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Abstract 

How functional MRI (fMRI) data are analyzed depends on the researcher and the toolbox used. It is 

not uncommon that the processing pipeline is rewritten for each new dataset. Consequently, code 

transparency, quality control and objective analysis pipelines are important for improving reproducibility 

in neuroimaging studies. Toolboxes, such as Nipype and fMRIPrep, have documented the need for and 

interest in automated analysis pipelines. Here, we introduce fMRIflows: a consortium of fully automatic 

neuroimaging pipelines for fMRI analysis, which performs standard preprocessing, as well as 1st- and 2nd-

level univariate and multivariate analysis. In addition to the standardized processing pipelines, fMRIflows 

also provides flexible temporal and spatial filtering to account for datasets with increasingly high temporal 

resolution and to help appropriately prepare data for multivariate analysis and improve signal decoding 

accuracy. This paper first describes fMRIflows’ structure and functionality, then explains its infrastructure 

and access, and lastly validates the toolbox by comparing it to other neuroimaging processing pipelines 

such as fMRIPrep, FSL and SPM. This validation was performed on three datasets with varying temporal 

resolution to ensure flexibility and robustness, as well as to showcase the improved capability of 

fMRIflows. The outcome of the validation analysis shows that fMRIflows preprocessing pipeline performs 

comparably to the ones obtained from other toolboxes. Importantly, fMRIflows’ flexible temporal filtering 

approach leads to improved signal-to-noise-ratio after preprocessing and increased statistical sensitivity, 

particularly in datasets with high temporal resolution. fMRIflows is a fully automatic fMRI processing 

pipeline which uniquely offers univariate and multivariate single-subject and group analyses as well as 

preprocessing. It offers flexible spatial and temporal filtering and thereby leads to more pronounced results 

for datasets with temporal resolutions at or below 1000ms. 

 

Keywords: Python, neuroimaging, data processing, pipeline, reproducible research 
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1 Introduction 
Functional magnetic resonance imaging (fMRI) is a well-established neuroimaging method used to 

analyze activation patterns in order to understand brain function. A full fMRI analysis includes 

preprocessing of the data, followed by statistical analysis and inference on the results, usually separated 

into 1st-level analysis (the statistical analysis within subjects) and 2nd-level analysis (the group analysis 

between subjects). The goal of preprocessing is to identify and remove nuisance sources, measure 

confounds, apply temporal and spatial filters and to spatially realign and normalize images to make them 

spatially conform (Caballero-Gaudes & Reynolds, 2017). A good preprocessing pipeline should improve 

the signal-to-noise ratio (SNR) of the data, ensure validity of inference and interpretability of results 

(Ashburner, 2009), reduce false positive and false negative errors in the statistical analysis and therefore 

improve the statistical power. 

Even though the consequences of inappropriate preprocessing and statistical inference are well 

documented (Power, Plitt, Laumann, & Martin, 2017; Strother, 2006), most fMRI analysis pipelines are 

still established ad-hoc, subjectively customized by researchers to each new dataset (Carp, 2012). This 

usage can be explained by the circumstance that most researchers, by habit or lack of time, stick with the 

neuroimaging software at-hand or reuse and modify scripts and code snippets from colleagues and previous 

projects, and do not always adapt their processing pipelines to the newest standard in neuroimaging 

processing. Rehashing processing pipelines is associated with problems like persisting bugs in the code 

and delays in updating individual analysis steps to the most recent standards. This can lead to far reaching 

consequences. Of course, the constant updating of pipelines to newest standards and softwares also bears 

the risk of introducing new bugs and might lead to the pitfall of blindly trusting new untested procedures. 

One solution to tackle this issue will require code transparency, good quality control and a collective 

development of well-tested objective analysis pipelines (Gorgolewski et al., 2016). Recent years have 

brought some important reformations to the neuroimaging community that go in this direction. 

First, the introduction of Nipype (Gorgolewski et al., 2011) made it easier for researchers to switch 

between different neuroimaging toolboxes, such as AFNI (Cox & Hyde, 1997), ANTs (Avants et al., 2011), 

FreeSurfer (Fischl, 2012), FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), and SPM 

(Friston, Penny, Ashburner, Kiebel, & Nichols, 2006). Nipype together with other software packages such 

as Nibabel (Brett et al., 2018) and Nilearn (Abraham et al., 2014) opened up the whole Python ecosystem 

to the neuroimaging community. Code can be shared between researchers via online services such as 

GitHub (https://github.com), and the whole neuroimaging software ecosystem can be run on any machine 

or server through the use of container software such as Docker (https://www.docker.com) or Singularity 

(https://www.sylabs.io). Combined with a continuous integration service such as CircleCI 

(https://circleci.com) or TravisCI (https://travis-ci.org), this allows the creation of easy-to-read, 

transparent, shareable and continuously tested open-source neuroimaging processing pipelines. 
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Second, the next major advancement in the neuroimaging field was the introduction of a common 

dataset standard, such as the NIfTI standard (https://nifti.nimh.nih.gov/). This was important for the 

formatting of neuroimaging data. The neuroimaging community gathered together in a consortium to 

define a standard format for the storage of neuroimaging datasets, the so-called Brain Imaging Data 

Structure (BIDS) (Gorgolewski et al., 2016). A common data structure format facilitates the sharing of 

datasets and makes it possible to create universal neuroimaging toolboxes that work out-of-the-box on any 

BIDS conforming dataset. Additionally, through services like OpenNeuro (Gorgolewski, Esteban, 

Schaefer, Wandell, & Poldrack, 2017), a free online platform for sharing neuroimaging data, one can test 

the robustness and flexibility of a new neuroimaging toolbox on hundreds of different datasets. 

Software toolboxes like MRIQC (Esteban et al., 2017) and fMRIPrep (Esteban et al., 2019) have 

shown how fruitful this new neuroimaging ecosystem can be and have highlighted the importance and 

need of good quality control and high-quality preprocessing workflows with consistent results from diverse 

datasets. Thus, the present software package, called fMRIflows, will be based on this new ecosystem and 

toolboxes, and will expand it to fully automated pipelines for univariate and multivariate individual and 

group analyses. 

Moreover, fMRIflows provides flexible temporal and spatial filtering, to account for two recent 

findings in the field. First, flexible spatial filtering can become of importance when performing 

multivariate analysis, as it has been shown that the correct spatial band-pass filtering can improve signal 

decoding accuracy (Sengupta, Pollmann, & Hanke, 2018). Second, correct temporal filtering during 

preprocessing is important and can lead to improved signal-to-noise ratio (SNR), especially for fMRI 

datasets with a temporal resolution rate below one second (Viessmann, Möller, & Jezzard, 2018), but only 

if the filter is applied orthogonally to the other filters during preprocessing to ensure that previously 

removed noise is not again reintroduced into the data (Lindquist, Geuter, Wager, & Caffo, 2019). Due to 

technical improvements in imaging recording through acceleration techniques such as GRAPPA (Griswold 

et al., 2002) and simultaneous multi-slice/multiband acquisitions (Feinberg et al., 2010; Feinberg & 

Setsompop, 2013; Moeller et al., 2010), faster sampling rates became possible, to the point that respiratory 

and cardiac signals can be sufficiently sampled in the BOLD signal. This creates new challenges for the 

preprocessing of functional images, especially when the external recording of those physiological sources 

cannot be achieved. fMRIflows tackles this challenge in an innovative way by leveraging notebook format. 

fMRIflows presents a consortium of fully automatic neuroimaging pipelines for fMRI analysis, 

performing standardized preprocessing, as well as 1st- and 2nd-level analyses for univariate and 

multivariate analysis, with the additional creation of informative quality control figures. fMRIflows is 

predicated on the insights and code base of MRIQC (Esteban et al., 2017) and fMRIPrep (Esteban et al., 

2019), extending their functionality with regard to the following aspects: (a) flexible temporal and spatial 

filtering of fMRI data, i.e. low- or band-pass filtering allowing for the exclusion of high-frequency 

oscillations introduced through physiological noise (Viessmann et al., 2018); (b) accessible and modifiable 
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code base; (c) automatic computation of 1st-level contrasts for univariate and multivariate analysis; and (d) 

automatic computation of 2nd-level contrasts for univariate and multivariate analysis.  

In this paper, we (1) describe the different pipelines included in fMRIflows and illustrate the 

different processing steps involved, (2) explain the software structure and setup, and (3) validate 

fMRIflows’ performance by comparing it to other widely used neuroimaging toolboxes, such as fMRIPrep 

(Esteban et al., 2019), FSL (Jenkinson et al., 2012) and SPM (Friston et al., 2006). 

 

2 Materials and Methods 

2.1.1 fMRIflows’ processing pipelines 
The complete code base of fMRIflows is open access and stored conveniently in six different Jupyter 

notebooks on https://github.com/miykael/fmriflows. The first notebook does not contain any processing 

pipeline, but rather serves as a user input document that helps to create JSON files, which will contain the 

execution specific parameters for the five processing pipelines contained in fMRIflows: (1) anatomical 

preprocessing, (2) functional preprocessing, (3) 1st-level analysis, (4) 2nd-level univariate analysis and (5) 

2nd-level multivariate analysis. Each of these five pipelines stores its results in a sub hierarchical folder, 

specified as an output folder by the user. In the following section, we explain the content of those six 

Jupyter notebooks. 

 

Specification preparation 

Each fMRIflows processing pipeline needs specific input parameters to run. Those parameters range 

from subject ID and, number of functional runs per subject, to requested voxel resolution after image 

normalization, etc. Each notebook will read the relevant specification parameters from a predefined JSON 

file that starts with the prefix “fmriflows_spec”. There is one specification file for the anatomical and 

functional preprocessing, one for the 1st and 2nd level univariate analysis, and one for the 2nd-level 

multivariate analysis. For an example of these three JSON files, see Supplementary Note 1. The first 

notebook contained in fMRIflows, called 01_spec_preparation.ipynb, can be used to create those 

JSON files, based on the provided dataset and some standard default parameters. It does so by using 

Nibabel v2.3.0 (Brett et al., 2018), PyBIDS v0.8 (Yarkoni et al., 2019) and other standard Python libraries. 

It is up to the user to change any potential processing parameter should they be different from the used 

default values. 
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Anatomical preprocessing 

The anatomical preprocessing pipeline is contained within the notebook 

02_preproc_anat.ipynb and uses the JSON file fmriflows_spec_preproc.json for parameter 

specification such as voxel resolution. If a specific value is not set, fMRIflows normalizes to an isometric 

voxel resolution of 1 mm3 by default. However, the user can also choose an anisometric voxel resolution 

that varies in all three dimensions. Additionally, the user can decide to have a fast or precise normalization. 

The precise normalization can take up to eight times as long as the fast approach but guarantees a 

normalization of high precision. For an example of the JSON file content, see Supplementary Note 1. 

The anatomical preprocessing pipeline only depends on the subject specific T1-weighted (T1w) 

anatomical images as input files. The individual processing steps are visualized in Figure 1 and consist of: 

(1) image reorientation, (2) cropping of field of view (FOV), (3) correction of intensity non-uniformity 

(INU), (4) image segmentation, (5) brain extraction and (6) image normalization. For a more detailed 

description of the steps involved in this processing pipeline, see Supplementary Note 2. 

 

 
Figure 1: Depiction of fMRIflows’ anatomical preprocessing pipeline. Arrows indicate dependency 

between the different processing steps and data flow. Name of each node describes functionality, with the 

corresponding software dependency mentioned in brackets. 
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Functional preprocessing 

The functional preprocessing pipeline is contained within the notebook 03_preproc_func.ipynb 

and uses the JSON file fmriflows_spec_preproc.json for parameter specification. As specification 

parameters, users can indicate if slice-time correction should be applied or not, and if so which reference 

timepoint should be used. The user can also indicate to which isometric or anisometric voxel resolution 

functional images should be sampled to, and if the sampling is into subject or template space. For the 

template space, the ICBM 2009c nonlinear asymmetric brain template is used (Fonov et al., 2011). 

Furthermore, users can specify possible values for low-, high- or band-pass filters in the temporal or spatial 

domain. Additionally, to investigate nuisance regressors, users can specify the number of CompCor 

(Behzadi, Restom, Liau, & Liu, 2007) or independent component analysis (ICA) components they want to 

extract and which threshold values they want to use to detect outlier volumes. The implications of those 

parameters will be explained in more details in the following sections. For an example of the JSON file 

content, see Supplementary Note 1. 

The functional preprocessing pipeline depends as inputs on the output files from the anatomical 

preprocessing pipeline, as well as the subject-specific functional images and accompanying descriptive 

JSON file that contains information about the temporal resolution (TR) and slice order of the functional 

image recording. This JSON file is part of the BIDS standard and therefore should be available in the BIDS 

conform dataset. The individual processing steps are schematized in Figure 2 and consist of: (1) image 

reorientation, (2) non-steady-state detection, (3) creation of functional brain mask, (4) slice time correction, 

(5) estimation of motion parameters, (6) two-step estimation of coregistration parameters between 

functional and anatomical image, (7) finalization of motion parameters, (8) single-shot spatial interpolation 

applying motion correction, coregistration and if specified normalizing images to the template image, (9) 

construction and application of brain masks, (10) temporal filtering and (11) spatial filtering. It is important 

to mention that the functional preprocessing is done for each functional run separately to prevent inter-run 

contaminations. For a more detailed description of the steps involved in this processing pipeline, see 

Supplementary Note 3. 
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Figure 2: Depiction of fMRIflows’ functional preprocessing pipeline. Arrows indicate dependency 

between the different processing steps and data flow. Name of each node describes functionality, with the 

corresponding software dependency mentioned in brackets. Steps that can be grouped into specific sections 

are contained within a red box to facilitate understanding of the pipeline. Color of arrows indicated if 

connection stays within a section (red) or not (blue). Nodes depicted as gray boxes indicate that they can 

be run multiple times with iterating input values, i.e. performing a spatial smoothing with an FWHM value 

of 4 and 8mm. 
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1st-level analysis 

The first level analysis pipeline is contained within the notebook 04_analysis_1st-

level.ipynb and uses the JSON file fmriflows_spec_analysis.json for parameter specification. 

As specification parameters, users can indicate which nuisance regressors to include in the GLM, if outliers 

should be considered, and if the data is already in template space or if this normalization should be done 

after the estimation of the contrasts. Users can also specify other GLM model parameters, such as the high-

pass filter value and the type of basis function that should be used to model the haemodynamic response 

function (HRF). Additionally, the users will also specify a list of contrasts they want to be estimated, or if 

they want to create specific contrasts for each stimulus column in the design matrix, and/or for each session 

separately, which then later might also be used for multivariate analysis. For an example of the JSON file 

content, see Supplementary Note 1. 

The 1st-level analysis pipeline depends on a number of outputs from the previous anatomical and 

functional preprocessing pipelines, i.e. the TSV (tab separated value) file containing motion parameters 

and confound regressors, a text file indicating the number of non-steady-state volumes removed from the 

functional image, and a text file containing a list of indexes identifying outlier volumes. Additionally, the 

1st-level analysis pipeline also requires BIDS conform events files containing information on the applied 

experimental design, including types of conditions and their respective onsets and durations. The 

individual processing steps included in the 1st-level analysis consist of: (1) collecting preprocessed files 

and model relevant information, (2) model specification and estimation, (3) univariate contrast estimation, 

(4) optional preparation for multivariate analysis, (5) optional spatial normalization of contrasts (Figure 

3). All of the relevant steps, that is model creation, estimation and contrast computation are performed 

with SPM version 12. For a more detailed description of the steps involved in this processing pipeline, see 

Supplementary Note 4. 
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Figure 3: Depiction of fMRIflows’ 1st-level analysis pipeline. Arrows indicate dependency between the 

different processing steps and data flow. Name of each node describes functionality, with the 

corresponding software dependency mentioned in brackets. Sections that can be grouped into specific 

sections are contained within a red box to facilitate understanding of the pipeline. Color of arrows indicated 

if connection stays within a section (red) or not (blue). Nodes depicted in green are optional and can be 

run if spatial normalization was not yet performed during preprocessing.  
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2nd-level univariate analysis 

The second level univariate analysis pipeline is contained within the notebook 05_analysis_2nd-

level.ipynb and uses the JSON file fmriflows_spec_analysis.json for parameter specification. 

Users can specify the probability value used as a cutoff for the threshold of the GM probability tissue map 

in template space that is later used during the model estimation. Additionally, users can specify voxel- and 

cluster-threshold topological thresholding of the statistical contrast, as well as relevant AtlasReader (Notter 

et al., 2019) parameters for the creation of the output tables and figures. 

The 2nd-level univariate analysis pipeline depends only on the estimated contrasts from the 1st-level 

univariate analysis. No further contrast specification is required as fMRIflows currently only implements 

a simple one-sample T-test. The individual processing steps included in the 2nd-level univariate analysis 

consist of: (1) gathering of the 1st-level contrasts, (2) creation and estimation of 2nd-level model, (3) 

estimation of contrast estimation, (4) topological thresholding of contrasts, (5) results creation with 

AtlasReader. As for the 1st-level analysis, all of the relevant model creation, estimation and contrast 

computation are performed with SPM12. For a more detailed description of the steps involved in this 

processing pipeline, see Supplementary Note 5. 

 

2nd-level multivariate analysis 

The second level multivariate analysis pipeline is contained within the notebook 

06_analysis_multivariate.ipynb and uses the JSON file 

fmriflows_spec_multivariate.json for parameter specification. Users can define a list of 

classifiers to use for the multivariate analysis, the sphere radius and step size of the searchlight approach. 

To perform a 2nd-level analysis of searchlight results users can decide between a classical GLM approach 

testing against chance level and a more recommended permutation based method as described in Stelzer, 

Chen, & Turner (2013) with the option of determining the number of permutations. Additionally, users 

can specify voxel- and cluster-threshold topological thresholding of the statistical contrast, as well as 

relevant AtlasReader parameters for the creation of the output tables and figures. 

The 2nd-level multivariate analysis pipeline depends on the estimated contrasts from the 1st-level 

multivariate analysis, the associated CSV file containing a list of the corresponding contrast labels and a 

list of binary classification identifiers. In contrast to the other notebooks, this notebook uses Python 2.7 to 

accommodate the requirements of PyMVPA v2.6.5 (Hanke et al., 2009). The individual processing steps 

included in the 2nd-level multivariate analysis consist of: (1) data preparation for the analysis with 

PyMVPA, (2) searchlight classification, (3) computation of group analysis using a T-test, (4) computation 

of group analysis according to Stelzer et al. (2013), and (5) results creation with AtlasReader. For a more 

detailed description of the steps involved in this processing pipeline, see Supplementary Note 6. 
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2.1.2 Infrastructure and access to fMRIflows 
The source code of fMRIflows is available at GitHub (https://github.com/miykael/fmriflows) and is 

licensed under the BSD 3-Clause “New” or “Revised” License. The code is written in Python v3.7.2 

(https://www.python.org), stored in Jupyter Notebooks v4.4.0 (Kluyver et al., 2016) and distributed via 

Docker v18.09.2 (https://docker.com) containers that are publicly available via Docker Hub 

(https://hub.docker.com). The usage of Docker allows the user to run fMRIflows on any major operating 

system, with the following command: 

 
docker run -it -p 9999:8888 -v /home/user/ds001:/data miykael/fmriflows 

 

The first flag -it indicates that the docker container should be run in interactive mode, while the 

second flag -p 9999:8888 defines the port (here 9999) that we want to use to access the Jupyter 

Notebooks via the web-browser. The third flag, -v /home/user/ds001:/data tells fMRIflows the 

location of the BIDS conform dataset that should be mounted in the docker container, here located at 

/home/user/ds001. Once the docker container is launched, the interactive Jupyter Notebooks can be 

accessed through the web-browser. 

fMRIflows uses many different software packages for the individual processing steps. The 

neuroimaging software that are used are: Nipype v1.1.9 (Gorgolewski et al., 2011), FSL v5.0.9 (Smith et 

al., 2004), ANTs v2.2.0 (Avants et al., 2011), SPM12 v7219 (Penny, Friston, Ashburner, Kiebel, & 

Nichols, 2011), AFNI v18.0.5 (Cox & Hyde, 1997), Nilearn v0.5 (Abraham et al., 2014), Nibabel v2.3.0 

(Brett et al., 2018), PyMVPA v2.6.5 (Hanke et al., 2009), Convert3D v1.1 (https://sourceforge.net/p/c3d), 

AtlasReader v0.1 (Notter et al., 2019) and PyBIDS v0.8 (Yarkoni et al., 2019). In addition to some standard 

Python libraries, fMRIflows also uses Numpy (Oliphant, 2007), Scipy (Jones, Oliphant, Peterson, & 

others, 2001), Matplotlib (Hunter, 2007), Pandas (McKinney & others, 2010) and Seaborn 

(http://seaborn.pydata.org). 

With every new pull request pushed to the GitHub repository of fMRIflows, a test instance on 

CircleCI (https://circleci.com) is deployed to test the complete code base for execution errors. This 

framework allows the continuous integration of new code to fMRIflows, and guarantees the general 

functionality of the software package. Outputs are not controlled for their correctness. 

 

2.1.3 Validation of fMRIflows 
fMRIflows was validated in two phases. In Phase 1, we validated the proficiency of the toolbox by 

applying it on different kinds of fMRI datasets conforming to the BIDS standard (Gorgolewski et al., 2016) 

available via OpenNeuro.org (Gorgolewski et al., 2017). Insights during this phase allowed us to improve 

the code base and make fMRIflows robust to a diverse set of datasets. In Phase 2, we compared the 

performance of the toolbox to similar neuroimaging preprocessing pipelines such as fMRIPrep, FSL, and 
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SPM. To better understand where fMRIflows overlaps or diverges from comparable processing pipelines, 

we investigated the preprocessing, subject-level and group-level outcomes for all four toolboxes, run on 

three different datasets. 

 

Phase 1: Proficiency validation 

To investigate the capabilities and flaws of the initial implementation of the toolbox, fMRIflows 

was run on different datasets, either available publicly via OpenNeuro.org or available privately to the 

authors. Such an approach allowed the exploration of datasets with different temporal and spatial 

resolutions, SNRs, FOVs, numbers of slices, scanner characteristics, and other sequence parameters, such 

as acceleration factors and flip angles. 

 

Phase 2: Performance validation 

To validate the performance of fMRIflows, we used three different task-based fMRI datasets and 

compared its preprocessing to the three neuroimaging processing pipelines fMRIPrep, FSL and SPM. 

Comparison was done on preprocessing, subject-level and group-level outputs. Because of differences in 

how FSL and SPM perform subject- and group-level analyses and due to the lack of such routines in 

fMRIPrep, all subject- and group-level analyses for the performance validation were performed using 

identical Nistats (Abraham et al., 2014) routines. 

The three datasets (see Table 1) were all acquired on scanners with a magnetic field strength of 3 

Tesla and differ in many sequence parameters, most notably in the temporal resolution with which they 

were recorded. This is especially important as we aim to highlight that the right handling of temporal 

filtering is crucial for datasets with a temporal resolution below 1000ms. 
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Table 1: Overview of the datasets used to validate fMRIflows. 

Dataset TR2000 TR1000 TR600 

Temporal resolution 2000ms 1000ms 600ms 

Spatial resolution 3.5 x 3.5 x 3.3 2.0 x 2.0 x 2.4 3.0 x 3.0 x 3.0 

Number of slices 36 64 24 

Slice Order Descending Unknown Interleaved 

Coverage Whole brain Whole brain Slab 

Volumes per run 275 453 600 

Number of runs 4 4 6 

Acceleration Factor None 4 3 

Magnetic strength 3 Tesla 3 Tesla 3 Tesla 

Number of subjects 12 20 17 

Sequence type 2D-EPI Multi-Band SMS 

Task Audio-visual memory task Mixed gamble task Audio-visual observation task 

Data Availability OpenNeuro.org 

(ds001345, v 1.0.1) 

OpenNeuro.org 

(ds001734, v.1.0.4) 

OpenNeuro.org 

(will be made available after 

publication of experimental work) 

 

Dataset TR2000 has a comparably low temporal and spatial resolution. It serves as a standard 

dataset, recorded with a standard EPI scan sequence. The dataset and paradigm are described in more 

details in Notter et al. (under review). In short, participants performed a continuous recognition task and 

indicated for each image whether it is old or new. When the image was presented for the first time (new) 

it was either presented with no sound (unisensory visual context) or together with a sound (multisensory 

context). 

Dataset TR1000 has a rather high temporal and spatial resolution and serves as an advanced dataset, 

recorded with a scan sequence using a multiband acceleration technique. The dataset and paradigm are 

described in more detail in Botvinik-Nezer et al. (2019). In short, participants performed a mixed gambling 

task in which they were asked to either accept or reject a possible monetary gain or loss. 

Dataset TR600 has a very high temporal resolution with a moderate spatial resolution and serves 

as an extreme dataset, recorded with scan sequences using a simultaneous multi-slice (SMS) acceleration 

technique (Feinberg et al., 2010). This dataset was collected for another project. In short, participants were 

shown auditory, visual or audiovisual stimuli containing either an animal (as an image or sound), pure 

noise or both together. Participants performed a discrimination task in which they had to indicate if they 

perceived a stimuli with an animal in it or not, independent of the stimuli modality. The stimuli were either 

presented in a unisensory or multisensory context. 

 

All participants of the Datasets TR2000 and TR600 have been included in the performance 

validation, while only the first 20 out of the 120 total participants of the Dataset TR1000 was used in order 
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to reduce computation time and make this dataset comparable to the other two. Datasets TR2000 and 

TR1000 are already publicly available through the OpenNeuro platform. Dataset TR600 is in preparation 

to be published on OpenNeuro as well. Until then, this dataset is available upon request. 

The preprocessing pipelines with fMRIflows, fMRIPrep, FSL and SPM were based on the default 

parameters and only differed in the following points from their standard implementations: (1) Functional 

images were resampled to an isometric voxel resolution according to the dominant resolution dimension 

within a dataset; (2) Spatial smoothing of the functional images is applied after preprocessing of the 

images, using a Nilearn routine and a smoothing kernel with a Full Width at Half Maximum (FWHM) of 

6mm, in order to keep the approaches comparable, as fMRIPrep does not allow spatial smoothing of 

functional images; (3) Anatomical images in the FSL pipeline were first cropped to a standard FOV, 

followed by brain extraction using FSL’s BET before FSL’s FEAT was launched; (4) In the case of FSL, 

the normalization from structural to standard space was done using a non-linear warping approach with 12 

degrees of freedom and a spline interpolation model; (5) In the case of SPM, the template brain for the 

normalization was its standard tissue probability brain TPM, while for fMRIflows, fMRIPrep and FSL, the 

ICBM 2009c nonlinear asymmetric brain template was used. 

The statistical inference was not performed on any of the investigated toolboxes to prevent the 

introduction of a software specific bias. The 1st- and 2nd-level analysis was performed using Nistats, Nilearn 

and other Python toolboxes and only differed between the toolboxes in the following ways: (1) the 

estimated motion parameters added to the design matrix during the 1st-level analysis differed for each 

toolbox as they were based on the software-specific preprocessing routine; (2) the number of volumes per 

run used during the 1st-level analysis of fMRIflows might differ slightly from the other approaches, as the 

fMRIflows routine removes non-steady state volumes during the preprocessing; (3) SPM used its own 

tissue probability map to create a binary mask restricted to gray matter voxels during the group analysis, 

while the other three toolboxes used the ICBM 2009c gray matter probability map instead. 

To compare the unthresholded group statistic maps between the toolboxes, we created for each 

pairwise combination of preprocessing approach a Bland-Altman 2D histogram plot, as described by 

Bowring, Maumet, & Nichols (2018). These plots show the difference between the statistic value (y-axis), 

against the mean statistic value (x-axis) for all voxels within the intersection of the respective brain mask. 

In other words, it summarized in a 2D histogram plot, for each voxel how much higher the statistical value 

in toolbox B is (y-axis), in comparison to toolbox A’s statistical value (x-axis). 

The complete lists of parameters, the scripts to perform preprocessing, 1st- and 2nd-level analysis and 

the scripts to create individual figures can be found on fMRIflows GitHub page 

(https://github.com/miykael/fmriflows/tree/master/paper). Derivatives generated for the validation in 

phase 2 can be inspected and downloaded on NeuroVault (Gorgolewski et al., 2015) under the following 

links: (1) Standard deviation maps of temporal averages after preprocessing 

(https://identifiers.org/neurovault.collection:5645), (2) temporal SNR maps after preprocessing 

(https://identifiers.org/neurovault.collection:5713), (3) binarized 1st-level activation count maps 
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(https://identifiers.org/neurovault.collection:5647), (4) 2nd-level activation maps 

(https://identifiers.org/neurovault.collection:5646). 

 

2.2 Results 

2.2.1 Summary of outputs obtained by fMRIflows’ processing pipelines 
Output generated after executing the anatomical preprocessing pipeline 

After the execution of the anatomical preprocessing pipeline, the following files are generated for 

each subject: (1) image of the inhomogeneity-corrected full head image, (2) image of the extracted brain, 

(3) binary mask used for the brain extraction, (4) individual tissue probability maps for gray matter (GM), 

white matter (WM), cerebrospinal fluid (CSF), skull and head, (5) normalized anatomical image in 

template space (6) reverse-normalized template image in subject space, (7) plus the corresponding 

transformation matrices used for output 5 and 6. Each anatomical preprocessing output folder also contains 

(8) the ICBM 2009c brain template used for the normalization, sampled to the requested voxel resolution. 

In addition to these files, the following three informative figures are generated: (1) tissue 

segmentation, (2) brain extraction and (3) spatial normalization of the anatomical image. A shortened 

version of those three figures, as well as their explanation are shown in Figure 4. 

 
Figure 4: Summary of output figures generated by fMRIflows after executing the anatomical 

preprocessing pipeline. (Top) Coronal view of the image segmentation output, showing gray matter tissue 

in green, white matter tissue in beige, cerebrospinal fluid in blue. (Middle) Sagittal view of the brain 

extraction output, showing the extracted brain image in red, and the original anatomical image in gray. 

(Bottom) Axial view of the spatial normalization output, showing the normalized brain image highlighted 

in yellow, overlaid over the ICBM 2009c brain template in gray. Regions in red and blue show negative 

and positive deformation discrepancy between the normalized subject image and the template. 
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Output generated after executing the functional preprocessing pipeline 

After the execution of the functional preprocessing pipeline, the following files are generated 

separately for each subject, each functional run and each temporal filtering: (1) text file indicating which 

volumes were detected as outliers, (2) tabular separated (TSV) file containing all extracted confound 

regressors, (3) text file containing the six motion parameter regressors according to FSL’s output scheme, 

(4) binary masks for the brain, (5) masks for anatomical and functional component based noise correction, 

(6) functional mean image, and (7) completely preprocessed functional images, separated by spatial 

smoothing approaches. Each subject folder also contains (8) one text file per functional run indicating the 

number of non-steady-state volumes at the beginning of run. 

The following is a more detailed description of the multiple confounds fMRIflows estimates during 

functional preprocessing: 

Confounds based on motion parameters: In addition to the head motion parameters created during 

preprocessing, fMRIflows also computes (1) 24-parameter Volterra expansion of the motion parameters 

(Friston, Williams, Howard, Frackowiak, & Turner, 1996) using custom scripts and (2) Framewise 

Displacement (FD) component (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) using Nipype. 

Confounds based on global signal: Functional images before spatial smoothing were used to 

compute confound regressors, such as (1) DVARS, which represents the spatial standard deviation of the 

signal after temporal differencing, to identify motion-affected frames (Power et al., 2012), using Nipype 

and (2) four global signal curves representing the average signal in the total brain volume (TV), GM, WM 

and CSF, using Nilearn. 

Detection of outlier volumes: The user can specify which of the six signal curves for FD, DVARS 

and average signal in TV, GM, WM and CSF to use to identify outlier volumes (see Figure 5A). Those are 

volumes that have larger fluctuations in the signal values in a given volume, compared to the z-scored 

standard deviation throughout the time course. The exact threshold for each curve can be adapted by the 

user, but its default value is set to a z-value of 3.27, representing 99%, for the FD, DVARS and TV signal. 

The identification number of each outlier volume is stored in a text file that might be used in the 1st-level 

pipeline during the GLM model estimation to remove the effect of those volumes from the overall analysis, 

also known as censoring (Caballero-Gaudes & Reynolds, 2016). 

Confounds based on signal components: Using the temporal filtered functional images, two 

different kinds of approaches are performed to extract components that could be used for denoising or 

dimensionality reduction of the data. The first approach is called CompCor (Behzadi et al., 2007) and uses 

principal component analysis (PCA) to estimate the main sources of noise within specific confound 

regions. Regions are either defined by their temporal or anatomical characteristics. The temporal CompCor 

approach (tCompCor) considers the 2% most variable voxels within the confound brain mask as sources 

of confounds. The anatomical CompCor approach (aCompCor), considers voxels within twice eroded WM 

and CSF brain masks as sources of confounds. The user can specify how many aCompCor and tCompCor 

components should be computed, but the default value is set to five each. The second approach uses 
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independent component analysis (ICA) to perform source separation in the signal. Using Nilearn’s CanICA 

routine, fMRIflows computes by default the top ten independent components throughout the confound 

masks. The number of confounds to extract can be adjusted by the user. 

Storage of confound information: All of the confound curves computed after functional 

preprocessing are stored in a TSV file to allow for easy access. 

Diverse set of overview figures: To allow for visual inspection of the numerous outputs generated 

after the execution of the functional preprocessing pipeline, fMRIflows creates many informative overview 

figures. These overviews cover the motion parameters used for head motion correction, the anatomical and 

temporal CompCor components, FD, DVARS, average signal in TV, GM, WM and CSF, and the ICA 

components. fMRIflows also creates a brain overview figure showing the extent of the different masks 

applied during functional preprocessing, a spatial correlation map between the ICA components and the 

individual voxel signal, and a carpet plot according to Power (2017) and Esteban et al. (2019). To better 

visualize underlying structures in the carpet plot the time series traces are sorted by their correlation 

coefficients to the average signal within a given region, allowing for a positive or negative time lag of 2 

volumes. A shortened version of all these figures, as well as their explanations are shown in Figures 5-7. 
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Figure 5: Example of general output figures generated by fMRIflows after executing the functional 

preprocessing pipeline. The dataset used to generate these figures was recorded with a TR of 600ms and 

had a total of 600 volumes per run. Preprocessing included a low-pass filter at 0.2 Hz. Distribution plots 

on the right side of the figures in part A and B represent value frequency in y-direction. A) Depiction of 

the nuisance confounds FD, DVARS and TV. Detected outlier volumes are highlighted with vertical black 

bars. B) Estimation of translation head motion after application of low-pass filtering at 0.2 Hz in color, and 

before temporal filtering in light gray. C) Depiction of brain masks used to compute DVARS (red), and 

temporal (green) and anatomical (blue) CompCor confounds, overlaid on the mean functional image 

(grey). 

 

Output generated after executing the 1st-level analysis pipeline 

After the execution of the 1st-level analysis, the following files are generated for the univariate 

analysis: (1) contrasts and statistical map of the specified contrasts, (2) SPM.mat file containing the 

information relevant for the model, (3) visualization of the design matrix used in the 1st-level model 

depicting the regressor for the stimuli, motion and confounds, and (4) glass brain plot for each estimated 
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contrast thresholded at the top 2% of positive and negative values created with AtlasReader (Notter et al., 

2019) to provide a general overview of the quality of contrasts. The multivariate analysis part of this 

notebook creates: (1) one contrast image per condition and session which later can be used as samples for 

the multivariate analysis, and (2) a label file identifying the condition of each contrast. 

 

 
Figure 6: Example of ICA output figures generated by fMRIflows after executing the functional 

preprocessing pipeline. The dataset used to generate these figures was recorded with a TR of 600ms and 

had a total of 600 volumes per run. A) Correlation between the first three ICA components and the 

functional image over time (left) and the corresponding power density spectrum with frequency on the x-

axis (right). First component most likely depicts respiration at 0.6 Hz, while third component is most likely 

visual activation induced by the visual stimulation task during data acquisition. B) Correlation strength 

between a given ICA component and the location in the brain volume for the first three ICA components. 

 

Output generated after executing the 2nd-level analysis pipeline 

After the execution of the 2nd-level univariate analysis, the following files are generated, 

individually for each contrast and spatial and temporal filter that was applied: (1) contrasts and statistical 

map of one-sample t-test contrast, (2) SPM.mat file containing the information relevant for the model, (3) 

thresholded statistical maps with corresponding AtlasReader outputs (i.e. glass brain plot to provide a 
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result overview, cross section plot showing each significant cluster individually, informative tables 

concerning the peak and cluster extent of each cluster). 

After the execution of the 2nd-level multivariate analysis, the following files are generated, for each 

specified comparison individually: (1) subject-specific permutation files needed for correction according 

to Stelzer et al. (2013), (2) group-average prediction accuracy maps as well as corresponding feature-wise 

maps representing chance level acquired via bootstrapping approach (Stelzer et al., 2013), (3) group-

average prediction accuracy maps after correction for multiple comparisons and (4) thresholded statistical 

result maps with corresponding AtlasReader outputs (i.e. glass brain plot to provide a result overview, 

cross section plot showing each significant cluster individually, informative tables concerning the peak 

and cluster extent of each cluster). 

 

 
Figure 7: Example of a carpet plot figures generated by fMRIflows after executing the functional 

preprocessing pipeline. The dataset used to generate these figures was recorded with a TR of 600ms and 

had a total of 600 volumes per run. This panel shows the signal after preprocessing for every other voxel 

(y-axis), over time in volumes (x-axis). The panel shows voxels in the gray matter (top part), white matter 

(between blue and red line) and CSF (bottom section). The data was standardized to the average signal, 

and ordered within a given region according to the correlation coefficient between a voxel and to the 

average signal of this region. 

 

2.2.2 Results of phase 1: Proficiency validation 
Due to differences in scanner hardware, scan protocols, research requirements and expertise of the 

person who records the images, fMRI datasets can come in many different shapes and forms. We ran 

fMRIflows on several datasets to make sure that it is capable of dealing with differences inherent to each 

of them. In this section, we summarize the main issues we encountered during this process and describe 

how we tackled each of them.  
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Image orientation 

fMRIflows reorients all anatomical and functional images at the beginning of the preprocessing 

pipeline to the neurological convention RAS (right, anterior, superior) to prevent failures of coregistration 

between anatomical and functional images due to orientation mismatches within subjects. 

 

Image extent 

Some datasets have unusually large image coverage along the inferior-superior axis, which means 

that their anatomical images also often contain part of the participant’s neck. This can lead to unwanted 

outcomes in certain neuroimaging routines, as they were not tested for such additional tissue coverage. 

This is most pronounced in the case of FSL’s BET routine, which has difficulty finding the center and 

extent of the brain, or SPM’s segmentation routine that depends on the distribution of the voxel intensities 

within the whole volume. To prevent these and other unforeseen behaviors, fMRIflows uses FSL’s 

robustfov routine to restrict all anatomical images to the same spatial extent. 

 

Image inhomogeneity 

Depending on the scan sequence protocol or the scanner hardware itself, some datasets can contain 

strong image intensity inhomogeneities, caused by an inhomogeneous bias field during data acquisition. 

This can have a negative effect on many different neuroimaging routines, most pronounced in brain 

extraction and image segmentation. To tackle this issue, fMRIflows uses ANTs’ N4BiasFieldCorrection 

routine, which allows the analysis of datasets with even low image quality and strong image 

inhomogeneity. In the anatomical preprocessing pipeline, inhomogeneity correction is applied to improve 

the final output image. In the functional preprocessing pipeline, inhomogeneity correction is only applied 

to improve the estimation and extraction of different tissue types, but does not directly change the values 

in the final output image. 

 

Brain extraction 

Different brain extraction routines were explored to ensure: 1) that the extraction is sufficiently 

robust to handle different kinds of datasets, 2) that it is neither too conservative nor liberal with the removal 

of non-brain tissues, and 3) that it has an overall reasonably fast computation time. The best and most 

consistent results were achieved using SPM’s image segmentation routine, followed by a specific 

thresholding and merging of the GM, WM and CSF probability maps. FSL’s BET routine was not robust 

enough to lead to stable results on all tested datasets. While ANTs’ Atropos routine led to comparably 

good results, we went with SPM because of the much faster computation time. 

 

Image interpolation 

For the single-shot spatial interpolation during normalization, we used ANTs and explored 

NearestNeighbor, BSpline and LanczosWindowedSinc (Lanczos, 1964) interpolation. NearestNeighbor 
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interpolation led to unnatural looking voxel-to-voxel value transitions. BSpline led in general to good 

results, but had issues especially with datasets that did not have full brain coverage and introduced some 

rippling low value fluctuations at the borders of non-zero voxels. LanczosWindowedSinc interpolation led 

to the best outcome by minimizing the smoothing effects and preventing the introduction of additional 

confounds reaffirming the observations from fMRIPrep (Esteban et al., 2019). 

 

2.2.3 Results of phase 2: Performance validation 
The performance validation of fMRIflows was conducted on three different task-based fMRI 

datasets, as described in Table 1. The preprocessing of fMRIflows was compared to other neuroimaging 

processing pipelines such as fMRIPrep, FSL and SPM. We tested fMRIflows’ preprocessing pipeline with 

and without a temporal low-pass filter of 0.2 Hz to better understand performance differences between 

toolboxes and to stress the importance of adequate temporal filtering when processing fMRI datasets with 

high temporal resolution. 

 

Estimated spatial smoothness after functional preprocessing 

Each preprocessing step that resamples a functional image, such as slice time correction, motion 

correction, spatial or temporal interpolation has the potential to increase the spatial smoothness in the data. 

The less smoothness is introduced during preprocessing, the closer the data are to their initial version. We 

used AFNI’s 3dFWHMx to estimate the average spatial smoothness (FWHM) of each functional image 

after preprocessing to compare the amount of data manipulation that was applied to the raw data (see 

Figure 8). As this FWHM value depends on the voxel resolution of a given dataset, we normalized it by 

the volume of the voxel to achieve a common FWHM value per 1mm3. 

Overall, the estimated spatial smoothness after preprocessing with fMRIflows (without low-pass 

filter) is comparable to the one with fMRIPrep, while SPM’s is in general significantly lower and FSL’s is 

slightly higher. The differences with respect to SPM are probably due to the fewer numbers of resampling 

steps involved in SPM’s preprocessing pipeline. The differences with respect to FSL are probably due to 

the interpolation method used during image resampling. While the FSL preprocessing pipeline uses the 

spline interpolation, fMRIflows and fMRIPrep use the LanczosWindowedSinc interpolation, which is 

known to minimize the smoothing during interpolation. The application of a temporal low-pass filter at 0.2 

Hz during fMRIflows’ preprocessing leads to a significantly higher spatial smoothness for the TR600 

dataset when compared with the other approaches. This effect might also be present for the TR1000 dataset. 

However, there the difference between the fMRIflows preprocessing with and without low-pass filtering 

is not significant. This increased spatial smoothness for the approach that uses a low-pass filter makes 

sense, as the goal of the temporal low-pass filter itself is to smooth the time series values. This temporal 

smoothing forcibly also increases the spatial smoothness at each individual time point. 
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Figure 8: Investigation of estimated spatial smoothness after functional preprocessing of three 

different datasets, processed with varying approaches. The five different preprocessing approaches 

fMRIflows with (blue) and without (orange) a low-pass filter at 0.2 Hz, fMRIPrep (green), FSL (red) and 

SPM (violet) are plotted separately for the dataset TR2000 (left), TR1000 (middle) and TR600 (right). The 

violin plots indicate the overall distribution of the normalized smoothness estimates of each functional 

image (depicted in individual dots: TR2000=48 dots, TR1000=80 dots, TR600=102 dots). The red 

horizontal line represents the median value, while the horizontal black lines indicate the 25 and 75 

percentiles of the value distribution respectively. Significant differences between groups are indicated with 

*: p<0.05 and ***: p<0.001. 

 

Performance check of spatial normalization 

We computed the standard deviation map for each population, based on the temporal average map 

of each preprocessed functional image, to compare the performance of spatial normalization of the 

different preprocessing methods on the three different datasets (see Figure 9). 

The averaged standard deviation maps after fMRIflows’ and fMRIPrep’s preprocessing are very 

similar, which is not surprising as fMRIflows uses the same ANTs normalization routine with very similar 

parameters. The main difference lies in the fact that fMRIflows applies a brain extraction on the functional 
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images as well, which is not performed with fMRIPrep. Closer inspection reveals that the variability 

around the brain outline is slightly increased and more spread after normalization with fMRIflows or FSL, 

than with fMRIPrep. This effect was already observed in the original fMRIPrep paper, but seemed less 

pronounced in the current study. SPM performed comparably well, but a direct comparison was not 

possible as the spatial normalization with SPM is performed using SPM’s own tissue probability map 

template, while the other three methods used the normalization to the ICBM’s 2009c brain template. No 

clear performance differences have been observed between the three datasets. 

 

 
Figure 9: Depiction of standard deviation maps of the temporal averages of three different datasets, 

after multiple functional preprocessing approaches. Preprocessing was done with fMRIflows (with a 

temporal low-pass filter at 0.2 Hz; without low-pass filter looks identical), fMRIPrep, FSL and SPM (from 

top to bottom) separated for the TR2000 (left), TR1000 (middle) and TR600 (right) dataset. Color value 

represents the standard deviation value over all subjects. Color scale is the same within a dataset and was 
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set manually to highlight the border effects in gray matter regions. Regions with high inter-subject 

variability are shown in yellow, while regions with low inter-subject variability are shown in blue. Outline 

of the brain and subcortical white matter regions is delineated in red and is based on the ICBM 2009c brain 

template, except for the analysis with SPM where it is based on SPM’s tissue probability map template. 

 

Temporal signal-to-noise ratio (tSNR) after preprocessing 

We computed the voxel-wise temporal SNR according to Smith et al. (2013) to assess the amount 

of informative signal contained in the data after preprocessing. This measurement serves as a rough 

estimate to compare different preprocessing methods, but did not allow a direct comparison between 

datasets, as the tSNR value is a relative measurement that depends highly on the paradigm presented, the 

initial spatial and temporal resolution of the functional images, as well as the MRI scan sequence specific 

parameters such as acceleration factors (Smith et al., 2013). Using Nipype’s TSNR routine, we first 

removed 2nd-degree polynomial drifts in each functional image, and estimated tSNR maps by computing 

each voxel’s temporal mean, dividing it by its temporal standard deviation, and multiplying it by the square 

root of the number of time points recorded in a given run. By averaging the tSNR maps over the population, 

we get a general tSNR map per preprocessing method for each dataset (see Figure 10). 
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Figure 10: Depiction of temporal signal-to-noise ratio maps of three different datasets, after multiple 

functional preprocessing approaches. Preprocessing was done with fMRIflows (with and without a 

temporal low-pass filter at 0.2 Hz), fMRIPrep, FSL and SPM (from top to bottom) separated for the 

TR2000 (left), TR1000 (middle) and TR600 (right) dataset. Color value represents the tSNR value as 

computed with the Nipype routine TSNR. Color scale was set manually and differs between datasets, but 

is held constant between different preprocessing methods. 

 

In general, preprocessing with fMRIflows without temporal low-pass filter led to similar average 

tSNR maps as preprocessing with fMRIPrep. Overall, preprocessing with FSL led to slightly increased 

average tSNR values, while preprocessing with SPM led to slightly decreased average tSNR maps. The 

additional application of a low-pass filter at 0.2 Hz in all three datasets led to increased tSNR values after 

preprocessing with fMRIflows. This effect was more pronounced for higher temporal resolution (as in 
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Dataset TR1000 and TR600). The color scales in Figure 10 were set manually so that the fMRIflows 

(without low-pass filter) approach shows comparable intensities for the three datasets. 

 

Performance check after 1st-level analysis 

To investigate the effect of the different preprocessing methods on the 1st-level analysis, we carried 

out within-subject statistical analysis using Nistats. The activation maps were estimated using a general 

linear model (GLM). The GLM included a constant term, the stimuli regressors convolved with a double-

gamma canonical hemodynamic response function, six motion parameters (three translation and three 

rotation), and a high pass filter at 100Hz, represented by a set of cosine functions, and no temporal 

derivatives. The input data were smoothed using a kernel with a FWHM of 6mm, using a Nilearn routine. 

The analysis pipelines between the preprocessing methods and datasets were kept as identical as possible, 

and differed only in the number of time points contained in the dataset and the estimated motion 

parameters. The statistical map for each participant was binarized at z = 3.09, which corresponds to a one-

sided test value of p < 0.001. The population average of these maps is shown in Figure 11. 

The results show that the thresholded activation count maps between the fMRIflows approach 

without a low-pass filter, fMRIPrep, FSL and SPM do not differ too much between each other, for all three 

datasets. In contrast to the other preprocessing methods, however, the preprocessing with fMRIflows with 

a low-pass filter at 0.2 Hz drastically increased the size and fraction value of the thresholded activation 

count maps, for the datasets TR1000 and TR600. Thus, appropriate temporal filtering increased the 

statistics for datasets with higher temporal resolution remarkably. For a more detailed comparison between 

all the toolboxes, see Supplementary Note 7. 
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Figure 11: Depiction of binarized 1st-level activation count maps, thresholded at p<0.001, after 

multiple functional preprocessing approaches. Preprocessing was done with fMRIflows (with and 

without a temporal low-pass filter at 0.2 Hz), fMRIPrep, FSL and SPM (from top to bottom) separated for 

the TR2000 (left), TR1000 (middle) and TR600 (right) dataset. Activation count maps were normalized to 

the ICBM 2009c brain template. Color code represents the fraction of participants that show significant 

activation above a p-value threshold at 0.001 and corrected for false positive rate (FPR). 

 

Performance check after 2nd-level analysis 

To investigate the effect of the different preprocessing methods on the 2nd-level analysis, we carried 

out between-subject statistical analysis using Nistats and computed one-sample t-test for each 

preprocessing method and dataset. The unthresholded group-level T-statistic maps of each analysis was 
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then compared to each other on a voxel-by-voxel level using Bland-Altman 2D histograms (Bowring et 

al., 2018), see Figure 12. 

 

 
Figure 12: Bland-Altman 2D histograms of three different datasets, comparing unthresholded 

group-level T-statistic maps between multiple processing approaches. Datasets TR2000 (top), TR1000 

(middle) and TR600 (bottom) were used for the comparison. Density plots show the relationship between 

average T-statistic value (horizontal) and difference of T-statistic values (vertical) at corresponding voxels 

for different pairwise combinations of toolboxes. The difference of T-statistics was always computed in 

contrast to a preprocessing with fMRIflows using a low-pass filter at 0.2 Hz, while the average T-statistics 

in horizontal direction investigated the preprocessing with (from left to right) fMRIflows without a low-

pass filter, fMRIPrep, FSL and SPM. Distribution plots next to x- and y- axis depict occurrence of a given 

value in this domain. Color code within the figure indicates the number of voxels at this given overlap, 

from a few (blue) to many (yellow). Yellow horizontal line at zero indicates no value differences between 

corresponding voxels. Red dashed line depicts horizontal density average. 

 

The results shown in Figure 12 indicate no pronounced differences between the preprocessing with 

fMRIflows with a low-pass filter at 0.2 Hz and the other four approaches for the analysis of the TR2000 

dataset. An increased variability in the y-direction indicated a decrease in voxel-to-voxel correspondence, 

which might be explained by different spatial normalization implementations. The fact that the average 

horizontal density value (red dashed line) is close to the zero line (in yellow) indicated that the different 

preprocessing methods led to comparable group-level results with the TR2000 dataset. The Bland-Altmann 

plots for the TR1000 and TR600 datasets showed a clear increase of t-statistic when the preprocessing was 
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done with fMRIflows with a low-pass filter at 0.2 Hz, compared to any other method. This effect was 

stronger for higher t-values. For a more detailed comparison between all the toolboxes, see Supplementary 

Note 8. 
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2.3 Discussion 

fMRIflows is a fully automatic fMRI analysis pipeline, which can perform state-of-the-art 

preprocessing, 1st-level and 2nd-level univariate analyses, and multivariate analysis. The goal of such an 

autonomous approach is to improve objectiveness of the analysis, maximize transparency, facilitate ease 

of use, and provide newest analysis approaches to every researcher, including users outside the field of 

neuroimaging. While the predefined analysis pipelines help to reduce the number of error-prone manual 

interventions to a minimum, it also has the advantage of decreasing the number of analytical degrees of 

freedom available to a user to its minimum (Carp, 2012). This constraint in flexibility is important as it 

helps to control the variability in data processing and analysis (Botvinik-Nezer et al., 2020). fMRIPrep 

showed a clear need for such analysis-agnostic approaches and was therefore chosen to provide much of 

the groundwork for fMRIflows. 

In comparison with other neuroimaging software like fMRIPrep, FSL and SPM, fMRIflows 

achieved comparable or improved results in (1) SNR after preprocessing, (2) within-subject t-statistics, 

and (3) between-subject t-statistics. These results were more obvious in the context of datasets that had a 

temporal resolution equal to or below 1000ms, and if a low-pass filter at 0.2 Hz was applied. The latter 

might also influence the overall outcome of the other software packages, but so far fMRIflows is the only 

such neuroimaging software that performs orthogonal filtering between the motion correction and temporal 

filtering, as proposed by Lindquist et al. (2019). 

Being an open-source project, shared via GitHub, facilitates the transparency in the development of 

fMRIflows. Users will be able to inspect the complete history of the changes and have access to all 

discussion connected to the software. Code adaptations and additional support to new usage will be 

proposed by the user community, which will make the adaptation to newest standards easy and 

straightforward. In addition to the version-controlled system used on GitHub, a continuous integration 

scheme with CircleCi will ensure continuous functionality. 

fMRIflows also improved the overall computation time needed to perform preprocessing and 1st and 

2nd-level analysis. Indeed, Nipype provides a parallel execution feature of processing pipelines, which is 

not yet possible with FSL or SPM. fMRIPrep uses the same boost of parallelism, but is overall much slower 

if the default execution of FreeSurfer’s recon-all routine is performed. However, fMRIflows does not yet 

support parallel computation via a job scheduler on a computation cluster, which is currently possible with 

fMRIPrep. 

The inclusion of many informative visual reports allows a direct quality control and verification of 

the performed processing steps, as fMRIflows’ outputs provide a general quality assessment even though 

it is not as detailed and rigorous as MRIQC (Esteban et al., 2017). In contrast to other software packages, 

fMRIflows uses an adapted visualization of the carpet plot proposed by Power (2017) to highlight 

underlying temporal structure and voxel-to-voxel correlations within different brain tissue regions and/or 

throughout the brain. Such approaches help to observe general signal trends and sudden abrupt signal 
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changes throughout the brain, but the exact implications of these modified carpet plots need to be further 

investigated. 

Results of fMRIflows’ validation phase 1 suggests that the software is capable of analyzing different 

types of datasets, independently of the extent of head coverage, original image orientation, spatial or 

temporal resolution. By increasing the user base and testing fMRIflows on many more datasets, new 

adaptations might be required and hidden bugs could emerge. Users can observe any changes done to the 

software in the future directly on GitHub and are encouraged to state any questions or comments in 

connection with the software on the community driven neuroinformatics forum NeuroStars 

(https://neurostars.org). 

Further development of the software will involve (1) moving away from an SPM dependency for 

the 1st and 2nd-level modeling, (2) using the more flexible FitLins toolbox 

(https://github.com/poldracklab/fitlins), and (3) implementing an fMRIflows BIDS-App to further improve 

the toolbox’s accessibility. 
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2.4 Supplementary Material 

Supplementary Note 1: Content examples of parameter specification files 

 

Content example of file fmriflows_spec_preproc.json 
{ 
    "subject_list_anat": ["01", "02", "03", "04", "05"], 
    "session_list_anat": [], 
    "T1w_id": "T1w", 
    "res_norm": [1.0, 1.0, 1.0], 
    "norm_accuracy": "precise", 
    "subject_list_func": ["01", "02", "03", "04", "05"], 
    "session_list_func": [], 
    "task_list": ["multi"], 
    "run_list": [1, 2, 3], 
    "ref_timepoint": 500, 
    "res_func": 2.0, 
    "filters_spatial": [["LP", 6.0]], 
    "filters_temporal": [[null, 100.0 ], [5.0, 100.0]], 
    "n_compcor_confounds": 5, 
    "outlier_thresholds": [3.27, 3.27, 3.27, null, null, null], 
    "n_independent_components": 10, 
    "n_parallel_jobs": 7 
} 
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Content example of file fmriflows_spec_analysis.json 
{ 
    "tasks": { 
        "multi": { 
            "condition_names": ["cond_01", "cond_02", "cond_03", "cond_04"], 
            "contrasts": [ 
                ["cond_01", [1.0, 0.0, 0.0, 0.0], "T"], 
                ["cond_02", [0.0, 1.0, 0.0, 0.0], "T"], 
                ["cond_03", [0.0, 0.0, 1.0, 0.0], "T"], 
                ["cond_04", [0.0, 0.0, 0.0, 1.0], "T"], 
                ["cond_01 > cond_02", [1.0, -1.0, 0.0, 0.0], "T"] 
            ] 
        } 
    }, 
    "subject_list": ["01", "02", "03", "04", "05"], 
    "session_list": [], 
    "filters_spatial": [["LP", 6.0]], 
    "filters_temporal": [[null, 100.0], [5.0, 100.0]], 
    "nuisance_regressors": ["Rotation", "Translation", "FD", "DVARS", "TV"], 
    "use_outliers": true, 
    "model_serial_correlations": "AR(1)", 
    "model_bases": {"hrf": {"derivs": [0, 0]}}, 
    "estimation_method": {"Classical": 1}, 
    "normalize": true, 
    "norm_res": [1, 1, 1], 
    "con_per_run": true, 
    "norm_res_multi": [3.0, 3.0, 3.0], 
    "analysis_postfix": "", 
    "gm_mask_thr": 0.1, 
    "height_threshold": 0.001, 
    "use_fwe_correction": false, 
    "extent_threshold": 5, 
    "use_topo_fdr": true, 
    "extent_fdr_p_threshold": 0.05, 
    "atlasreader_names": "default", 
    "atlasreader_prob_thresh": 5, 
    "n_parallel_jobs": 7 
} 
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Content example of file fmriflows_spec_multivariate.json 
{ 
    "subject_list": [ "01", "02", "03", "04", "05"], 
    "session_list": [], 
    "filters_spatial": [["LP", 6.0]], 
    "filters_temporal": [[null, 100.0], [5.0, 100.0]], 
    "multivariate_postfix": "", 
    "clf_names": ["LinearNuSVMC"], 
    "sphere_radius": 3, 
    "sphere_steps": 3, 
    "n_chunks": 6, 
    "tasks": { 
        "hrf": [ 
            [["cond_01", "cond_02"],["cond_01", "cond_02"]], 
            [["cond_01", "cond_02"],["cond_03", "cond_04"]] 
        ] 
    }, 
    "n_perm": 100, 
    "n_bootstrap": 100000, 
    "block_size": 1000, 
    "threshold": 0.001, 
    "multicomp_correction": "fdr_bh", 
    "fwe_rate": 0.05, 
    "atlasreader_names": "default", 
    "atlasreader_prob_thresh": 5, 
    "n_parallel_jobs": 7 
} 
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Supplementary Note 2: Description of anatomical preprocessing pipeline steps 
Image reorientation: To make sure that all images throughout the processing have the same 

orientation, images are first reoriented with Nipype according to the neurological convention RAS (right, 

anterior, superior). 

Image cropping: To make sure that the focus in the anatomical image is on the brain, we use FSL’s 

robustfov function to remove irrelevant portions of the neck. This is particularly relevant for the later brain 

extraction step, and helps to ensure that the segmentation algorithm focuses on the brain and not on 

additional body sections. 

Image inhomogeneity correction: To correct for intensity non-uniformities caused by the 

inhomogeneity of the bias field during data acquisition, we use ANTs’ N4BiasFieldCorrection algorithm. 

This step improves the quality of the following image segmentation and is crucial for anatomical images 

of lower image quality, as they would otherwise fail during the image segmentation. 

Anatomy segmentation: The image segmentation uses SPM12’s standard image segmentation and 

provides probability maps for five tissue segments: gray matter (GM), white matter (WM), cerebrospinal 

fluid (CSF), skull and head. 

Brain extraction: The GM, WM and CSF probability maps are combined using Nilearn to create a 

binary mask which is used to extract the brain. We chose this approach over others as it proved to be more 

robust and provided the best balance between restriction and inclusion than other algorithms, especially in 

the context of low image quality. 

Spatial normalization: As a final step, the extracted brain image is spatially normalized to the 

ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2011) with ANTs’ 

antsRegistration algorithm, using nonlinear image registration with a b-spline interpolation. 
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Supplementary Note 3: Description of functional preprocessing pipeline steps 
Image reorientation: As a first preprocessing step, functional images are reoriented to the 

neurological convention RAS, using Nipype, to make sure that they have the same orientation as the 

anatomically preprocessed images. 

Non-steady-state detection: Afterwards, the first few volumes of each functional run are 

investigated for non-steady-state volumes using Nipype. If non-steady-state volumes are detected, they are 

removed before the motion correction is applied. 

Creation of brain masks: To remove unwanted tissue from functional images a three-step approach 

was chosen. First, the mean image of the functional run is corrected for intensity inhomogeneity using 

ANTs’ N4BiasFieldCorrection algorithm. Second, FSL’s BET algorithm is applied to create a binary brain 

mask. Third, the binary brain mask is dilated by two iterations and holes are filled. This procedure has 

proven to be optimal in removing non-brain tissue in almost all cases that it was tested on, while ensuring 

that all brain tissue types are included within the mask. This brain mask is then applied to the functional 

images before the motion correction step, to make sure that the estimation of the motion parameter is in 

relation to the brain and not the whole head. The mask is additionally used to restrict the coregistration of 

the functional images to the anatomical images to the brain tissue and not to the whole head. However, this 

binary mask is not used to mask the functional images at any time. 

Slice-timing correction: If specified, slice time correction (Sladky et al., 2011) is performed on the 

reoriented functional images using SPM, according to the slice onset parameters specified in the BIDS 

information file and the reference time point mentioned in the fMRIflows JSON specification file. Slice-

time correction is applied after the estimation of the head motion as recommended by (Power, Plitt, Kundu, 

Bandettini, & Martin, 2017). 

Head motion estimation: Estimation of the motion parameters is performed using FSL’s 

MCFLIRT algorithm, on the reoriented functional images, after non-steady-states volumes are removed 

and the brain is masked with the binary mask computed during the previous step. If the user specified a 

low-pass filter, an additional step is included in the estimation of the motion parameters. This step takes 

the estimated motion parameters (three rotation and three translation) and applies a Butterworth (Stephen 

Butterworth, 1930) low-pass filter to each of the six components individually. This step is crucial to 

guarantee that the motion correction and the temporal filter are orthogonal to each other. Otherwise, 

previously filtered confounds might be reintroduced with a later step (Lindquist et al., 2019). We are using 

custom-written Python code to perform this step, using routines from Nilearn, output files from FSL’s 

MCFLIRT routine and FSL’s avscale routine. To our knowledge, our implementation is the first openly 

available routine that transforms the affine motion parameters for each volume (here applying a low-pass 

filter) before they are applied to the functional images. 

Intra-subject registration: The coregistration of the functional image to the anatomical image is 

based on FSL’s FEAT pipeline and fMRIPrep and uses a two-step co-registration. Both steps use FSL’s 

FLIRT algorithm. The first step uses the anatomical image to pre-align the mean image from the estimation 
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of the motion parameters, followed by the second coregistration step where the white matter probabilistic 

image computed with SPM’s segmentation routine is used together with the anatomical image in a 

boundary-based registration (BBR) approach. The first step uses six degrees of freedom (three rotations 

and three translations), while the second step uses nine degrees of freedom, adding three scaling degrees. 

The addition of these scaling degrees was copied from fMRIPrep’s approach (Esteban et al., 2019) and 

allows the image to be stretched in the direction of the recording. For example, functional images that are 

recorded in the A-P axis are often squeezed a bit in this direction. Keep in mind that this scaling/stretching 

is only used for an optimal image coregistration, so that the functional images overlay optimally with the 

white matter boundaries. 

Spatial interpolation: Once we have the slice-time corrected functional images, computed the 

correct motion parameters that we want to apply, have the coregistration matrix between the functional 

and anatomical images, and have the transformation matrix to normalize the anatomical image onto the 

ICBM 2009c template brain, we can go to the next step and apply all spatial interpolations in a single-shot. 

The spatial normalization is optional and can also be applied in the later 1st-level notebook. But we 

recommend doing all of those spatial transformations at once to keep the number of spatial interpolations 

as low as possible. First we use C3 to combine all the different transformation matrices and apply them to 

each volume individually with ANTs’ ApplyTransforms routine, using the LanczosWindowedSinc 

interpolation (Lanczos, 1964). We chose this interpolation over others, as it minimizes the smoothing effect 

of the interpolation and creates the least artifacts outside the brain volume. 

Creation and application of warped brain masks: Once the functional images are spatially 

transformed either into each subject’s structural space using a user-defined voxel resolution, or directly 

normalized into template space, also using a user-specified voxel resolution, two masks are created to 

remove irrelevant voxels outside of the brain, such as skull, eyes and head, as well as voxels that do not 

have values in most volumes. Those voxels are mostly seen in functional images that only cover part of 

the brain (slabs) and are introduced through motion at top or bottom slices of the slab. The first mask is 

later used to mask the functional image before the application of the temporal filters, while the second 

mask (confound brain mask) is applied before the extraction of confound signals. For this reason, the first 

mask should be sensitive enough to keep all voxels within the brain, while the second mask should be 

specific enough to only keep brain voxels, so that extracted confound curves are only based on nuisance 

sources within the brain, i.e. the region that we want to clean. The starting point of both masks is again the 

binary brain mask. For this we first compute the functional mean image using Nilearn, second correct for 

intensity non-uniformities using ANTs N4BiasFieldCorrection routine and third apply FSL’s BET routine 

to create a binary brain mask. This mask is then dilated by two iteration steps, holes are filled up and the 

mask is then applied to the spatially transformed functional image. The steps to create the first brain mask 

are as follows: the initial brain mask is first dilated by two voxels, holes are filled up and any voxels that 

have no signal in more than 1% of volumes are removed. The second brain mask is created as follows: the 
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initial brain mask is first dilated by one voxel, holes are filled, the binary image is again eroded by two 

iteration steps and afterwards, voxels with no signal in more than 5% of volumes are removed. 

Temporal filtering: The next preprocessing step applies temporal filters if they were specified. The 

user can decide if they want to apply low-pass, high-pass or band-pass filters, or none. The temporal 

filtering is performed with AFNI’s 3dBandpass routine. In this step we also apply the first mask from the 

previous step to remove voxels that are clearly non-brain tissues. After temporal filtering of the data, the 

image intensity is normalized in such a way that the white matter distribution peak throughout the 

functional image is at a value of 10’000. 

Spatial filtering: The final preprocessing step applies a spatial filter to the functional images, if the 

user specified this. Contrary to other toolboxes, our software allows the application of spatial low-pass, 

high-pass and band-pass filters. The last one can be especially useful for the preprocessing of data that is 

later used in a multivariate analysis. Sengupta, Pollmann, & Hanke (2018) have shown that the correct 

application of a band-pass filter can drastically improve the prediction accuracy in a multivariate approach. 

Independently of whether or not a spatial filter was applied, functional images are checked for absolute 

values above 30’000. If this is the case, images are rescaled to have a maximum absolute value at 30’000. 

After this, images are stored in integer16 data format to reduce their footprint on the database. 
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Supplementary Note 4: Description of 1st-level analysis pipeline steps 
Data collection: Preprocessed functional images and model relevant parameters are collected and 

prepared for the 1st-level analysis. 

Model Specification and estimation: Model relevant parameters are combined to create the design 

matrix needed for the general linear model (GLM) analysis. 

Univariate contrast estimation: 1st-level contrasts are computed for each subject individually, 

according to the input parameters specified in the fMRIflows JSON parameter file. 

Optional multivariate contrast estimation: To create multiple beta contrasts that then can be used 

for multivariate analysis, fMRIflows computes one beta contrast per condition per run. These beta contrasts 

are based on the same design matrix as the one for the univariate analysis. This step also creates a CSV-

file containing a list of condition identifiers which can be used in the multivariate analysis to label the 

contrast maps. 

Optional spatial normalization: The user can spatially normalize the estimated contrasts, if they 

have not been normalized during functional preprocessing. Contrasts need to be normalized, should the 

user want to use them in a 2nd-level analysis. 
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Supplementary Note 5: Description of 2nd-level univariate analysis pipeline steps 
Model Specification and estimation: See description in Supplementary Note 4. 

Univariate contrast estimation: See description in Supplementary Note 4. 

Topological thresholding: Once the 2nd-level contrast is estimated, fMRIflows uses Nipype’s 

Thresholding routine to apply first, a voxel-wise threshold, followed by a cluster-wise topological False 

Discovery Rate (FDR) correction. The user can decide which parameters to use and if topological 

thresholding should be applied or not. 
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Supplementary Note 6: Description of 2nd-level multivariate analysis pipeline steps 
Data preparation: To prepare the data for the multivariate pattern analysis (MVPA) with PyMVPA 

the β-maps from the first level analysis are normalized by voxel-wise z-scoring them. A binary mask is 

then created to only include voxels in the searchlight analysis that have a value in at least one of the β-

maps. This binary mask is then dilated by two voxels and eroded by one to make sure that the mask does 

not include single voxel holes. The z-scored and masked images are then saved together with a list of 

corresponding labels in a PyMVPA conform dataset. 

Searchlight classification: The searchlight classification is performed for each subject individually 

and is based on the beta contrasts created during the 1st-level analysis. The user can specify which binary 

classification identifiers to use for the training and testing of the classifier. This approach allows the user 

to look for patterns that distinguish two classes (i.e. when the two classes are the same in training and 

testing) or to look for patterns that are identifying class differences (i.e. when the two classes are different 

during training and testing). The second approach allows the investigation of recurrent patterns, even if the 

stimuli are not the same. For example, training on the differences between visual stimuli of cats and dogs 

and testing on auditory stimuli of cats and dogs would reveal regions with distinct brain patterns for cats 

and dogs, independent of the modality of the stimuli. Natively, fMRIflows supports the following 

classifiers: C- and Nu-SVM classifiers with a linear or radial basis function kernel, Sparse Multinomial 

Logistic Regression (SMLR) classifier, Gaussian Naive Bayes classifier and k-Nearest-Neighbor 

classifier. The addition of any other classifiers from PyMVPA or Scikit-Learn is straightforward and can 

be done very quickly, if needed. Searchlight specific parameters, such as radius of the sphere and step size 

can be specified by the user. For each sphere, an N-fold leave-one-out cross-validation is performed, where 

N is set by the user, but usually represents the number of runs per subject. The result is one accuracy value 

per sphere. To account for holes caused by a searchlight step size bigger than one, results between different 

searchlight spheres are aggregated so that each voxel in the brain mask represents the average accuracy of 

all searchlight spheres that contained this voxel in their classification. This approach has the additional 

beneficial effect of increasing the SNR by smoothing the results before the group analysis. 

Group analysis using T-test: The application of a simple T-test to test the classification accuracies 

against chance level is not recommended (Stelzer et al., 2013), and users should choose the appropriate 

group analysis as proposed by Stelzer et al. (2013). Nonetheless, fMRIflows contains this approach, as it 

can give some preliminary insights into the group results, using extremely reduced computation time. 

Group analysis using random permutations and cluster size control: The group analysis 

approach according to Stelzer et al. (2013) includes a permutation step where subject-specific 

classifications are rerun up to 100 times with randomized labels. In a later step, those randomized control 

accuracy maps are then combined up to 100’000 times into “false” group averages and help to estimate a 

voxel-wise null distribution and expected cluster size of the classification accuracy maps, given the dataset 

and specified classes. The subject specific searchlight accuracy maps are averaged over all subjects to 
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obtain a group classification accuracy map, which then is tested against the estimated null distribution. The 

user can additionally specify the strategy for the multiple comparison correction. 

Topological thresholding: This step is identical to the one used in the 2nd-level univariate analysis. 
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Supplementary Note 7: Complete 1st-level activation count maps results comparison 

between toolboxes, separated by dataset. 

 

Dataset TR2000: The comparison between the binarized 1st-level activation count maps computed 

on the TR2000 dataset shows no clear differences between the toolboxes. The images on the diagonal all 

seem comparable. The diagonal offset images only show significantly increased activation counts for maps 

generated with fMRIflows and fMRIPrep, over activation count maps generated with FSL. 

 

 
Supplementary Figure 1. Investigation of differences between binarized 1st-level activation count 

maps, thresholded at p<0.001, after multiple functional preprocessing approaches analyzing dataset 

TR2000. Preprocessing was done with fMRIflows (with and without a temporal low-pass filter at 0.2 Hz), 

fMRIPrep, FSL and SPM (from top to bottom). The diagonal images represent the original activation count 

map of the toolbox. The diagonal offset images represent the difference between the horizontal and vertical 

toolbox. Activation count maps were normalized to the ICBM 2009c brain template. Color code represents 

the fraction of participants that show significant activation above a p-value threshold at 0.001 and corrected 

for false positive rate (FPR). 
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Dataset TR1000: The comparison between the binarized 1st-level activation count maps computed 

on the TR1000 dataset shows clear differences between fMRIflows with a low-pass filter at 0.2 Hz and the 

other approaches. The images on the diagonal seem overall similar. However, fMRIflows with a low-pass 

filter at 0.2 Hz shows a clearly increased (and SPM shows a clearly decreased) activation count map. The 

significantly increased activation count map values between fMRIflows with a low-pass filter at 0.2 Hz 

and the other approaches, seem to be centered around locations with already increased overlap, indicating 

that the low-pass filtering improves the overall statistical sensitivity. 

 

 
Supplementary Figure 2: Investigation of differences between binarized 1st-level activation count 

maps, thresholded at p<0.001, after multiple functional preprocessing approaches analyzing dataset 

TR1000. Preprocessing was done with fMRIflows (with and without a temporal low-pass filter at 0.2 Hz), 

fMRIPrep, FSL and SPM (from top to bottom). The diagonal images represent the original activation count 

map of the toolbox. The diagonal offset images represent the difference between the horizontal and vertical 

toolbox. Activation count maps were normalized to the ICBM 2009c brain template. Color code represents 

the fraction of participants that show significant activation above a p-value threshold at 0.001 and corrected 

for false positive rate (FPR). 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.23.436650doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436650
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

Dataset TR600: The comparison between the binarized 1st-level activation count maps computed 

on the TR600 dataset show clear differences between fMRIflows with a low-pass filter at 0.2 Hz and the 

other approaches. The images on the diagonal seem overall comparable. However, fMRIflows with a low-

pass filter at 0.2 Hz shows a clearly increased activation count map. The significantly increased activation 

count map values between fMRIflows with a low-pass filter at 0.2 Hz and the other approaches, seem to 

be centered around locations with already increased overlap, indicating that the low-pass filtering improves 

the overall statistical sensitivity. 

 

 
Supplementary Figure 3: Investigation of differences between binarized 1st-level activation count 

maps, thresholded at p<0.001, after multiple functional preprocessing approaches analyzing dataset 

TR600. Preprocessing was done with fMRIflows (with and without a temporal low-pass filter at 0.2 Hz), 

fMRIPrep, FSL and SPM (from top to bottom). The diagonal images represent the original activation count 

map of the toolbox. The diagonal offset images represent the difference between the horizontal and vertical 

toolbox. Activation count maps were normalized to the ICBM 2009c brain template. Color code represents 

the fraction of participants that show significant activation above a p-value threshold at 0.001 and corrected 

for false positive rate (FPR). 
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Supplementary Note 8: Complete group-level T-statistic maps comparison between 

toolboxes, separated by dataset. 

 

Dataset TR2000: The investigation of group-level T-statistic maps differences due to toolbox 

specific preprocessing pipelines on the TR2000 dataset does not show any clear differences between the 

results. The Bland-Altman 2D histograms show no particular trend in the x-direction and are centered 

around the horizontal zero line. 

 

 
Supplementary Figure 4: Bland-Altman 2D histograms of datasets TR2000, comparing 

unthresholded group-level T-statistic maps between multiple processing approaches. Density plots 

show the relationship between average T-statistic value (horizontal) and difference of T-statistic values 

(vertical) at corresponding voxels for different pairwise combinations of toolboxes. The difference in T-

statistics was computed in contrast to a preprocessing with (from top to bottom) fMRIflows with and 

without a low-pass filter at 0.2 Hz, fMRIPrep and FSL in respect to a preprocessing with (from left to 

right) fMRIflows without a low-pass filter at 0.2 Hz, fMRIPrep, FSL and SPM. Distribution plots next to 

x- and y- axis depict occurrence of a given value in this domain. Color code within figure indicates number 
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of voxels at this given overlap, from a few (blue) to many (yellow). Yellow horizontal line at zero indicates 

no value differences between corresponding voxels. Red dashed line depicts horizontal density average. 
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Dataset TR1000: The investigation of group-level T-statistic maps differences due to toolbox 

specific preprocessing pipelines on the TR1000 dataset shows clear differences between the results 

obtained with fMRIflows with a low-pass filter at 0.2 Hz and all the other approaches. The Bland-Altman 

2D histograms show clearly increased t-statistic value differences in the first column of the following 

figure, especially for higher t-values. No clear differences can be seen between the analysis approach 

fMRIflows without a low-pass filter, fMRIPrep, FSL and SPM. 

 

 
Supplementary Figure 5: Bland-Altman 2D histograms of datasets TR1000, comparing 

unthresholded group-level T-statistic maps between multiple processing approaches. Density plots 

show the relationship between average T-statistic value (horizontal) and difference of T-statistic values 

(vertical) at corresponding voxels for different pairwise combinations of toolboxes. The difference in T-

statistics was computed in contrast to a preprocessing with (from top to bottom) fMRIflows with and 

without a low-pass filter at 0.2 Hz, fMRIPrep and FSL in respect to a preprocessing with (from left to 

right) fMRIflows without a low-pass filter at 0.2 Hz, fMRIPrep, FSL and SPM. Distribution plots next to 

x- and y- axis depict occurrence of a given value in this domain. Color code within figure indicates number 

of voxels at this given overlap, from a few (blue) to many (yellow). Yellow horizontal line at zero indicates 

no value differences between corresponding voxels. Red dashed line depicts horizontal density average.  
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Dataset TR600: The investigation of group-level T-statistic maps differences due to toolbox 

specific preprocessing pipelines on the TR600 dataset shows clear differences between the results obtained 

with fMRIflows with a low-pass filter at 0.2 Hz and all the other approaches. The Bland-Altman 2D 

histograms show increased t-statistic value differences in the first column of the following figure, 

especially for high t-values. No clear differences can be seen between the analysis approach fMRIflows 

without a low-pass filter, fMRIPrep, FSL and SPM. 

 

 
Supplementary Figure 6: Bland-Altman 2D histograms of datasets TR600, comparing 

unthresholded group-level T-statistic maps between multiple processing approaches. Density plots 

show the relationship between average T-statistic value (horizontal) and difference of T-statistic values 

(vertical) at corresponding voxels for different pairwise combinations of toolboxes. The difference in T-

statistics was computed in contrast to a preprocessing with (from top to bottom) fMRIflows with and 

without a low-pass filter at 0.2 Hz, fMRIPrep and FSL in respect to a preprocessing with (from left to 

right) fMRIflows without a low-pass filter at 0.2 Hz, fMRIPrep, FSL and SPM. Distribution plots next to 

x- and y- axis depict occurrence of a given value in this domain. Color code within figure indicates number 

of voxels at this given overlap, from a few (blue) to many (yellow). Yellow horizontal line at zero indicates 

no value differences between corresponding voxels. Red dashed line depicts horizontal density average.  
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