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ABSTRACT 

Single-cell RNA-sequencing (scRNA-seq) enables molecular characterization of 

complex biological tissues at high resolution. The requirement of single-cell extraction, 

however, makes it challenging for profiling tissues such as adipose tissue where 

collection of intact single adipocytes is complicated by their fragile nature. For such 

tissues, single-nuclei extraction is often much more efficient and therefore single-nuclei 

RNA-sequencing (snRNA-seq) presents an alternative to scRNA-seq. However, nuclear 

transcripts represent only a fraction of the transcriptome in a single cell, with snRNA-

seq marked with inherent transcript enrichment and detection biases. Therefore, 

snRNA-seq may be inadequate for mapping important transcriptional signatures in 

adipose tissue. In this study, we compare the transcriptomic landscape of single nuclei 

isolated from preadipocytes and mature adipocytes across human white and brown 

adipocyte lineages, with whole-cell transcriptome. We demonstrate that snRNA-seq is 

capable of identifying the broad cell types present in scRNA-seq at all states of 

adipogenesis. However, we also explore how and why the nuclear transcriptome is 

biased and limited, and how it can be advantageous. We robustly characterize the 

enrichment of nuclear-localized transcripts and adipogenic regulatory lncRNAs in 

snRNA-seq, while also providing a detailed understanding for the preferential 

detection of long genes upon using this technique. To remove such technical detection 

biases, we propose a normalization strategy for a more accurate comparison of nuclear 
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and cellular data. Finally, we demonstrate successful integration of scRNA-seq and 

snRNA-seq datasets with existing bioinformatic tools. Overall, our results illustrate the 

applicability of snRNA-seq for characterization of cellular diversity in the adipose tissue.  

1 INTRODUCTION 
 
Adipose tissue is a complex, heterogenous organ responsible for maintaining energy 

balance in animals, by storing energy during nutritional excess and providing energy 

during nutritional deprivation. This regulation of whole-body energy homeostasis is 

primarily maintained by two functionally different types of fat: white adipose tissue 

(WAT), the primary site of lipid storage, and brown adipose tissue (BAT), which 

specializes in thermogenic energy expenditure. An imbalance in the metabolic activity 

or expansion of WAT and BAT is implicated in the pathogenesis of lipodystrophy or 

obesity and associated comorbidities like cardiovascular diseases and type 2 diabetes 

(Jo et al. 2009; Carobbio et al. 2011; Levelt et al. 2016). Further complexity arises from 

the heterogeneity within WAT which also includes a cellular subtype called beige 

adipocytes with greater oxidative capacity (Pfeifer and Hoffmann 2015). Therefore, 

understanding the molecular pathways of adipose tissue expansion (adipogenesis) in 

humans and identifying resident cell types that regulate adipocyte activity is necessary 

for understanding the tissue’s contribution in the pathology of such metabolic diseases. 

Consequently, recent studies are beginning to elucidate cellular heterogeneity and 
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developmental pathways in distinct adipose tissue lineages at the single-cell level 

(Deutsch et al. 2020; Ferrero et al. 2020).  

Over the last decade, single-cell RNA-sequencing (scRNA-seq) has proven to be 

a powerful tool for transcriptomic profiling of complex tissues in an unbiased manner 

(Birnbaum 2018; Chen et al. 2018; Trapnell 2015). This technological revolution has 

been facilitated by the development of microfluidic workflows for scRNA-seq that make 

it possible to analyze hundreds to thousands of single cells in one experiment 

(Birnbaum 2018), paving the way for the construction of a human cell atlas (Regev et al. 

2017). Indeed, multiple recent studies using microfluidic scRNA-seq approaches are 

investigating the heterogeneity of adipocyte precursors (referred to as preadipocytes in 

the text) in mice (Rondini and Granneman 2020; Ferrero et al. 2020). However, 

transcriptomic profiling of single mature adipocytes has been challenging, in part 

because of the technical barriers associated with isolating intact, single adipocytes. 

Primary adipocytes can be difficult to work with due to their fragile nature, high 

buoyancy, and large size (Deutsch et al. 2020). Existing protocols for tissue digestion 

and single-cell suspension preparation often result in complete or partial adipocyte 

lysis and therefore are not compatible with scRNA-seq library preparation. 

Consequently, transcriptomic analysis of adipocytes has relied on bulk RNA-

sequencing of clonal cell populations (Shinoda et al. 2015; Xue et al. 2015; Min et al. 

2016; Lee et al. 2019; Gao et al. 2017a) or scRNA-sequencing of adipocytes harvested 
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by precise pipetting (Spaethling et al. 2016), making generation of individual clones or 

isolates the rate limiting step. More recently, microfluidic scRNA-seq was used to 

identify transcriptomic heterogeneity within murine brown adipocytes (Song et al. 

2020), with library preparation limited to adipocytes relatively smaller in size as bigger 

adipocytes can easily rupture in microchips or during droplet formation. Such size-

fractionated application of scRNA-seq, however, results in loss of transcriptional 

patterns uniquely associated with bigger adipocytes (Blüher et al. 2004). To address 

the challenge of working with tissues that are difficult to dissociate into single cells, 

recent studies have turned to single-nucleus RNA-sequencing (snRNA-seq) as an 

alternative approach for transcriptomic profiling of cellular heterogeneity within primary 

tissue (Gao et al. 2017b; Lake et al. 2016; Wu et al. 2019; Sathyamurthy et al. 2018; 

Rajbhandari et al. 2019; Krishnaswami et al. 2016; Lacar et al. 2016; Sun et al. 2020; 

Habib et al. 2016; Liang et al. 2019; Zeng et al. 2016). These studies rely on nuclear 

mRNA to serve as a proxy for the single-cell transcriptome, and take advantage of 

protocols which enable efficient extraction of intact nuclei (Krishnaswami et al. 2016; 

Habib et al. 2017; Benitez and Shinoda 2020; Nee et al. 2018; Rajbhandari et al. 2019). 

As a result, recent investigations have already started reporting the existence of 

multiple adipocyte subtypes in humans using snRNA-seq (Rajbhandari et al. 2019; Sun 

et al. 2020). However, a single nucleus contains 10-100-fold less mRNA than whole-

cells, raising the question whether the composition of mRNA transcripts in the nucleus 
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is sufficient to enable identification of the same cell populations as whole-

cells. Previous comparisons of single-cell and single-nucleus approaches suggest that 

in certain tissues, sampling the nuclear transcriptome is sufficient to characterize  

cellular composition (Selewa et al. 2020; Wu et al. 2019; Bakken et al. 2018; Habib et 

al. 2017; Lake et al. 2017). However, collectively these studies also demonstrate that 

the relationship between nuclear and cytoplasmic mRNA is tissue-specific (Lake et al. 

2017; Thrupp et al. 2020). Therefore, there is a need to understand the transcriptomic 

similarities and differences between single-cell and single-nucleus profiles in the 

context of the human adipose tissue, for which there is growing need to rely on 

snRNA-seq. 

In this study, we explored the ability of snRNA-seq to recapitulate the 

transcriptional profiles observed by scRNA-seq in the human adipose tissue white and 

brown lineages. We focused our study on a well-controlled in vitro system of human 

white and brown adipogenesis (Xue et al. 2015; Kriszt et al. 2017). In this in vitro 

model, paired white and brown primary preadipocytes were isolated from a defined 

anatomical location (the neck depot) of a single individual. This system allowed us to 

measure cell-to-cell transcriptomic variations within and between lineages, while 

controlling for inter-individual variabilities that are typically associated with 

transcriptomic profiling of primary human adipose tissue, such as body mass index, 

genotype, and gender. Preadipocytes from both lineages were isolated while 
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preserving their intrinsic cellular heterogeneity and were then immortalized to allow for 

long-term in vitro cell-culture. Previously reported data demonstrated that the 

preadipocyte populations could be differentiated into mature adipocytes with gene 

expression profiles that correspond to the adipogenic and thermogenic function of 

primary tissue from human neck BAT and WAT (Xue et al. 2015). Moreover, the in vitro 

cell-culture system allows for isolation of intact nuclei as well as intact single cells 

across well-defined stages of adipogenesis including mature, lipid-laden white and 

brown adipocytes. Using this system, we first mapped the cellular heterogeneity at the 

preadipocyte stage. Both white and brown preadipocytes were processed using a 

commercial high-throughput single-cell sequencing platform (10x Genomics). We then 

extracted nuclei from these populations and performed snRNA-seq using the same 

isolation and sequencing protocol. We sequenced snRNA-seq libraries to saturation 

and compared their transcriptomic profiles with those obtained from scRNA-seq across 

different cellular subtypes. We next developed a single-adipocyte whole-cell isolation 

protocol and mapped cellular heterogeneity in mature white adipocytes using the 

molecular single-cell RNA barcoding and sequencing (mcSCRB-seq) protocol (Bagnoli 

et al. 2018). The transcriptomic profiles obtained were compared with molecular 

profiles of single nuclei isolated from the same population of adipocytes. Our analyses 

characterized the accuracy with which snRNA-seq can identify cell types present at the 

precursor and mature stages of adipogenesis. We identified both technical and 
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biological artifacts that can introduce gene detection biases in snRNA-seq, and we 

systematically evaluate the limitations of these biases in the context of human 

adipogenesis. Finally, we propose a normalization strategy for the removal of 

systematic technical biases between scRNA-seq and snRNA-seq and demonstrate 

recovery of shared biology by integrating the two datasets using scVI, a variational 

autoencoder based framework for analysis of scRNA-seq data (Lopez et al. 2018). 

2 RESULTS 
 
2.1 scRNA-seq reveals transcriptional landscape of white and brown preadipocytes 

Unsupervised clustering of white and brown preadipocyte scRNA-seq library grouped 

the cells into three clusters, referred to as populations 0, 1 and 2 (Fig. 1A). White 

preadipocytes organized into a single homogeneous cell population, cluster 0, whereas 

brown preadipocytes revealed two cell populations, cluster 1 and cluster 2 (Fig. 1A). All 

populations were devoid of endothelial (CD31) and hematopoietic marker genes 

(CD45, Fig. S2B and S2C) and reflected a preadipocyte state on the basis of their high 

expression for common mesenchymal stem cell markers CD29, CD90, CD44, and ENG 

(Fig. S2D to S2G). All populations also had positive expression for adipogenesis 

regulators CEBPB, PPARG, and ZEB1, further verifying an adipogenic fate for these 

cells (Fig. S2H to S2J). 
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Differential gene expression (DGE) analysis confirmed that white preadipocytes showed 

Figure 1 scRNA-seq reveals transcriptional and compositional landscape of white and brown preadipocytes (A) 
UMAP visualization of white and brown preadipocytes annotated either manually to reflect the sample of origin (top 
panel) or based on unsupervised clustering (bottom panel) (B) Heat map of top 20 differentially expressed genes 
between white and brown preadipocytes based on log fold-change values. Highlighted in red are regulators of cell 
proliferation, in orange is smooth-muscle lineage gene, and in beige are genes classified as white- or brown-specific 
markers (see Note S4). (C) Heat map of top 20 differentially expressed genes between brown cluster 1 and cluster 2 
based on log fold-change values. Highlighted in red are regulators of adipose development, and in beige are genes 
classified as cluster-1- or cluster-2-specific markers (see Note S4). (D) Top 10 gene ontology biological processes 
terms enriched in brown preadipocyte cluster 1 (top panel) and cluster 2 (bottom panel). decr. = decreased; anat. 
str. = anatomical structure; pos. reg. = positive regulation; neg. reg = negative regulation; str. = structure 
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enrichment of genes that are reported to be involved in establishing white 

preadipocytes’ identity (Table S1B) such as TCF21 (de Jong et al. 2015), PAX3  

(Sanchez-Gurmaches et al. 2016), and PDGFRA (Berry and Rodeheffer 2013). The most 

upregulated gene in white preadipocytes was ID1 (Fig. 1B highlighted in red), which is 

known to maintain progenitor state in preadipocytes by positively regulating the 

progression of cell cycle for sustained growth and proliferation (Patil et al. 2014; 

Satyanarayana et al. 2012). Consequently, enriched expression of ID1 in white 

preadipocytes suggested ongoing signaling for maintenance of cellular proliferation. In 

brown preadipocytes, the top upregulated genes included ANKRD1 and CTGF (Fig. 1B 

highlighted in red), which are well-characterized YAP target genes (Yu et al. 2012). 

YAP/TAZ are mechanosensitive transcriptional co-activators that regulate proliferation 

and differentiation at precursor state (Dupont et al. 2011; Hansen et al. 2015; Zhang et 

al. 2018), while also maintaining thermogenic activity at mature adipocyte state in 

brown lineage (Tharp et al. 2018). Therefore, our results suggest that brown 

preadipocytes may have ongoing YAP/TAZ activity for maintenance of brown-lineage 

progenitor state. DGE analysis also revealed upregulation of smooth-muscle lineage 

marker genes in brown preadipocytes, such as TAGLN (Fig. 1B highlighted in orange), 

ACTA2, MYL9, and CNN1 (Table S1B). These findings are consistent with a recent 

study that demonstrated abundant expression of smooth muscle lineage–selective 
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genes in clonal human brown preadipocytes (Shinoda et al. 2015), suggesting that 

brown preadipocytes derived from human neck depot may share this lineage. 

Interestingly, we identified two distinct cell populations within brown 

preadipocytes (cluster 1 and cluster 2, Fig. 1A). Gene ontology (GO) analysis identified 

cellular adhesion, and regulation of cellular motility as the most enriched terms in 

cluster 1 (Fig. 1D), suggesting the prevalence of stem-cell-like migratory behavior in 

these cells. Transforming growth factor superfamily genes (BMP4 and TGFB2) were 

also enriched in cluster 1 (Table S1C), which play an important role in regulating 

adipocyte commitment in mesenchymal stem cells (Modica and Wolfrum 2017; Li and 

Wu 2020). Investigating differential activity of transcription factors (TFs) in cluster 1, 

transcription factor enrichment analysis (TFEA) identified FOX (FOXC2 and FOXL1) and 

FOSL1 transcription factors (TFs) with high activity (Table S1D). FOXC2 participates in 

the early regulation of preadipocyte differentiation (Gerin et al. 2009; Lidell et al. 2013) 

while FOSL1 proteins have been implicated as regulators of cell differentiation, and 

transformation (Luther et al. 2014, 2011). Therefore, our results indicate that cluster 1 

cells may exhibit migratory behavior with ongoing signaling similar to adipogenic fate 

commitment in mesenchymal stem cells, a behavior we refer to here as stem-cell-like. 

Enrichment of multiple regulators of adipose tissue development was also detected in 

cluster 1, such as SEMA5A (Giordano et al. 2001), NPPB (Villarroya and Vidal-Puig 

2013), MEST (Karbiener et al. 2015), and FST (Braga et al. 2014, Fig. 1C highlighted in 
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red), further suggesting the existence of adipogenic commitment activity in this cell 

population. 

Cluster 2 cells were marked by the expression of S100A4 gene, also known as 

the fibroblast specific protein 1 (FSP1, Fig. 1C star-marked, Fig. S3D and S3F), which is 

considered a reliable marker of fibroblasts. GO analysis showed enrichment of immune 

response, extracellular structure and matrix organization, and negative regulation of 

cell migration terms in this cell population (Fig. 1D). Multiple genes encoding for 

extracellular matrix (ECM) components such as MFAP5, ECM1, COL6A2, and ACAN 

were also enriched in cluster 2 (Table S1C). Recent investigations have reported the 

presence of Fsp1+ fibroblasts in the adipogenic niche, with potential role in 

maintaining adipose homeostasis (Zhang et al. 2018; Hou et al. 2018; Vijay et al. 2020). 

The markers identified for fibroblasts in these investigations FBN1, IGFBP6, MFAP5, 

FSP1, and PI16 were some of the most enriched markers of cluster 2 cells (Fig. S3). 

Taken together, these results indicate that cluster 2 cells are fibroblast-like, with 

negative regulation of cellular migration and an ongoing activity for ECM organization. 

2.2 snRNA-seq identifies the same preadipocyte populations as scRNA-seq and 
detects biologically relevant differential expression 

To evaluate the efficacy of snRNA-seq for recovering transcriptional heterogeneity, we 

sequenced the nuclear transcriptome of single preadipocytes from the white and 

brown lineages. Unsupervised clustering of the two lineages grouped nuclei into four 

clusters, referred to as populations 0, 1, 2 and 3 (Fig. S4A and S4B). Cluster 3 nuclei, 
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however, had enriched expression for stress response genes and mitochondrial genes, 

along with high background RNA contamination (Fig. S4C), and hence were removed 

from downstream analyses. In the remaining clusters, brown nuclei were primarily 

grouped into clusters 1 and 2 whereas white nuclei grouped into a single cluster 0 (Fig. 

2A). Similarity between clusters identified in snRNA-seq and scRNA-seq was assessed 

using the concept of transcriptional signatures (Gaublomme et al. 2019; DeTomaso 

and Yosef 2016), defined as genes differentially expressed in either white vs brown 

preadipocytes, or cluster 1 vs cluster 2, in the scRNA-seq dataset (Table S1B and S1C). 

As expected, the transcriptional signature scores, calculated using Vision (DeTomaso et 

al. 2019), were enriched in the corresponding preadipocyte-type/clusters in the snRNA-

seq dataset (Fig. 2B), thereby demonstrating a high concordance between 

transcriptional features uncovered by the two techniques.  

As was observed with scRNA-seq, white nuclei were enriched for genes TCF21, 

PAX3 and PDGFRA (Table S2A), and brown nuclei were enriched for YAP/TAZ target 

genes ANKRD1 and CTGF (Table S2A), and smooth muscle lineage marker genes 

TAGLN, MYL9, CNN1, and MYH11 (Table S2A). Gene ID1, however, was not 

differentially enriched in white nuclei. The inability to detect differential enrichment of 

ID1 in nuclei could be caused by limited detection in snRNA-seq. In scRNA-seq 

dataset, we had classified certain DE genes as markers for white and brown 

preadipocytes based on their highly enriched and specific expression (Note S4). All 
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such white- and brown-preadipocyte specific marker genes were also enriched in white 

and brown nuclei respectively (Table S2A). Of the 50 genes with maximum enrichment 

(ordered by logFC) in white and brown preadipocytes in scRNA-seq dataset, over 94% 

were also differentially expressed in white and brown nuclei respectively (Fig. 2C). This 
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Figure 2 snRNA-sequencing identifies the same preadipocyte populations as scRNA-seq and detects biologically 
relevant differential expression (A) UMAP visualization of white and brown preadipocytes annotated either manually 
to reflect the sample of origin (top panel) or based on unsupervised clustering (bottom panel) (B) Heatmap of 
transcriptional signature scores for white preadipocyte (top left panel), brown preadipocyte (top right panel), brown 
preadipocyte cluster 1 (bottom left panel), and brown preadipocyte cluster 2 (bottom right panel) as plotted on the 
UMAP visualization of snRNA-seq data (C) Bar plot of percent top-50 genes differentially enriched (DE) in scRNA-seq 
dataset that are also DE in snRNA-seq dataset. Top-50 genes were evaluated based on log fold-change values using 
scRNA-seq dataset. 
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analysis demonstrates that snRNA-seq has sufficient sensitivity to recover same 

molecular differences as scRNA-seq between white and brown preadipocytes.      

  GO analysis identified enrichment of cellular adhesion, and regulation of cellular 

localization terms in brown cluster 1 nuclei, corresponding with the findings in scRNA-

seq dataset (Fig. S4D). Transforming growth factor superfamily genes BMP4 and 

TGFB2 were also enriched in cluster 1, along with regulators of adipose tissue 

development SEMA5A, MEST, and FST (Table S2B). All 6 cluster-1-specific marker 

genes (Note S4) identified were also enriched in cluster 1 nuclei (Table S2B). Of the 50 

genes with maximum enrichment (ordered by logFC) in cluster 1 cells in scRNA-seq 

dataset, 94% were also differentially expressed in the nuclear dataset (Fig. 2C). In 

cluster 2 brown nuclei, enrichment of FSP1 was observed (Table S2B), as well as 

regulation of extracellular matrix organization terms based on GO analysis (Fig. S4E). 

Genes encoding for extracellular matrix components COL6A2, MFAP5, ACAN, and 

ECM1 were all upregulated in cluster 2 (Table S2B). Of the 50 genes with maximum 

enrichment (logFC) in cluster 2 brown preadipocytes (scRNA-seq dataset), 80% were 

also differentially expressed in the nuclear dataset (Fig. 2C). All cluster-2-specific 

marker genes (Note S4) identified were also enriched in cluster 2 nuclei (Table S2B). 

Overall, our snRNA-seq analyses indicated the emergence of stem-cell-like behavior in 

cluster 1 and fibroblast-like behavior in cluster 2, in agreement with the whole-cell 

dataset. 
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2.3 Gene length-associated detection bias in single-nuclei RNA-sequencing  

Typical scRNA-seq data analysis pipelines often filter intronic reads for downstream 

count matrix generation. More recently, however, evidence has suggested that intronic 

reads originate from nascent transcripts (Ameur et al. 2011; Gray et al. 2014; Hendriks 

et al. 2014), and hence are informative about expression levels in single-cell data. 

Furthermore, the additional read counts improve gene detection sensitivity and can 

improve cell-cluster resolution (Bakken et al. 2018; Wu et al. 2019). Multiple recent 

studies have suggested internal hybridization of polyT RT-primer to intronic polyA 

stretches in nascent transcripts as the primary mechanism for the capture and detection 

of intronic reads (La Manno et al. 2018; Patrick et al. 2020; Shulman and Elkon 2019). 

Consequently, intronic reads are more readily detected in genes with more intronic 

polyA stretches, which are more likely to be longer in length (Fig. S1A). This bias is 

increased in nuclear libraries where up to 40% of all the reads map to intronic regions 

as compared to only 9% in scRNA-seq (Fig. 3A). Consequently, recent studies have 

reported enrichment of longer genes (Bakken et al. 2018; Lake et al. 2017) and poor 

detection of shorter genes (Thrupp et al. 2020) in nuclei. 

To examine the enrichment of long genes in nuclei, we first performed DGE 

analysis between cells and nuclei in white preadipocytes. Using both intronic and 

exonic reads, our analysis identified 493 genes enriched in cells and 568 genes 

enriched in nuclei (logFC >1and FDR <0.05). Notably, nuclear-enriched genes were  
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Figure 3 Gene length associated detection bias in the nuclear transcriptome (A) Distribution of percent exonic, 
intronic, intergenic, ambiguous and unmapped reads in scRNA-seq and snRNA-seq preadipocyte datasets (B) 
Distribution of gene length for genes enriched in cells (in blue) and nuclei (in yellow) with log fold-change > 1 and 
FDR < 0.05 including both intronic and exonic reads (C) Box plot of log library-size-normalized expression values for 
genes ID1 and PGF in scRNA-seq and snRNA-seq datasets. Black text indicates logFC value for white vs. brown DE 
test with FDR < 0.05. (D) Box plot of log library-size-normalized expression values for genes BST2 and CTSK in 
scRNA-seq and snRNA-seq datasets. Black text indicates logFC value for cluster 2 vs. cluster 1 DE test with FDR < 
0.05.(E) Left panel: Log-fold-change for nuclear-enriched genes when using only exonic reads, or both intronic and 
exonic reads before normalization. Each dot represents a gene enriched in nuclei using exonic-only reads with 
logFC > 0.25 and FDR < 0.05. Red dotted line indicates y=x axis. Right panel: Ratio of y-axis-value over x-axis-value 
for genes in left panel, plotted as a function of their length. (F) Left panel: Log-fold-change for nuclear-enriched 
genes when using only exonic reads, or both intronic and exonic reads after normalization. Each dot is the same as 
in panel (E). Red dotted line indicates y=x axis. Right panel: Ratio of y-axis-value over x-axis-value for genes in left 
panel, plotted as a function of their length. 
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significantly longer than genes enriched in whole-cells (two- group Mann–Whitney U-

test, p-value < 0.01, Fig. 3B). Moreover, single-nuclei measurements revealed poor 

detection of shorter genes such as white preadipocyte-specific marker genes ID1 & 

PGF (Fig. 3C) and cluster 2-specific marker genes BST2 & CTSK (Fig. 3D).  

We also performed DGE analysis between white cells and white nuclei using 

only exonic reads (logFC >0.25 and FDR <0.05). Notably, the logFC differential 

enrichment for nuclear-enriched genes was poorly correlated with counting exons or 

exons and introns (Fig. 3E, Pearson R = 0.50, p-value < 0.01). logFC values for some of 

the longest genes were artificially inflated, possibly because of their preferential 

detection upon inclusion of intronic reads (Fig. 3E Right panel). Conversely, logFC 

values for some of the shortest genes were artificially deflated because of their poor 

detection (Fig. 3E Right panel). Consequently, the ratio of the logFC values with 

counting exons or exons and introns, was strongly correlated with gene length (Fig. 3E, 

Pearson R = 0.69, p-value < 0.01). Overall, our results demonstrate technical artifacts 

induced by gene-length associated detection bias in snRNA-seq, upon inclusion of 

intronic reads.  We therefore developed a normalization strategy to address this 

technical, length-associated detection bias (Note S3). After normalization, the logFC 

differential enrichment of nuclear-enriched genes was highly correlated with counting 

exons or exons and introns (Fig. 3F, Pearson R = 0.94, p-value < 0.01). Moreover, the 

ratio of the logFC values with counting exons or exons and introns, after normalization, 
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was poorly correlated with gene-length (Fig. 3F, Pearson R = 0.15, p-value < 0.01). 

Nuclear and cellular transcriptomes were also better correlated after removal of 

technical biases using our normalization strategy (Fig. S5A).  

DGE analysis, between white cells and white nuclei, with normalized read counts 

identified 382 enriched genes in cells and 249 enriched genes in nuclei (logFC >1and 

FDR <0.05), with nuclear-enriched genes still significantly longer than whole-cells (two-

group Mann–Whitney U-test, p-value < 0.01, Fig. S5B). However, the genes enriched in 

nuclei were on average 14-fold longer than genes enriched in cells (as compared to 32-

fold difference before normalization), which is comparable to the difference observed 

when using only exonic reads (11-fold difference, Fig. S5C), suggesting that after 

accounting for technical bias, there also exists biological enrichment of longer genes in 

nuclei. Overall, our observations demonstrate that length-normalization removes 

artificial detection biases thereby improving UMI count estimation accuracy, while also 

preserving improved gene detection sensitivity afforded by inclusion of intronic reads.  

To further understand differential transcript enrichment between whole-cell and 

nuclear transcriptomes, we next focused on genes enriched in whole-cells after 

normalization. GO analysis identified protein translation associated terms as most 

enriched in whole-cells (Fig. S5D). Genes contributing to the enrichment of 

translational terms primarily included mRNAs encoding for ribosomal proteins. This 

enrichment of ribosomal-protein mRNAs in whole-cells is consistent with their very low 
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cytoplasmic decay rates and selective nuclear export machinery (Wickramasinghe et al. 

2014; Chen and van Steensel 2017). Yet, poor detection of ribosomal proteins in the 

nuclear transcriptome did not affect the ability to resolve cellular populations in snRNA-

seq data, as evident by the score of transcriptional signature consisting of top 100 

genes enriched in cells based on logFC values (~ 53/100 ribosomal protein genes; Fig. 

S5E). 

2.4 Nuclear transcriptome is enriched for long non-coding RNAs that regulate 
adipogenesis and drive cell-type differences   

Long non-coding RNAs (lncRNAs) function in regulating diverse biological processes, 

including regulation of transcription, proliferation, pluripotency, and cellular 

differentiation (Quinodoz and Guttman 2014; Sherstyuk et al. 2018; Samata and Akhtar 

2018; Delá et al. 2019). Because of their regulatory function, lncRNAs predominantly 

remain localized in the nucleus (Cabili et al. 2015; Wen et al. 2018). snRNA-seq 

intrinsically enriches for nuclear localized transcripts, and previous studies have 

reported enrichment of lncRNAs in snRNA-seq libraries over scRNA-seq (Grindberg et 

al. 2013; Zeng et al. 2016). We hypothesized that nuclear enrichment of lncRNAs could 

be advantageous for characterizing adipose tissue because multiple lncRNAs have also 

been implicated in regulating adipogenesis (Sun et al. 2013; Ding et al. 2018; Wei et 

al. 2016; Sun and Lin 2019; Zhou et al. 2020). We tested this hypothesis in our in vitro 

system by profiling adipogenic regulatory lncRNAs in our whole-cell and nuclear 

libraries derived from white preadipocytes, after normalization. We identified 
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significant enrichment of lncRNAs NEAT1 (Wei et al. 2016), MEG3 (Li et al. 2017), 

MIR31HG (Huang et al. 2017), and PVT1 (Zhang et al. 2020) in white nuclei, which are 

previously reported regulators of adipogenesis (Fig. 4A). All four lncRNAs were also  

enriched in brown nuclei as compared to brown whole-cells (Fig. S6A to S6D). 

Generally, snRNA-seq consistently detected a greater number of lncRNAs at all read 

depths than scRNA-seq (Fig. 4B, p-value < 0.01, two-group Mann–Whitney U-test). Of 

the 111 differentially expressed lncRNAs between white nuclei and white cells, ~86% 

(96/111 genes) were upregulated in nuclei, thereby validating a higher prevalence of 

this class of genes in the nuclear compartment. 7 out of 15 lncRNAs that were enriched 

in white cells were snoRNA host genes (SNHGs), that have been shown to have various 

functions in cytoplasm such as repressing mRNA translation, miRNA sponging, and 

protein ubiquitination (Zimta et al. 2020). Overall, our results suggest a higher 

likelihood to deconstruct the functional roles of adipogenic regulatory lncRNAs (and 

other lncRNAs in general) using snRNA-seq. 

Next, we evaluated the sensitivity of snRNA-seq for detection of lncRNAs driving 

molecular heterogeneity between brown preadipocyte  cluster 1 and 2, two cell-types 

most closely related to each other. At ~50,000 reads per cell/nuclei, DGE analysis 

identified over 40 lncRNAs distinctively regulated between cluster 1 and 2 in the 

snRNA-seq dataset as compared to only 15 lncRNAs in scRNA-seq dataset. 

Unsupervised hierarchical clustering in the snRNA-seq dataset based on the expression 
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of top 20 upregulated lncRNAs in cluster 1 and 2 each revealed sorting of nuclei into 

two distinct groups that predominantly reflected their original cluster assignment (Fig. 

4C). Moreover, Silhouette coefficient analysis (a method for evaluating clustering 

Figure 4 Nuclear transcriptome is enriched for lncRNAs that regulate adipogenesis and drive cell-type differences 
(A) Boxplots of lncRNAs reported as regulators of adipogenesis. Black text indicates logFC value for white nuclei vs. 
white cell DE test in preadipocytes with FDR < 0.05 after normalization (B) Median lncRNAs detected as a function 
of read depth across single cells and nuclei (both white and brown lineages). Error bars indicate the interquartile 
range (C) Hierarchical clustering using scaled expression values of top-20 upregulated lncRNAs in brown cluster 1 
and cluster 2 in snRNA-seq dataset. 100 random barcodes were chosen for this analysis. Topmost row reflects 
original cluster assignment for the selected barcodes (D) Cluster separation resolution quantification between brown 
cluster 2 vs cluster 1 in scRNA-seq and snRNA-seq dataset. Only lncRNAs were considered for PCA manifold 
generation. Both datasets were subsampled to have the same number of cells/nuclei and same number of mean 
transcriptome mapped reads.  
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performance) revealed better cluster separation performance for snRNA-seq as 

compared to scRNA-seq between cluster 1 and 2 for all downsampled read depths 

(Fig. 4D). Silhouette coefficients were calculated based on Euclidean distance between 

cells/nuclei in the principal component space generated using only lncRNAs (see 

Methods). To validate that the observed performance features were not metric 

dependent, we quantified two more indices, the Calinski-Harabasz Index, and the 

Davies-Bouldin Index to compute inter-cluster separation and found similar trends (Fig. 

S6F and S6G). A similar analysis performed by normalizing for the same number of 

mean unique molecules (UMI) per sample revealed a similar trend for the three 

separation indices (Fig. S6H to S6J). Together, our results suggest that snRNA-seq is 

superior for learning heterogeneity governed by lncRNAs as compared to scRNA-seq.  

2.5 snRNA-seq detects relevant transcriptional regulation during adipogenesis in 
white preadipocytes 

After identifying transcriptomic similarities and differences between scRNA-seq and 

snRNA-seq in preadipocyte state, we next focused on evaluating molecular 

correspondence between the two techniques in mature adipocytes. We leveraged our 

in vitro model of white adipogenesis that enabled us to prepare a single-cell 

suspension of mature adipocytes without the need of implementing harsh tissue 

dissociation protocols (see Methods). Following single-cell suspension preparation, one 

of the most common ways to sort single cells is using flow cytometry. Recently, FACS 

gating strategies have been tailored to isolate mature adipocytes (Hagberg et al. 2018; 
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Majka et al. 2014), although only a small percentage of adipocytes are able to survive 

the shear stress associated with flow sorting (Majka et al. 2014). Therefore, to enable 

gentle sorting of single adipocytes for downstream scRNA-seq, we developed a new 

protocol using the cellenONE® X1 single-cell isolation platform. This automated liquid-

handling robot uses gentle piezo-acoustic technology for dispensing cells 

encapsulated in a picoliter-volume droplet, ensuring minimal cellular perturbation and 

background RNA contamination. To harvest adipocytes in vitro, human white 

preadipocytes were cultured and differentiated using a chemical adipogenic induction 

cocktail for 20 days (Shamsi and Tseng 2017). Coherent anti-stokes Raman imaging 

established successful differentiation of white preadipocytes, with distinctly visible 

signal from round lipid droplets (Fig. S7A). After creating a single-cell suspension of 

white adipocytes, 200 cells were spotted using the cellenONEX1 machine, onto 96-

well plates preloaded with lysis buffer and barcoded polyT primer. Library preparation 

was then performed using the mcSCRB-seq chemistry (Bagnoli et al. 2018). 

Transcriptomic profiles of these cells were then compared with a snRNA-seq library of 

~12,000 nuclei isolated from 20-days differentiated white adipocytes. 

Independent unsupervised clustering revealed organization of both cells and 

nuclei into primarily two clusters, referred to as cluster 0 and 1 (Fig. 5A). snRNA-seq 

identified an additional cluster 2, which exhibited characteristics of mitotic 

preadipocytes with ongoing cell cycle progression, suggesting that these cells could  
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Figure 5 snRNA-seq detects important transcriptional regulation during adipogenesis in white preadipocytes (A) 
UMAP visualization of scRNA-seq and snRNA-seq white adipocyte datasets (day-20) after unsupervised clustering 
(leftmost panels). Expression profile for mesenchymal marker THY1 and mature-adipocyte marker ADIPOQ in both 
scRNA-seq and snRNA-seq datasets (middle and rightmost panels) (B) Heat map of z-scored expression of top 20 
differentially expressed genes between cluster 0 and cluster 1 in scRNA-seq white adipocyte dataset. Highlighted in 
red are markers of adipogenesis (C) Heat map of z-scored expression of top 20 differentially expressed genes between 
cluster 0 and cluster 1 in snRNA-seq white adipocyte dataset. A random subset of 150 barcodes was used for this 
visualization. Highlighted in red are markers of adipogenesis (D) Heatmap of transcriptional signature scores for cluster 
1 as plotted on the UMAP visualization of snRNA-seq white adipocyte data (E) Heatmap of transcriptional signature 
scores for cluster 0 as plotted on the UMAP visualization of snRNA-seq white adipocyte data 
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be preadipocytes that never underwent growth arrest (Note S2; Fig. S8). Cluster 0 in 

both datasets was marked by the expression of mesenchymal marker THY1 (Fig. 5A), 

suggesting that these cells/nuclei were differentiating preadipocytes. Cluster 1, on the 

other hand, had high expression of adipogenic gene ADIPOQ, indicating that 

cells/nuclei in this cluster were mature adipocytes (Fig. 5A). DGE analysis further 

identified enrichment of other adipogenic marker genes (along with ADIPOQ) in cluster 

1 (Fig. 5B and 5C, highlighted in red), confirming a transition from differentiating 

preadipocytes to mature adipocytes from cluster 0 to cluster 1 in both datasets. GO  

analysis identified enrichment of extracellular matrix organization terms in cluster 0 and 

lipid metabolism in cluster 1, independently in both scRNA-seq and snRNA-seq 

datasets (Fig. S7B to S7E). Moreover, ~80% genes (106/133) upregulated in cluster 1 in 

the scRNA-seq dataset, were also differentially expressed in the snRNA-seq dataset. 

Notably, the remaining 20% genes (27/133) that were not differentially expressed in 

the snRNA-seq dataset primarily included genes associated with the mitochondrial 

respiratory chain process (Fig. S7F), suggesting that adipocytes’ enhanced 

mitochondrial activity may not be captured in the snRNA-seq dataset. 

Correspondingly, snRNA-seq dataset lacked manifestation of mitochondrial biological 

processes such as oxidative phosphorylation, and electron transport chain in cluster 1 

upon GO (Fig. S7B vs S7D). This observation was also supported by the fact that these 

27 genes had a median length of ~11 Kbp, the same order of magnitude as length of 
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genes with poor detection in nuclei over whole cells (Fig. 3B). As expected, scores of 

clusters 0 and 1 transcriptional signatures in the snRNA-seq dataset were observed to 

be highly conserved and enriched in corresponding cluster types (Fig. 5D and 5E), 

further validating the conservation of information in the nuclear transcriptome.  

Overall, our results reveal a comparable molecular landscape in white adipocytes 

between scRNA-seq and snRNA-seq datasets. 

2.6  Integration of snRNA-seq and scRNA-seq datasets 

A comprehensive cell atlas of the adipose tissue will require joint analyses of datasets 

generated using both scRNA-seq and snRNA-seq. However, technical biases and 

differential transcript enrichment in snRNA-seq leads to significant batch effects 

between snRNA-seq and scRNA-seq experiments, thereby reducing clusterability of 

cells from these two protocols (Mereu et al. 2020). Multiple bioinformatic tools are now 

available to remove covariates that lead to technical batch effects and facilitate 

integration of scRNA-seq datasets generated across different days, laboratories, 

individuals, or technologies (Zappia et al. 2018). We used single-cell variational 

inference (scVI), a deep generative modeling-based tool (Lopez et al. 2018), to explore 

the possibility of integrating snRNA-seq and scRNA-seq datasets for joint analysis. Four 

datasets of white preadipocytes were integrated in total: day-0 scRNA-seq & snRNA-

seq (cluster 0 in Fig. 1A and Fig. 2A), and day-20 scRNA-seq & snRNA-seq (top and 

bottom left panels in Fig. 5A).  
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Without batch correction, all four datasets arranged into distinct individual 

clusters, with no shared population identified at the same time point across different 

techniques, or same technique but across different time-points (Fig. 6A). A 

dendrogram, based on the Euclidean distance in dimensionally reduce space, grouped  

clusters first by sequencing chemistry (mcSCRB-seq vs 10x), followed by technique type 

(snRNA-seq vs scRNA-seq), and finally by time point (day-0 vs day-20, Fig. 6A). After 

integration, matching adipocyte populations from day-20 and preadipocyte 

populations from both day-0 and day-20 in nuclear and whole-cell datasets were 

primarily nearest neighbors in a dendrogram based on the Euclidean distance in 

Figure 6 Integration of snRNA-seq and scRNA-seq datasets (A) UMAP visualization of non-integrated scRNA-seq and 
snRNA-seq datasets for both white preadipocyte (day-0) and mature adipocyte (day-20), for a total of 4 batches (top 
panel). Cluster dendrogram for non-integrated datasets based on the eigenvalue-weighted Euclidean distance 
matrix constructed in latent-dimension space inferred using scVI (bottom panel) (B) UMAP visualization and cluster 
dendrogram of scRNA-seq and snRNA-seq datasets as in panel A after integration using scVI-tools. See also Note 
S2 and Fig. S8.  
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dimensionally reduced space (Fig. 6B). UMAP visualization further revealed proximal 

placements of similar cell populations (Fig. 6B). Of note, we observed that 

preadipocytes from both day-0-snRNA-seq and day-0-scRNA-seq datasets localized 

into two distinct groups, which was driven by differences in proliferation state with one 

cluster composed of mitotic cells and another composed of growth arrested cells (Note 

S2; Fig. S8). Overall, our results demonstrate scVI’s integration abilities by identifying 

functionally similar preadipocyte and adipocyte populations shared across different 

techniques. 

3 Discussion 
 
In this investigation, we evaluated the ability of snRNA-seq to recapitulate the 

molecular and compositional landscape of distinct lineages in human adipose tissue. 

We avoided confounding variability associated with inter-depot and inter-subject 

transcriptional variation by performing a direct comparison of snRNA-seq and scRNA-

seq on a pair of immortalized white and brown human preadipocytes isolated from the 

neck region of the same individual. We found that snRNA-seq was able to recover the 

same cell-types as scRNA-seq at both preadipocyte and mature adipocyte states. 

Furthermore, we provided evidence for recovering similar expression profiles of 

biologically relevant genes, and attributing similar functional annotations to cell-types 

by nuclear transcriptome profiling as compared to whole-cells.  
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  At the preadipocyte stage, brown preadipocytes were a heterogeneous mix of 

two distinct cell populations, cluster 1 and cluster 2. However, cell-type enrichment 

followed by differentiation and metabolic assays will need to be further performed to 

identify their individual functions in maintaining adipose tissue homeostasis. To date, 

different scRNA-seq studies of mouse stromal vascular fraction have identified multiple 

subpopulations of adipose progenitor cells (APCs) expressing distinct markers (Burl et 

al. 2018; Hepler et al. 2018; Merrick et al. 2019; Schwalie et al. 2018). Integrated 

analysis of these datasets primarily identified two common populations of APCs in mice 

referred to as Asc1 and Asc2 (Ferrero et al. 2020; Rondini and Granneman 2020). 

Similar to cluster 2 cells, Asc2 exhibited pro-inflammatory and pro-fibrotic phenotype 

and positive expression of genes PI16 and MFAP5. Functional investigations into the 

two cell types revealed Asc2 cells inhibiting the differentiation of Asc1 cells in vitro 

(Rondini and Granneman 2020). Therefore, it is plausible that cluster 1 and cluster 2 

cells identified in our study may be functioning in a manner similar to Asc1 and Asc2 to 

maintain adipocyte turnover.   

snRNA-seq is the preferred technique to study samples whose compositional 

landscape may be biased by the differential efficiency of cell-type recovery when using 

scRNA-seq. Adipose tissue is one such sample where isolation of intact, single 

adipocytes is complicated by their fragile nature. Here, we developed a new single-

adipocyte isolation protocol using piezo-acoustic-based gentle dispensing technology 
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for improved recovery with downstream scRNA-seq. However, this adipocyte capture 

efficiency was still limited as compared to snRNA-seq where ~ 48% barcodes were 

identified as adipocytes as compared to only ~26% in scRNA-seq. Conversely, at the 

preadipocyte stat, where cell-type recovery is efficient, scRNA-seq recovered equal 

proportions of the two brown preadipocyte clusters. However, analysis of snRNA-seq 

data revealed ~1.5-fold enrichment of cluster 1 over cluster 2, suggesting a bias in 

compositional sampling in snRNA-seq. Therefore, such cell-level sampling biases must 

be considered when evaluating the composition of complex tissues with snRNA-seq.  

Understanding the advantages and drawbacks of using snRNA-seq, a nuclear 

transcriptome is inherently enriched for nascent transcripts, thereby predominantly 

reflecting changes in gene expression as a result of differences in transcription rates 

alone (Gaidatzis et al. 2015). In contrast, a cellular transcriptome is fundamentally 

enriched for mature transcripts, thereby capturing gene expression changes driven by 

both transcriptional and post-transcriptional regulatory processes such as mRNA 

processing and degradation. Higher relative proportion of nascent to mature 

transcripts in the nucleus also results in a large fraction of intronic reads in snRNA-seq, 

which when considered for count matrix generation, gives rise to detection bias against 

short genes with few intronic polyA stretches. Consequently, for a biological system 

compatible with both techniques, scRNA-seq may be better for identifying cellular 

subpopulations. scRNA-seq will also be better for assessing gene expression changes 
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as a result of post-transcriptional regulation. However, nuclear transcriptome is 

preferentially enriched for lncRNAs, indicating that functional investigations of these 

genes will be enhanced by sequencing nuclei. Moreover, some studies of specific 

nuclear functions may be enhanced by directly accessing nuclei for example, changes 

in gene expression profile as a result of targeted transcriptional activation mediated by 

epigenetic modifications. Therefore, it is important to evaluate each approach 

depending on the task at hand. However, for tissues such as the adipose tissue, 

snRNA-seq may be the only option. In our investigation, lncRNAs regulating 

adipogenesis were enriched in the nuclear transcriptome. lncRNAs driving differences 

between cluster 1 and 2 in brown preadipocytes were also better detected in the 

snRNA-seq dataset. However, we also identified poor detection of shorter genes in 

nuclei, some of which were key to driving heterogeneity between distinct cell-types.  

Including intronic reads for UMI quantification presents researchers with both 

advantages and drawbacks. polyA stretches are found randomly dispersed along the 

length of the genome, and introns become the predominant site for the localization of 

such stretches because of their extensive length (21-fold longer than exons, Piovesan 

et al. 2016). These polyA stretches present additional priming sites (besides the 3’ 

polyA tail) for the polyT RT primer, thereby enabling more efficient transcript capture. 

Conversely, most intronic reads are therefore derived from genes with multiple polyA 

stretches (long genes), thereby introducing technical detection bias. This bias gets 
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further magnified in snRNA-seq libraries that are inherently enriched for nascent 

transcripts (and hence intronic reads), and filtering such reads would mean reduced 

gene detection sensitivity, shallower sequencing depth and under-utilized sequencing 

cost. Here, we provided a normalization strategy for UMI counts derived from intronic 

reads that can remove gene-length associated technical biases. Implementation of this 

normalization strategy removes technical artifacts while retaining true biological 

features, thereby improving integration and enabling joint analysis of scRNA-seq and 

snRNA-seq datasets. In such joint analysis, our normalization strategy would also 

improve the accuracy of differential expression testing between any technique-specific 

clusters identified.  

Finally, we demonstrated applicability of scVI for integration of scRNA-seq and 

snRNA-seq datasets. This is critical for the generation of a comprehensive adipose 

tissue atlas, since investigations into the stromal vascular fraction heterogeneity have 

been performed using scRNA-seq whereas snRNA-seq is favorable for investigations 

into the existence of adipocyte subtypes. Therefore, any efforts to identify shared 

subpopulations across such datasets, and the lineages therein would demand data 

integration. Overall, snRNA-seq provides an effective method for characterizing cellular 

heterogeneity and functionally relevant gene expression profiles within human 

preadipocytes and adipocytes. We expect that snRNA-seq will be actively adopted by 

the adipose community for high-throughput transcriptomic profiling of the tissue and 
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aid in increasing its representation in initiatives such as the Human Cell Atlas. 

Ultimately, joint analysis of datasets acquired using multiple sequencing techniques will 

aid in the creation of a comprehensive human adipose tissue atlas, thereby enabling us 

to dissect its critical role in health and disease. 

4 Methods 
 
4.1 Preadipocyte culture and adipogenic differentiation 

Detailed protocol for maintenance, cryopreservation, and differentiation of white and 

brown preadipocytes are outlined in a different study (Shamsi and Tseng 2017). Briefly, 

for culturing preadipocytes, cells were grown in DMEM medium (Corning, 10-017-CV) 

supplemented with 10% vol/vol FBS and containing 1% vol/vol Penicillin-Streptomycin 

(Gibco). Cell culture was maintained at 37°C in a humidified incubator containing 5% 

vol/vol CO2.  80% confluent cells were passaged using 0.25% trypsin with 0.1% EDTA 

(Gibco, 25200-056) for a 1:3 split in a new 100 mm cell culture dish (Corning).  

Prior to adipogenic differentiation, white preadipocytes were allowed to grow up 

to 100% confluence in a 100 mm cell culture dish (Corning). After 48 hours at 100% 

confluence, growth media was replaced with adipogenic induction media every 48 

hours for the next 20 days. Induction media was prepared by adding 1 mL FBS, 500 μl 

Penicillin-Streptomycin, 15 μl human Insulin (0.5 μM, Sigma-Aldrich, I2643-50MG ), 10 

μl T3 (2 nM, Sigma-Aldrich,T6397-100MG), 50 μl Biotin (33 μM, Sigma-Aldrich, B4639-

100MG), 100 μl Pantothenate (17 μM, Sigma-Aldrich, P5155-100G), 1 μl 
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Dexamethasone (0.1 μM, Sigma-Aldrich, D2915-100MG), 500 μl IBMX (500 μM, Sigma-

Aldrich, I7018-100mg), and 12.5 μl Indomethacin (30 μM, Sigma-Aldrich, I7378-5G) to 

48.5 mL DMEM medium and sterile filter.  

4.2 Harvesting preadipocyte and mature adipocyte for scRNA-seq  

At preadipocyte stage, cells were harvested from 100 mm plates, labeled with hashtag 

antibodies (Table S1A, Note S1), and finally suspended in PBS with 0.04% BSA at 

~1000 cells/uL concentration for downstream sequencing. At mature adipocyte stage, 

cells were first washed with PBS (Corning, 21-040-CV) and incubated with a monolayer 

of .25% trypsin with 0.1% EDTA (Gibco; 25200-056; monolayer obtained by adding 

and removing 1 mL of trypsin) for 2-3 minutes in a tissue culture incubator. When 

adipocytes started to become round and detached from the plate, trypsin was 

neutralized by adding 1 mL of FBS. Clumps of adipocytes were dislodged using a wide 

bore 1 mL pipette tip and filtered using a 70 μm cell strainer. Concentration of 

adipocyte suspension was adjusted to ~ 200 cells/uL using FBS for downstream 

spotting using the CellenOne X1 machine.  

4.3 Nuclei isolation from preadipocytes and mature adipocytes for snRNA-seq 

Nuclei were isolated from white and brown preadipocytes using an NP-40 based lysis 

buffer: To 14.7 mL nuclease-free water (Qiagen), 150 ul of Tris-Hydrochloride (Sigma, 

T2194), 30 uL of Sodium Chloride (5M; Sigma, 59222C), 45 uL of Magnesium Chloride 

(1M; Sigma, M1028), and 75 uL of NP-40 (Sigma, 74385) was added. Two 100 mm 
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dishes were used for nuclei isolation from each preadipocyte type. 500 uL of NP-40 

based lysis buffer was added to each 100 mm dish and a cell scraper was employed to 

release adherent cells from the plates. Cells were then incubated with the lysis buffer 

for 5 minutes on ice in a pre-chilled 15 mL falcon tube. Cells were washed with ice-cold 

PBS supplemented with .2 U/uL RNase Inhibitor (Protector RNase Inhibitor; henceforth 

called wash buffer) 4 times by centrifuging at 500 rcf for 5 minutes at 4°C. Wash buffer 

was aspirated after the final round of centrifugation and nuclei were resuspended in 

the ice-cold wash buffer and filtered using a 40 um cell strainer. Final concentration 

was adjusted to ~ 1000 nuclei/uL using a hemocytometer for downstream sequencing. 

Nuclei were also stained using 0.08% trypan blue dye to assess nuclear membrane 

integrity under brightfield imaging. For nuclear isolation at the mature adipocyte stage, 

the same protocol was implemented as mentioned above with the modification of 

using 1 mL lysis buffer for each 100 mm dish.   

4.4 Single-cell and single-nuclei sequencing  

Table 1: Sequencing metrics for individual libraries used in our study. 

Technique Sample Chemistry 
Depth 

(per cell) 
# cells Sequencer 

scRNA-seq 
White & brown 
preadipocytes  

10X 
Chromium 

3′ v2 + 
hashtag 

antibodies 

78,000 8,000 
NovaSeq 

S2 

scRNA-seq 
White 

adipocytes  
mcSCRB-

seq 
100,000 200 NextSeq 
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snRNA-seq 
White 

preadipocytes  

10X 
Chromium 

3′ v3 
174,738 8,000 

NovaSeq 
S2 

snRNA-seq 
Brown 

preadipocytes  

10X 
Chromium 

3′ v3 
216,700 7,000 

NovaSeq 
S2 

snRNA-seq 
White 

adipocytes  

10X 
Chromium 

3′ v3 
123,700 12,000 

NovaSeq 
S2 

For mcSCRB-seq experiment with white adipocytes (day 20), 96-well plates were first 

preloaded with rows of 10 uniquely barcoded primers and lysis buffer according to the 

mcSCRB-seq protocol, with the only difference being the use of μCB-seq RT primers 

(Chen et al. 2020) instead of standard mcSCRB-seq ones. The sequence of barcodes 

used were: TCACAGCA, GTAGCACT, ATAGCGTC, CTAGCTGA, CTACGACA, 

GTACGCAT, ACATGCGT, GCATGTAC, ATACGTGC, and GCAGTATC. CellenONE X1 

instrument was used to individually deliver a single adipocyte into each well for a total 

of 200 cells. Following cell delivery, the mcSCRB-seq protocol was followed directly, 

but with the following two modifications: 

1. A 1:1 ratio of AmPure XP beads was used to pool all cDNA after RT as opposed 

to the manual bead formulation from standard mcSCRB-seq 

2. NEBNext i5 indexed primers (NEB, E7600 and E7645) were used as opposed to 

the non-indexed P5NEXTPT5 primer during library PCR and indexing step to 

generate dual indexed libraries for multiplexing 
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4.5 scRNA-seq and snRNA-seq data analysis 

scRNA-seq white & brown preadipocytes dataset was processed using cellranger-3.0.2 

with default parameters, and the human GRCh38-3.0.0 genome (November 19, 2018) 

as input. A custom pre-mRNA GTF file was created using the GRCh38-3.0.0 FASTA file 

as input to include intronic reads in UMI counts. Sample demultiplexing, doublet 

removal, and empty droplet removal was performed using the Seurat (Butler et al., 

2018) function HTODemux (Note S1). Cell barcodes were further filtered to have more 

than 200 genes. Post demultiplexing and filtering, scVI (Lopez et al. 2018) was used to 

infer a 20-dimensional latent space based on the expression of the top 2000 most 

variable genes. This latent space was then used in Seurat to generate the UMAP 

visualization using the RunUMAP command. Downstream clustering (resolution = 0.4) 

and differential expression analysis (logFC > 0.5) was performed using Seurat’s 

SCTransform pipeline (Hafemeister and Satija 2019). Clusters with > 5% mean 

mitochondrial content were removed from downstream analyses. Gene ontology 

analysis was performed at geneontology.org (Ashburner et al. 2000; Carbon et al. 

2019; Mi et al. 2019) and results were further confirmed using the goana package in R 

with genome wide human annotation derived from org.Hs.eg.db Bioconductor 

package. Transcription factor enrichment analysis was performed using the ChEA3 tool 

(Keenan et al. 2019). GRCh38-ref20202A (2020) reference was used for analysis 

involving lncRNAs, keeping everything else the same.  
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snRNA-seq white and brown preadipocyte dataset was also processed using 

cellranger-3.0.2. For white preadipocyte, barcodes with < 200 genes were removed 

from downstream analyses. CellBender (Fleming et al. 2019) was used to remove 

empty droplets. For downstream analyses, only barcodes called as cells by both 

cellranger and CellBender were used and barcodes with UMI count > 49000 were 

filtered out as possible doublets. For brown preadipocyte, barcodes with < 200 genes 

were removed and scVI was used to infer a 20-dimensional latent space. First round of 

clustering was performed in Seurat with the resolution set to 0.06. We identified 3 

clusters, with cluster 1 having most of the barcodes called as empty by CellBender. 

Therefore, cluster 1 was removed from downstream analysis as well other barcodes 

that were called as “cell-containing” by cellranger but not by CellBender. Cluster 2 was 

marked with high mitochondrial content (>20%) and hence was also removed from 

downstream analyses. After filtering out low-quality barcodes and clusters, Scrublet 

(Wolock et al. 2019) was used to remove any potential doublets. After individual QC of 

white and brown preadipocyte libraries, the two datasets were integrated together 

using scVI with no batch effect correction. The output from scVI analysis was a 20-

dimensional latent space representation with cell embeddings for both white and 

brown nuclei. This latent space was then used in Seurat to generate the UMAP 

visualization using the RunUMAP command. Downstream clustering (resolution = 0.24) 

and differential expression analysis (logFC > 0.5) was performed using Seurat’s 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.435852doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.435852
http://creativecommons.org/licenses/by/4.0/


 - 40 - 

SCTransform pipeline (see Fig. S4). For gene ontology, and differential expression 

analyses, the same tools as mentioned in the above paragraph were used. GRCh38-

ref20202A (2020) reference was used for analysis involving lncRNAs, keeping 

everything else the same.  

mcSCRB-seq white adipocyte dataset was processed using zUMIs (Parekh et al. 

2018) using the GRCh38 index for STAR alignment. We provided the 10X CellRanger 

recommended GRCh38-3.0.0 GTF file as input for standardization of gene counts. 

Reads with any barcode or UMI bases under the quality threshold of 20 were filtered 

out and known barcode sequences were supplied in an external text file. UMIs within 1 

hamming distance were collapsed to ensure that molecules were not double-counted 

due to PCR or sequencing errors. Only exonic reads were counted towards UMI 

quantification. The umi-count matrix generated using zUMIs was read using the 

readRDS command in Seurat. The CellenOne X1 machine acquires an image of every 

cell spotted and the presence of a single cell was further validated by analyzing these 

images to remove possibly empty or doublet barcodes. The Seurat object was 

analyzed using a standard Seurat pipeline with resolution set to 0.6 for clustering.  

snRNA-seq white adipocyte dataset was processed using cellranger-3.1.0. 

Barcodes with < 200 genes were removed from downstream analyses and scVI was 

used to infer a 20-dimensional latent space. For clustering using Seurat, the resolution 

parameter was set to 0.45. We identified 7 clusters, with cluster 3 having most of the 
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barcodes called as empty by CellBender. Therefore, cluster 3 was removed from 

downstream analysis as well other barcodes that were called as “cell-containing” by 

cellranger but not by CellBender. Cluster 5 was marked with high mitochondrial 

content and hence was also removed from downstream analyses. Cluster 2 had the 

greatest number of doublets identified by the doubletDetection (Gayoso et al. 2019) 

tools and was filtered out, as well as cluster 4 which was enriched for ribosomal 

proteins suggesting cellular debris contamination.   

4.6 Identifying number of lncRNAs detected as a function of sequencing depth 

For identifying the number of lncRNAs detected as a function of sequencing depth, the 

fastq files for scRNA-seq preadipocyte dataset only were subsampled using seqtk v1.3 

with the random seed = 100. For each subsample depth, fastq files were processed 

using cellranger-3.1.0 with GRCh38-ref2020A pre-mRNA as the reference. snRNA-seq 

data for white and brown nuclei (as processed with cellranger at full depth) were then 

aggregated with the output of scRNA-seq preadipocyte data at varying sequencing 

depth using the cellranger aggr command to achieve same number of average 

transcriptome mapped reads. Number of lncRNAs detected were then calculated as a 

function of sequencing depth, with lncRNA assumed as detected in a given cell/nuclei 

if UMI count >0.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.435852doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.435852
http://creativecommons.org/licenses/by/4.0/


 - 42 - 

4.7 Silhouette coefficient analysis 

Both scRNA-seq and snRNA-seq datasets for brown preadipocytes were subsampled 

as described above.  snRNA-seq dataset was further randomly subset to have the same 

number of total barcodes as scRNA-seq. At each sequencing depth, top 20 principal 

components were calculated using Seurat’s standard pipeline. Three resolution 

coefficients based on the Silhouette index, Calinski Harabasz index, and Davies Bouldin 

index were then calculated based on Euclidean distance between cells in the PCA 

space using the clusterCrit package in R. For analyzing cluster separation resolution 

between brown cluster 1 and 2 as a function of UMI count, exactly the same analysis 

was performed except that downsampling was performed to have the same number of 

UMI rather than reads between scRNA-seq and snRNA-seq dataset using the 

downsampleMatrix command in the DropletUtils package in R (Lun et al. 2019).  

4.8 Integration of snRNA-seq and scRNA-seq data 

For integrating scRNA-seq white preadipocyte (day-0) & white-adipocyte (day-20) and 

snRNA-seq white preadipocyte (day-0) & white-adipocyte (day-20) datasets (a total of 4 

datasets), we first created a single anndata object with UMI count-matrices from each 

dataset as input. Each of the four UMI matrices were generated by processing the 

originals fastq files (no downsampling of reads), and subset to only have high-quality 

barcodes as outlined in Methods section # 5. During concatenation, each of the four 

datasets was assigned a “batch” key. The concatenated anndata object was then used 
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as input to scvi-tools for integration using the commands outlined in the tutorial here: 

https://docs.scvi-tools.org/en/stable/user_guide/notebooks/harmonization.html. The 

output of following these steps was a 10-dimensional latent space with batch-corrected 

embedding for cells from each of the four datasets. UMAP visualization was then 

generated using the RunUMAP command in Seurat with the 10-dimensional latent 

space as input. The dendrogram was generated using the BuildClusterTree command 

in Seurat, which constructs a phylogenetic tree relating the 'average' cell from each 

identity class. Tree is estimated based on the eigenvalue-weighted euclidean distance 

matrix constructed in latent-dimension space. 
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Data related to this study is available upon request to the corresponding author. 
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