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ABSTRACT 

Genome-wide association studies (GWAS) provide a powerful means to identify loci and genes 

contributing to disease, but in many cases the related cell types/states through which genes confer 

disease risk remain unknown. Deciphering such relationships is important for identifying 

pathogenic processes and developing therapeutics. Here, we introduce sc-linker, a framework for 

integrating single-cell RNA-seq (scRNA-seq), epigenomic maps and GWAS summary statistics 

to infer the underlying cell types and processes by which genetic variants influence disease. We 

analyzed 1.6 million scRNA-seq profiles from 209 individuals spanning 11 tissue types and 6 

disease conditions, and constructed gene programs capturing cell types, disease progression, and 

cellular processes both within and across cell types. We evaluated these gene programs for disease 

enrichment by transforming them to SNP annotations with tissue-specific epigenomic maps and 

computing enrichment scores across 60 diseases and complex traits (average N=297K). Cell type, 

disease progression, and cellular process programs captured distinct heritability signals even 

within the same cell type, as we show in multiple complex diseases that affect the brain 

(Alzheimer’s disease, multiple sclerosis), colon (ulcerative colitis) and lung (asthma, idiopathic 

pulmonary fibrosis, severe COVID-19). The inferred disease enrichments recapitulated known 

biology and highlighted novel cell-disease relationships, including GABAergic neurons in major 

depressive disorder (MDD), a disease progression M cell program in ulcerative colitis, and a 

disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both 

healthy and disease progression immune cell type programs were associated, whereas for epithelial 

cells, disease progression programs were most prominent, perhaps suggesting a role in disease 

progression over initiation. Our framework provides a powerful approach for identifying the cell 

types and cellular processes by which genetic variants influence disease.  
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INTRODUCTION 

Genome wide association studies (GWAS) have successfully identified thousands of disease-

associated variants1–3, but the cellular mechanisms through which these variants drive complex 

diseases and traits remain largely unknown. This is due to several challenges, including the 

difficulty of relating the approximately 95% of risk variants that reside in non-coding regulatory 

regions to the genes they regulate4–7, and our limited knowledge of the specific cells and functional 

programs in which these genes are active8. Previous studies have linked traits to functional 

elements9–15 and to cell types from bulk RNA-seq profiles16–18. Considerable work remains to 

analyze cell types and states at finer resolutions across a breadth of tissues, incorporate disease 

tissue-specific gene expression patterns, model cellular processes within and across cell types, and 

leverage enhancer-gene links19–23 to improve power. 

 

ScRNA-seq data provide a unique opportunity to tackle these challenges24. Single-cell profiles 

allow the construction of multiple gene programs to more finely relate GWAS variants to function, 

including programs that reflect cell-type-specific signatures25–28, disease progression within cell 

types29,30, and key cellular processes that vary within and/or across cell types31. Initial studies have 

related single-cell profiles with human genetics in post hoc analyses by mapping candidate genes 

from disease-associated genomic regions to cell types by their expression relative to other cell 

types32–34. More recent studies have begun to leverage genome-wide polygenic signals to map 

traits to cell types from single cells within the context of a single tissue35–37. However, focusing 

on a single tissue could in principle result in misleading conclusions, because disease mechanisms 

span tissue types across the human body. For example, in the context of the colon, a neural gene 

associated with psychiatric disorders would appear highly specific to enteric neurons, but this cell 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.03.19.436212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436212


 4 

population may no longer be strongly implicated when the analysis also includes cells from the 

human central nervous system (CNS)38. Thus, there is a need for a principled method that combines 

human genetics and comprehensive scRNA-seq applied across multiple tissues and organs. 

 

Here, we develop and apply sc-linker, an integrated framework to relate human disease and 

complex traits to cell types and cellular processes by integrating GWAS summary statistics, 

epigenomics and scRNA-seq data from multiple tissue types, diseases, individuals and cells. 

Unlike previous studies, we analyze gene programs that represent different facets of cells, 

including discrete types, processes activated specifically in a cell type in disease, and gene 

programs that vary across cells irrespective of cell type definitions (recovered by latent factor 

models). We transform gene programs to SNP annotations using tissue-specific enhancer-gene 

links19–23 in preference to standard gene window-based linking strategies used in existing gene-set 

enrichment methods such as MAGMA39, RSS-E13 and LDSC-SEG18. We then link SNP 

annotations to diseases by applying stratified LD score regression11 (S-LDSC) with the baseline-

LD model40,41 to the resulting SNP annotations. We further integrate cellular expression and 

GWAS to prioritize specific genes in the context of disease-critical gene programs, thus shedding 

light on underlying disease mechanisms. 

 

RESULTS 

Overview of sc-linker 

We developed a framework to link gene programs derived from scRNA-seq with diseases and 

complex traits (Fig. 1a). First, we use scRNA-seq to construct gene programs, defined as 

probabilistic gene sets, that characterize (1) individual cell types, (2) disease progression (disease 
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vs. healthy cells of the same type), or (3) cellular processes (Methods). Then, we link the genes 

underlying these programs to SNPs that regulate them by incorporating two tissue-specific 

enhancer-gene linking strategies: Roadmap Enhancer-Gene Linking19–21 and the Activity-by-

Contact (ABC) model22,23. Finally, we evaluate the disease informativeness of the resulting SNP 

annotations by applying S-LDSC11 conditional on a broad set of coding, conserved, regulatory and 

LD-related annotations from the baseline-LD model40,41. Altogether, our approach links diseases 

and traits with gene programs recapitulating cell types and cellular processes. We have released 

open-source software implementing the approach (sc-linker; Code Availability), a web interface 

for visualizing the results (Data Availability), postprocessed scRNA-seq data, gene programs, 

enhancer-gene linking strategies, and SNP annotations analyzed in this study (Data Availability). 

 

We constructed three kinds of gene programs from scRNA-seq data (Fig. 1b): (i) cell type 

programs that represent genes specifically enriched in an individual broad cell type of a tissue 

(e.g., colon T cells) compared to other cell types in that tissue; (ii) disease progression cell type 

programs that represent disease progression differences in gene expression within the same cell 

type (e.g., colon T cells in UC vs. healthy colon); and (iii) cellular process programs that capture 

gene co-variation patterns within and across cell types (e.g., MHC class II antigen presenting 

process varying across dendritic cells and B cells) (Methods). We constructed (healthy) cell type 

programs by assessing the differential expression of each gene for the focal cell type vs. all other 

cell types in the tissue using healthy individuals (with cell types defined by clustering42 and 

annotated post hoc) and transforming each gene’s Z score to a probabilistic score (Methods). 

(Analogous to healthy cell type programs generated from healthy tissues, we also generated 

disease cell type programs from cell profiles from disease tissues.) We constructed disease 
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progression cell type programs by assessing differential expression between cells of the same type 

in disease vs. healthy tissue and transforming each gene’s Z score to a probabilistic score 

(Methods), aiming to capture genes involved in disease progression and symptoms after onset. 

(We caution that disease progression programs may also capture genes reflecting genetic 

susceptibility to disease, rather than progression.) On average, disease progression cell type 

programs had low correlation with healthy cell type programs of the same cell type (Pearson 

r=0.16 across tissues; see below) compared to the much higher correlation between disease and 

healthy cell type programs (average r=0.62 across tissues); thus, we did not consider disease cell 

type programs in any of our primary analyses. Finally, independently of predefined cell type 

subsets, we constructed cellular process programs using unsupervised learning, via non-negative 

matrix factorization43 (NMF) and a modified NMF (to jointly model both healthy and disease 

states) of normalized gene expression values, with the latent factors (programs) representing 

variation across continuums of cell types or processes active in multiple cell types. We computed 

the correlations between weights of each latent factor across cells and each gene’s expression 

across cells and then transformed them to a 0-1 probabilistic scale to define each cellular process 

program. We annotated each cellular process program by its most enriched pathways (Methods) 

and labeled it as ‘intra-cell type’ or ‘inter-cell type’ if highly correlated with only one or multiple 

cell type programs, respectively (Methods). Intra-cell type cellular processes can correspond to 

narrower cell types (e.g., CD4 T cells) reflecting cell subsets of broader cell type categories (e.g., 

T cells) or variation within a cell type continuum, whereas inter-cell type cellular process programs 

can reflect shared processes or transitions. 
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Next, we transformed the genes prioritized by each program into SNP annotations by linking each 

gene to SNPs that may regulate their activity in cis (Fig. 1a). We generated SNP annotations using 

an enhancer-gene linking strategy, defined as an assignment of 0, 1 or more linked genes to each 

SNP, combining Roadmap Enhancer-Gene Linking (Roadmap)19,21 and Activity-By-Contact 

(ABC)22,23 strategies (Roadmap∪ABC) in the tissue underlying the program of interest (Methods). 

We used tissue level enhancer-gene links instead of cell type level enhancer-gene links because 

they generated more significant associations in benchmarking experiments based on current data 

(see below). We primarily focused on linking genes to non-coding regulatory variants (which may 

drive cell-type specific differences in expression), based on the results of our benchmarking 

experiments (see below). 

 

Finally, we evaluated each gene program for disease heritability enrichment by applying S-LDSC11 

with the baseline-LD model40,41 to the resulting SNP annotations (Fig. 1a, Methods). The S-LDSC 

analysis was conditioned on 86 coding, conserved, regulatory and LD-related annotations from the 

baseline-LD model (v2.1)40,41 (Data Availability), and uses heritability enrichment to evaluate 

informativeness for disease. Heritability enrichment is defined as the proportion of heritability 

explained by SNPs in an annotation divided by the proportion of SNPs in the annotation11; this 

generalizes to annotations with values between 0 and 144. We further define the Enrichment score 

(E-score) of a gene program as the difference between the heritability enrichment of the SNP 

annotation corresponding to the gene program of interest and the SNP annotation corresponding 

to a gene program assigning a probabilistic grade of 1 to all protein-coding genes with at least one 

enhancer-gene link in the relevant tissue (Methods). We use the p-value of the E-score as our 

primary metric, assessing statistical significance using a genomic block-jackknife as in our 
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previous work11, because the p-values can be compared across datasets, whereas the E-score 

magnitude can vary substantially in gene programs dominated by a smaller (or larger) number of 

genes. We primarily focus on E-scores greater than 2, because E-scores that are statistically 

significant but small in magnitude may have more limited biological importance, as the cell types 

underlying these E-scores may be tagging other causal cell types. We performed this analysis over 

healthy cell type programs (data file S1), disease progression programs (data file S2), and cellular 

process programs (data file S3). We identified the top 50 genes driving disease enrichments with 

highest proximity based MAGMA (v 1.08) gene-disease association scores39 of genes with high 

probabilistic grade in each gene program (Fig. 1C, data file S4, Methods) focusing on genes that 

are both (i) close to a GWAS signal and (ii) in an enriched gene program.  

 

We analyzed a broad range of human scRNA-seq data, spanning 17 data sets from 11 tissues and 

6 disease conditions. The 11 non-disease tissues include immune (peripheral blood mononuclear 

cells (PBMCs)26,45, cord blood27, and bone marrow27), brain28, kidney46, liver47, heart25, lung29, 

colon34, skin48 and adipose47. The 6 disease conditions include multiple sclerosis (MS) brain49, 

Alzheimer’s disease brain30, ulcerative colitis (UC) colon34, asthma lung50, idiopathic pulmonary 

fibrosis (IPF) lung29 and COVID-19 bronchoalveolar lavage fluid51 (Supplementary Fig. 1). In 

total, the scRNA-seq data includes 209 individuals, 1,602,614 cells and 256 annotated cell subsets 

(Methods, Supplementary Table 1). We also compiled publicly available GWAS summary 

statistics for 60 unique diseases and complex traits (genetic correlation < 0.9; average N=297K) 

(Methods, Supplementary Table 2). We analyzed gene programs from each scRNA-seq dataset 

in conjunction with each of 60 diseases and complex traits, but we primarily report those that are 

most pertinent for each program.   
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Benchmarking sc-linker  

As a proof of principle, we benchmarked sc-linker by analyzing 5 blood cell traits that inherently 

correspond to underling cell types (Supplementary Table 2) using immune cell type programs 

constructed from scRNA-seq data (Fig. 2a,b, Supplementary Fig. 1). We constructed 6 immune 

cell type programs that were identified across 4 data sets – two from PBMCs (k=4,640 cells; n=2 

individuals26; k=68,551; n=8 individuals45), and one each of cord blood27 (k=263,828; n=8) and 

bone marrow27 (k=283,894; n=8). We identified the expected cell type enrichments, including 

enrichment of erythroid cells for red blood cell count, megakaryocytes for platelet count, 

monocytes for monocyte count, and of B cells and T cells for lymphocyte percentage (Fig. 2d, 

Supplementary Fig. 2a).  

 

The Roadmap∪ABC enhancer-gene linking strategy outperformed every other enhancer-gene 

linking strategy we tested in identifying these expected enrichments, including its constituent 

Roadmap and ABC strategies, the standard 100kb window-based approach used in LDSC-SEG18 

(Supplementary Fig. 3d,e),  other gene-proximal SNP-gene linking strategies such as exons and 

closest TSS at different genomic distances, other regulatory SNP-gene linking strategies using 

Promoter-capture Hi-C and eQTLs in GTEx whole blood, and combinations of these strategies 

(Supplementary Fig. 3a,b and data file S5). Additionally, the tissue-specific Roadmap∪ABC-

immune enhancer-gene linking strategy generated slightly higher specificity of cell type 

enrichments compared to cell-type-specific enhancer-gene linking strategies, supporting the use 

of tissue-specific enhancer-gene linking (Supplementary Fig. 4l). This trend may stem from 

existing cell-type-specific enhancer-gene links being noisier, due to the limited amount of 
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underlying cell-type-specific data, or because tissue-specific enhancer-gene links may tag 

enhancer-gene links in causal cell types that were not assayed (distinct from tagging captured by 

cell type programs).  

 

The cell type programs were robust to the number of cells and individuals. Specifically, cell type 

programs and their corresponding enrichment results were robust (correlation of r=0.91) to 

changes in the number of profiled cells for scRNA-seq datasets with greater than 500 cells 

(Supplementary Fig. 4f-h); larger scRNA-seq datasets can uncover cell populations and states 

that may be missed in smaller datasets, due to sampling power. The cell type programs were also 

highly similar across different sets of individuals (r=0.96 on average between programs of the 

same cell type generated from different samples, with consistent specificity in expected 

enrichments; Supplementary Fig. 4i-k).  

 

We observed higher specificity of enrichments of relevant cell type-trait pairs for our polygenic 

approach based on specifically expressed genes vs. other cell types compared to several other 

approaches including (i) functional enrichment of fine-mapped SNPs52 (Supplementary Fig. 5a); 

(ii) all expressed genes in a cell type, defined across several thresholds (Supplementary Fig. 6); 

(iii) specifically expressed genes vs. other genes in the same cell type; or (iv) specifically expressed 

genes vs. other genes in the same cell type, after normalizing each gene across cell types 

(Supplementary Fig. 7 and data file S6). We hypothesize that the “all expressed genes” approach 

greatly underperforms sc-linker because, for a given expressed gene, centrality of function in a 

cell is often reflected in its level of expression compared to that in other cells53,54. 
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Sc-linker also outperformed three methods that use the MAGMA software39. First, we considered 

a baseline method for scoring cell types by scoring each cell using MAGMA gene-level 

associations to a trait and averaging across all cells of a cell type. We scored each cell for a trait 

using the top 200 MAGMA genes with highest score for the trait, computing the average 

expression over all the genes and subtracting an expression-matched control gene set. Sc-linker 

generated higher cell type specificity in enrichments compared to this baseline (Supplementary 

Fig. 4n). Second, sc-linker outperformed MAGMA gene set-level associations with a 

sensitivity/specificity index of 6.29 for sc-linker vs. 5.83 for MAGMA (Supplementary Fig. 8), 

and this was further underscored by a comparison across a broader set of cell types and diseases. 

Specifically, analyzing 3 major cell type categories (immune, brain, other) and 4 major categories 

of diseases (blood biomarkers, immune-related diseases, brain-related diseases, other diseases), 

and focusing on the most plausible pairings (immune cell types x blood biomarkers, immune cell 

types x immune-related diseases, and brain cell types x brain-related diseases), sc-linker attained 

a higher sensitivity/specificity index (9.47) compared to MAGMA  (1.78) (Methods, Fig. 2c). 

This is consistent with prior work showing that MAGMA can produce significant results in the 

absence of true enrichment (false positives) due to uncorrected genomic confounding (e.g., non-

gene set-specific exon enrichment), if no gene-level covariates are included to correct for potential 

confounding. Third, FUMA35, a web interface that applies (gene set-level) MAGMA with 

precompiled scRNA-seq data (distinct from the data in our study), underperformed both sc-linker 

and gene set-level MAGMA (data file S7 and S8).  
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Distinguishing innate, adaptive and antibody-mediated immunity contributions among 

immune-related diseases 

We next analyzed 11 autoimmune and/or inflammation-associated diseases (Supplementary 

Table 2) using the 6 immune cell type programs above (Fig. 2a,b, Supplementary Fig. 1) and 10 

(intra-cell type and inter-cell type) immune cellular process programs (Fig. 2f). (Enrichment 

results for the remaining 49 diseases and traits with immune cell type programs are reported in 

Supplementary Fig. 9; we did not construct disease progression programs, as these datasets 

included healthy samples only). We identified cell type-disease enrichments that conform to 

known disease biology (Fig. 2e, Supplementary Fig. 2b), including T cells for eczema55,56, B and 

T cells for primary biliary cirrhosis (PBC)18, and dendritic cells and monocytes for Alzheimer’s 

disease57. Additionally, the highly significant enrichments for MS across all 6 immune cell type 

programs analyzed are consistent with previous analyses18,58,59,60,61, supporting the validity of our 

approach.  

 

Several of the significant cell type-disease enrichments are not as widely established and may 

implicate previously unexplored biological mechanisms (Fig. 2e, Table 1, Supplementary Fig. 

2b). For example, we detected significant enrichment in B cells for UC; B cells have been detected 

in basal lymphoid aggregates in the ulcerative colitis (UC) colon, but their pathogenic significance 

remains unknown62. In addition, T cells were highly enriched for celiac disease; the top driving 

genes including ETS1 (ranked 1), associated with T cell development and IL2 signaling63, and 

CD28 (ranked 3), critical for T cell activation. This suggests that aberrant T cell maintenance and 

activation may impact inflammation in celiac disease. Recent reports of a permanent loss of 

resident gamma delta T cells in the celiac bowel and the subsequent recruitment of inflammatory 
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T cells may further support this hypothesis64. These results were recapitulated across an 

independent immune cell scRNA-seq dataset, both in the gene programs (average correlation: 0.78 

for the same cell type) and disease enrichments (0.86 correlation of the E-score over all cell type 

and trait pairs). A cross-trait analysis of the patterns of cell type enrichments suggests that Celiac 

disease and rheumatoid arthritis involves cell-mediated adaptive immune response, UC and 

primary biliary cirrhosis involve antibody-mediated adaptive immune response, Alzheimer’s 

disease has a strong signal of innate immune, and MS and IBD involve contributions from a wide 

range of immune cell types (Supplementary Fig. 10). 

 

Analyzing the 10 immune cellular process programs (Fig. 2f) across the 11 immune-related 

diseases and 5 blood cell traits, we identified both disease-specific enrichments and others shared 

across diseases (Fig. 2g, Table 1). For example, while T cells have been previously linked to 

eczema, we pinpointed higher enrichment in CD4+ T cells compared to CD8+ T cells. The IL2 

signaling cellular process program in T and B cells was significantly enriched for both eczema and 

celiac disease, though the genes driving the enrichment were not significantly overlapping (p-

value: 0.21). Additionally, the complement cascade cellular process program in plasma, B, and 

hematopoietic stem cells (HSCs) was most highly enriched among all inter cellular programs for 

celiac disease. For Alzheimer’s disease, there was a strong enrichment in both classical and non-

classical monocyte intra-cell type cellular programs, and in MHC class II antigen presentation 

(inter cell type; dendritic cells (DCs) and B cells) and prostaglandin biosynthesis (inter cell type; 

monocytes, DCs, B cells and T cells) programs. Among the notable driver genes were: IL7R 

(ranked 1) and NDFIP1 (ranked 3) for CD4+ T cells in eczema, which respectively play key roles 

in Th2 cell differentiation65,66 and in mediating peripheral CD4 T cell tolerance and allergic 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.03.19.436212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436212


 14 

reactions67,68; and CD33 (ranked 1) in MHC class II antigen processing in Alzheimer’s disease, a 

microglial receptor strongly associated with increased risk in previous GWAS69,70.  

 

Linking GABAergic and glutamatergic neurons to psychiatric disease 

We next focused on brain cells and psychiatric disease, by analyzing 9 cell type programs (Fig. 

3a) and 12 cell process programs (Fig. 3e, 10 intra- and 2 inter-cell type programs) from scRNA-

seq data of brain prefrontal cortex (k=73,191, n=10)28 (Supplementary Table 1) with 11 

psychiatric or neurological diseases and traits (Supplementary Table 2). We did not construct 

disease progression programs, as this dataset included healthy samples only. 

 

Notably, we observed enrichments of major depressive disorder (MDD) and body mass index 

(BMI) specifically in GABAergic neurons, while insomnia, schizophrenia (SCZ), and intelligence 

were highly enriched specifically in glutamatergic neurons, and neuroticism was highly enriched 

in both. GABAergic neurons regulate the brain’s ability to control stress levels, which is the most 

prominent vulnerability factor in MDD71 (Fig. 3b,c, Table 1, Supplementary Fig. 2c). Among 

the top genes driving this enrichment were TCF4 (ranked 1), a critical component for neuronal 

differentiation that affects neuronal migration patterns72,73, and PCLO (ranked 4), which is 

important for synaptic vesicle trafficking and neurotransmitter release74–76. Although predominant 

therapies for MDD target monoamine neurotransmitters, especially serotonin, the enrichment for 

GABAergic neurons is independent of serotonin pathways, suggesting that they might include new 

therapeutic targets for MDD. These results were robustly detected in an independent brain scRNA-

seq dataset, both in the gene programs (average correlation: 0.77 for the same cell type and -0.21 

otherwise) and disease enrichments (0.77 correlation of the E-score over all cell type and trait 
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pairs), including GABAergic neurons in MDD and BMI as well as glutamatergic neurons in 

insomnia and SCZ. Enrichment results for the remaining 49 diseases and traits in conjunction with 

brain cell type programs are reported in Supplementary Fig. 9.  

 

Tissue specificity of both the cell type program and enhancer-gene strategy was important for 

successful linking, which we found by comparing the enrichment of all four possible combinations 

of immune or brain cell type programs with immune- or brain-specific enhancer-gene linking 

strategies, meta-analyzed across 11 immune-related diseases or 11 psychiatric/neurological 

diseases and traits (Fig. 3d). This highlights the importance of leveraging the tissue specificity of 

enhancer-gene strategies.  

 

The 12 brain cellular process programs showed that the significant enrichment of brain-related 

diseases in neuronal cell types above is primarily driven by finer programs reflecting neuron 

subtypes (Fig. 3f, Table 1, Supplemental Note). For example, the enrichment of GABAergic 

neurons for BMI was driven by programs reflecting LAMP5+ and VIP+ subsets. Furthermore, the 

enrichment of GABAergic neurons for MDD reflects SST+ and PVALB+ subsets. We also 

observed enrichment in more specific cell subsets within glutamatergic neurons (e.g. IT neurons 

were enriched for neuroticism). Among inter cell type programs, electron transport cellular process 

programs (GABAergic and glutamatergic neurons) were enriched for several 

psychiatric/neurological traits, such as years of education, consistent with previous studies77. 

 

Linking cell types from diverse human tissues to disease 
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Analysis of kidney, liver, heart, skin and adipose cell types (Supplementary Table 1) and 

corresponding relevant traits (Supplementary Table 2) revealed the role of particular immune, 

stromal and epithelial cellular compartments across different diseases/traits. For example, kidney 

and liver cell type programs (Supplementary Fig. 1) highlighted relations with urine biomarker 

traits (Fig. 4a, Supplementary Fig. 9 and 11a,b), such as enrichment for creatinine level in kidney 

proximal and connecting tubule cell types, but not in liver cell types, as expected78,79, or a 

significant enrichment for bilirubin level only in liver hepatocytes (driven by ANGPTL3; ranked 

4)80,81. In heart (Fig. 4B, Supplementary Fig. 9 and 11c, Table 1), atrial cardiomyocytes were 

enriched for atrial fibrillation, and pericyte and smooth muscle cells for blood pressure, consistent 

with their respective roles in determining heart rhythm through activity82 of ion channels (top 

genes included the ion channel genes PKD2L2 (ranked 2), CASQ2 (ranked 7) and KCNN2 (ranked 

18)) and blood pressure regulation through vascular tone83 (top genes driving included adrenergic 

pathway genes PLCE1 (ranked 1), CACNA1C (ranked 21), and PDE8A (ranked 23)). In skin (Fig. 

4c, Supplementary Fig. 9, Table 1), both BDNF signaling and Langerhans cells were enriched 

for eczema. Langerhans cells have been implicated in inflammatory skin processes related to 

eczema84 (top driving genes included IL-2 signaling pathway genes (FCER1G (ranked 3), NR4A2 

(ranked 26), and CD52 (ranked 43), which modulate eczema pathogenesis85). In adipose (Fig. 4d, 

Supplementary Fig. 9 and 11e), adipocytes were enriched for BMI, driven by adipogenesis 

pathway genes86 (STAT5A (ranked 15), EBF1 (ranked 29), LIPE (ranked 45) and triglyceride 

biosynthesis genes86 (GPAM (ranked 14), LIPE (ranked 45), both of which contribute to the 

increase in adipose tissue mass in obesity87,88).  

 

Rare examples linking cell types from one tissue to disease manifestation in another tissue 
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We expanded our analysis to evaluate all cell type programs for all diseases/traits, irrespective of 

the tissue locus of disease aiming to identify cell type enrichments involving “mismatched” cell 

type -disease/trait pairs (Supplementary Figure 5). As expected, in most cases “mismatched” cell 

type programs and disease/trait pairs do not yield significant association. Notable exceptions 

included enrichments of skin Langerhans cells for Alzheimer’s disease (AD) (E-score: 15.2, p=10-

4), M cells (in colon) for asthma (E-score: 2.2, p=10-4), and heart smooth muscle cells for lung 

capacity (E-score: 5.6, p=3*10-4).  

 

In some cases, the association may indicate a direct relationship, whereas in other cases the 

associated cell type may only “tag” the causal cell type in the disease tissue, as cell type programs 

derived from cells of the same type across tissues were found to be highly correlated (Fig. 4e) with 

consistent enrichment in these correlated cell type programs (Supplementary Fig. 5 and 9). The 

enrichment of Langerhans cells for AD is plausible given that Langerhans cells respond differently 

to Ab peptides, which has implications in AD immunotherapy89. On the other hand, the enrichment 

of colon M cells for asthma may suggest a role for lung-resident M cells, which have not been 

identified to date but are expected to be in the lung, as M cells stimulate IgA antibody production 

as an immune response90, while selective IgA immunodeficiency increases risk for asthma91. 

Similarly, the heart smooth muscle cell program may merely mirror that of airway smooth muscle 

cells, whose function is a pivotal determinant of lung capacity92. 

 

Linking neurons, microglia, and complement and apelin signaling pathways to MS and AD 

progression 
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We next turned to cases where both healthy and disease tissue have been profiled, allowing us to 

identify heritability in programs associated with disease-specific biology. Such understanding is 

especially important for identifying therapeutic targets associated with disease progression rather 

than disease onset mechanisms. 

 

We first examined disease progression programs in multiple sclerosis (MS) and Alzheimer’s 

disease (AD) , where aberrant interactions between neurons and immune cells are thought to play 

an important role. We analyzed MS and AD GWAS data (Supplementary Table 2) along with 

cell type, disease progression, and cellular process programs from scRNA-seq of healthy and MS49 

or AD30 brain (Fig. 5a,e, Supplementary Table 1). We considered brain enhancer-gene links 

(since MS and AD are neurological diseases), immune enhancer-gene links (since MS and AD are 

immune-related diseases) and non-tissue-specific enhancer-gene links (Supplementary Fig. 12) 

and detected strongest enrichment results for the immune enhancer-gene links. In both MS and 

AD, disease progression programs in each cell type differed substantially from cell type programs 

constructed from cells from healthy (r=0.16) or disease (r=0.29) samples alone (Supplementary 

Fig. 13). Furthermore, we confirmed that disease GWAS matched to the corresponding disease 

progression programs produced the strongest enrichments, although there was substantial cross-

disease enrichment (Supplementary Fig. 14). 

 

In MS, there was enrichment in disease progression programs in GABAergic neurons and 

microglia (Fig. 5b, Supplementary Fig. 15), as well as in Layer 2,3 glutamatergic neurons and 

the complement cascade (in multiple cell types) (Fig. 5d). The specific enrichment of the 

GABAergic neuron disease progression program (but not the healthy cell type program) for MS is 
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consistent with the observation that inflammation inhibits GABA transmission in MS94. The 

GABAergic disease progression program was enriched with hydrogen ion transmembrane 

transporter activity genes, while the GABAergic cell type program was enriched in genes with 

general neuronal functions (data file S9). The enrichment of the microglia disease progression for 

MS is consistent with the role of microglia in inflammation and demyelination in MS lesions95,96 

and highlights a contribution of microglia in both disease onset and response. The top driving 

genes for the microglia disease progression enrichment included MERTK (ranked 2) and TREM2 

(ranked 4), both having roles in myelin destruction in MS patients97,98. Supporting this finding, 

there is a significant increase in the number of microglia (p-value: 2x10-4, Fisher’s exact test) and 

a significant decrease in number of glutamatergic neurons (p-value: 8x10-5) in MS lesions (Fig. 

5c, data file S10). In addition, there was enrichment for the complement cascade disease-specific 

cellular process program (in B cells and microglia; the top driving genes included FC-complement 

genes CD37, FCRL2 and FCRL1 (ranked 1, 10, 14) consistent with studies showing that 

Complement activity is a marker for MS progression99–101. 

 

In AD, all associations highlighted the central role of microglia, suggesting that different processes 

may be at play at microglia or microglia subsets in healthy brain and after disease initiation: only 

the microglia disease progression program was enriched out of 8 disease progression programs 

tested (Fig. 5e,f, Supplementary Fig. 16), along with the healthy microglia program, and the 

apelin signaling pathway disease-specific cellular process program (inter cell type; GABAergic 

neurons and microglia). The microglia program enrichments are consistent with the contribution 

of microglia-mediated inflammation to AD progression102,103. The top genes driving enrichment 

specifically in the disease progression program (but not the healthy cell type program) included 
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PICALM1, APOC1, APOE and TREM2 (ranked 1, 2, 3 and 8). APOE regulates microglial 

responses to Alzheimer’s related pathologies104–106, APOC1 is a an APOE-dependent suppressor 

of glial activation107, and TREM2 modulates microglial morphology and neuroinflammation in 

Alzheimer’s disease pathogenesis models108,109. Supporting this finding, there is a significant 

increase in the number of microglia in AD brain (Fig. 5g, data file S10). The apelin signaling 

pathway disease-specific cellular process program is consistent with recent studies implicating this 

pathway in reducing neuroinflammation in animal models of Alzheimer’s disease110,111. The top 

genes driving the enrichment included SORL1 and SYK (ranked 2 and 3). SORL1 expression levels 

are significantly reduced in Alzheimer’s disease patients, and has also been implicated by rare 

variant analyses112–114. 

 

Thus, in both MS and AD, heritability was enriched in distinct ways in microglia cell type, disease 

progression and cellular process programs, suggesting new therapeutic opportunities to combat the 

role of microglia in varying contexts for disease risk and highlighting the importance of a multi-

faceted analysis. 

 

Linking enterocytes and M cells to ulcerative colitis disease progression  

We next examined the role of cell type, disease progression and cellular process programs in 

ulcerative colitis (UC), where failure to maintain the colon’s epithelial barrier results in chronic 

inflammation. We analyzed UC and IBD GWAS data (Supplementary Table 2) with healthy cell 

type, UC disease progression and UC cellular process programs constructed from scRNA-seq from 

healthy colon, and from matched uninflamed and inflamed colon of UC patients (Fig. 6a, 

Supplementary Table 1). We compared colon enhancer-gene links (Fig. 6) and non-tissue-
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specific enhancer-gene links (Supplementary Fig. 12) and detected strongest enrichment results 

for the colon enhancer-gene links. As in MS and AD, UC disease progression programs in each 

cell type differed substantially from corresponding healthy or disease colon cell type programs 

(average Pearson r=0.24; Supplementary Fig. 13, data file S11).  

 

In addition to previously observed enrichments in healthy immune cell type programs, our analysis 

highlighted healthy cell type programs of enteroendocrine and endothelial cells, disease 

progression programs of enterocytes and M cells, as well as the complement cascade (in plasma, 

B cells, enterocytes and fibroblasts), MHC-II antigen presentation (macrophages, monocytes and 

dendritic cells), and EGFR1 signaling (macrophages and enterocytes) in both healthy and disease 

cells (Fig. 6, Supplementary Fig. 9, data file S1). The strong enrichment in endothelial cells, 

which comprise the gut vascular barrier, is consistent with their rapid changes in UC115; the top 

driving genes included members of the TNF-" signaling pathway (EFNA1, NFKBIA, CD40, 

ranked 18, 26, 29), a key pathway in UC116.  

 

The disease progression programs (Fig. 6c, Table 1, Supplementary Fig. 15 and 11) highlighted 

M cells, a rare cell type in healthy colon that increases in UC34 (Fig. 6d, data file S10). M cells 

surveil the lumen for pathogens and play a key role in immune–microbiome homeostasis117. 

Supporting this finding, mutations in FERMT1, a top driving gene in the M cell disease progression 

program (ranked 3), cause Kindler syndrome, a monogenic form of IBD with UC-like 

symptoms118–120. Notably, there was no enrichment in M cell healthy cell type programs (Fig. 6b), 

emphasizing that M cells are activated specifically in UC disease, as their proportions increase 

(p=0.008) (Fig. 6d). 
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Immune and connective tissue cell types linked to asthma disease progression 

We analyzed GWAS data for asthma, IPF, COVID-19 (both general COVID-19 and severe 

COVID-19), and lung capacity (Supplementary Table 2) with healthy cell type, disease 

progression and cellular process programs from asthma, IPF, COVID-19 and healthy29 (lower lung 

lobes) tissue scRNA-seq (Fig. 7a,c,f, Supplementary Fig. 13d-f and 15, data file S11), using 

either lung enhancer or immune enhancer gene links. For asthma, there was significant enrichment 

for healthy cell type and disease progression programs in T cells (see Supplemental Note), and 

for lung capacity (height-adjusted FEV1adjRVC), there was significant enrichment for healthy cell 

type and disease progression programs in fibroblasts (Fig. 7b, data file S1) and the MAPK cellular 

process program (in basal, club, fibroblast and endothelial cells) (Fig. 7f, g, Table 1). For IPF and 

COVID-19, the enrichment results are detailed in the Supplemental Note.  

 

For example, both healthy and disease progression fibroblast/stromal programs were enriched for 

lung capacity (but not asthma), consistent with the adverse impact of overproduction of 

extracellular matrix (ECM) on the reduced lung capacity and elasticity characteristic of fibrosis121. 

In the cell type program, top driving genes included LOX (ranked 1), which alters ECM mechanical 

properties via collagen cross-linking122, and TGFBR3 (ranked 37) which regulates the pool of 

available TGFb, a master regulator of lung fibrosis. Notably, the enrichment of basal cell disease 

progression programs, but not healthy cell type programs, in lung capacity are supported by the 

significant increase (p-value: 3x10-5) in basal cells in asthma vs. healthy lungs (Fig. 7e). Expanding 

the analysis to cellular process programs, the top driving genes of the enrichment of a MAPK 

signaling pathway program for lung capacity (in basal, club, fibroblast and endothelial), include 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.03.19.436212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436212


 23 

FOXA3 (ranked 1), which plays a key role in allergic airway inflammation123, and PDE2A (ranked 

2), which has been associated with alveolar inflammation124.  

 

DISCUSSION 

Prior work on identifying disease-critical tissues and cell types by combining expression profiles 

and human genetics signals has largely focused on the direct mapping of the expression of 

individual genes34 and genome-wide polygenic signals18,36 to discrete cell categories. Our study 

demonstrates that there is much to be gained by linking inferred representations of the underlying 

biological processes beyond cell types in different cell and tissue contexts with genome-wide 

polygenic disease signals, by integrating scRNA-seq, epigenomic and GWAS data sets.  

 

Our work introduces three main conceptual advances. First, by integrating scRNA-seq data and 

GWAS summary statistics using tissue-specific enhancer-gene linking strategies, we detect subtle 

differences in SNP to gene mapping between tissues which upon aggregation over the full GWAS 

signal produce strong differences in disease heritability across cell types. Second, by constructing 

disease progression programs comparing cells of the same type in disease vs. healthy tissue, we 

project GWAS signals across disease-specific cell states. Third, by using NMF to construct cellular 

process programs that do not rely on known cell type categories, we identify cellular mechanisms 

that vary across a continuum of cells of one type or are shared between cells of different types such 

as the MAPK signaling pathway identified in the lung.  

 

Leveraging these advances, we identified notable enrichments (Table 1) that have not previously 

been identified using GWAS data and are biologically plausible but not clearly expected, thus 
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providing important new knowledge. We also observed patterns across datasets that offer new 

insights. For example, we observed that disease progression programs, but not healthy cell type 

programs, of epithelial cells (M cells and basal cells) tend to be enriched in autoimmune diseases 

(UC and asthma). In contrast, for immune cells healthy and disease progression programs tended 

to be similarly enriched. We posit that this suggests a role for epithelial cells in disease progression 

over initiation. Future studies are required to experimentally validate these new hypotheses. 

 

Our work has several limitations that highlight directions for future research. First, the enhancer-

gene linking strategies from Roadmap and Activity-By-Contact (ABC) models are limited in the 

tissues and cell  states represented. More fine-grained enhancer-gene linking strategies will likely 

prove beneficial, but the strategies that we used here provide a clear improvement over a standard 

gene window-based approach. Second, we focus on genome-wide disease heritability (rather than 

a particular locus); however, our approach can be used to implicate specific genes and gene 

programs. Third, sc-linker does not distinguish whether two cell types (or more generally, gene 

programs) implicated in disease exhibit conditionally independent signals. Assessing this via a 

conditional S-LDSC analysis of the corresponding SNP annotations is likely to be underpowered, 

as the gene programs (and SNP annotations) may be highly correlated. A more powerful approach 

may be to define cell type programs based on specific expression relative to a narrower set of cells. 

Fourth, although all studies considered in this work profiled large numbers of cells (up to 300,000 

in some tissues), some rare cell types and processes may not yet be adequately sampled due to the 

number of cells or their tissue distribution125, or may only be apparent in a disease context, as we 

observe for rare M cells in UC. Fifth, we have focused on human scRNA-seq data33; however, 

incorporating data from animal models, as discussed in prior work36, would allow experimental 
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validation of disease mechanisms in model organisms. Sixth, the disease progression programs 

that we link to disease may not be causal for disease, but rather reflect disease-induced changes or 

genetic susceptibility to disease126,127. However, our findings clearly validate the relevance of these 

gene programs to disease as observed in M cells and UC34. Seventh, the LD score regression 

framework11 is primarily applicable to common and low-frequency variants, and less applicable to 

rare variant enrichments. Eighth, we capture programs by cell category or gene co-variation, 

whereas future work could extend beyond these to capture dynamic cellular transitions128. 

 

Looking forward, the gene program-disease links identified by our analyses can be used to guide 

downstream studies, including designing systematic perturbation experiments129,130 in cell and 

animal models131 for functional follow up. We anticipate that gene programs will continue to grow 

and refine due to the continued growth of different types of profiling data – including from single-

cell atlases across many tissues and diseases, Perturb-seq129 experiments under genetic or chemical 

perturbation, spatial transcriptomics, and other modalities132,133. Such analyses can then expand to 

genetic interactions within and between cells. In the long term, with the increasing success of 

PheWAS and the integration of multi modal single cell resolution epigenomics, this framework 

will continue to be useful in identifying biological mechanisms driving a broad range of diseases. 
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METHODS 
 
scRNA-seq data pre-processing 

All scRNA-seq datasets in this study25–30,34,45–51 are publicly available cell by gene expression 

matrices that are aligned to the hg38 human transcriptome (Supplementary Table 1). Each dataset 

included metadata information for each cell describing the total number of reads in the cell and 

which sample the cell corresponds to and, if applicable, its disease status. We transformed each 

expression matrix to a count matrix by reversing any log normalization processing (because each 

downloaded dataset contained either (i) raw counts, (ii) normalized log2 TP10K, or (iii) normalized 

log10 TP10K), and standardized the normalization approach across all datasets to account for 

differences in sequencing depth across cells by normalizing by the total number of UMIs per cell, 

converting to transcripts-per-10,000 (TP10K) and taking the log of the result to obtain 

log(10,000*UMIs/total UMIs + 1) “log2(TP10K+1)” as the final expression unit. 

 
Dimensionality reduction, batch correction, clustering and annotation of scRNA-seq 

The log2(TP10K+1) expression matrix for each dataset was used for the following downstream 

analyses. For each dataset, we identified the top 2,000 highly variable genes across the entire 

dataset using Scanpy’s42 highly_variable_genes function with the sample ID as input for the batch. 

We then performed a Principal Component Analysis (PCA) with the top 2,000 highly variable 

genes and identified the top 40 principle components (PCs), beyond which negligible additional 

variance was explained in the data (the analysis was performed with 30, 40, and 50 PCs and was 

robust to this choice). We used Harmony134 for batch correction, where each sample was 

considered its own batch. Subsequently, we built a k-nearest neighbors graph of cell profiles (k = 

10) based on the top 40 batch corrected components computed by Harmony and performed 

community detection on this neighborhood graph using the Leiden graph clustering method135 with 
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resolution 1. For each dataset, individual single-cell profiles were visualized using the Uniform 

Manifold Approximation and Projection (UMAP)136. If prior annotations were available they are 

used as a reference to annotate each cell in each dataset. If prior annotations were not available, 

we used established cell type-specific expression signatures and gene markers described in the 

data source to annotate cells at the resolution of Leiden clusters. 

 
Cell type gene programs 

We constructed cell type programs for every cell type in a given tissue by applying a non-

parametric Wilcoxon rank sum test for differential expression (DE) between each cell type vs. 

other cell types and computed a p value for each gene. Using a previously published strategy15, we 

transform these p-values to X = -2 log (p), which follow a #!! distribution, and these transformed 

values to a grade between 0 and 1 using the min max normalization g = ( X – min (X) )/( max(X) 

– min(X) ) resulting in a relative weighting of genes in each program. In brief, cell type programs 

constructed from healthy cells were termed as healthy cell type programs and similarly cell type 

programs constructed from disease cells were termed as disease cell type programs. 

 
Disease progression gene programs 

We constructed disease progression programs for each cell type observed in both healthy and 

matching disease tissue. For each cell type, we computed a gene-level non-parametric Wilcoxon 

rank sum DE test between cells from healthy and disease tissues of the same cell type. The p-

values for each gene were transformed to a grade between 0 and 1 using the same strategy as in 

the cell type program to form a relative weighting of genes in each program. In the COVID-19 

BAL scRNA-seq, we also constructed viral progression programs based on differential expression 

between viral infected and uninfected cells of the same cell type in COVID-19 disease individuals. 
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We observed low correlation between healthy cell type gene programs and disease progression 

gene programs (see Supplementary Fig. 13 and data file S11). 

 
Cellular process gene programs 

Using latent factors derived from non-negative matrix factorization (NMF)43 (see below), we 

define a cellular process program based on genes with high correlation (across cells) between their 

expression in each cell and the contribution of the factor to each cell (collapsing latent factors with 

high correlation). The correlations were transformed to a probabilistic scale (between 0 and 1) by 

scaling their values (negative correlations are assigned to 0). We then annotated each factor 

(program) by the pathway most enriched in the top driving genes for the factor and labeled each 

as an ‘intra-cell type’ or ‘inter-cell type’ latent factor if the pathway was highly correlated with 

only one or multiple cell type programs, respectively.  

 

We constructed cellular process programs using an unsupervised approach, by applying non-

negative matrix factorization (NMF)43 to the scRNA-seq cells-by-genes matrix. The solution to 

this formulation can be identified by solving the following minimization problem: 
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where /",$ represents the log-normalized expression of gene m in sample n,  2",& denotes the 

grade of membership of latent factor p in sample n, and  4&,$ represents the factor weight of 

factor p in gene m. NMF identifies cellular processes as latent factors with a grade of 
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contribution to each cell. For each dataset, we specified the number of latent factors p to be the 

number of annotated cell types in the dataset plus 10. For each latent factor, we define a cellular 

process gene program by identifying genes with high correlation (across cells) between 

expression in a cell and the contribution of each factor to each cell. Latent factors with 

correlation above 0.8 are collapsed to only consider a single latent factor. We annotated each 

cellular process program by the pathway most enriched in the genes with highest correlation 

(across cells) between expression levels and factor weights (H) underlying the cellular process 

program (not necessarily the most highly expressed genes, Supplementary Fig. 17) and labeled 

it as an ‘intra-cell type’ or ‘inter-cell type’ cellular process program if highly correlated with 

only one or multiple cell type programs, respectively. 

 

Cellular process gene programs constructed from healthy and disease tissues 

For scRNA-seq from healthy and disease tissue contexts, we propose a modified NMF approach 

to construct gene programs that are either shared across both tissues, specific to healthy tissue or 

specific to disease tissue. Let 4*∗,! be the observed gene expression data for a tissue > from a 

healthy individual and ?*∗," be the observed gene expression data for the corresponding tissue 

from a disease individual. @ is the number of features (genes) and A) and A! denote the number 

of samples from the healthy and disease tissues, respectively. 

We assume a non-negative matrix factorization for 4 and ? as follows 

4*-,! ≈ CD*-.#
/0 D*-.$

10 EF(.#3.$)-,!
0 	Gℎ;%;		D/0 , D10 , F0 > 	0 (2) 

?*-," ≈ CD*-.#
/5 D*-.%

15 EF(.#3.%)-,"
5 	Gℎ;%;	D/5 , D15 , F5 > 	0 (3) 
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where L/  is the number of shared programs between the healthy and the disease samples, L0 is 

the number of healthy specific programs and L5 is the number of disease-specific programs. D/0 

and D/5 are used to denote the shared programs between healthy and disease states. Therefore, we 

assume that D/0 is very close to D/5 but not exact to account for other factors like experimental 

conditions perturbing the estimates slightly. On the other hand, D10 and D15 are used to denote the 

healthy-specific and disease-specific programs respectively. F0 		$)M	F5		denote the program 

weights in the healthy and disease samples respectively. frame this in the form of the following 

optimization problem 

argmin
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Where D0 = CD*-.#
/0 D*-.$

10 E			$)M	D5 = CD*-.#
/5 D*-.%

15 E	$)M	W is a tuning parameter that controls 

how close D/0 is to D/5	. T represents a tuning parameter that controls for the size of the loadings 

and the factors.  

 

To determine the multiplicative updates of the NMF optimization problem in Equation 4 we 

compute the derivatives of the optimization criterion with respect to each parameter of interest. 

We call the optimization criterion as Y: 

∇Y(D0) = 	−4F0
&
+ D0F0F0

&
+ TD0 − W[D/50] (5) 
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∇Y(F5) = 	−D5
&
? + D5

&
D5F5 (8) 

 

Following the multiplicative update rules of NMF as per Lee and Seung (NIPS 2001), we get the 

following iterative updates and assume convergence has been achieved after 100 iterations or when 

the reconstruction error is below a user-specified error threshold (here the threshold is taken to be 

1e-04).  

D78
0 ← D78

0
_4F0

&
+ W[D/50]`78

_D0F0F0& + TD0`78
 (9) 

D78
5 ← D78

5
_?F5

&
+ W[D/00]`78

_D5F5F5& + TD5`78
 (10) 

F78
0 ← F78

0
_D0

&
4`78

_D0&D0F0`78
 (11) 

F78
5 ← F78

5
_D5

&
?`78

_D5&D5F5`78
 

(12) 
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Enhancer-gene linking strategies 

We define an enhancer-gene linking strategy as an assignment of 0, 1 or more genes to each SNP 

with a minor allele count >5 in the 1000 Genomes Project European reference panel137. Here, we 

primarily considered an enhancer-gene linking strategy defined by the union of the Roadmap21,138 

and Activity-By-Contact (ABC)22,23 strategies. Roadmap and ABC enhancer gene links are 

publicly available for a broad set of tissues and have been shown to outperform other enhancer-

gene linking strategies in previous work139. We consider tissue-specific Roadmap and ABC 

enhancer-gene linking strategies for gene programs corresponding to any of the biosamples (cell 

types or tissues) associated with the relevant tissue. Based on analysis in immune cell types, 87% 

of genes expressed in the scRNA-seq were observed to have enhancer-gene links. We also consider 

non-tissue specific Roadmap and ABC strategies (Supplementary Fig. 12). Besides this enhancer-

gene linking strategy, we also considered a standard 100kb window-based strategy13,18.  

 
Genomic annotations and the baseline-LD models 

We define an annotation as an assignment of a numeric value to each SNP in a predefined reference 

panel (e.g., 1000 Genomes Project137; see Data Availability). Binary annotations can have value 0 

or 1 only; continuous-valued annotations can have any real value; our focus is on continuous-

valued annotations with values between 0 and 1. Annotations that correspond to known or 

predicted functions are referred to as functional annotations. The baseline-LD model40,41 (v.2.1) 

contains 86 functional annotations (see Data Availability), including binary coding, conserved, 

and regulatory annotations (e.g., promoter, enhancer, histone marks, TFBS) and continuous-valued 

linkage disequilibrium (LD)-related annotations. 

 
Stratified LD score regression 
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Stratified LD score regression (S-LDSC) assesses the contribution of a genomic annotation to 

disease and complex trait heritability11. S-LDSC assumes that the per-SNP heritability or variance 

of effect size (of standardized genotype on trait) of each SNP is equal to the linear contribution of 

each annotation.  

:$%_ß8` = 	1$89

/

9
t9 (14) 

 
where ajc is the value of annotation c at SNP j, with the annotation either continuous or binary 

(0/1), and tc is the contribution of annotation c to per SNP heritability conditional on the other 

annotations. S-LDSC estimates tc for each annotation using the following equation: 

b(	/8
!	) 	= 	A	1 c	(d, <)	e9 	+ 	1

9
 (15) 

 
where c(d, <) = ∑ $9;%8;

!
;  is the stratified LD score of SNP j with respect to annotation c, %8; is the 

genotypic correlation between SNPs j and k computed using 1000 Genomes Project, and N is the 

GWAS sample size.  

 
We assess the informativeness of an annotation c using two metrics. The first metric is Enrichment 

score (E-score), which relies on the enrichment of annotation c (b9), defined for binary annotations 

as follows (for binary and probabilistic annotations only): 

b9 	= 	

ℎ<!	(<)
ℎ<!

∑ $898
g

 (16) 

where ℎ<!(<) is the heritability explained by the SNPs in annotation c, weighted by the annotation 

values where M is the total number of SNPs on which this heritability is computed (5,961,159 in 

our analyses). The Enrichment score (E-score) is defined as the difference between the enrichment 

for annotation c corresponding to a particular program against a SNP annotation for all protein 
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coding genes with a predicted enhancer-gene link in the relevant tissue. The E-score metric 

generalizes to probabilistic annotations with values between 0 and 144. We primarily focus on the 

p-value for nonzero enrichment score (see below).  

 
The second metric is standardized effect size (h∗), the proportionate change in per-SNP heritability 

associated with a one standard deviation increase in the value of the annotation, conditional on 

other annotations included in the model40. 

h9∗ =	
h9iM9
ℎ<!/g

 (17) 

where iM9 	is the standard error of annotation c, ℎ<!	is the total SNP heritability and M is as defined 

previously. h9∗	is the proportionate change in per-SNP heritability associated with an increase of 

one standard deviation in the value of a annotation.  

 
We assessed the statistical significance of the enrichment score and h∗ via block-jackknife, as in 

previous work11, with significance thresholds determined via False Discovery Rate (FDR) 

correction (q-value < 0.05)140. FDR was calculated over all relevant relatively independent traits 

for a tissue and all programs of a particular type (cell type programs, disease progression programs, 

cellular process programs) derived from that tissue. We used the p-value for nonzero enrichment 

score as our primary metric, because h∗ is often non-significant for small cell-type-specific 

annotations when conditioned on the baseline-LD model141.  

 
GWAS summary statistics 

We analyzed publicly available GWAS summary statistics for 60 unique diseases and traits with 

genetic correlation less than 0.9. Each trait passed the filter of being well powered enough for 

heritability studies (z score for observed heritability > 5). We used the summary statistics for SNPs 

with minor allele count >5 in a 1000 Genomes Project European reference panel137. The lung 
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FEV1FVC trait was corrected for height data. For COVID-19, we analyzed two phenotypes – 

general COVID-19 (covid vs. population, liability scale heritability ℎ! = 0.05, se. = 0.01), and 

severe COVID-19 (hospitalized covid vs population, liability scale heritability ℎ! = 0.03, se. = 

0.01)142 (meta-analysis round 4, October 20, 2020, https://www.covid19hg.org/). 

 
Computing a sensitivity/specificity index 

We define a sensitivity/specificity index to benchmark (i) sc-linker vs. MAGMA gene-set 

enrichment analysis, and (ii) different versions of sc-linker corresponding to varying ways to 

define cell type programs and SNP-to-gene linking strategies 

 

For the comparison of sc-linker with MAGMA, we define the sensitivity/specificity index as the 

difference of (i) the average of -log10(P-values) of enrichment score (association) using sc-linker 

(MAGMA) for “putatively positive control” (gene program, trait) combinations and (ii) the 

average of -log10(P-values) of gene-set level enrichment score (association) using sc-linker 

(MAGMA) for “putatively negative control” (gene program, trait) combinations. In Fig. 4e, the 

putatively positive control combinations include immune programs for blood cell traits and 

immune diseases, and brain programs for brain related traits; all other combinations are considered 

to be putatively negative controls. In Supplementary Fig. 8, the putatively positive control 

combinations include B and T cells for lymphocyte percentage, monocytes for monocyte 

percentage, megakaryocytes for platelet count, erythroid for RBC count and RBC distribution 

width; all other combinations of cell types and traits are considered as putatively negative controls.  

 

For the comparison of the different versions of the sc-linker approach using either varying 

definitions of cell type programs (Supplementary Fig. 6 and 7) or different ways to link SNPs to 
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genes beyond Roadmap∪ABC enhancer-gene linking strategy (Fig. 3d,e and Supplementary 

Fig. 3), we use a slightly different definition of sensitivity/specificity index. Instead of the -log P-

value, we use the t* metric from the S-LDSC method, which evaluates conditional information in 

the SNP annotation corresponding to a gene program, corrected for the annotation size. This metric 

is preferred when comparing across cell-type programs or enhancer-gene linking strategies that 

are widely different in their corresponding SNP annotation sizes, as is the case in these 

comparisons (we note that use of this metric is not possible in comparisons involving MAGMA, 

which does not estimate t*).  

 
Identifying genes driving heritability enrichment 

For each gene program, we first subset the full gene list to only consider genes with greater than 

80% probability grade of membership in the gene program. Subsequently, we ranked all remaining 

genes using MAGMA (v 1.08) gene level significance score and considered the top 50 ranked 

genes for further downstream analysis, which is different from the top 200 genes used for a 

“baseline” method for scoring cell type enrichments for disease that we used as a benchmark for 

sc-linker. 

 
Identifying statistically significant differences in cell type proportions 

To identify changes in cell type proportions between healthy and disease tissue, we used a 

multinomial regression test to jointly test changes across all cell types simultaneously. This helps 

account for all cell type changes simultaneously, as an increase in the number of cells of one cell 

types implies fewer cells of the other cell type will be captured. This regression model and the 

associated p-values were calculated using the multinom function in the nnet R package.  

 
DATA AVAILABILITY 
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All postprocessed scRNA-seq data (except for Alzheimer’s disease; see below), gene programs, 

enhancer-gene linking annotations, supplementary data files and high-resolution figures are 

publicly available online at 

https://data.broadinstitute.org/alkesgroup/LDSCORE/Jagadeesh_Dey_sclinker. The Alzheimer’s 

disease scRNA-seq data30 is available exclusively at https://www.radc.rush.edu/docs/omics.htm 

per its data usage terms. This work used summary statistics from the UK Biobank study 

(http://www.ukbiobank.ac.uk/). The summary statistics for UK Biobank used in this paper are 

available at https://data.broadinstitute.org/alkesgroup/UKBB/. The 1000 Genomes Project Phase 

3 data are available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/2013050. The baseline-

LD annotations are available at https://data.broadinstitute.org/alkesgroup/LDSCORE/. We 

provide a web interface to visualize the enrichment results for different programs used in our 

analysis at: https://share.streamlit.io/karthikj89/scgenetics/www/scgwas.py.  

 

CODE AVAILABILITY 

This work uses the S-LDSC software (https://github.com/bulik/ldsc) as well as MAGMA v1.08 

for post-hoc analysis (https://ctg.cncr.nl/software/magma). Code for constructing cell type, disease 

progression and cellular process gene programs from scRNA-seq data and performing the healthy 

and disease shared NMF can be found at https://github.com/karthikj89/scgenetics. Code for 

processing gene programs and combining with enhancer-gene links can be found at 

https://github.com/kkdey/GSSG. 
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TABLES 
Table 1 

Cell type programs 
GWAS disease/trait Tissue (scRNA-seq) Cell Type E-score p(E-score) q-value Top genes 
Ulcerative colitis Blood B cells 3.2 1.50E-05 2.33E-05 REL,GPX1,LSP1 
Celiac disease Blood T cells 4.5 2.30E-07 7.16E-07 ETS1,CD247,CD28 
MDD Brain GABAergic 4 1.00E-04 3.39E-04 TCF4,BEND4,TMX2 
Atrial fibrillation Heart Atrial cardiomyocyte 5.6 3.2E-09 2.2E-08 CAV2,PKD2L2,FAM13B 
Blood pressure(dia) Heart Smooth muscle 3.4 2.9E-06 1.2E-05 CACNB2,TMEM165,MRVI1 
Eczema Skin Langerhans cells 3.7 0.004 0.03 IL1R1,RUNX3,FCER1G 
IBD Colon Endothelial 2.8 0.002 0.01 RHOA,PDLIM4,STARD3 

Disease progression programs 
GWAS disease/trait Tissue (scRNA-seq) Cell Type E-score p (E-score) q-value Top genes 
Multiple sclerosis MS Brain Microglia 11.6 5.70E-06 3.66E-05 PRDX5,RPL5,SKP1, 
Alzheimer’s disease AD Brain Microglia 9.1 7.10E-05 6.82E-04 PICALM, APOE, APOC1 
Ulcerative colitis UC Colon Enterocytes 2.6 2.70E-07 1.66E-06 RNF186,APEH,DLD 
IBD UC Colon M cells 2.2   1.07E-04 2.2E-04 UQCR10,FERMT1,PPP1R1B 
Asthma Asthma Lung T cells 12.8 4.82E-05 3.99E-04 FMNL1,RORA,GPR183 

Cellular process programs 
GWAS disease/trait Tissue (scRNA-seq) Cellular process E-score p (E-score) q-value Top genes 
Eczema Blood CD4+ T cells 3.8 1.32E-07 4.83E-07 IL7R,STMN3,NDFIP1 
Celiac disease Blood Complement cascade 2.8 4.84E-08 1.92E-07 DCC,PDIA5,PPCDC 
Alzheimer’s disease Blood MHC-II antigen processing 4.9 7.11E-0 2.08E-06 MS4A6A,MS4A4A,CD33 
BMI Brain LAMP5 2.7 6.33E-08 7.01E-07 FLRT1,COL4A2,SBF2 
MDD Brain SST 3.9 4.37E-05 1,22E-04 TCF4,PCLO,ZNF462 
Years of education Brain Electron Transport 3.5 4.42E-08 5.49E-07 ATP6V0B,NSF,GPX1 
Multiple sclerosis MS Brain Complement cascade** 4.9 5.49E-11 9.62E-10 CD37,RGS14,NCF4 
Alzheimer’s disease AD Brain Apelin signaling* 1.5 9.27E-07 6.50E-06 MS4A6A,SORL1,SYK 
Ulcerative colitis UC Colon EGFR1 pathway* 3.0 8.81E-04 2.14E-03 C1orf106,SLC26A3,NXPE4 
Asthma Asthma Lung Mac-neutrophil trans.* 6.6 0.002 0.006 CCL20,IL6,GPR183 

Table 1. Notable enrichments from analyses of cell type, disease progression and cellular process gene programs. For each notable 

enrichment, we report the GWAS disease/trait, tissue source for scRNA-seq data, cell type, enrichment score (E-score), 1-sided p-value 

for positive E-score, and top genes driving the enrichment. Nominally significant enrichments for diseases with limited GWAS sample 

size are colored in grey. MDD is an abbreviation for major depressive disorder, blood pressure (dia.) is an abbreviation for diastolic 

blood pressure, mac-neutrophil trans. is an abbreviation for macrophage-neutrophil transition. * denotes cellular process programs 
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shared across healthy and disease states. ** denotes cellular process programs specific to disease states. The full list of genes driving 

these associations is provided in data file S4. 
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FIGURES 
Figure 1. 

 

Fig. 1. Approach for identifying disease-critical cell types and cellular processes by 

integration of single-cell profiles and human genetics. a. sc-linker framework. Left: Input. 

scRNA-seq (top) and GWAS (bottom) data. Middle and right: Step 1: Deriving cell type, disease 

progression, and cellular process gene programs from scRNA-seq (top) and associating SNPs with 
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traits from human GWAS (bottom). Step 2: Generation of SNP annotations. Gene programs are 

linked to SNPs by enhancer-gene linking strategies to generate SNP annotations. Step 3: S-LDSC 

is applied to the resulting SNP annotations to evaluate heritability enrichment for a trait. b. 

Constructing gene programs. Top: Cell type programs of genes specifically expressed in one cell 

type vs. others. Middle: disease progression programs of genes specifically expressed in cells of 

the same type in disease vs. healthy samples. Bottom: cellular process programs of genes co-

varying either within or across cell subsets; these programs may be healthy-specific, disease-

specific, or shared. c. Examples of disease-gene program-gene relationships recovered by our 

framework. 
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Figure 2.  

 

Fig. 2. Linking immune cell types and cellular processes to immune-related diseases and 

blood cell traits. a,b. Immune cell types. Uniform Manifold Approximation and Projection 

(UMAP) embedding of peripheral blood mononuclear cell (PBMC) scRNA-seq profiles (dots) 

colored by cell type annotations (a) or expression of cell-type-specific genes (b). c. Benchmarking 
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of sc-linker vs. MAGMA. Significance (average -log10(p-value)) of association between immune, 

brain and other tissue cell type programs (rows) and blood cell, immune-related, brain-related and 

other traits (columns) for sc-linker (left) and MAGMA gene set analysis (right). Other cell types 

x other diseases/traits are not included in the specificity calculation, due to the broad set of cell 

types and diseases/traits in this category. d,e. Enrichments of immune cell type programs for blood 

cell traits and immune-related diseases. Magnitude (E-score, dot size) and significance (-log10(P-

value), dot color) of the heritability enrichment of immune cell type programs (columns) for blood 

cell traits (rows, d) or immune-related diseases (rows, e). f. Examples of inter- and intra-cell type 

cellular process programs. UMAP of PBMC (as in a), colored by each program weight (color bar) 

from non-negative matrix factorization (NMF). g. Enrichments of immune cellular process 

programs for immune-related diseases. Magnitude (E-score, dot size) and significance (-log10(p-

value), dot color) of the heritability enrichment of cellular process programs (columns) for 

immune-related diseases (rows). In panels d,e,g, the size of each corresponding SNP annotation 

(% of SNPs) is reported in parentheses. Numerical results are reported in data file S1,3. Further 

details of all diseases and traits analyzed are provided in Supplementary Table 2. **Erythroid 

cells were observed in only bone marrow and cord blood datasets. 
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Figure 3.  

 

Figure 3 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.03.19.436212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436212


 62 

Fig. 3. Linking neuron cell subsets and cellular processes to brain-related diseases and traits. 

a,b. Major brain cell types. UMAP embedding of brain scRNA-seq profiles (dots) colored by cell 

type annotations (a) or expression of cell-type-specific genes (b). c. Enrichments of brain cell type 

programs for brain-related diseases and traits. Magnitude (E-score, dot size) and significance (-

log10(P-value), dot color) of the heritability enrichment of brain cell type programs (columns) for 

brain-related diseases and traits (rows). d. Comparison of immune vs. brain cell type programs, 

enhancer-gene linking strategies, and diseases/traits. Magnitude (E-score and SE) of the 

heritability enrichment of immune vs. brain cell type programs (columns) constructed using 

immune vs. brain enhancer-gene linking strategies (left and right panels) for immune-related vs. 

brain-related diseases and traits (top and bottom panels). e. Examples of inter- and intra-cell type 

cellular processes. UMAP (as in a), colored by each program weight (color bar) from non-negative 

matrix factorization (NMF). f. Enrichments of brain cellular process programs for brain-related 

diseases and traits. Each of the cellular process programs is constructed using NMF to decompose 

the cells by genes matrix into two matrices, cells by programs and programs by genes. Magnitude 

(E-score, dot size) and significance (-log10(P-value), dot color) of the heritability enrichment of 

cellular process programs (columns) for brain-related diseases and traits (rows). In panels c and f, 

the size of each corresponding SNP annotation (% of SNPs) is reported in parentheses. Numerical 

results are reported in data file S1,3. Further details of all diseases and traits analyzed are provided 

in Supplementary Table 2. 
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Figure 4.  

 

Fig. 4. Linking cell types from diverse human tissues to disease  

a-d. Enrichments of cell type programs for corresponding diseases and traits. Magnitude (E-score, 

dot size) and significance (-log10(P-value), dot color) of the heritability enrichment of cell type 

programs (columns) for diseases and traits relevant to the corresponding tissue (rows) for kidney 

and liver (a), heart (b), skin (c) and adipose (d). The size of each corresponding SNP annotation 

(% of SNPs) is reported in parentheses. Numerical results are reported in data file S1. Further 

details of all traits analyzed are provided in Supplementary Table 2. e. Correlation of immune 

cell type programs across tissues. Pearson correlation coefficients (color bar) of gene-level 

Figure 4 
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program memberships for immune cell type programs across different tissues (rows, columns), 

grouped by cell type (labels).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.03.19.436212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436212


 65 

Figure 5. 

 

Fig. 5. Linking MS and AD disease progression and cellular process programs to MS and 

AD. a. UMAP embedding of scRNA-seq profiles (dots) from MS and healthy brain tissue, colored 

by cell type annotations (top) or disease status (bottom). b. Enrichments of MS disease progression 

programs for MS. Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) of 

the heritability enrichment of MS disease progression programs (columns), based on the 

Roadmap∪ABC-immune enhancer-gene linking strategy. c. Proportion (mean and SE) of the 

corresponding cell types (columns) in healthy (blue) and MS (red) brain samples. P-value: Fisher’s 

exact test. d. Enrichments of MS cellular process programs for MS. Magnitude (E-score, dot size) 

and significance (-log10(P-value), dot color) of the heritability enrichment of intra-cell type (left) 

	 	
Figure 5 
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or inter-cell type (right) cellular processes (healthy-specific (H), MS-specific (D) or shared (H+D)) 

(columns), based on the Roadmap∪ABC-immune enhancer-gene linking strategy. e. UMAP 

embedding of scRNA-seq profiles (dots) from AD and healthy brain tissue, colored by cell type 

annotations (top) or disease status (bottom). f. Enrichments of AD disease progression programs 

for AD. Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) of the 

heritability enrichment of AD disease progression programs (columns), based on the 

Roadmap∪ABC-immune enhancer-gene linking strategy. g. Proportion (mean and SE) of the 

corresponding cell types (columns) in healthy (blue) and AD (red) brain samples. P-value: Fisher’s 

exact test. h. Enrichments of AD cellular process programs for AD. Magnitude (E-score, dot size) 

and significance (-log10(P-value), dot color) of the heritability enrichment of inter-cell type cellular 

processes (AD-specific (D) or shared (H+D)) (columns), based on the Roadmap∪ABC-immune 

enhancer-gene linking strategy. In panels b,c,d,f,g,h, the size of each corresponding SNP 

annotation (% of SNPs) is reported in parentheses. Numerical results are reported in data file S2,3. 

Further details of all traits analyzed are provided in Supplementary Table 2.  
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Figure 6. 

 

Fig. 6. Linking UC disease progression and cellular process programs to UC and IBD.  

a. UMAP embedding of scRNA-seq profiles (dots) from UC and healthy colon tissue, colored by 

cell type annotations (top) or disease status (bottom). b. Enrichments of healthy colon cell types 

for disease. Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) of the 

heritability enrichment of colon cell type programs (columns) for IBD or UC (rows). Results for 

additional cell types, including immune cell types in colon, are reported in Supplementary Fig. 9 

and data file S1. c. Enrichments of UC disease progression programs for disease.  Magnitude (E-

score, dot size) and significance (-log10(P-value), dot color) of the heritability enrichment of UC 

disease progression programs (columns) for IBD or UC (rows). d. Proportion (mean and SE) of 

the corresponding cell types (columns) in healthy (blue) and UC (red) colon samples. P-value: 

	 	
Figure 6 
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Fisher’s exact test. e. Examples of shared (healthy and disease), healthy-specific, and disease-

specific cellular process programs. UMAP (as in a), colored by each program weight (color bar) 

from NMF. f. Enrichments of UC cellular process programs for disease. Magnitude (E-score, dot 

size) and significance (-log10(P-value), dot color) of the heritability enrichment of inter-cell type 

cellular processes (shared (H+D), healthy-specific (H), or disease-specific (D)) (columns) for IBD 

or UC (rows). In panels b,c,d,f, the size of each corresponding SNP annotation (% of SNPs) is 

reported in parentheses. Numerical results are reported in data file S1,2,3. Further details of all 

traits analyzed are provided in Supplementary Table 2. 
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Figure 7.  

 

Fig. 7. Linking asthma disease progression and cellular process programs to asthma and 

lung capacity. a. UMAP embedding of healthy lung scRNA-seq profiles (dots) colored by cell 

	
Figure 7 
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type annotations. b. Enrichments of healthy lung cell types for disease. Magnitude (E-score, dot 

size) and significance (-log10(P-value), dot color) of the heritability enrichment of healthy lung 

cell type programs (columns) for lung capacity or asthma (rows). c. UMAP embedding of scRNA-

seq profiles (dots) from asthma and healthy lung tissue, colored by cell type annotations (top) or 

disease status (bottom). d. Enrichments of asthma disease progression programs for disease. 

Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) of the heritability 

enrichment of asthma disease progression programs (columns) for lung capacity or asthma (rows). 

e. Proportion (mean and SE) of the corresponding cell types (columns), in healthy (blue) and 

asthma (red) lung samples. P-value: Fisher’s exact test. f. Examples of shared (healthy and 

disease), healthy-specific, and disease-specific cellular process programs. UMAP (as in c), colored 

by each program weight (color bar) from NMF. g. Enrichments of asthma cellular process 

programs for disease. Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) 

of the heritability enrichment of intra-cell type (left) and inter-cell type (right) cellular processes 

(shared (H+D), healthy-specific (H), or disease-specific (D)) (columns) for lung capacity and 

asthma GWAS summary statistics (rows). In panels b,d,e,g, the size of each corresponding SNP 

annotation (% of SNPs) is reported in parentheses. Numerical results are reported in data file 

S1,2,3. Further details of all traits analyzed are provided in Supplementary Table 2. 
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EXTENDED DATA FILE LEGENDS 
 
Data File S1: Healthy cell type program heritability enrichment results. Numerical values for 
E-score and significance are reported for all cell type programs and traits analyzed.   
 
Data File S2: Disease progression program heritability enrichment results. Numerical values 
for E-score and significance are reported for all disease progression programs and traits analyzed. 
 
Data File S3: Cellular process program heritability enrichment results. Numerical values for 
E-score and significance are reported for all healthy, disease, and shared cellular processes and 
traits analyzed. 
 
Data File S4: List of genes driving each enrichment. Up to 50 genes with the strongest MAGMA 
gene score and membership in the gene program. 
 
Data File S5: Heritability enrichment results from eQTL, PCHi-C and other alternative 
enhancer-gene linking strategies. Numerical values for E-score and significance are reported for 
all traits analyzed with alternative enhancer-gene linking strategies. 
 
Data File S6: Heritability enrichment results from alternative approaches for constructing 
cell type gene programs. Numerical values for E-score and significance are reported for all traits 
analyzed with the alternative cell type programs. 
 
Data File S7: FUMA enrichments for blood cell traits and immune cell type programs. 
Numerical values for beta, standard error and p-value for all cell types and traits analyzed. 
 
Data File S8: MAGMA gene set enrichment results for all cell type programs. MAGMA 
scores across all traits analyzed. 
 
Data File S9: Pathway enrichment analysis for each disease progression program. Gene 
overlap, p-value and gene list for each of the enriched pathway ontology terms across KEGG, 
Wikipathways and Reactome. 
 
Data File S10: Composition of cell types in each tissue. Proportion of cells observed for each 
cell type and condition in each of the single cell datasets. 
 
Data File S11: Correlation between disease progression and healthy cell type program. 
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SUPPLEMENTARY MATERIALS 
Supplementary Table 1-2 
Supplementary Fig. 1-17 
 
SUPPLEMENTARY TABLES 
Supplementary Table 1 
Tissue # of cells # of individuals # of cell types 
PBMC (Travaglini et al) 4,640 2 6 
PBMC (Zheng et al) 68,551 8 6 
Cord Blood 263,828 8 6 
Bone Marrow 283,894 8 6 
Brain 47,509 3 9 
Kidney 40,268 13 24 
Liver 13,340 4 12 
Lung 31,644 10 19 
Heart 287,269 7 12 
Colon 110,373 12 20 
Adipose 11,184 3 13 
Skin 71,864 9 13 
Colon (healthy + 
disease) 

287,269 20 (healthy), 16 
(disease) 

20 

MS brain (healthy + 
disease) 

48,918 9 (healthy), 12 
(disease) 

12 

Alzheimer’s brain 
(healthy + disease) 

70,634 24 (healthy), 24 
(disease) 

8 

Asthma lung (healthy 
+ disease) 

67,078 42 (healthy), 12 
(disease) 

26 

Idiopathic pulmonary 
fibrosis lung (healthy 
+ disease) 

114,396 10 (healthy), 20 
(disease) 

19 

COVID-19 BAL 
(healthy + disease) 

43,930 3 (healthy), 6 
(disease) 

10 

 
Supplementary Table 1. Description of scRNA-seq datasets analyzed. We report the tissue of 
origin, number of cells, number of individuals and number of cell type programs analyzed for each 
single-cell dataset analyzed. 
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Supplementary Table 2 
Trait 
category 

Trait Source Sample size (N) 

Blood cell 
traits 

Lymphocyte percentage UK Biobank 444502 
Monocyte percentage UK Biobank 439938 
Platelet count UK Biobank 444382 
Red blood cell count UK Biobank 445174 
Red blood cell volume UK Biobank 442700 
Eosinophil count UK Biobank 439938 
Basophil count UK Biobank 439938 
Neutrophil count UK Biobank 439938 
Mean corpuscular volume UK Biobank 442122 

Urine 
biomarkers 

Creatinine UK Biobank 434158 
Vitamin D UK Biobank 415700 
Bilirubin UK Biobank 429423 
Alkaline phosphatase UK Biobank 433862 
Aspartate amino transferase UK Biobank 430982 
Total protein UK Biobank 397652 

Autoimmune 
diseases 

Inflammatory bowel disease de Lange et al 2017 59957 
Crohn’s disease de Lange et al 2017 40266 
Ulcerative colitis de Lange et al 2017 45975 
Eczema UK Biobank 458699 
Hypothyroidism UK Biobank 459324 
Rheumatoid Arthritis Okada et al 2014 37681 
Primary biliary cirrhosis Cordell et al. 2015 13239 
Lupus Bentham et al. 2015 14267 
Type 1 diabetes Bradfield et al. 2011 26890 
All autoimmune traits UK Biobank 459234 
Celiac disease Dubois et al. 2010 15283 
Alzheimer’s disease Jansen et al. 2019 450988 
Multiple Sclerosis Sawcer et al. 2011 27148 

Neurological/ 
Psychiatric 

Number of children UK Biobank 456500 
Anorexia Boraska et al 2014 32143 
ADHD Demontis et al 2019 55374 
Autism PGC cross disorder group 10263 
Sleep duration Dashti et al 2019 446118 
BMI UK Biobank 458417 
Major depressive disorder Wray et al. 2018 173005 
Neuroticism Nagel et al. 2018 449484 
Smoking status UK Biobank 457683 
Years of education UK Biobank 454813 
Intelligence UK Biobank 117131 
Morning person UK Biobank 410520 
Insomnia Jansen et al. 2019 385506 
Schizophrenia SCZ Working Group 2014 70100 
SCZ v. BD Ruderfer et al 2018 38855 
Bipolar disorder PGC bipolar group 2011 16731 
Reaction time Davies et al 2018 300486 
Age of first birth Barban et al. 2016 222037 
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Cardiac 
related traits 

Coronary artery disease Schunkert et al 2011 77210 
ECG rate UK Biobank 53777 
Atrial Fibrillation Nielsen et al. 2018 1030836 
Systolic blood pressure UK Biobank 422771 
Diastolic blood pressure UK Biobank 422771 

Lung traits Childhood-Onset-Asthma Ferreira et al. 2019 314633 
FEV1adjFEVC (lung 
capacity) 

UK Biobank 371949 

Idiopathic Pulmonary 
Fibrosis 

Allen et al. 2020 11259 

Other traits Height Lango, Allen et al 2010 131547 
Breast Cancer UK Biobank 459324 
BMI-WHR UK Biobank 458417 
Type 2 Diabetes Morris et al 2012 6078 
Basal metabolic rate UK Biobank 354825 
General risk tolerance Karlsson Linner et al 2019 466571 

Supplementary Table 2. Diseases and complex traits analyzed. We analyzed 60 diseases and 
complex traits with genetic correlation <= 0.9 and report the publication and sample size of each 
study.  
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SUPPLEMENTARY FIGURES 
Supplementary Figure 1 

 
Supplementary Fig. 1. Single-cell RNA-seq datasets. UMAP embedding of scRNA-seq 
profiles (dots) colored by cell type annotations from 12 datasets (labels on top).  

Supp. Fig. 1 
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Supplementary Figure 2 

 
Supplementary Fig. 2. Standardized effect sizes of immune and brain cell type programs. 
Standardized effect size (!∗) (dot size) and significance (-log10(P-value), dot color) of the 
heritability enrichment of immune (a,b) or brain (c) cell type programs (columns) for blood cell 
traits (a), immune disease traits (b), or neurological/psychological related traits (c), based on SNP 
annotations generated with the Roadmap∪ABC-immune (a,b) or Roadmap∪ABC-brain (c) 
enhancer-gene linking strategy. Numerical results are reported in data file S1. Details for all traits 
analyzed are in Supplementary Table 2. 
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Supplementary Figure 3 
 

 
Supplementary Fig. 3. Roadmap∪ABC yields highest specificity of associations compared 
to other strategies. Specificity index (y axis, mean and s.e.) of immune programs and blood cell 
traits for different choices of regulatory regions linked to genes (x axis), including 
Roadmap∪ABC enhancer-gene strategy (ABC+Roadmap) and its constituent ABC and Roadmap 
strategies, promoter capture Hi-C (PC-HiC)143,144 and eQTLs from the GTEx data145, and 
combination of Roadmap∪ABC with PCHiC (Roadmap+ABC+PCHiC), Roadmap∪ABC with 
eQTL (Roadmap+ABC+eQTLGTEx) and both PCHiC and eQTL 
(Roadmap+ABC+PCHiC+eQTLGTEx) (x axis, a), or closest TSS linking strategy between SNPs 
and genes at different distances (1kb, 10kb and 100kb), and their combinations with 
Roadmap∪ABC. Numerical results are reported in data file S5.  
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Supplementary Figure 4 
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Supplementary Fig. 4. Benchmarking sc-linker across immune cell type programs and blood 
cell traits. a-c. Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) of the 
heritability enrichment of immune cell type programs (columns) aggregated over 4 scRNA-seq 
datasets (PBMC (2), cord blood, and bone marrow) for 5 blood cell traits with SNP annotations 
combined with 100Kb (a), ABC-immune (b) or Roadmap-immune (c) strategies (compare to 
Roadmap∪ABC-immune strategy in Fig. 2b). d,e. Mean E-score (d) or average standardized 
effect size (!∗) (e) (y axis) for blood cell traits and immune cell type programs as in Fig. 2b, with 
SNP annotations combined with 100Kb, ABC-immune, Roadmap-immune or Roadmap∪ABC-
immune strategy (x axis). Errors bars: 95% confidence intervals. f. Pairwise correlation heat map 
between all cell type programs computed for each sample separately. g. Magnitude (E-score, dot 
size) and significance (-log10(P-value), dot color) of the heritability enrichment of immune cell 
type programs constructed for each sample. h. Specificity index (y axis; see Methods) for immune 
cell type programs generated from each individual. i. Pairwise correlation heat map between all 
cell type programs computed for each dataset size separately. j. Magnitude (E-score, dot size) and 
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significance (-log10(P-value), dot color) of the heritability enrichment of immune cell type 
programs constructed for each dataset size. k. Specificity index (y axis; see Methods) for immune 
cell type programs generated from subsampled PBMC scRNA-seq data at varying numbers of 
cells. l,m. Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) of the 
heritability enrichment of immune cell type programs (columns) for 5 blood cell traits (l) and 11 
autoimmune traits (m). n. Mean gene set expression score (dot color) from the baseline cell scoring 
approach. Comparison of panels l,m and n remains subjective, as the two metrics plotted (E-
score/p.E-score in l,m; cell scores in n) are in different types of scoring schemes. Details for all 
traits analyzed are in Supplementary Table 2. 
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Supplementary Figure 5 

 
Supplementary Fig. 5. Analysis of functional enrichment of fine-mapped SNPs of immune 
cell type programs and heritability enrichment of immune cellular process programs. a. 
Functional enrichment of fine-mapped SNPs of immune cell type programs. Magnitude 
(Enrichment, dot size) and significance (-log10(P-value), dot color) of SNP annotations 
corresponding to immune cell type programs (using the Roadmap∪ABC-immune enhancer-gene 
linking strategy) with respect to functionally fine-mapped SNPs (from ref. 146). b. Heritability 
enrichment of cellular process programs for blood cell traits. Magnitude (E-score, dot size) and 
significance (-log10(P-value), dot color) of the heritability enrichment of immune cellular process 
programs (columns) and blood cell traits (rows). Details for all traits analyzed are in 
Supplementary Table 2. 
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Supplementary Figure 6 

 
Supplementary Fig. 6: Evaluation of dichotomized gene programs. a,b. Enrichment in blood 
cell traits for binary and regular cell type programs. Enrichment (E score, dot size; and significance 
(-log10(P-value), dot color) for blood cell traits (rows) with cell type program defined by genes 
expressed in more than 10% of cells (a) or by our regular approach (b, as in Fig. 2d). The size of 
each corresponding SNP annotation (% of SNPs) is reported in parentheses. c. Regular cell type 
programs have a higher specificity than dichotomous ones. Specificity index metric (y axis, mean 
and s.e.) for blood biomarker and immune cell type programs defined by our regular approach 
(“cell type”) or by genes expressed in more than 10, 30 or 50% of cells of a given type (x axis).  
Numerical results are reported in data file S6.  
  

Supp. Fig. Dichotomous Progs

A

RBC volume

RBC count

Platelet count

Monocyte percent

Lymphocyte percent

–log(p-value)

2
4
6
8
10

E-score
5
4
3
2
1

B ce
lls

T ce
lls

Den
dri

tic 
ce

lls

Mon
oc

yte
s

Meg
ak

ary
oc

yte
s

**E
ryt

hro
id

B ce
lls 

(2.
4%

)

Cell 
typ

e

Bina
ry 

(10
%)

Bina
ry 

(30
%)

Bina
ry 

(50
%)

T ce
lls 

(2.
3%

)

Den
dri

tic 
ce

lls 
(3.

3%
)

Mon
oc

yte
s (

2.4
%)

Meg
ak

ary
oc

yte
s (

2.5
%)

**E
ryt

hro
id 

(3.
8%

)

B

C

RBC volume

RBC count

Platelet count

Monocyte percent

Lymphocyte percent

–log(p-value)

2
4
6
8

E-score
5
4
3
2
1

Sp
ec

ifi
ci

ty
 in

de
x 

(τ
*)

0.0

0.5

1.0

1.5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.03.19.436212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436212


 83 

Supplementary Figure 7 

 
Supplementary Fig. 7. Evaluation of alternative approaches of gene program construction. 
a-c. Enrichment in blood cell traits for immune cell type programs defined in two different 
approaches. (a) Enrichment (E score, dot size; and significance (-log10(P-value), dot color) for 
blood cell traits (rows) with cell type programs (columns) defined either by genes differentially 
enriched in expression in a cell type compared to other genes in the same cell type (a), by genes 
differentially enriched in a cell type compared to their expression in other cell types (b, the primary 
analysis in this study), or by a combination of the previous two strategies (c). d. 
Sensitivity/specificity index of different approaches. Sensitivity/specificity index (y axis, mean 
and s.e.) for blood biomarker and immune cell type programs for the approaches in a-c. Numerical 
results are reported in data file S6. 
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Supplementary Figure 8 
 

 
Supplementary Fig. 8. Comparison of sc-linker and MAGMA. Negative log p-value of immune 
cell type programs and blood cell traits for (a) E-score in sc-linker analysis, and (b) MAGMA 
gene-set level association analysis. Numerical results are reported in data file S8.  
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Supplementary Figure 9 

 
Supplementary Fig. 9. Linking cell type programs to diseases and traits across all analyzed tissues. Magnitude (E-score, dot size) 
and significance (-log10(P-value), dot color) of the heritability enrichment of cell type programs (columns) from each of nine tissues 
(color code, legend) for GWAS summary statistics of diverse traits and diseases (rows), based on the Roadmap∪ABC enhancer-gene 
linking strategy for the corresponding tissue. Details for all traits analyzed are in Supplementary Table 2. See Data Availability for 
higher resolution version of this figure.
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Supplementary Figure 10 

 
Supplementary Fig. 10. Cross trait analysis of cell type enrichments. Pearson correlation 
coefficient (colorbar) between the cell type enrichment profiles of each pair of traits (rows, 
columns), clustered (dashed lines) hierarchically. Trait clusters labeled by their overall cell type 
enrichments.  
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Supplementary Figure 11 

 
Supplementary Fig. 11. Linking cellular process programs to relevant diseases and traits in 
each of six tissues. Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) of 
the heritability enrichment of cellular process programs (columns; obtained by NMF) in each of 
seven tissues (label on top) for traits relevant in that tissue (rows) using the Roadmap∪ABC 
strategy for the corresponding tissue. Details for all traits analyzed are in Supplementary Table 
2. 
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Supplementary Figure 12 

 
Supplementary Fig. 12. Analysis of cell type programs using a non-tissue-specific enhancer-
gene linking strategy. Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) 
of the heritability enrichment of immune (a), brain (b), lung (c), heart (d), colon (e), adipose (f) 
and skin (g) cell type programs (columns) for traits relevant in that tissue (rows) using a non-
tissue-specific Roadmap∪ABC strategy. Details for all traits analyzed are in Supplementary 
Table 2. 
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Supplementary Figure 13 

 
Supplementary Fig. 13. Disease progression programs have low correlations with healthy 
and disease cell type programs. Pearson correlation coefficient (color bar) of gene program 
membership vectors between healthy cell type, disease cell type and disease progression programs 
in scRNA-seq studies from a disease tissue (label on top) and the corresponding healthy tissue.  
  

Supp. Fig. 8 (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.03.19.436212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436212


 90 

Supplementary Figure 14 

 
Supplementary Fig. 14. Disease specificity of disease progression programs. Proportion of 
disease progression programs with a -log10(P-value) of enrichment score (p.E-score) > 3 in IBD, 
MS and asthma GWAS summary statistics (column) for disease progression programs from IBD, 
MS and asthma (columns), when combined with tissue-specific Roadmap∪ABC (row).   
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Supplementary Figure 15 

 
Supplementary Fig. 15. Analysis of disease progression programs using alternative 
Roadmap∪ABC enhancer-gene linking strategies. Magnitude (E-score, dot size) and 
significance (-log10(P-value), dot color) of the heritability enrichment of disease progression 
programs (columns) in UC (colon cells) using Roadmap∪ABC-immune (a), asthma (lung cells) 
using Roadmap∪ABC-immune (b), and MS (brain cells) using Roadmap∪ABC-brain (c). 
Details for all traits analyzed are in Supplementary Table 2.

Supp. Fig. 10 
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.03.19.436212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436212


 92 

Supplementary Figure 16 

 
Supplementary Fig. 16. Analysis of disease progression programs across all tissues and traits. Magnitude (E-score, dot size) and 
significance (-log10(P-value), dot color) of the heritability enrichment of disease progression programs (columns) from UC, MS, 
Alzheimer’s, asthma and pulmonary fibrosis (labels on top, color code, legend), for GWAS summary statistics of diverse traits and 
diseases (rows), based on the Roadmap∪ABC enhancer-gene linking strategy for the corresponding tissue. Details for all traits analyzed 
are in Supplementary Table 2. See Data Availability for higher resolution version of this figure.

 

Supp. Fig. 11 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.03.19.436212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436212


 93 

Supplementary Figure 17 

 
Supplementary Fig. 17: Top genes in blood cellular processes are neither highest expressed 
in cells nor in the tissue overall. Overlap (Jaccard index, y axis) between the top 200 genes in 
each blood cellular processes (x axis) and the highest expressed genes in the top 50 cells (based 
on the weight from the NMF decomposition) associated with the cellular process (a) or overall 
across the tissue (b).
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Supplementary Note 
 

Extended analysis of disease critical brain cellular processes  

The 12 brain cellular process programs showed that the significant enrichment of neuronal cell 

types above is primarily driven by finer programs reflecting neuron subtypes (Fig. 3f, Table 1). 

For example, the enrichment of GABAergic neurons for BMI was driven by programs reflecting 

LAMP5+ and VIP+ subsets; the respective top driving genes included FLRT1 (for LAMP5+ 

neurons; ranked 1), whose absence reduces intercellular adhesion and promotes premature neuron 

migration147, and TIMP2 (for VIP+ neurons; ranked 7), implicated in obesity through hypothalamic 

control of food intake and energy homeostasis in mice148,149. Furthermore, the enrichment of 

GABAergic neurons for MDD reflects SST+ and PVALB+ subsets; the respective top driving genes 

included PCLO (for SST+ GABAergic neurons; ranked 2), and ADARB1 (for PVALB+ neurons; 

ranked 4), encoding an RNA editing enzyme that can edit the transcript for the serotonin receptor 

2C with a role in MDD150. We also observed enrichment in more specific cell subsets within the 

glutamatergic neurons (IT neurons were enriched for neuroticism, whereas L6 neurons were 

enriched for years of education and intelligence). Among inter cell type programs, electron 

transport cellular process programs (GABAergic and glutamatergic neurons) were enriched for 

several psychiatric/neurological traits, such as years of education, consistent with previous 

studies77, with the top driving genes including ATP6V0B and NDUFAF3 (ranked 1, 4). 

 

Role of healthy and disease progression T cells in Asthma 

For example, healthy cell type and disease progression T cell programs were enriched in asthma, 

consistent with the contribution of T cell-driven inflammation to airway hyper-responsiveness and 
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tissue remodeling151. From a pathway enrichment analysis, we identified that healthy T cell 

program overlapped with T cell receptor signaling, while the T cell disease progression program 

overlapped with RNA binding (see data file S9). These partially overlapping programs both 

included IL2 signaling pathway genes; IL2 is a T cell growth factor that increases airway response 

to allergens152 and drives differentiation of Th2 cells linked to asthma153. 

 

Disease critical cell types in IPF and COVID-19 

For IPF, a disease characterized by mucociliary dysfunction154, the mucous disease progression 

program was most enriched, and nominally significant (p = 0.04, not FDR significant), with top 

driving genes including DSP (ranked 1), a cell-cell adhesion molecule linked to tissue architecture 

in IPF lung155, and MUC5B (ranked 2), the well characterized genetic risk factor for IPF that likely 

increases mucinous expression in terminal airways of the lung154.  

 

For severe COVID-19156, the macrophage disease progression program was enriched, and 

nominally significant (p = 0.01, not FDR significant), with top driving genes including key 

antiviral enzyme activators157,158 OAS3 and OAS1 (ranked 1, 3), and CCR5, a chemokine receptor 

in which therapeutic intervention has been associated with improved prognosis in severe COVID-

19 patients159. Further analyses of a meta-atlas of COVID-19 scRNA-seq in conjunction with 

COVID-19 GWAS data are described elsewhere160. Our nominally significant findings should be 

interpreted cautiously, but should become more powered as IPF and COVID-19 GWAS sample 

sizes grow. 
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