increased risk of periparturient hypocalcemia is consistent with
reports in literature43. We also find an association of decreased risk of periparturient hypocalcemia in organic farms (OR=0.70
[0.55; 0.89]), which can be explained by the high negative correlation of milk yield with organic farm type (R2 =−0.41).

Features associated with an obese body condition are also associated with increased risk of periparturient hypocalcemia.
Odds ratios range from 1.24 [1.14; 1.36] for BCS over OR=1.27 [1.16; 1.40] for chest girth to OR=1.70 [1.53; 1.88] for animal
mass and OR=1.79 [1.62; 1.97] for waist circumference. A relation between high BCS and increased risk of periparturient
hypocalcemia is also reported in the literature12, 43, 94.

Many features related to housing rank high in the feature importance for the prediction of periparturient hypocalcemia.
As with other diseases except for lameness, literature on the influence of different housing parameters on periparturient
hypocalcemia is next to non-existant. In our analysis, we find that chopped straw as litter in free-stalls for lactating cows
(OR=1.26 [1.05; 1.51]), dry cows (OR=1.42 [1.18; 1.72]) and young stock (OR=1.94 [1.52; 2.48]) is consistently associated
with an increased risk of periparturient hypocalcemia. On the other hand, long-straw litter in free-stalls for dry cows is
associated with a slightly reduced risk for periparturient hypocalcemia (OR=0.87 [0.70; 1.08]). High-bed cubicles in free-stalls
for dry cows are associated with an increased risk (OR=[1.44 [1.11; 1-88]]), as is manure removal through slits (OR=1-54
[1.27; 1.87]) and a high number of milking places (OR=1.13 [1.0; 1.23]). On the other hand, milking robots are associated with
a decreased risk (OR=0.63 [0.49; 0.83]).

Environmental conditions play a secondary role in the prediction of periparturient hypocalcemia. The association of a high
standard deviation of temperature with increased risk of periparturient hypocalcemia (OR=1.48 [1.34; 1.63] is consistent with a
similar finding in the literature91. On the other hand, contrary to that study we find a relation of decreased risk of periparturient
hypocalcemia with mean precipitation (OR=0.77 [0.69; 0.85]). Another recent study among a large number of cows that
considered the ecological life zone95 unfortunately does not make any statement about the direct relationship of temperature,
humidity or precipitation with periparturient hypocalcemia.

2.2.5 Metritis
Metritis is an inflammation of the uterus walls shortly (within 10-21 days) after calving. Symptoms include an enlarged uterus
and purulent discharge, leading to reduced milk yield and fever and, ultimately, collapse and death if untreated.

The literature reports either an u-shaped relation between parity and metritis96, with an association of increased risk for
metritis in heifers and third-parity and above cows or a decreasing risk of metritis with parity48. Our linear-regression based
approach of qualifying the influence of features on disease risk does not resolve non-linear dependencies and we find an
association of parity with increased risk (OR=1.64 [1.49; 1.81]), somewhat contradicting results in literature. Literature also
reports increased odds for metritis in cows calving between November and April. Our analysis is somewhat consistent with
these findings, with increased odds for metritis in autumn (OR=2.38 [1.90; 2.98]), decreased odds for births in spring and
summer (OR=0.71 [0.53; 0.94] and OR=0.51 [0.37; 0.70], respectively) and inconclusive results for winter.

Consistent with the literature97 we find no significant influence of BCS on the odds of metritis. On the other hand, we find
that high body weight (OR=1.42 [1.22; 1.66]), waist circumference OR=1.17 [1.01; 1.36]) and chest girth (OR=1.38 [1.21;
1.58]) all increase the odds of metritis. One existing study shows a relation between increased dry matter intake, feeding time
and reduced odds for metritis. This could be related to the strongly decreased odds of metritis for separate concentrate feed
ration types (OR=0.35 [0.26; 0.46]), as this feeding management strategy possibly reduces aggressive interactions between
cows at feed banks and therefore increases feeding time. In addition, we find a range of feed-related features that decrease the
odds of metritis: dietary proportion of concentrates (OR=0.84 [0.73; 0.98]), total amount of crude fibre in the ration (OR=0.74
[0.65; 0.84]), total amount of crude protein in the ration (OR=0.84 [0.74; 0.96]), total amount of usable protein in the ration
(OR=0.83 [0.72; 0.96]), total amount of crude ash in the ration (OR=0.75 [0.66; 0.86]) and total amount of undegraded protein
in the ration (OR=0.85 [0.74; 0.98]). Only the dietary proportion of straw is related to an increase in the odds for metritis
(OR=1.40 [1.10; 1.79]). Regarding milk-related features, low protein percentage and milk urea content are associated with a
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slight reduction in the odds for metritis (OR=0.88 [0.74; 1.05] and OR=0.85 [0.73; 0.99], respectively).
As with other diseases, most of the existing studies do not include herds kept under different housing conditions and,

therefore, cannot assess housing conditions as risk factor. In our analysis, we find a range of housing conditions for lactating
and dry cows that are associated with metritis: chopped straw as litter in free-stalls increases the odds of metritis (OR=2.42
[1.81; 3.23], as does the absence of an open-air area for dry cows (OR=3.12 [2.33; 4.18]). Manure removal in dry cow free-stalls
by scraper decreases the odds of metritis (OR=49 [0.38; 0.65]) whereas manure removal which was neither through slatted
floors nor by scraper increased the odds (OR=1.41 [1.10; 1.80]). These findings could be related to the assumed cleanliness of
the barn, yet one of the few studies that investigated housing effects on metritis did not find any effect of bedding on metritis
risk98. Possibly along the same lines, a claw trimming frequency of twice per year is related to decreased odds for metritis
(OR=0.57 [0.45; 0.73]).

To our knowledge, there are no existing studies that relate environmental conditions such as temperature or precipitation to
risk of metritis. In our analysis we find that a high standard deviation of temperature increases the odds for metritis (OR=2.94
[2.45; 3.53]), whereas a high number of low temperature days as well as high yearly precipitation decrease the odds (OR=0.67
[0.57; 0.78] and OR=0.59 [0.49: 0.73], respectively). Lastly, we also find a moderate association between the Total Merit Index
and a decrease in the odds for metritis (OR=0.85 [0.75; 0.98]).

3 Conclusion
Here, we have demonstrated the value of combining different data sources from various life domains of dairy cattle for the
prediction of common metabolic, locomotive and reproductive diseases of cows. We apply a random-forest based approach to
predict occurrences of lameness, acute and chronic mastitis, anoestrus, ovarian cysts, metritis, periparturient hypocalcemia and
ketosis. Our data set consists of 22,923 observations from 5,828 animals from 166 different herds, including 138 different
features from 11 different animal life domains. Life domains include animal breed, age, lactation stage and physique as
well as nutrition, milk parameters, breeding values, housing and husbandry and environmental factors and, as target variable,
diagnoses. To interpret the importance of individual features to disease prediction, we use feature permutation importances
in combination with multivariate logistic regression. We achieve considerable success in predicting lameness, anoestrus,
periparturient hypocalcemia, ketosis and metritis, with F1 scores between F1=0.611 and F1=0.72. Interpretation of feature
contributions uncovers the complex interactions and multiple contributions of different life domains. We confirm the association
of a large number of features with increased odds of diseases reported in the literature and report associations between a range
of features and disease risk that have never been reported before. With this work we hope to show that the integration of data
from multiple sources can create added value in precision livestock farming and that outcomes can be used to improve animal
wellbeing.

4 Methods
4.1 Data
The data used for the prediction of disease risks consisted of 22,923 observations from dairy cows collected in the time between
January 2 2014 and January 30 2016. Here, the additional features related to feed intake and animal physique were only
observed during the year 2014 within the scope of the Efficient Cow project46, while other features were available for the
whole period. These observations stem from 5,828 dairy animals that were kept at 166 farms. Observations have specified
dates and the same animal can contribute observations from times at which it was healthy as well as observations associated
with a diagnosis. Every observation has 138 features (87 numerical, 51 categorical) from 11 feature categories (illustrated in
fig. 1, which were aggregated from 6 different sources: the national breeding registry, the national cattle disease registry, a farm
survey, recurring dairy herd improvement (DHI) assessments extended by assessments and records from the national weather
service. A list of all features is given in tables 6, 8, 9, 10, 11, 16, 7, 13, 12, 14 and 15 in the appendix.

Diagnoses and diagnosis origin (tab. 6): An observation contains one out of 56 possible diagnoses or refers to a cow that was
healthy at the time of observation. A total of 9,260 observations have a diagnosis (40.4%) while 13,663 observations belong to
healthy animals (59.6%). The eight most frequent diagnoses comprise 88.5% of all diagnoses and their frequency is listed in
tab. 1. Diagnoses were taken from a national registry of cattle diagnoses48 together with a diagnosis date. We enriched these
diagnoses by additional diagnoses for lameness from lameness scoring53, 54. Cows with a lameness score ≥ 3 ("moderately
lame") were given a "lame" diagnosis. We chose this threshold value to achieve a good contrast between only mildly lame cows
(that are considered healthy in this approach) and severely lame cows. For the future, including information about lameness
scores in the prediction as the potential to make the prediction more accurate. Next to lameness, we also enriched the diagnoses
with additional ketosis diagnoses based on ketosis tests. To detect ketosis with a high sensitivity and specificity99, cow blood
was tested using Keto-Tests 7 days and 14 days after calving. Cows with an amount of beta-hydroxybutyrate, a ketone, of
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≥ 200µmol/l in one or both tests were given a "ketosis" diagnosis. Diagnoses of periparturient hypocalcemia include both
observations close to calving as well as diagnoses by veterinarians. Therefore, these diagnoses are a combination of diagnoses
based on the observation of symptoms and diagnoses based on measurements of calcium levels in blood tests.

Entries in the national diagnosis registry can have different sources and different ways to be entered in the registry: entries
can either be diagnoses by a veterinarian or observations at calving or a culling reason, observed by a farmer. Diagnoses
can then be entered into the registry either automatically by veterinarians through an easy-to-use interface or by hand by an
employee of the national performance recording organisation. These different origins and ways to enter information into the
registry introduced a large bias into our data set, as the ratio of different diagnosis sources varies widely between farms and
farms seem to over- or under-report different diagnoses, depending on what reporting pathway they rely most on. We therefore
decided to introduce new features for the ratio of different diagnosis sources and their registry entering pathways at a given
farm to capture the variance introduced by biased diagnoses sources.
Housing (tab. 8): These 25 farm-specific features were collected once through a survey sent to all farms within the scope of the
Efficient Cow project in Austria46, 100 and do not change over the course of time. Features include information for example on
the number of cows, the means of manure removal and the type of flooring used in the stables. In a different study [CITE],
these features were used to create disease risk profiles of farms based on the living conditions. Some of the values within the
features were very rare. These values were merged into an "other" value if there were fewer than 10 farms with a given value.
Husbandry (tab. 9): These 25 farm-specific features were collected through the same survey as described above. Features
include information for example about whether or not a farm is organic, if and how long cows are grazing or on an alpine
pasture and what type of milking system the farm has. Similar to the housing category, rare feature values were merged into an
"other" value.
Physical indicators (tab. 10): during recurring DHI assessments expanded by body and conformation assessments101, muscu-
larity score, waist circumference, BCS102, animal body mass and chest girth of the animals were recorded as well.
Milk indicators (tab. 11): At each test-day during the routine DHI assessments101, milk yield as well as fat, protein, lactose
and urea content content and somatic cell count were acquired. Based on these records, fat and protein percentage, fat-protein
ratio and energy corrected milk are routinely calculated and provided.
Feed (tab. 16): These 40 features were also acquired as an extension of the of the recurring DHI assessments within the scope
of the Efficient Cow project46, 47, 101, 103. They contain detailed information about the type of staple forage, ration type and the
nutrient content of the rations (protein content, crude fibre content, . . . ). Several measures such as the total organic mass of a
ration were excluded since they were highly correlated (R2 > 0.9) with other measures and therefore considered redundant.
Removing these redundant measures also slightly improved prediction accuracies (on the order of 0.01 F1). In addition,
information about the quality of the feed was collected by assessors during farm visits: assessors rated the contamination of feed
with mould its temperature (an indication for fermentation processes in the feed) on a scale from 1 (perfect) to 4 (insufficient).
We used the average of these two ratings to create a binary indicator for feed quality: if the average rating was ≥ 1.1 (true for
approximately 20% of farms), the indicator variable was set to "problematic feed quality".
Age (tab. 7): This category only includes two features: the animal’s parity and age at first calving.
Lactation stage (tab. 13): Features related to the lactation category are days in milk, days pregnant and whether or not the
animal was lactating at observation time.
Breed (tab. 12): The data set also includes information about the main breed of an animal and ratio and type of any foreign
genes103. This information stems from the national breeding registry48.
Breeding values (tab. 14): Next to the genetic information we also include five breeding values from the same national breeding
registry104: the Total Merit Index, milk index, beef index, fitness index and milk yield breeding value.
Environment: Records from the national weather service from the year 2014 were used to calculate weather indicators for
each farm based on its location. Weather indicators included in the data set are: the fraction of days with high wind conditions,
i.e. at least one measurement on a given day with wind speeds > 2.5m/s. The fraction of days with low temperature conditions,
i.e. at least one measurement on a given day with a temperature < 0.5◦C (cutoff value extracted from West 2003105). The
yearly average temperature and temperature standard deviation, the yearly average precipitation and precipitation standard
deviation, the yearly average relative humidity and relative humidity standard deviation, the altitude of the farm’s location and
the season at the time of the observation. Season information is constructed from the observation date of the DHI assessment.

Data was aggregated using unique animal and farm IDs. Since observations of the DHI assessment and the body and
conformation assessment did not necessarily occur at the same date as the diagnoses, diagnoses observations were matched to
the nearest preceding DHI and body and conformation assessment observations and only diagnoses where the time difference
between diagnosis and assessment was not larger than 365 days were kept (resulting in the number of diagnoses listed in tab. 1.
Therefore, it does not make sense to use observations that occurred after a diagnosis. In addition to the data set matching, we
also removed a range of features with a high correlation (R2 > 0.9) to another feature, or features which were just derivations
of existing features such as the somatic cell count and its logarithm. For both the random-forest-based analysis and the logistic
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regression categorical features were one-hot encoded.

4.2 Prediction algorithm
Balanced random forest classifiers106, 107 were trained on the data for each of the eight most prevalent diagnoses and for two
different versions of the data set: once on the full data set and once on the data set excluding observations from cows in the
dry period. Before training, a holdout sample of ≈ 10% of observations was saved for final validation of the classifiers and
removed from the training data set. The holdout observations were selected by first randomly selecting 6% of unique animals
and then assigning all observations belonging to these animals to the holdout data set, amounting to approximately 10% of
observations. This was done to prevent information leakage between the holdout data and the training data. We tried the same
procedure but instead of randomly selecting animals, we randomly selected 20% of the farms and then assigned all cows and
their observations belonging to these farms to the holdout data set. This drastically reduced the prediction quality, since there
are a lot of different possible combinations of farm features, and the classifiers under-performed on farms for which they had
not seen farms with similar management and living conditions during the training. Nevertheless, this approach could become
feasible in the future, if a higher number of farms is included in the data set and every farm type is present in the training data
set. Before training the random forest classifiers, missing values for features were imputed by the feature’s mean value.

To find the best hyper-parameters for the random forest classifiers, as a first step a randomised grid search over a large
range of parameter values was performed. Parameters that were scanned were (i) the number of estimators in the forest (ii) the
minimum number of samples for a node split (iii) the minimum number of samples in a leaf node (iv) the maximum depth of
the trees (v) the maximum number of features in a tree and (vi) whether or not bootstrapping was applied. The randomised
grid search was followed by a refined grid search for a smaller range of parameters around the resulting best parameter set
from the randomised grid search. Both the randomised grid search and the refined grid search were performed with 10-fold
cross-validation. The optimal parameters for each of the eight are listed in the supplement, Tab. 4. The prediction accuracy of
all classifiers was then tested on the holdout data set. Training and test accuracies and F1 scores are reported in Tab. 2.

4.3 Logistic regression
We apply multivariate logistic regression to investigate the individual effects of single features on diseases. These results
provide the possibility to investigate the influence of a feature on the increase or reduction of the odds of a disease, rather than
the pure importance of a feature for prediction. A logistic regression is a common method to investigate diseases risks. The
dependent variable is the disease, which is explained by independent variables. The control group for every disease are all
observations that were not matched to any other diagnosis. To minimise the effects of confounding variables in the regression
model we adjusted for a number of important variables: parity, season, breed, diagnosis source well as the performance level of
the farm. A disease risk was described as a function of the adjusted variables and the individual independent variables. We
computed the individual risk for each feature–disease pair. Features with less then 10 observations or only observations in less
then two herds in both the reference and the disease group were excluded.
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Supplement

data set diagnosis # estimators min split min leaf max depth max features bootstrap
full lameness 100 2 3 10 sqrt True
full acute mastitis 400 5 5 7 log2 False
full anoestrus 280 6 2 5 log2 True
full ovarian cysts 300 5 3 5 log2 False
full periparturient hypocalcemia 220 2 2 28 log2 False
full ketosis 280 2 1 35 log2 True
full chronic mastitis 400 5 4 5 log2 False
full metritis 420 6 3 5 log2 False
w/o dry lameness 300 3 3 11 sqrt True
w/o dry acute mastitis 400 6 4 5 log2 False
w/o dry anoestrus 300 4 1 7 log2 False
w/o dry ovarian cysts 300 4 3 5 log2 False
w/o dry periparturient hypocalcemia 380 6 3 5 log2 False
w/o dry ketosis 320 6 1 5 log2 False
w/o dry chronic mastitis 300 6 3 5 log2 False
w/o dry metritis 420 5 3 5 log2 False

Table 4. Optimal parameters for the random forest classifiers of the eight most prevalent diseases, using two different versions
of the data set.

category # features source examples detailed description
diagnoses and diagno-
sis origin 5 national diagnoses registry48,

lameness scores, ketosis tests
lameness, ketosis, ovarian
cysts Tab. 6

housing 23 farm survey46 stable type, manure removal
system Tab. 8

husbandry 23 farm survey46 frequency of claw cleaning,
pasturing of cows Tab. 9

physical indicators 5 extended DHI101 body condition score, weight Tab. 10

milk indicators 8 DHI101 somatic cell count, lactose
content Tab. 11

feed 40 extended DHI47 ratio of concentrated feed,
fodder contamination Tab. 16

breed 14 national cattle database
(RDV)48, 103

main breed, ratio and type of
foreign genes Tab. 12

lactation stage 3 DHI101 days in milk, days pregnant Tab. 13
age 2 DHI101 parity, age at first calving Tab. 7
breeding values 5 national cow registry104 fitness score, TMI Tab. 14

environment 10 national weather service
(ZAMG) mean temperature, altitude Tab. 15

Table 5. Feature categories and data sources of the data used in the training of the random forest classifiers.
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diagnoses
feature type values % missing

diagnosis categorical

healthy 59.60%, milk fever 2.94%, ketosis 2.87%, uterus
inflammation 1.39%, anestrus 3.50%, acute mastitis
4.52%, chronic mastitis 1.46%, lameness 16.01%, other
7.71%

0.00%

diagnosis source: culling reason or
observation at calving

numerical 0.24±0.21 % 0.00%

diagnosis source: veterinarian numerical 0.22±0.26 % 0.00%
diagnosis source: performance
recording organisation (LKV)

numerical 0.09±0.21 % 0.00%

diagnosis source: score numerical 0.46±0.26 % 0.00%

Table 6. Features summarised in the feature category diagnoses: For categorical and binary features, the frequency of each
category is reported. For numerical features, mean values and standard deviations are reported. For all features, the percentage
of missing values in the data set is reported.

age
feature type values % missing
parity numerical 2.8±2.05 0.00%
age at first calving numerical 874.0±103.0 days 0.09%

Table 7. Features summarised in the feature category age: For categorical and binary features, the frequency of each category
is reported. For numerical features, mean values and standard deviations are reported. For all features, the percentage of
missing values in the data set is reported.
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housing
feature type values % missing

cubicle housing system categorical

other 7.68%, deep bed cubicles and solid floors 48.31%,
high bed cubicles and solid floors 9.78%, high bed cu-
bicles and slatted floors 8.61%, deep bed cubicles and
slatted floors 25.62%

0.00%

manure removal categorical
mixed forms 16.11%, slurry with perforated flooring
34.43%, solid manure 8.57%, slurry with solid flooring
40.89%

0.00%

flooring in open air area for young
stock

categorical no open-air areas 55.51%, unpaved 4.00%, solid concrete
30.07% 10.00%

floor in walkway of free-stall for
young stock

categorical other 19.62%, solid concrete 25.61%, concrete slits
36.76%, solid concrete with slits 4.30% 14.00%

litter in free-stall for young stock categorical other 14.76%, chopped straw 20.66%, long straw 20.31% 44.00%
manure removal in free-stall for
young stock

categorical slits 34.86%, scraper 20.53%, other 34.28% 10.00%

free-stall system for young stock categorical other 14.32%, deep bed cubicle 17.29%, sloped floor
5.56%, high bed cubicle 33.44%, deep litter 18.06% 11.00%

floor in open-air area for lactating
cows

categorical solid concrete 44.94%, other 10.88%, no open-air areas
43.17% 1.00%

walkway floor in free-stall for lactat-
ing cows

categorical
solid concrete with slits 9.37%, solid concrete 20.65%,
rubber mats 13.91%, rubberised slits 9.69%, concrete slits
16.97%, other 21.30%

8.00%

litter in free-stall for lactating cows categorical chopped straw 46.97%, other 26.22%, long straw 15.96% 11.00%
manure removal in free-stall for lac-
tating cows

categorical other 23.89%, scraper 40.49%, slits 28.86% 7.00%

free-stall system for lactating cows categorical deep bed cubicle 72.04%, other 8.34%, high bed cubicle
13.02% 7.00%

floor in open-air areas for dry cows categorical other 7.94%, solid concrete 34.86%, no open-air areas
53.03% 4.00%

walkway floor in free-stall for dry
cows

categorical solid concrete with slits 11.63%, rubber mats 7.72%, other
22.76%, solid concrete 24.66%, concrete slits 19.75% 13.00%

litter in free-stall for dry cows categorical long straw 17.98%, other 15.97%, chopped straw 43.64% 22.00%
manure removal in free-stall for dry
cows

categorical slits 24.33%, other 32.24%, scraper 33.28% 10.00%

free-stall system for dry cows categorical high bed cubicle 12.61%, other 15.05%, deep bed cubicle
51.30%, deep litter 11.27% 10.00%

type of milking stalls categorical
side-by-side 11.68%, tandem type 21.91%, herringbone
parlour 41.98%, milking robot 12.53%, pipe milking
8.40%

3.00%

silo type categorical silage bales 18.19%, no silo 8.21%, bunker silo 69.26% 4.00%

barn design categorical
outdoor climate house open front 18.78%, free-stall barn
44.03%, other 8.97%, outdoor climate house closed
22.96%, tie stall facility with pasture 5.27%

0.00%

lying mats in free-stall for young
stock

categorical True 39.3%, False 32.2% 28.5%

lying mats in free-stall for lactating
cows

categorical True 18.1%, False 55.4% 26.4%

lying mats in free-stall for dry cows categorical True 19.7%, False 42.5% 37.9%

Table 8. Features summarised in the feature category housing: For categorical and binary features, the frequency of each
category is reported. For numerical features, mean values and standard deviations are reported. For all features, the percentage
of missing values in the data set is reported.
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husbandry
feature type values % missing

claw trimming frequency categorical twice per year 56.70%, once per year 18.76%, three times
per year 15.55%, only for lame animals 5.47% 4.00%

milking unit removal categorical none 52.32%, present, including post-milking technology
10.94%, present 36.74% 0.00%

dry cows group management categorical separate 53.62%, with lactating cows 38.58%, with young
stock 7.74% 0.00%

young stock on alpine pasture categorical True 41.4%, False 58.6% 0.0%
lactating cows on alpine pasture categorical True 11.6%, False 88.4% 0.0%
dry cows on alpine pasture categorical True 12.9%, False 87.1% 0.0%
farm organically managed categorical True 19.9%, False 80.1% 0.0%
young stock are kept in a tie stall
facility

categorical True 5.9%, False 91.4% 2.7%

claw trimming done by farmer categorical True 73.7%, False 25.9% 0.4%
lactating cows are kept in a tie stall
facility

categorical True 7.5%, False 92.5% 0.0%

automated milking switch-off categorical True 80.5%, False 18.7% 0.7%
milking stimulation categorical True 69.3%, False 30.7% 0.0%
dry cows kept in tie stall facility categorical True 9.7%, False 90.2% 0.1%
pasture of young stock categorical True 65.7%, False 34.3% 0.0%
pasture of lactating cows categorical True 35.5%, False 64.5% 0.0%
pasture of dry cows categorical True 36.1%, False 63.9% 0.0%
young stock, time on pasture numerical 20.7±6.3 days 41.83%
lactating cows, time on pasture numerical 7.5±5.23 days 66.20%
pasture duration of dry cows numerical 15.0±9.1 days 66.62%
number of milking places numerical 7.13±7.34 n 3.93%
milking vacuum numerical 42.1±5.0 kPa 7.80%
annual herd milk yield average numerical 8728.0±1528.0 kg 0.00%
herd size numerical 40.2±18.8 cows 0.00%

Table 9. Features summarised in the feature category husbandry: For categorical and binary features, the frequency of each
category is reported. For numerical features, mean values and standard deviations are reported. For all features, the percentage
of missing values in the data set is reported.

physique
feature type values % missing
waist circumference numerical 256.0±16.0 cm 0.71%
body condition score numerical 3.24±0.61 0.64%
muscularity score numerical 5.21±1.52 1.41%
chest girth numerical 210.0±12.0 cm 0.69%
body weight numerical 701.0±97.0 kg 0.35%

Table 10. Features summarised in the feature category physique: For categorical and binary features, the frequency of each
category is reported. For numerical features, mean values and standard deviations are reported. For all features, the percentage
of missing values in the data set is reported.
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milk
feature type values % missing
test-day energy corrected milk daily
yield

numerical 34.2±23.5 kg 20.21%

test-day protein yield percentage numerical 3.51±0.4 % 18.88%
test-day fat-protein ratio numerical 1.29±0.25 93.42%
test-day fat yield percentage numerical 4.23±0.75 % 18.88%
test-day urea content numerical 21.2±8.5 mg/dl 19.05%
test-day lactose content numerical 4.75±0.21 % 27.95%
test-day milk yield numerical 26.8±9.2 kg 19.88%
test-day somatic cell count numerical 170329.0±466553.0 cells/ml 18.94%

Table 11. Features summarised in the feature category milk: For categorical and binary features, the frequency of each
category is reported. For numerical features, mean values and standard deviations are reported. For all features, the percentage
of missing values in the data set is reported.

breed
feature type values % missing

main breed categorical Fleckvieh 52.63%, Brown Swiss 26.82%, Holstein
18.82% 2.00%

ratio of foreign genes numerical 6.94±14.01 % 0.01%
ratio of Angler Rotvieh genes numerical 0.06±2.13 % 0.00%
ratio of Blonde d’Aquitaine genes numerical 0.02±0.99 % 0.00%
ration of original Braunvieh genes numerical 0.28±3.92 % 0.00%
ratio of Braunvieh genes numerical 0.32±3.68 % 0.00%
ratio of meat Fleckvieh genes numerical 0.01±0.22 % 0.00%
ratio of Fleckvieh genes numerical 1.75±8.13 % 0.00%
ratio of Holstein genes numerical 0.13±2.31 % 0.00%
ratio of Jersey genes numerical 0.08±1.48 % 0.00%
ratio of Montbeliarde genes numerical 1.05±5.55 % 0.00%
ratio of Pinzgauer genes numerical 0.05±1.73 % 0.00%
ratio of Piemonteser genes numerical 0.02±0.99 % 0.00%
ratio of Holstein Rotbunte genes numerical 4.86±11.23 % 0.00%

Table 12. Features summarised in the feature category breed: For categorical and binary features, the frequency of each
category is reported. For numerical features, mean values and standard deviations are reported. For all features, the percentage
of missing values in the data set is reported.

lactation stage
feature type values % missing
in dry period during DHI (MLP) categorical True 86.0%, False 14.0% 0.0%
days pregnant at DHI (MLP) numerical 102.0±101.0 days 0.00%
days in milk at DHI (MLP) numerical 185.0±131.0 days 3.35%

Table 13. Features summarised in the feature category lactation stage: For categorical and binary features, the frequency of
each category is reported. For numerical features, mean values and standard deviations are reported. For all features, the
percentage of missing values in the data set is reported.
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breeding values
feature type values % missing
TMI numerical 87.2±9.1 2.55%
milk index numerical 87.5±9.4 1.98%
beef index numerical 97.7±9.1 21.07%
fitness index numerical 98.0±8.2 20.73%
breeding value: milk yield numerical -487.1±463.2 1.98%

Table 14. Features summarised in the feature category breeding values: For categorical and binary features, the frequency of
each category is reported. For numerical features, mean values and standard deviations are reported. For all features, the
percentage of missing values in the data set is reported.

environment
feature type values % missing

season categorical autumn 27.61%, winter 26.65%, spring 22.12%, summer
23.61% 0.00%

altitude numerical 605.0±231.0 m 0.00%
mean yearly relative humidity numerical 80.4±2.9 % 0.00%
standard deviation of yearly relative
humidity

numerical 11.7±1.5 % 0.00%

mean yearly precipitation numerical 2.92±0.75 mm 0.00%
standard deviation of yearly precipi-
tation

numerical 6.28±1.18 mm 0.00%

mean yearly temperature numerical 10.3±1.3 C◦ 0.00%
standard deviation of yearly temper-
ature

numerical 6.61±0.27 C◦ 0.00%

number of high wind days numerical 0.1±0.12 days 0.00%
number of low temperature days numerical 0.16±0.07 days 0.00%

Table 15. Features summarised in the feature category environment: For categorical and binary features, the frequency of each
category is reported. For numerical features, mean values and standard deviations are reported. For all features, the percentage
of missing values in the data set is reported.
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feed
feature type values % missing

used forage types in diet categorical

field forage silage, grass silage, hay, corn silage 16.16%,
field forage silage, grass silage, hay, corn silage, pasture
14.11%, grass silage, hay 6.63%, grass silage, hay, pasture
7.67%, other 42.04%

13.00%

forage categorical sequentially fed forages 54.54%, partial mixed ration
32.74% 13.00%

forage type categorical

year-round silage (with corn silage) 14.09%, other 11.46%,
grass and grass products plus corn only 7.07%, grass plus
corn and grass products plus corn 8.04%, grass and grass
products only 19.51%, mixed ration with concentrates
39.84%

0.00%

feeding group categorical
lactating and dry cows on same forage (mixture) 35.01%,
lactating cows 53.91%, dry cows 8.65%, cows on alpine
pasture 1.19%

1.00%

provision of concentrates categorical manual 12.94%, exact 77.60% 9.00%

provision of supplementary concen-
trate

categorical electronic feeder 70.44%, other 13.29%, exact 7.16%,
manual, two times a day 9.11% 0.00%

ration type categorical partial mixed ration 41.67%, feedstuffs sequentially fed
49.21%, total mixed ration 5.99% 3.00%

problematic feed quality categorical True 15.5%, False 56.3% 28.2%
dietary proportion of grass silage numerical 0.51±0.31 % 0.38%
dietary proportion of green forage numerical 0.08±0.23 % 0.38%
dietary proportion of hay numerical 0.14±0.22 % 0.38%
dietary proportion of clover numerical 0.05±0.16 % 0.38%
dietary proportion of concentrates numerical 0.25±0.14 % 0.38%
dietary proportion of lucerne numerical 0.01±0.07 % 0.38%
dietary proportion of corn silage numerical 0.19±0.21 % 0.38%
dietary proportion of straw numerical 0.02±0.04 % 0.38%
dietary proportion of cereal numerical 0.0±0.04 % 0.38%
diet: total amount of acid detergent
fibers

numerical 0.0±0.0 g 0.00%

diet: total amount of acid detergent
lignin

numerical 0.0±0.0 g 0.00%

diet: total amount of neutral deter-
gent fibers

numerical 0.0±0.0 g 0.00%

diet: total amount of net energy numerical 118.0±27.0 MJ 0.19%
diet: total amount of ash numerical 1519.0±338.0 g 0.19%
diet: total amount of crude fibre numerical 3619.0±581.0 g 0.19%
diet: total amount of ether extracts numerical 601.0±158.0 g 0.19%
diet: total amount of undegraded di-
etary protein

numerical 598.0±226.0 g 0.19%

diet: percentage of undegraded di-
etary protein

numerical 0.0±0.0 % 0.00%

diet: total ruminal nitrogen balance numerical 26.6±40.5 g 0.19%
diet: content of acid detergent fiber numerical 0.0±0.0 g/kg dry mass 0.38%
diet: content of acid detergent lignin numerical 0.0±0.0 g/kg dry mass 0.38%
diet: content of metabolisable en-
ergy

numerical 10.6±0.5 MJ/kg dry mass 0.38%

diet: content of nitrogen-free ex-
tracts

numerical 528.0±36.0 g/kg dry mass 0.38%

diet: content of utilizable protein numerical 144.0±10.0 g/kg dry mass 0.38%
diet: content of organic matter numerical 916.0±14.0 g/kg dry mass 0.38%
diet: content of ash numerical 84.4±14.3 g/kg dry mass 0.38%
diet: content of crude fibre numerical 203.0±34.0 g/kg dry mass 0.38%
diet: content of crude fat numerical 32.8±3.9 g/kg dry mass 0.38%
diet: content of crude protein numerical 152.0±20.0 g/kg dry mass 0.38%
diet: percentage content of unde-
graded protein

numerical 0.0±0.0 % 0.38%

concentrate dry matter intake numerical 13.4±2.1 0.38%
dry matter numerical 9.01±0.4 kg 58.09%

Table 16. Features summarised in the feature category feed: For categorical and binary features, the frequency of each
category is reported. For numerical features, mean values and standard deviations are reported. For all features, the percentage
of missing values in the data set is reported.
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lameness
rank feature category % OR p-value

1 parity age 10.62 ± 1.87 2.25 [2.17; 2.33] <0.001
2 diagnosis source: culling reason or observation at calving∗ diagnoses 5.94 ± 1.06 0.31 [0.29; 0.33] <0.001
3 diagnosis source: score∗ diagnoses 3.56 ± 0.98 1.53 [1.48; 1.59] <0.001
4 mean yearly precipitation environment 2.45 ± 0.79 0.80 [0.77; 0.84] <0.001
5 body condition score physique 2.34 ± 0.80 0.71 [0.68; 0.73] <0.001
6 standard deviation of yearly temperature environment 2.33 ± 0.81 1.40 [1.34; 1.46] <0.001
7 litter in free-stall for lactating cows: other housing 1.59 ± 0.60 0.80 [0.72; 0.88] <0.001
8 forage type: sequentially fed forages feed 1.49 ± 0.52 0.65 [0.60; 0.71] <0.001
9 dry matter feed 1.41 ± 0.51 0.94 [0.88; 1.00] 0.034

10 litter in free-stall for lactating cows: chopped straw housing 1.33 ± 0.59 1.54 [1.41; 1.69] <0.001
11 mean yearly temperature environment 1.21 ± 0.54 1.23 [1.18; 1.29] <0.001
12 automated milking switch-off husbandry 1.15 ± 0.44 0.70 [0.63; 0.77] <0.001
13 diet: content of organic matter feed 1.14 ± 0.46 0.90 [0.87; 0.94] <0.001
14 mean yearly relative humidity environment 1.00 ± 0.57 1.09 [1.05; 1.14] <0.001
15 number of low temperature days environment 0.98 ± 0.70 0.89 [0.86; 0.93] <0.001
16 standard deviation of yearly precipitation environment 0.96 ± 0.45 0.99 [0.95; 1.03] 0.567
17 TMI breeding values 0.96 ± 0.95 0.78 [0.74; 0.81] <0.001
18 claw trimming frequency: three times per year husbandry 0.93 ± 0.27 1.18 [1.06; 1.32] 0.003
19 type of milking stalls: pipe milking housing 0.91 ± 0.43 0.47 [0.39; 0.56] <0.001
20 milking vacuum husbandry 0.90 ± 0.40 0.87 [0.84; 0.91] <0.001
21 annual herd milk yield average∗ husbandry 0.88 ± 0.52 0.88 [0.84; 0.92] <0.001
22 dietary proportion of hay feed 0.87 ± 0.49 0.95 [0.91; 0.99] 0.017
23 floor in open air area for young stock: no open-air areas housing 0.86 ± 0.47 1.88 [1.72; 2.06] <0.001
24 number of high wind days environment 0.85 ± 0.63 1.18 [1.13; 1.22] <0.001
25 standard deviation of yearly relative humidity environment 0.84 ± 0.57 1.07 [1.03; 1.11] <0.001
26 used forage types in diet: field forage silage, grass silage,

hay, corn silage
feed 0.81 ± 0.33 1.17 [1.06; 1.30] 0.002

27 diet: content of crude protein feed 0.81 ± 0.46 1.16 [1.11; 1.21] <0.001
28 free-stall system for lactating cows: deep bed cubicle housing 0.78 ± 0.40 0.39 [0.36; 0.43] <0.001
29 free-stall system for dry cows: deep litter housing 0.78 ± 0.21 0.56 [0.48; 0.64] <0.001
30 manure removal in free-stall for dry cows: slits housing 0.78 ± 0.40 2.15 [1.97; 2.35] <0.001
31 diet: total amount of ether extracts feed 0.76 ± 0.43 1.10 [1.05; 1.15] <0.001
32 floor in open-air area for lactating cows: no open-air areas housing 0.76 ± 0.41 1.85 [1.71; 2.01] <0.001
33 herd size husbandry 0.75 ± 0.49 1.16 [1.11; 1.21] <0.001
34 claw trimming frequency: only for lame animals husbandry 0.75 ± 0.23 0.86 [0.72; 1.02] 0.085
35 litter in free-stall for dry cows: chopped straw housing 0.74 ± 0.45 1.63 [1.49; 1.79] <0.001
36 lactating cows on alpine pasture husbandry 0.74 ± 0.61 0.19 [0.15; 0.24] <0.001
37 pasture of lactating cows husbandry 0.73 ± 0.48 0.47 [0.43; 0.52] <0.001
38 chest girth physique 0.71 ± 0.73 1.26 [1.20; 1.32] <0.001
39 floor in walkway of free-stall for young stock: concrete

slits
housing 0.69 ± 0.32 2.29 [2.10; 2.50] <0.001

40 manure removal in free-stall for young stock: other housing 0.66 ± 0.38 0.53 [0.49; 0.58] <0.001
41 walkway floor in free-stall for dry cows: concrete slits housing 0.65 ± 0.24 1.55 [1.41; 1.70] <0.001
42 farm organically managed husbandry 0.65 ± 0.29 0.61 [0.54; 0.68] <0.001
43 dietary proportion of grass silage feed 0.63 ± 0.48 0.96 [0.92; 1.00] 0.036
44 diet: content of utilizable protein feed 0.62 ± 0.37 1.21 [1.15; 1.27] <0.001
45 lying mats in free-stall for dry cows housing 0.62 ± 0.35 2.40 [2.17; 2.66] <0.001
46 muscularity score physique 0.61 ± 0.62 0.62 [0.60; 0.65] <0.001
47 floor in open-air area for dry cows: no open-air areas housing 0.60 ± 0.35 1.36 [1.25; 1.48] <0.001
48 walkway floor in free-stall for lactating cows: rubber mats housing 0.60 ± 0.31 1.12 [1.00; 1.24] 0.043
49 diet: content of crude fibre feed 0.60 ± 0.37 0.78 [0.74; 0.82] <0.001
50 claw trimming done by farmer husbandry 0.59 ± 0.30 0.79 [0.72; 0.86] <0.001

Table 17. Feature importances and odds ratios including p-values for the 50 most important features for lameness. Features
indicated with a star are treated as covariates in the logistic regression and their odds ratios have been calculated separately.
Odds ratios ≥ 1.1 and ≤ 0.9 are highlighted with yellow and green cell backgrounds respectively.
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anoestrus
rank feature category % OR p-value

1 diagnosis source: performance recording organisation
(LKV)∗

diagnoses 5.60 ± 0.94 2.78 [2.63; 2.93] <0.001

2 diet: total amount of crude fibre feed 3.45 ± 0.77 0.85 [0.77; 0.93] <0.001
3 barn design: outdoor climate house open front housing 3.41 ± 0.99 3.20 [2.68; 3.82] <0.001
4 lactating cows, time on pasture husbandry 3.25 ± 0.67 0.81 [0.62; 1.07] 0.135
5 diet: content of nitrogen-free extracts feed 2.72 ± 0.79 1.96 [1.78; 2.17] <0.001
6 used forage types in diet: field forage silage, grass silage,

hay, corn silage, pasture
feed 2.42 ± 0.74 1.72 [1.40; 2.13] <0.001

7 floor in open-air area for lactating cows: no open-air areas housing 2.41 ± 1.19 2.95 [2.48; 3.52] <0.001
8 diagnosis source: culling reason or observation at calving∗ diagnoses 2.17 ± 1.82 0.11 [0.09; 0.14] <0.001
9 breeding value: milk yield breeding values 2.17 ± 1.22 1.34 [1.23; 1.47] <0.001
10 diet: content of metabolisable energy feed 2.15 ± 1.21 1.66 [1.46; 1.88] <0.001
11 test-day milk yield milk 2.08 ± 1.16 1.52 [1.37; 1.70] <0.001
12 manure removal in free-stall for young stock: other housing 1.98 ± 1.27 1.37 [1.15; 1.63] <0.001
13 fitness index breeding values 1.90 ± 0.97 0.76 [0.69; 0.83] <0.001
14 number of high wind days environment 1.76 ± 1.06 1.29 [1.19; 1.40] <0.001
15 annual herd milk yield average∗ husbandry 1.75 ± 1.11 1.65 [1.50; 1.80] <0.001
16 diet: content of ash feed 1.70 ± 1.19 0.65 [0.58; 0.72] <0.001
17 mean yearly precipitation environment 1.68 ± 1.28 0.50 [0.44; 0.57] <0.001
18 diet: content of utilizable protein feed 1.63 ± 1.14 1.45 [1.30; 1.62] <0.001
19 forage type: grass plus corn and grass products plus corn feed 1.50 ± 0.55 2.39 [1.85; 3.07] <0.001
20 floor in open-air area for dry cows: no open-air areas housing 1.38 ± 1.11 3.83 [3.08; 4.77] <0.001
21 body condition score physique 1.36 ± 0.28 0.83 [0.76; 0.90] <0.001
22 used forage types in diet: grass silage, hay feed 1.34 ± 0.32 0.46 [0.31; 0.67] <0.001
23 herd size husbandry 1.33 ± 0.87 1.37 [1.26; 1.48] <0.001
24 test-day energy corrected milk daily yield milk 1.32 ± 0.34 0.97 [0.90; 1.04] 0.344
25 lactating cows are kept in a tie stall facility husbandry 1.30 ± 0.40 0.85 [0.58; 1.24] 0.387
26 manure removal in free-stall for young stock: scraper housing 1.24 ± 0.46 0.53 [0.41; 0.67] <0.001
27 free-stall system for young stock: deep litter housing 1.24 ± 0.46 2.48 [2.07; 2.99] <0.001
28 type of milking stalls: milking robot housing 1.17 ± 0.47 0.57 [0.45; 0.71] <0.001
29 floor in walkway of free-stall for young stock: solid con-

crete with slits
housing 1.16 ± 0.54 1.79 [1.34; 2.40] <0.001

30 diet: total amount of undegraded dietary protein feed 1.12 ± 0.91 1.74 [1.58; 1.92] <0.001
31 floor in open air area for young stock: no open-air areas housing 1.11 ± 0.43 1.84 [1.52; 2.24] <0.001
32 floor in open-air areas for lactating cows: solid concrete housing 1.11 ± 1.02 0.22 [0.18; 0.27] <0.001
33 claw trimming frequency: once per year husbandry 1.10 ± 0.59 1.29 [1.02; 1.63] 0.033
34 parity age 1.09 ± 0.76 1.45 [1.34; 1.58] <0.001
35 free-stall system for young stock: sloped floor housing 1.05 ± 0.57 0.60 [0.37; 0.96] 0.034
36 free-stall system for young stock: high bed cubicle housing 1.02 ± 0.47 1.02 [0.86; 1.22] 0.822
37 mean yearly relative humidity environment 0.93 ± 0.68 1.05 [0.96; 1.16] 0.260
38 days in milk at DHI (MLP)∗ lactation stage 0.90 ± 0.74 0.61 [0.56; 0.68] <0.001
39 dietary proportion of grass silage feed 0.88 ± 0.62 0.61 [0.56; 0.67] <0.001
40 claw trimming frequency: twice per year husbandry 0.87 ± 0.68 0.57 [0.48; 0.68] <0.001
41 dietary proportion of concentrates feed 0.84 ± 0.60 1.42 [1.27; 1.60] <0.001
42 litter in free-stall for dry cows: chopped straw housing 0.82 ± 0.68 1.03 [0.86; 1.23] 0.727
43 diagnosis source: score∗ diagnoses 0.82 ± 1.13 0.42 [0.39; 0.46] <0.001
44 forage type: partial mixed ration feed 0.80 ± 0.69 0.56 [0.46; 0.70] <0.001
45 problematic feed quality feed 0.79 ± 0.70 1.52 [1.19; 1.93] <0.001
46 floor in open-air area for young stock: unpaved housing 0.78 ± 0.35 0.31 [0.19; 0.49] <0.001
47 walkway floor in free-stall for dry cows: other housing 0.75 ± 0.45 0.90 [0.73; 1.10] 0.284
48 test-day protein yield percentage milk 0.74 ± 0.70 0.71 [0.64; 0.80] <0.001
49 diet: total amount of ether extracts feed 0.74 ± 0.65 1.44 [1.32; 1.57] <0.001
50 season: autumn∗ environment 0.72 ± 0.48 2.04 [1.76; 2.36] <0.001

Table 18. Feature importances and odds ratios including p-values for the 50 most important features for anoestrus. Features
indicated with a star are treated as covariates in the logistic regression and their odds ratios have been calculated separately.
Odds ratios ≥ 1.1 and ≤ 0.9 are highlighted with yellow and green cell backgrounds respectively.
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ketosis
rank feature category % OR p-value

1 days in milk at DHI (MLP)∗ lactation stage 3.77 ± 0.94 1.23 [1.14; 1.33] <0.001
2 test-day energy corrected milk daily yield milk 2.31 ± 1.39 1.01 [0.89; 1.16] 0.843
3 standard deviation of yearly temperature environment 2.28 ± 0.84 1.89 [1.71; 2.09] <0.001
4 in dry period during DHI (MLP) lactation stage 2.20 ± 0.62 excuded
5 herd size husbandry 1.97 ± 0.73 1.37 [1.26; 1.48] <0.001
6 litter in free-stall for young stock: chopped straw housing 1.76 ± 0.74 2.56 [2.02; 3.25] <0.001
7 mean yearly temperature environment 1.65 ± 0.77 1.23 [1.11; 1.35] <0.001
8 diagnosis source: culling reason or observation at calving∗ diagnoses 1.51 ± 1.07 0.38 [0.33; 0.43] <0.001
9 dietary proportion of grass silage feed 1.50 ± 0.68 0.90 [0.83; 0.97] 0.008
10 problematic feed quality feed 1.50 ± 0.63 1.26 [1.00; 1.60] 0.054
11 body weight physique 1.49 ± 0.73 2.38 [2.14; 2.64] <0.001
12 free-stall system for young stock: other housing 1.45 ± 0.48 1.64 [1.32; 2.03] <0.001
13 diagnosis source: veterinarian diagnoses 1.44 ± 0.74 1.53 [1.43; 1.64] <0.001
14 number of low temperature days environment 1.44 ± 0.71 0.95 [0.87; 1.03] 0.204
15 muscularity score physique 1.40 ± 0.62 1.02 [0.93; 1.12] 0.713
16 dietary proportion of concentrates feed 1.36 ± 0.69 0.57 [0.51; 0.63] <0.001
17 chest girth physique 1.35 ± 0.88 1.96 [1.79; 2.14] <0.001
18 altitude environment 1.34 ± 0.66 0.74 [0.67; 0.81] <0.001
19 diet: content of ash feed 1.31 ± 0.77 0.92 [0.84; 1.00] 0.053
20 diet: content of crude fibre feed 1.30 ± 0.78 1.63 [1.50; 1.77] <0.001
21 used forage types in diet: field forage silage, grass silage,

hay, corn silage
feed 1.29 ± 0.51 2.24 [1.86; 2.70] <0.001

22 mean yearly precipitation environment 1.26 ± 0.82 0.46 [0.41; 0.52] <0.001
23 standard deviation of yearly relative humidity environment 1.26 ± 0.85 0.80 [0.73; 0.87] <0.001
24 diet: total amount of ash feed 1.23 ± 0.81 0.49 [0.44; 0.54] <0.001
25 diet: total amount of ether extracts feed 1.22 ± 0.66 0.45 [0.41; 0.51] <0.001
26 diet: content of organic matter feed 1.21 ± 0.55 1.08 [0.99; 1.18] 0.090
27 mean yearly relative humidity environment 1.20 ± 0.64 1.39 [1.26; 1.54] <0.001
28 number of milking places husbandry 1.15 ± 0.63 1.07 [0.99; 1.15] 0.078
29 test-day milk yield milk 1.14 ± 1.05 0.80 [0.67; 0.97] 0.022
30 floor in walkway of free-stall for young stock walkway:

other
housing 1.14 ± 0.48 0.89 [0.70; 1.13] 0.338

31 TMI breeding values 1.07 ± 0.67 0.87 [0.79; 0.96] 0.004
32 milk index breeding values 1.04 ± 0.62 1.03 [0.94; 1.13] 0.520
33 diagnosis source: score∗ diagnoses 0.99 ± 0.64 0.83 [0.77; 0.90] <0.001
34 test-day protein yield percentage milk 0.97 ± 0.83 1.43 [1.25; 1.65] <0.001
35 diet: content of nitrogen-free extracts feed 0.96 ± 0.67 0.85 [0.78; 0.93] <0.001
36 manure removal: slurry with solid flooring housing 0.96 ± 0.64 1.27 [1.08; 1.50] 0.004
37 walkway floor in free-stall for dry cows: other housing 0.92 ± 0.54 0.62 [0.49; 0.79] <0.001
38 provision of supplementary concentrate: other feed 0.92 ± 0.26 2.54 [2.07; 3.10] <0.001
39 waist circumference physique 0.90 ± 0.62 1.58 [1.43; 1.75] <0.001
40 ration type: total mixed ration feed 0.89 ± 0.19 3.78 [2.96; 4.83] <0.001
41 diet: total amount of undegraded dietary protein feed 0.88 ± 0.72 0.48 [0.43; 0.54] <0.001
42 forage type: grass and grass products plus corn only feed 0.86 ± 0.23 1.07 [0.77; 1.48] 0.698
43 test-day urea content milk 0.86 ± 0.62 0.89 [0.78; 1.02] 0.091
44 annual herd milk yield average∗ husbandry 0.84 ± 0.65 1.08 [0.98; 1.19] 0.115
45 forage type: year-round silage (with corn silage) feed 0.83 ± 0.29 1.43 [1.15; 1.77] 0.001
46 test-day somatic cell count milk 0.83 ± 0.93 1.63 [1.46; 1.82] <0.001
47 lying mats in free-stall for young stock housing 0.81 ± 0.48 1.33 [1.08; 1.63] 0.007
48 diet: content of metabolisable energy feed 0.80 ± 0.68 0.64 [0.59; 0.70] <0.001
49 diet: total ruminal nitrogen balance feed 0.79 ± 0.68 0.74 [0.68; 0.81] <0.001
50 litter in free-stall for lactating cows: chopped straw housing 0.78 ± 0.67 1.80 [1.49; 2.17] <0.001

Table 19. Feature importances and odds ratios including p-values for the 50 most important features for ketosis. Features
indicated with a star are treated as covariates in the logistic regression and their odds ratios have been calculated separately.
Odds ratios ≥ 1.1 and ≤ 0.9 are highlighted with yellow and green cell backgrounds respectively.
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periparturient hypocalcemia
rank feature category % OR p-value

1 parity age 19.49 ± 8.13 2.12 [1.98; 2.27] <0.001
2 days in milk at DHI (MLP)∗ lactation stage 9.02 ± 4.64 2.20 [2.03; 2.37] <0.001
3 days pregnant at DHI (MLP) lactation stage 8.66 ± 3.62 excuded
4 in dry period during DHI (MLP) lactation stage 8.18 ± 3.53 excuded
5 test-day protein yield percentage milk 4.24 ± 3.62 1.26 [1.09; 1.45] 0.002
6 used forage types in diet: field forage silage, grass silage,

hay, corn silage
feed 3.73 ± 1.81 0.93 [0.74; 1.16] 0.505

7 test-day somatic cell count milk 3.61 ± 3.48 1.07 [0.94; 1.22] 0.320
8 test-day lactose content milk 2.61 ± 3.07 0.93 [0.82; 1.05] 0.231
9 waist circumference physique 1.85 ± 2.62 1.79 [1.62; 1.97] <0.001

10 diet: total amount of crude fibre feed 1.82 ± 1.91 0.70 [0.64; 0.75] <0.001
11 test-day fat yield percentage milk 1.75 ± 2.34 1.15 [1.01; 1.30] 0.031
12 barn design: other housing 1.52 ± 2.26 excuded
13 mean yearly relative humidity environment 1.44 ± 2.13 1.17 [1.06; 1.30] 0.002
14 body condition score physique 1.29 ± 0.94 1.24 [1.14; 1.36] <0.001
15 body weight physique 1.09 ± 1.83 1.70 [1.53; 1.88] <0.001
16 diet: total amount of undegraded dietary protein feed 1.02 ± 0.97 0.63 [0.56; 0.70] <0.001
17 test-day milk yield milk 0.94 ± 1.36 1.24 [1.04; 1.49] 0.018
18 breeding value: milk yield breeding values 0.93 ± 0.92 1.16 [1.06; 1.28] 0.002
19 pasture duration of dry cows husbandry 0.89 ± 0.73 1.02 [0.87; 1.20] 0.794
20 litter in free-stall for lactating cows: chopped straw housing 0.82 ± 0.63 1.26 [1.05; 1.51] 0.012
21 walkway floor in free-stall for dry cows: solid concrete housing 0.82 ± 0.53 1.12 [0.94; 1.35] 0.211
22 litter in free-stall for dry cows: long straw housing 0.81 ± 0.63 0.87 [0.70; 1.08] 0.210
23 ration type: feedstuffs sequentially fed feed 0.80 ± 0.61 0.97 [0.82; 1.15] 0.763
24 number of milking places husbandry 0.78 ± 1.18 1.13 [1.04; 1.23] 0.004
25 diet: content of nitrogen-free extracts feed 0.70 ± 0.88 0.95 [0.88; 1.03] 0.250
26 chest girth physique 0.69 ± 1.50 1.27 [1.16; 1.40] <0.001
27 diet: content of crude protein feed 0.68 ± 0.92 0.76 [0.70; 0.82] <0.001
28 beef index breeding values 0.63 ± 0.77 0.91 [0.84; 0.99] 0.025
29 test-day urea content milk 0.56 ± 1.24 0.95 [0.83; 1.08] 0.411
30 dry cows on alpine pasture husbandry 0.55 ± 1.27 0.63 [0.44; 0.90] 0.011
31 type of milking stalls: milking robot housing 0.53 ± 0.43 0.63 [0.49; 0.83] <0.001
32 farm organically managed husbandry 0.49 ± 0.44 0.70 [0.55; 0.89] 0.004
33 standard deviation of yearly temperature environment 0.47 ± 1.01 1.48 [1.34; 1.63] <0.001
34 ration type: partial mixed ration feed 0.43 ± 0.55 0.92 [0.78; 1.09] 0.350
35 barn design: free-stall barn housing 0.43 ± 0.44 1.01 [0.86; 1.19] 0.903
36 provision of supplementary concentrate: electronic feeder feed 0.42 ± 0.51 0.70 [0.59; 0.84] <0.001
37 forage type: partial mixed ration feed 0.42 ± 0.55 0.79 [0.65; 0.96] 0.017
38 dietary proportion of clover feed 0.39 ± 0.57 0.66 [0.50; 0.87] 0.003
39 free-stall system for dry cows: high bed cubicle housing 0.37 ± 0.51 1.44 [1.11; 1.88] 0.007
40 litter in free-stall for dry cows: chopped straw housing 0.36 ± 0.43 1.42 [1.18; 1.71] <0.001
41 milking take off: present husbandry 0.34 ± 0.42 1.01 [0.86; 1.20] 0.882
42 litter in free-stall for young stock: chopped straw housing 0.33 ± 0.63 1.94 [1.52; 2.48] <0.001
43 free-stall system for young stock: other housing 0.33 ± 0.51 1.40 [1.13; 1.74] 0.002
44 walkway floor in free-stall for lactating cows: rubber mats housing 0.33 ± 0.48 0.82 [0.64; 1.06] 0.131
45 manure removal in free-stall for lactating cows: slits housing 0.33 ± 0.42 1.04 [0.86; 1.25] 0.708
46 manure removal in free-stall for dry cows: slits housing 0.32 ± 0.52 1.54 [1.27; 1.87] <0.001
47 manure removal in free-stall for dry cows: scraper housing 0.31 ± 0.50 0.86 [0.72; 1.03] 0.109
48 forage type: mixed ration with concentrates feed 0.30 ± 0.42 0.99 [0.83; 1.19] 0.953
49 manure removal: slurry with perforated flooring housing 0.30 ± 0.49 1.05 [0.88; 1.25] 0.569
50 age at first calving age 0.29 ± 0.59 0.97 [0.88; 1.06] 0.469

Table 20. Feature importances and odds ratios including p-values for the 50 most important features for periparturient
hypocalcemia. Features indicated with a star are treated as covariates in the logistic regression and their odds ratios have been
calculated separately. Odds ratios ≥ 1.1 and ≤ 0.9 are highlighted with yellow and green cell backgrounds respectively.

29/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.25.436798doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436798
http://creativecommons.org/licenses/by-nc/4.0/


metritis
rank feature category % OR p-value

1 diagnosis source: performance recording organisation
(LKV)∗

diagnoses 19.46 ± 5.87 2.58 [2.40; 2.77] <0.001

2 ration type: feedstuffs sequentially fed feed 6.50 ± 3.87 0.35 [0.26; 0.46] <0.001
3 diagnosis source: score∗ diagnoses 4.73 ± 5.67 0.44 [0.39; 0.50] <0.001
4 diagnosis source: culling reason or observation at calving∗ diagnoses 4.15 ± 5.07 0.15 [0.12; 0.20] <0.001
5 standard deviation of yearly temperature environment 3.66 ± 4.78 2.94 [2.45; 3.53] <0.001
6 body weight physique 2.92 ± 2.69 1.42 [1.22; 1.66] <0.001
7 test-day milk yield milk 2.81 ± 1.40 0.99 [0.83; 1.19] 0.933
8 parity age 2.22 ± 1.76 1.72 [1.55; 1.91] <0.001
9 test-day energy corrected milk daily yield milk 1.81 ± 2.11 1.03 [0.91; 1.15] 0.655

10 number of high wind days environment 1.65 ± 1.65 1.10 [0.98; 1.24] 0.112
11 breeding value: milk yield breeding values 1.64 ± 1.18 1.13 [1.00; 1.29] 0.056
12 dietary proportion of clover feed 1.58 ± 0.73 1.40 [0.97; 2.02] 0.072
13 days pregnant at DHI (MLP) lactation stage 1.52 ± 0.93 excuded
14 manure removal in free-stall for dry cows: other housing 1.47 ± 1.62 1.41 [1.10; 1.80] 0.007
15 ration type: partial mixed ration feed 1.47 ± 1.12 1.72 [1.35; 2.19] <0.001
16 floor in open-air area for dry cows: no open-air areas housing 1.30 ± 1.74 3.12 [2.33; 4.18] <0.001
17 test-day protein yield percentage milk 1.22 ± 0.73 0.88 [0.74; 1.05] 0.149
18 waist circumference physique 1.18 ± 1.25 1.17 [1.01; 1.36] 0.033
19 season: summer∗ environment 1.18 ± 0.77 0.51 [0.37; 0.70] <0.001
20 season: autumn∗ environment 1.17 ± 1.23 2.38 [1.90; 2.98] <0.001
21 season: spring∗ environment 1.17 ± 0.76 0.71 [0.53; 0.94] 0.018
22 test-day urea content milk 1.13 ± 0.82 0.85 [0.73; 0.99] 0.032
23 manure removal in free-stall for dry cows: scraper housing 1.13 ± 1.68 0.49 [0.38; 0.65] <0.001
24 litter in free-stall for lactating cows: chopped straw housing 1.04 ± 2.04 2.42 [1.81; 3.23] <0.001
25 TMI breeding values 1.01 ± 0.82 0.85 [0.75; 0.98] 0.023
26 chest girth physique 1.00 ± 1.64 1.38 [1.21; 1.58] <0.001
27 dietary proportion of straw feed 0.88 ± 0.97 1.40 [1.10; 1.79] 0.007
28 walkway floor in free-stall for lactating cows: solid con-

crete with slits
housing 0.88 ± 1.80 0.32 [0.18; 0.58] <0.001

29 farm organically managed husbandry 0.82 ± 1.80 0.33 [0.20; 0.55] <0.001
30 walkway floor in free-stall for lactating cows: rubberised

slits
housing 0.82 ± 1.67 excuded

31 free-stall system for dry cows: other housing 0.81 ± 1.81 0.48 [0.31; 0.76] 0.002
32 test-day somatic cell count milk 0.77 ± 0.82 1.09 [0.95; 1.25] 0.201
33 dietary proportion of concentrates feed 0.77 ± 0.81 0.84 [0.73; 0.98] 0.025
34 diet: total amount of crude fibre feed 0.75 ± 0.82 0.74 [0.65; 0.84] <0.001
35 litter in free-stall for lactating cows: long straw housing 0.75 ± 1.63
36 diet: content of crude protein feed 0.74 ± 0.86 0.84 [0.74; 0.96] 0.011
37 lactating cows, time on pasture husbandry 0.73 ± 1.71 0.89 [0.63; 1.25] 0.489
38 diet: content of utilizable protein feed 0.71 ± 0.98 0.83 [0.72; 0.96] 0.012
39 diet: content of nitrogen-free extracts feed 0.68 ± 1.01 1.20 [1.05; 1.38] 0.007
40 diet: content of crude fat feed 0.66 ± 0.92 0.99 [0.88; 1.11] 0.833
41 forage type: grass and grass products only feed 0.66 ± 1.40 excuded
42 number of low temperature days environment 0.61 ± 1.14 0.67 [0.57; 0.78] <0.001
43 claw trimming frequency: twice per year husbandry 0.60 ± 0.79 0.57 [0.45; 0.73] <0.001
44 problematic feed quality feed 0.59 ± 0.81
45 mean yearly precipitation environment 0.56 ± 1.60 0.59 [0.49; 0.70] <0.001
46 ratio of foreign genes breed 0.54 ± 0.85 0.93 [0.82; 1.04] 0.193
47 diet: total amount of ash feed 0.54 ± 0.82 0.75 [0.66; 0.86] <0.001
48 feeding group: lactating and dry cows on same forage

(mixture)
feed 0.52 ± 1.08 excuded

49 lactating cows on alpine pasture husbandry 0.52 ± 1.33 excuded
50 diet: total amount of undegraded dietary protein feed 0.51 ± 0.89 0.85 [0.74; 0.98] 0.023

Table 21. Feature importances and odds ratios including p-values for the 50 most important features for metritis. Features
indicated with a star are treated as covariates in the logistic regression and their odds ratios have been calculated separately.
Odds ratios ≥ 1.1 and ≤ 0.9 are highlighted with yellow and green cell backgrounds respectively.
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