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Abstract 23 

Chest X-ray (CXR) is one of the most commonly performed medical imaging 24 

tests. Although aging, sex and disease status have been known to cause changes in CXR 25 

findings, the extent of these effects has not been fully characterized. Here, we present a 26 

deep neural network (DNN) model trained using more than 100,000 CXRs to estimate 27 

the patient’s age and sex solely from CXRs. Our DNN exhibited high performance in 28 

terms of estimating age and sex, with Pearson’s correlation coefficient between the 29 

actual and estimated age of above 0.9 and an area under the ROC curve of 0.98 for sex 30 

estimation. The difference between the actual and estimated age is large in CXRs with 31 

abnormal findings, suggesting that the estimated age (“CXR age”) can be a biomarker 32 

for disease status. Furthermore, by applying our DNN to CXRs of consecutive 1,562 33 

hospitalized heart failure patients, we demonstrated that an elevated CXR age is not 34 

only associated with aging-related diseases, such as hypertension and atrial fibrillation, 35 

but also a worse outcome of heart failure. Given these results, our new concept “CXR 36 

age” serves as a novel biomarker for cardiovascular aging and can help clinicians to 37 

predict, prevent, and manage cardiovascular diseases. 38 

39 
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Introduction 40 

 Aging is a term used to describe a correlated set of declines in 41 

functioning with advancing chronological age. Perceived age, or the estimated age 42 

of a person, is a robust biomarker for aging. In clinical practice, physicians 43 

unconsciously compare perceived and chronological age. 1 Previous clinical 44 

studies have revealed that patients with older perceived age, that is, those who 45 

look older than their chronological age, have advanced carotid atherosclerosis 2, 46 

reduced bone mineral density 3 and increased mortality 4. However, in these 47 

studies, perceived age was estimated from facial image of a patient by more than 48 

10 medical professionals and averaged 4 2 3 5, so it is not an objective index that 49 

can be used in actual clinical practice. In recent years, machine learning-based 50 

methods have been developed to estimate the presence of Alzheimerʼs disease 6 51 

and coronary artery disease 7 from facial images of patients. Although perceived 52 

age is a useful biomarker for age-related disease and aging, due to privacy and 53 

ethical issues, it is difficult to obtain facial images of patients in daily clinical 54 

practice. 55 

Because performing a chest X-ray (CXR) is fast and easy, it is one of the most 56 
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commonly used screening tests for a variety of diseases 8. Despite its simplicity and 57 

ease of use, CXR provides a lot of information and is pivotal for the diagnosis and 58 

monitoring of cardiovascular and pulmonary diseases such as heart failure, aortic 59 

dissection, pneumonia, lung cancer, tuberculosis, sarcoidosis, and lung fibrosis 9. 60 

Although radiological findings of CXR are affected by age 10 and sex difference 11, few 61 

previous studies have demonstrated whether age and sex could be predicted from CXR 62 

image 12,13. Several studies have been conducted on automatic diagnosis of CXR; 63 

however, it is still difficult to argue that the findings on CXR are not bad for the 64 

patient’s age, or that they are trivial findings but abnormal for the patient’s age, or that 65 

some findings are normal for male sex. 66 

 Recently, deep learning has revolutionized the field of machine learning. 67 

Deep neural networks (DNNs) are computational models based on artificial neural 68 

networks, consisting of multiple layers that progressively extract higher-level features 69 

from raw input. DNNs have been shown to exceed human performance in computer 70 

vision and natural language processing tasks 14. They have also been applied to the 71 

medical field in dermatology, radiology, ophthalmology, and cardiovascular medicine, 72 

and have achieved human physician-level performance, for instance, in classifying 73 

photographs of skin cancer 15, pneumonia detection from CXRs 16, diagnosing retinal 74 

disease 17 and arrhythmia classification from electrocardiograms (ECGs) 18,19. 75 

Furthermore, some recent studies have described the possibilities of using DNNs to 76 

learn patterns that humans have difficulty in recognizing, such as genetic mutation 77 

prediction from histopathology images of lung cancer 20, paroxysmal atrial fibrillation 78 

pattern detection from normal sinus rhythm ECGs 21, cancer treatment response 79 

prediction from CT images 22, age and sex estimation from ECGs 23 and brain age 80 
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estimation from magnetic resonance imaging (MRI) 24. Furthermore, age estimated 81 

from ECGs was reported to be associated with comorbidities such as hypertension and 82 

diabetes, suggesting the potential of age estimation as a health indicator23, and “brain 83 

age” estimated from brain MRI is also associated with future progression of dementia 84 
24. These examples suggest the potential of using a DNN to obtain unseen and useful 85 

information from commonly used tests. 86 

We hypothesized that estimated age from CXR using deep learning 87 

(“CXR age”) could be an indicator for aging status. In this study, we sought to 88 

develop and train DNNs to estimate patients’ age and sex solely from frontal-view 89 

CXRs without any additional clinical information and evaluated its estimation 90 

performance using a robust and unbiased method. Because CXRs are widely used, we 91 

assumed that it can provide great clinical significance if the extent of aging can be 92 

estimated from CXRs, “CXR age” could be used as a substitute for perceived age. We 93 

explored the clinical implications of “CXR age” by analyzing the relationship between 94 

CXR age and CXR findings. We applied the developed DNN to the CXRs of heart 95 

failure (HF) patients and examined its relationship with the patient’s background, 96 

clinical parameters, and HF outcome. 97 

  98 
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Results 99 

Dataset and Model training 100 

 An overview of this study is shown in Fig. 1. First, we used the NIH chest X-101 

ray dataset to develop a DNN that estimates the patient’s age and sex from CXR 25. This 102 

dataset is a large publicly available image dataset containing 112,120 png images of 103 

frontal-view CXR from 30,805 unique patients. The dataset also includes metadata 104 

containing patients’ age and sex information with finding labels. After removing the age 105 

outliers, 63,328 (56%) of the 112,104 X-rays were male CXRs. The ages ranged 106 

between 1 and 95 years, with a median age of 49 years and an interquartile range of 35–107 

59 years (Supplementary Figs. 1a, d). We randomly assigned this data to the training, 108 

validation, and test data (Supplementary Fig. 2). 109 

We applied the transfer learning and fine-tuning techniques to train the DNN. 110 

Briefly, these methods utilize a pre-trained DNN to improve the efficiency of the 111 

training time and the amount of data used for training. Rather than training the DNN 112 

from scratch, the DNN can learn much faster and with significantly fewer training 113 

examples by using transfer learning and fine-tuning 26,27. We adopted four commonly 114 

used architectures, namely ResNet 28, DenseNet 29, Inception-v4 30 and SENet 31 as pre-115 

trained DNNs. To improve the generalizability of our DNN and avoid overfitting, we 116 

applied image augmentation 32. After the training, we selected the model with the lowest 117 

loss value in the validation dataset as the final model. The metrics of the model with the 118 

lowest loss in the validation dataset for each architecture are summarized in 119 

Supplementary Tables 1 and 2. For age estimation, the SENet-based model yielded 120 

the lowest mean squared error (mean squared error: 27.34 (validation dataset)). The 121 

Densenet161-based model yielded the lowest binary cross-entropy loss in the validation 122 
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data (binary cross-entropy: 0.0430 (validation dataset)) in the sex estimation task 123 

(Supplementary Fig. 3). All the CXR images in the holdout test dataset were used to 124 

measure the performance of the model. For age estimation, the estimated age showed a 125 

very strong significant correlation with chronological age (Pearson’s r: 0.961, p < 2.2 × 126 

10-323) and the mean absolute error between the estimated age and chronological age 127 

was 3.79 years in the test dataset. In the sex estimation task, our model outputs the 128 

probability of male sex (value range from 0 to 1). The overall accuracy was 0.979 (95% 129 

confidence interval (CI, 0.967–0.990) and the area under the ROC curve (AUC score) 130 

was 0.9975 (95% CI, 0.995–1.000) in the holdout test dataset (Figs. 2a-c). 131 

 An important phenomenon known as domain shift sometimes occurs in 132 

machine learning, which makes generalization of the machine learning model to unseen 133 

data with different distributions difficult 33. The NIH chest X-ray data was collected 134 

from hospitals in the United States 25, most of the patients are likely to be American. To 135 

determine whether our model trained using this data can be applied to other populations 136 

with different physiques and from different datasets, we also tested the model on the 137 

JRST dataset, which is a frontal CXR image dataset comprising 247 frontal CXR 138 

images from Japanese patients (Supplementary Figs. 1b, e) 34. In the JSTR dataset, we 139 

also observed a strong significant correlation between the estimated age and 140 

chronological age (Pearson’s r: 0.916, p = 1.51 × 10-98), and the mean absolute error 141 

between the estimated age and chronological age was 4.56 years. Our model also 142 

showed high predictive performance in sex estimation (overall accuracy: 0.959 [95% 143 

CI, 0.934–0.984] and AUC: 0.9803 [95% CI, 0.9580–1.000]) (Figs. 2d-f). We further 144 

examined the reproducibility of this model by extracting images taken multiple times 145 

for the same patient from the NIH data. The concordance rate for sex estimation 146 
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between the two CXRs was 0.982, and for age, the correlation coefficient between the 147 

two estimated ages was 0.967 (p < 2.2 × 10-323), indicating that both models also 148 

showed high reproducibility (Supplementary Fig. 4). These results suggest that our 149 

model can accurately estimate age and sex from CXR, even in different population 150 

groups and cohorts. 151 

 152 

Comparison of predictive performance with human experts 153 

 We compared the predictive performance of our model with those of four 154 

experienced physicians. We used the JSRT dataset for the comparison because they are 155 

familiar with CXR images of Japanese patients. We found a slight correlation between 156 

the physicians’ estimated age and actual age, and the average Pearson’s correlation 157 

coefficient was 0.38. The mean accuracy and F1 measure in the physicians’ sex 158 

estimation were 0.879 and 0.871, respectively. The ensemble predictions by the 159 

physicians improved the predictive performance in both age and sex estimations (age: 160 

Pearson’s r 0.550, P = 9.6 × 10-21, sex: accuracy 0.918 [95% CI, 0.884–0.953], F1 161 

measure 0.919 [95% CI, 0.884–0.955]); however, this did not match the performance of 162 

our DNN, particularly in age estimation (Figs. 2g-i, Supplementary Table 4). These 163 

results demonstrate that our DNN can learn patterns that are difficult for human experts 164 

to recognize. 165 

 166 

Interpretation of deep learning model by heatmap analysis 167 

 We attempted to visualize the DNN to understand which part of the image it 168 

focused on while estimating the patients’ age and sex. For this purpose, we created a 169 

heatmap using Grad-CAM 35 and guided backpropagation 36. Some examples of images 170 
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that accurately predicted the patients’ age and sex are shown in Fig. 3. For sex 171 

classification, the model focused on the breast and clavicle at the upper part of the CXR. 172 

This is consistent with the fact that men and women have different amounts of fatty 173 

tissue in their breasts. For age estimation, the model mainly focused on the top of the 174 

mediastinum and periphery of the rib cage, where the shape and calcification of the 175 

aorta seemed to affect the estimation. 176 

 177 

The difference between the estimated and actual age indicates the existence of a 178 

disease 179 

 We analyzed CXR images in which the difference between the estimated age 180 

and the actual age was large, or sex was incorrectly estimated. Some examples of 181 

incorrectly estimated CXRs are shown in Figs. 4b, c. Compared with the correctly 182 

estimated CXRs (Fig. 4a), most of the CXRs with incorrect sex estimation were from 183 

children, indicating that sex is difficult to determine in pediatric CXRs. For age 184 

estimation, CXRs with a large deviation of estimated age from chronological age 185 

seemed to have abnormal findings. For sex prediction, when the performance was 186 

evaluated using only the CXR of patients over 20 years old, the accuracy improved 187 

from 97.9% to 99.2%. Similarly, for age prediction, the Pearson’s r improved from 188 

0.961 to 0.965 and the mean absolute error improved from 3.79 to 3.66 years in the test 189 

dataset when only images with no finding labels were used.  190 

        A large difference was observed between the estimated age and actual age 191 

when the images had some finding labels. Conversely, we hypothesize that images with 192 

a large deviation of estimated age from the actual age have a higher probability of 193 

having some finding labels. We found that CXRs with incorrect sex estimation or a 194 
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large difference between the estimated and actual ages were significantly more likely to 195 

have some finding labels, and this tendency increased with the difference in age (Fig. 196 

4d). With respect to each finding label, CXRs with findings of lung nodules and 197 

pneumothorax were estimated to be significantly older than the actual age. CXRs with 198 

consolidation and effusion yielded the opposite result (Fig. 4e). These results suggest 199 

that the difference between the estimated and actual age and sex could be a marker for 200 

CXR findings, indicating the existence of a disease. 201 

 202 

Estimated age from CXR (CXR age) indicates the presence of cardiovascular 203 

abnormalities 204 

 The disadvantage of public datasets is that although medical image and 205 

imaging findings data are available, they provide little information about the patients. 206 

This makes it difficult to investigate a patient’s history and prognosis using public data 207 

alone. To address this problem, we used a private database of patients with acute heart 208 

failure (HF). This prospective HF registry has enrolled all patients hospitalized for HF 209 

since 2011. The registry was designed to collect the clinical background and outcome 210 

data of consecutive patients admitted to the Sakakibara Heart Institute for acute 211 

decompensated HF. Conventional clinical parameters including age, sex, etiology of HF, 212 

risk factors for cardiovascular disease, blood pressure, heart rate, laboratory data, and 213 

echocardiographic findings were collected from all study participants (n = 1,562). 214 

Events of HF re-hospitalization and death were also recorded 37,38,39. The data comprises 215 

920 (59%) male in the age range of 18–98 years, with a median age of 78 years 216 

(interquartile range 69–84) (Supplementary Figs. 1 c, f, Supplementary Table 1). We 217 

applied our model to the CXRs of these patients to estimate their sex and age. The 218 
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accuracy of sex estimation was 0.945, and the AUC score was 0.986 (95% CI, 0.981–219 

0.991). Although the performance of age estimation was expected to decrease because 220 

all the CXRs were of HF patients and accordingly had some abnormal findings, there 221 

was still a significant positive correlation between the estimated and actual age 222 

(Pearson’s r: 0.769, p = 4.6 × 10-291). We first examined the association between the 223 

patient’s history and estimated age from CXR (CXR age) and found that hypertension 224 

and atrial fibrillation were significantly associated with increased CXR age after 225 

adjustment for chronological age (Fig. 5a). Regarding clinical parameters, increased left 226 

atrial diameter on echocardiography, tachycardia, and elevated diastolic blood pressure 227 

were associated with increased CXR age, whereas increased weight and taller stature 228 

were associated with decreased CXR age (Fig. 5b). These significant associations 229 

suggest that CXR age can be an indicator of cardiovascular abnormalities. 230 

 231 

CXR age predicts heart failure prognosis  232 

 Next, we examined the association between HF outcomes and CXR age. We 233 

defined the primary endpoint as the composite endpoint of all-cause mortality and HF 234 

re-hospitalization. In the univariate Cox proportional hazards model, CXR age is 235 

associated with the primary endpoint as well as other conventional risk factors such as 236 

age, sex, body mass index (BMI), hemoglobin (Hb), NT-pro BNP, and eGFR 237 

(Supplementary Table 3). Sex misclassification was positively associated with worse 238 

outcomes, but not significantly. For multivariate analysis, the difference between CXR 239 

age and chronological age was independently associated with the primary endpoint after 240 

adjustment for conventional risk factors, suggesting that patients estimated to be older 241 

had a worse HF prognosis (Fig. 5c, Table 1). The Akaike information criterion (AIC) 242 
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and Bayesian information criterion (BIC) are often used as a criterion for better model 243 

selection, and lower values suggest a better model for this criterion. Interestingly, AIC 244 

and BIC were decreased in the Cox model by replacing the age of the conventional 245 

model with CXR age (Supplementary Table 6), indicating that CXR age can be a 246 

better prognostic indicator than actual age. 247 

 248 

Discussion 249 

 In this study, we verified the performance of a DNN to estimate patients’ age 250 

and sex from CXRs without any additional clinical data. We also explored the clinical 251 

implications of the estimated age and sex. The main findings of the present study are 252 

summarized below. 1) The patient’s age was estimated from CXR within 5 years of 253 

mean absolute error using a deep learning algorithm. The patient’s sex was also 254 

estimated from CXR with more than 95% accuracy. 2) Our DNN estimations of age and 255 

sex were much more accurate than the ensemble estimation made by cardiovascular and 256 

respiratory medicine experts. 3) Our model focused on the breast and the area around 257 

clavicle for sex estimation and on the mediastinum for age estimation. 4) The difference 258 

between CXR age and actual age was large in CXRs with abnormal findings. 5) In the 259 

HF population, patients with hypertension and atrial fibrillation were estimated to be 260 

older. CXR age was independently associated with HF outcomes after adjusting for 261 

covariates. From these findings, we conclude that age and sex can be estimated from 262 

CXR with high accuracy and reproducibility using our model, and that CXR age can be 263 

used as a simple measure of health status in patients with cardiovascular disease. 264 

 Although age and sex affect CXR findings, few previous studies have 265 

reported age and sex estimation from CXR images 12,13. Karargyris et al. reported a 266 
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CNN model that predicts age from CXR using the NIH dataset. However, they only 267 

reported the predictive performance on internal validation datasets, which can lead to 268 

overestimation because validation data was used for tuning the hyperparameters of the 269 

model. The model performance should be evaluated using unseen data 40,41. Our 270 

evaluation method is robust and fair in that we evaluated the estimation performance on 271 

an external test dataset and entirely independent JSRT dataset, both of which were not 272 

used during the training phase. We also visualized our CNN model using Grad-CAM 273 

and guided-Grad-CAM and found that our model focused around the top of the 274 

mediastinum in predicting the patient’s age. Tortuosity and calcification of the aorta 275 

have been reported to be characteristic of atherosclerotic disease 42,43,44. On the other 276 

hand, to the best of our knowledge, this is the first study to estimate sex from CXR 277 

using deep learning. Our model seemed to focus not only on the breast as expected, but 278 

also around the clavicle. The length and shape of the clavicle are reported to be different 279 

in males and females 45,46. Our heatmap analysis results were consistent with those 280 

reported in these previous reports. 281 

 Our DNN can be applied in various ways. For instance, the sex estimation 282 

model exhibited high accuracy and could be used as an annotation tool for anonymous 283 

medical data or could be employed to generate an alert to prevent patient mix-ups in 284 

clinical practice. The age estimation model can provide a simple biomarker that 285 

represents a single quantification of information from the entire CXR image. A 286 

discrepancy between CXR age and chronological age suggests the presence of abnormal 287 

findings in the CXR image. Actually we found that patients with older CXR age had a 288 

significantly higher probability of hypertension and atrial fibrillation, both of which are 289 

related to cardiovascular aging 47,48. CXR age was also associated with worse outcomes 290 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436773


 14

in patients with HF. Our results suggest that CXR age can be a simple health indicator 291 

that reflects the aging state of the heart and vessels. As an indicator of the degree of 292 

aging, perceived age is a robust biomarker that has been linked to age-related diseases 293 

and prognosis. However, age estimation by a single physician is not an objective 294 

indicator 2-4. Furthermore, it is not easy to take facial photographs of patients in clinical 295 

settings due to privacy concerns, which hinders the clinical application of perceived 296 

age. Since CXR is taken in most patients as a screening test, the estimation of aging by 297 

CXR age has the potential to replace perceived age as an objective biomarker. There are 298 

several methods to determine a patient’s health status from laboratory data based on 299 

age. For example, “lung age” estimated from spirometry forced expiratory volume 300 

(FEV) 49 and “vascular age” estimated from carotid artery ultrasonography 50 are used 301 

as simple health indicators in clinical practice, and these methods help clinicians explain 302 

test results to patients. With continued advancement in deep learning as demonstrated in 303 

this study of CXR age, medical images will also be quantified as an age. Additionally, 304 

our study shows it possible to digitize CXR images into a single numerical value, which 305 

presents a new possibility. Namely, by quantifying CXR images, we can successfully 306 

incorporate them as parameters in clinical studies, which has been difficult in the past. 307 

For instance, in clinical studies of HF or cardiovascular diseases, laboratory data, 308 

echocardiographic parameters (such as left ventricular ejection fraction or left atrial 309 

dimension), and ECG arrhythmia categories are included in statistical variables as these 310 

are numerical values; however, CXR image findings are difficult to include as variables. 311 

Although there is an index of cardiothoracic ratio, it is difficult to quantify the entire 312 

CXR information. This method can be applied to other medical images, such as CT, 313 
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MRI, and ultrasonography. Our results demonstrate the potential for new applications of 314 

CXRs, the most widely performed imaging test in the world. 315 

 The high accuracy of deep learning has been reported in the diagnosis 316 

analysis of various medical images such as skin images, pathology slides, ECGs, CXRs, 317 

CT, MRI, and echocardiography15,20,51,19,16,52,53,54. Several studies reported that deep 318 

learning can accomplish tasks that are even difficult for human physicians 22,21,55. In the 319 

example of CXR, Lu et al. created a deep learning model to predict mortality risk from 320 

CXR images and stratified the risk of long-term mortality 56. Toba et al. reported that 321 

they estimated the pulmonary to systemic flow ratio, an indicator of the severity of 322 

congenital heart disease, from CXR 57. However, few studies have reported age 323 

estimation using medical imaging. It has been reported that age estimation from hand 324 

and knee MRI using deep learning can estimate the age of young people with high 325 

accuracy 58,59. Attia et al. created a deep learning model to predict age and sex from a 326 

12-lead ECG and achieved a classification accuracy of 90.4% for sex estimation and an 327 

MAE of 6.9 years for age estimation. They also reported that patients with a predicted 328 

age exceeding the true age by more than 7 years had a higher incidence of lower cardiac 329 

function, hypertension, and coronary artery disease 23. Wang et al. proposed a deep 330 

learning model to predict patients’ age from brain MRI and reported that the estimated 331 

age is associated with dementia 24. Although these previous studies have reported that 332 

image-estimated age is associated with disease, our study is the first to identify its 333 

association with disease prognosis. 334 

 The present study also has several limitations. First, all CXR images were 335 

obtained from patients, and hence, they were obtained for some clinical indications. 336 

Therefore, it is unclear whether our results would be applicable to healthy population. 337 
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We only examined the relationship between estimated age, disease, and prognosis in 338 

patients with heart failure. Further studies are needed to determine if this is applicable to 339 

other patients to the general population; for instance, using a large amount of data from 340 

medical checkups. Second, as is often the case with large datasets, the NIH chest X-ray 341 

dataset contains low-quality images and labels. Finding labels may not necessarily be 342 

accurate because the NIH dataset was labeled using natural language processing 25. 343 

Third, the analysis of our model heart failure is a single-center observational study with 344 

a relatively modest number of patients, and the findings of the study can potentially 345 

include some bias due to its retrospective nature. Fourth, as described above, older 346 

estimated age does not necessarily mean worse CXR findings. For instance, CXRs with 347 

findings of consolidation or effusion were estimated to be younger than the actual age. 348 

However, analysis of a large dataset and data for heart failure patients suggests that 349 

CXR age reflects, to some extent, aging and health status. 350 

 In conclusion, we developed DNNs that estimates patients’ age and sex from 351 

CXR without any additional information, and our models exhibited a high predictive 352 

performance with the independent JSRT dataset. Our study suggests that CXR age can 353 

serve as a novel biomarker for cardiovascular aging and health status, and can be a key 354 

tool to help clinicians predict, prevent, and manage cardiovascular diseases in the era of 355 

digital medicine. 356 

 357 

358 
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Methods 359 

Dataset acquisition 360 

 Three datasets were used in this study (Fig. 1 and Supplementary Fig. 1). 361 

We used the NIH ChestX-ray, which comprises 112,120 png images of frontal-view 362 

CXR from 30,805 unique patients. This dataset also includes metadata containing 363 

patients’ age and sex information with up to 15 labels 25. We excluded 16 CXR images 364 

from patients over 100 years of age. We randomly split the dataset into three groups 365 

(training set: 102,029 images from 28,029 patients; validation set: 9,426 images from 366 

2,523 patients; test sets: 613 images from 250 patients). There was no patient overlap 367 

between the sets to avoid data leakage during model training, which can lead to 368 

overestimation of model performance. Although deep learning models were trained 369 

separately for age and sex estimation, we used the same data split for training, 370 

validation, and test sets for both tasks. We also used the JSRT database, which 371 

comprises 247 frontal CXR images from Japanese patients with or without lung nodules 372 
34. We removed two images for which age information was not available. The JSRT 373 

database was used as an independent test dataset to check the generalizability of our 374 

model and to determine whether our model can be applied to other populations with 375 

different physiques. Heart failure patient data were obtained from our prospective heart 376 

failure registry, which enrolled all patients with acute decompensated heart failure who 377 

were admitted to Sakakibara Heart Institute (Fuchu, Tokyo), a hospital specializing in 378 

cardiovascular disease. The diagnosis of heart failure was based on the Framingham 379 

criteria 60. Patients with acute coronary syndrome and isolated right-sided HF were 380 

excluded. Conventional clinical variables including age, sex, etiology of HF, risk 381 

factors, blood pressure, heart rate, laboratory data, and echocardiographic findings were 382 
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obtained from all the study participants. Events of heart failure, re-hospitalization, and 383 

death were also recorded. Frontal CXRs within 2 days of hospital admission were used 384 

in the analysis. Written informed consent was obtained from all the participants before 385 

the study. The study protocol was also approved by the Institutional Review Board of 386 

Sakakibara Heart Institute (No. 19-092). 387 

 388 

Deep learning model development and training 389 

 To develop a deep learning model for age and sex estimation, we applied 390 

transfer learning and fine-tuning techniques to our model. We adopted 11 convolutional 391 

neural network (CNN) architectures, namely ResNet18, ResNet34, ResNet50, 392 

ResNet101, ResNet152 28, DenseNet121, DenseNet161, DenseNet169, DenseNet201 29, 393 

Inception-v4 30 and SENet154 31. For transfer learning, we used pre-trained weights for 394 

the CNN models. Pre-trained weights on ImageNet were downloaded for each model 395 

from https://github.com/Cadene/pretrained-models.pytorch. Models can be separated 396 

into two parts in a CNN: the convolutional part and fully connected layer (FCL) part. 397 

Because these models are for the classification task of 1000 categories, the default 398 

output layer is comprised of 1000 neurons, which represent the probabilities of each 399 

category (Fig. 1). The convolutional layers were initialized with loaded pre-trained 400 

weights and were frozen. We modified the original FCL part into a new two-layered 401 

FCL part. The FCL part is composed of batch-normalization, an FCL of 512 neurons 402 

with a rectified linear unit (ReLU) as the activation function, batch normalization 61 and 403 

a final FCL. The final layer neuron outputs the probabilities of males and females for 404 

the sex estimation task. Dropout 62 was applied after batch normalization. For age 405 

estimation, we adopted an FCL with a single final neuron so that the model outputs a 406 
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single numerical value of the predicted age and makes it a regression problem. We 407 

selected (1) binary cross-entropy (BCE) loss and (2) mean square error (MSE) loss for 408 

sex and age estimation, respectively. BCE and MSE are defined by the following 409 

equations, where n is the number of images, 𝑝௠௔௟௘ is the estimated probability of male 410 

sex, y is the actual label, and 𝑦ො is the estimated age. 411 

𝐵𝐶𝐸 ൌ െ
1
𝑛

෍൫𝑦𝑙𝑜𝑔ሺ𝑝௠௔௟௘ሻ ൅ ሺ1– 𝑦ሻ𝑙𝑜𝑔ሺ1– 𝑝௠௔௟௘ሻ൯

௡

௜ୀଵ

ሺ1ሻ 412 

𝑀𝑆𝐸 ൌ
1
𝑛

෍ሺ𝑦పෝ – 𝑦௜ሻଶ.

௡

௜ୀଵ

ሺ2ሻ 413 

The models were trained on the training dataset to minimize these loss functions. The 414 

models were trained using the Adam optimizer and a cyclic learning rate policy 63. 415 

During transfer learning, only the parameters in the FCL part and the batch norm layer 416 

of the convolutional part were updated. Then, we fine-tuned the entire network by 417 

unfreezing and updating the pre-trained weights with a much lower learning rate. The 418 

validation set was used to select hyperparameters to determine when to stop training to 419 

avoid overfitting and to select the final model. Validation data was not used to update 420 

the weights of the DNN model. The NIH ChestX-ray database provides png images, and 421 

the JSRT and heart failure patients’ CXRs were DICOM images. All the images were 422 

transformed into png images using Python’s ‘pydicom’ library and resized to 320 × 320 423 

pixels. To improve the generalizability of our model and avoid overfitting, we applied 424 

image augmentation 32. The images in the training datasets were augmented with 425 

random padding and random rotation up to ± 20°. Image flipping was not performed. 426 

Our DNNs were trained on NVIDIA Tesla V100 GPUs with a mixed precision training 427 

technique 64. After the training, we selected the model with the lowest loss value in the 428 
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validation dataset as the final model (Supplementary Tables 2 and 3). We applied the 429 

trained DNN to the test dataset and JSRT dataset to assess the estimation performance. 430 

Image augmentation was not applied to the test and JSRT datasets. We used gradient-431 

weighted class activation mapping (Grad-CAM) 35 and guided backpropagation 36 432 

methods to visualize the area of interest of our models. 433 

 434 

Age and sex estimation by human physicians 435 

 To compare our model with human physicians’ prediction performance, four 436 

trained clinicians (three cardiologists and one pulmonologist) estimated the patient’s 437 

age and sex from CXRs on the JSRT dataset. They have 8, 9, 15, and 30+ years of 438 

clinical experience, respectively. They estimated the patient’s age from the CXR image 439 

without any additional information. We used the JSRT data because they are physicians 440 

in Japan and are usually accustomed to diagnosing Japanese CXRs. They were allowed 441 

to see the training dataset images and labels before estimating age and sex in the JSRT 442 

dataset. For ensemble prediction, the estimated age and sex of the four physicians were 443 

averaged. For instance, ensemble prediction is 40-year-old and 0.75 probability for male 444 

when the four physicians estimate a CXR as a 48-year-old male, 52-year-old male, 55-445 

year-old male, and 25-year-old female. 446 

 447 

Statistical analysis of test results 448 

 To estimate the predictive performance of the model, the Pearson’s R value 449 

for age estimation was calculated. The mean squared error and mean absolute error 450 

were calculated. For the sex model, we computed the area under the receiver operating 451 

characteristic curve (AUC) to assess the sex model discrimination performance. The 452 
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classification accuracy and F1 score were also calculated. The confidence intervals for 453 

AUC, accuracy, and F1 metrics were derived from the 100,000 bootstrap replications 454 

method. To test the model’s reproducibility, we extracted patients who had multiple 455 

CXRs within one year in the validation and test data. Age and sex were estimated from 456 

CXR using our DNN, and the Pearson’s r correlation coefficient was calculated for age 457 

and the concordance rate for sex estimation was calculated. Linear regression was used 458 

to analyze the association between estimated age and finding labels, and the coefficient 459 

of disease label was determined. The three finding labels of edema, infiltration, and 460 

consolidation were grouped together as consolidation, and hernia was excluded from the 461 

analysis because it was labeled in a small number of CXR images (227 images out of 462 

112,104 images). The Cox proportional hazards model was used for survival analysis. 463 

The median follow-up period was 407 days (interquartile range: 122–879). Event was 464 

defined as the composite endpoint of heart failure re-hospitalization and all-cause 465 

mortality. The independent variables in the Cox model were determined by referring to 466 

empirical rules and previous articles. Age, sex, BMI, previous history of hypertension, 467 

diabetes mellitus, dyslipidemia and smoking, LVEF, NT-pro BNP, Hb, eGFR, CXR age, 468 

and sex misclassification by the deep learning model were incorporated as independent 469 

variables. Variable selection for the multivariate analysis, age, sex, and left ventricular 470 

ejection fraction (LVEF) were fixed as independent variables because they are known to 471 

be strong predictors of heart failure outcome 65,66. Independent variables that showed P 472 

values of less than 0.05 in univariate analysis were employed in the multivariate 473 

analysis. To compare the Cox model and different independent variables, we used the 474 

AIC and BIC. The AIC and BIC values were tested using the 100,000 bootstrap 475 

replications method. The R version 3.6.3 base function and ‘caret’, ‘survival’, and 476 
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‘boot’ packages were used for all statistical analyses. A raw two-sided p value is 477 

provided when the p value is greater than 2.2 × 10-323, otherwise it is provided as p < 2.2 478 

× 10-323 because of generic computational limitations. 479 

480 
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Data availability 481 

 The dataset generated and analyzed during this study is available from the 482 

corresponding authors on request. The NIH ChestX-ray dataset used in this study is 483 

openly available and can be downloaded at 484 

https://cloud.google.com/healthcare/docs/resources/public-datasets/nih-chest. The JSRT 485 

database used in this study is also publicly available and can be downloaded at 486 

http://db.jsrt.or.jp/eng.php.  487 

 488 

Code availability 489 

The code is available on request. 490 
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Tables and Figures 723 

Table 1. Multivariate Cox proportional hazards model for primary endpoint 724 

Variable (unit) Coefficient HR Confidence interval Z score P value 

  
lower 95% upper 95% 

 

Age (years) 0.040696 1.0415 1.0296 1.0536 6.90978 4.85×10-12

Sex (Male) 0.076896 1.0799 0.8992 1.2970 0.82286 4.11×10-1 

BMI (kg/m2) -0.027156 0.9732 0.9503 0.9966 -2.23923 2.51×10-2 

LVEF (%) -0.015269 0.9848 0.9782 0.9915 -4.44650 8.73×10-6 

log(NT-proBNP) (pg/ml) -0.117699 0.8890 0.7180 1.1006 -1.08006 2.80×10-1 

Hb (g/dl) -0.105731 0.8997 0.8601 0.9410 -4.61192 3.99×10-6 

eGFR (ml·min-1·1.73 m-2) -0.013147 0.9869 0.9819 0.9920 -5.02546 5.02×10-7 

Age discrepancy (years) 0.018409 1.0186 1.0051 1.0322 2.71196 6.69×10-3 

 725 

Coefficients of the Cox proportional hazards model for the primary endpoint in heart 726 

failure patients. HR, hazard ratio; BMI, body mass index; LVEF, left ventricular 727 

ejection fraction; Hb, hemoglobin; eGFR, estimated glomerular filtration rate; Age 728 

discrepancy, difference between the CXR age and actual age (CXR-age – actual age). 729 

  730 
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Fig. 1 Data usage and overall study framework. 731 

 732 

The NIH Chest X-ray dataset was randomly divided into training, validation, and test 733 

datasets. Our deep neural network (DNN) models were trained to estimate age and sex 734 

using the training dataset. The weights of the models were initialized with pre-trained 735 

weights on ImageNet data and trained using transfer learning and fine-tuning 736 

techniques. Various models with different architectures were separately trained. 737 

Validation data was only used to tune the hyperparameters and to select the final model. 738 

The accuracy of the deep learning model was estimated using the hold-out test dataset. 739 

The independent JSRT dataset was also used to estimate the performance to verify the 740 
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generalizability of the trained DNN in an independent population. The trained DNN was 741 

applied to CXRs of heart failure patients to evaluate the association between the 742 

estimated age (CXR age) and various clinical parameters and heart failure. 743 

744 
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Fig. 2 Estimation accuracy of deep learning model and human physician. 745 

 746 

Estimation accuracy of trained deep learning model in the test dataset (a, b, c), JSRT 747 

dataset (d, e, f), and estimation accuracy of human physician in the JSRT dataset (g, h, 748 

i). a, d, g, Scatter plots of the actual age (x-axis) and estimated age (y-axis) with 749 
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Pearson’s correlation coefficient. A strong positive correlation between the actual and 750 

estimated age is observed in the deep learning model. In human estimation, the 751 

estimated age is the average of the estimations by the four physicians. The correlation 752 

between the actual and estimated age was modest (g). b, e, h, ROC curves for 753 

discriminating between male and female CXRs. The deep learning model accurately 754 

estimated sex from CXR. The area under the ROC curve (AUC) and 95% confidence 755 

interval are provided. c, f, i, Confusion matrix for sex classification. For the human 756 

estimation results, we adopted the average of the estimations by the four physicians (see 757 

Methods). Accuracy and F1 metrics and their 95% confidence intervals are displayed at 758 

the top. 759 

 760 
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Fig. 3 Visualization of the deep learning model with Grad-CAM and guided back-762 

propagation. 763 

 764 

Example of original CXRs and heatmap visualization using Grad-CAM and guided 765 

Grad-CAM. a, Original CXR image in the dataset with the actual age, sex, and 766 

estimated age and sex (estimated probability). Pred, prediction; F, female; M, male; y/o, 767 

years old. b, Visualization of the deep learning model using Grad-CAM. Age model 768 

(upper row) and sex model (lower row). c, Visualization of the deep learning model 769 
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using a combination of guided backpropagation and Grad-CAM Age model (upper row) 770 

and sex model (lower row). 771 

 772 
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Fig. 4 Characteristics of images in which the deep learning model performed 774 

inaccurate age and sex estimation. 775 

 776 

a, Example of a CXR image with an age estimation error of less than 5 years and an 777 

accurate gender estimation. The actual age, sex, and CXR age and sex (estimated 778 

probability) are shown above each image. Pred, prediction; F, female; M, male; y/o, 779 

years old. b, Example of a CXR image with an age estimation error of more than 10 780 

years. c, Example of a CXR image in which the deep learning model failed to estimate 781 

its sex correctly. d, Relationship between estimation and having any finding labels. The 782 
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odds ratio with 95% confidence interval is shown on the x-axis. The odds ratio of 783 

having any finding labels is lower in CXR images in which the deep learning model 784 

correctly estimates their age and sex. On the other hand, images for which gender and 785 

age could not be accurately estimated were significantly more likely to have finding 786 

labels. e, Different finding labels that affect the patient’s estimated age. The coefficient 787 

of linear regression adjusted for age (see Methods) is shown on the x-axis. 788 

789 
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Fig. 5 Relationship between CXR age and clinical characteristics and outcome in 790 

heart failure patients. 791 

 792 

Past clinical history (a) and continuous clinical measurements (b) that affect CXR-age. 793 

The coefficient of linear regression adjusted for age is shown on the x-axis with a 95% 794 

confidence interval. HTN, hypertension; DM, diabetes mellitus; DL, dyslipidemia; 795 

HUA, hyperuricemia; AFAFL, atrial fibrillation or atrial flutter; COPD, chronic 796 

obstructive pulmonary disease; device, cardiac pacemaker, implantable cardioverter 797 

defibrillator, or cardiac resynchronization therapy devices. LAD, left atrial diameter; 798 

LVEF, left ventricular ejection fraction; LVDd, left ventricular end-diastolic diameter; 799 

TC, total cholesterol; BS, blood sugar (glucose); HR, heart rate; dBP, diastolic blood 800 

pressure; sBP, systolic blood pressure. c, Event-free survival curve for heart failure 801 

patients stratified by the age discrepancy between the actual and CXR age. Event is 802 

defined as the composite endpoint of heart failure re-hospitalization, heart 803 

transplantation, and all-cause mortality. The top 20% of patients, middle 60%, and 804 

bottom 20% were grouped as older, middle, and younger, respectively. 805 
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