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Abstract 23 

Cancer cells’ ability to inhibit apoptosis is key to malignant transformation and limits response to 24 

therapy. Here, we performed multiplexed immunofluorescence analysis on tissue microarrays with 25 

373 cores from 168 patients, segmentation of 2.4 million individual cells and quantification of 20 cell 26 

lineage and apoptosis proteins. Ordinary differential equation-based modelling of apoptosis 27 

sensitivity at single cell resolution was conducted and an atlas of inter- and intra-tumor heterogeneity 28 

in apoptosis susceptibility generated. We identified an enrichment for BCL2 in immune, and BAK, 29 

SMAC and XIAP in cancer cells. ODE-based modelling at single cell resolution identified an enhanced 30 

sensitivity of cancer cells to mitochondrial permeabilization and executioner caspase activation 31 

compared to immune and stromal cells, with significant inter- and intra-tumor heterogeneity. 32 

However, we did not find increased spatial heterogeneity of apoptosis signaling in cancer cells, 33 

suggesting that such heterogeneity is an intrinsic, non-genomic property not increased by the process 34 

of malignant transformation.35 
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Introduction 36 

Alterations in apoptosis signaling is key step in tumorigenesis(Hanahan and Weinberg, 2011). In many 37 

cases, cancer epithelial cells over time acquire alterations in their genome or epigenome that either 38 

result in an up-regulation of anti-apoptotic or a down regulation of pro-apoptotic proteins. Examples 39 

for such (epi)genomic alterations include promoter methylation and copy number alterations 40 

(Berdasco and Esteller, 2010; Mauro et al., 2015), while single point mutations in apoptosis-regulating 41 

genes are relatively rarely observed. Previous quantitative studies in solid tumor tissues found 42 

significant, but often complex differences in levels of individual anti- or pro-apoptotic proteins 43 

between different patients (Lindner et al., 2013; Lindner et al., 2017; Salvucci et al., 2017; Salvucci et 44 

al., 2019b). Predictions of individual patient’s apoptosis susceptibility is further complicated by the 45 

signaling redundancies in key apoptosis pathways, in particular the mitochondrial apoptosis pathway. 46 

Here, activation of either BAK or BAX is sufficient to induce mitochondrial outer membrane 47 

permeabilization (MOMP) (Kalkavan and Green, 2018), and this process is inhibited by a variety of 48 

different anti-apoptotic Bcl-2 family proteins including BCL2 itself, BCL(X)L and MCL1(Certo et al., 49 

2006; Kalkavan and Green, 2018). Research into Bcl-2 family proteins and other apoptosis signaling 50 

proteins have resulted in the development and subsequent clinical approval of apoptosis sensitizers 51 

as anti-cancer agents. For example, Venetoclax is a selective BCL2 antagonist now used for the 52 

treatment of chronic lymphocytic leukemia, small lymphocytic lymphoma and acute myeloid leukemia 53 

which are characterized by strong BCL2 overexpression and dependency (Roberts et al., 2016). In 54 

context of solid tumors, the entry of apoptosis sensitizers into clinical practice has been relatively slow, 55 

a fact that is partially explained by the lack of gene mutations or pronounced over- or under-56 

expression of individual apoptosis signaling proteins in solid tumor cells which could otherwise serve 57 

as stratification tools in clinical trials. 58 

To overcome such limitations, various groups have developed computational models that describe 59 

apoptosis sensitivity on a systems level. BH3-only proteins are upstream initiators of the mitochondrial 60 

apoptosis pathway that are activated transcriptionally or post-translationally in response to stresses, 61 

such as DNA damage, genotoxic drugs, irradiation or withdrawal of trophic support. BH3-only proteins 62 

activate BAK and BAX directly, or activate these indirectly by binding to and neutralizing anti-apoptotic 63 

Bcl-2 proteins (Leber et al., 2007). BH3-peptide profiling has been successfully applied to predict 64 

outcome and responses to cancer therapeutics in solid cancers, however this technique requires fresh 65 

tissue (Ni Chonghaile et al., 2011). Other groups, including our own, have used gene expression or 66 

protein level (Reverse Protein Phase Array, RPPA) data of apoptosis-regulating genes from fresh-67 
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frozen or formalin-fixed tissues as input into deterministic signaling network models to estimate the 68 

intrinsic apoptosis sensitivity of individual tumors (Lindner et al., 2017; Salvucci et al., 2017). 69 

Notwithstanding the successful application of these techniques in predicting chemotherapy responses 70 

and clinical outcome in cancer patients, the above techniques usually require a tissue homogenate to 71 

be analyzed. However, such “bulk” profiling results in the loss of not only important spatial 72 

information but also the precise cell-of-origin of the signals. It is feasible that some cancer cell 73 

populations in a given tumor are more resistant to therapy than other cancer cells, which is in line 74 

with evidence indicating the role of tumor heterogeneity in determining clinical outcome and 75 

responses to therapy (Fisher et al., 2013; Marusyk et al., 2012). Such resistant cell populations could 76 

give rise to more aggressive tumors on recurrence. Similarly, chemo- or radiation therapy not only 77 

affects tumor cells, but also cells in the tumor microenvironment such as immune cells; therefore, a 78 

higher apoptosis sensitivity of anti-tumor immune cells compared to cancer epithelial cells may be 79 

detrimental to patients.  80 

To describe the extent of inter-individual and intra-tumor heterogeneity in apoptosis signaling, herein 81 

we employed an innovative multiplexed immunofluorescence imaging technique (Cell DIVE™), which 82 

is comprised of a repeated stain-image-dye-inactivation sequence using direct antibody-fluorophore 83 

conjugates, as well as a small number of primary antibodies from distinct species with secondary 84 

antibody detection (Gerdes et al., 2013), followed by single cell segmentation in a colorectal tumor 85 

tissue cohort. Using this method, we imaged 20 proteins and mapped quantities of the key members 86 

of the mitochondrial apoptosis pathway to 2.4 million individual cells (of which 1.6 million were 87 

colorectal tumor epithelial cells). This enabled us to calculate each individual cell’s apoptosis 88 

sensitivity through single cell systems modelling, and quantitatively describe inter- and intra-tumor 89 

heterogeneity of the mitochondrial apoptosis pathway within the different cell types that constitute 90 

a colorectal tumor. 91 

To assess intrinsic apoptosis sensitivity of individual tumors, we had previously applied ‘averaged’ 92 

protein levels of tissue, but never single cell levels to our experimentally validated models, APOPTO-93 

CELL (Huber et al., 2007; Rehm et al., 2006) and DR_MOMP (Lindner et al., 2013). Studying single cells’ 94 

with our apoptosis models is providing us with new insights into the mechanisms underlying apoptosis 95 

and treatment resistance. 96 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.19.436184doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436184
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Results 97 

Multiplexed immunofluorescence imaging generates single cell 98 

profiles of mitochondrial apoptosis pathway proteins in 1.6 million 99 

individual colorectal tumor cells  100 

To explore the levels of key proteins of the mitochondrial apoptosis pathways in colorectal cancer 101 

(CRC) tissue at the single cell level, we performed Cell DIVE™ multiplexing of nine pro- and anti-102 

apoptotic proteins in regions of resected primary tumors in 355 tumor cores derived from 164 stage III 103 

CRC patients. 104 

Apoptosis signaling protein selected for analysis included BCL2, BCL(X)L, MCL1, BAK and BAX which 105 

regulate the process of mitochondrial outer membrane permeabilization (MOMP), as well as PRO-106 

CASPASE 9, PRO-CASPASE 3, XIAP and SMAC (DIABLO) which control the process of executioner 107 

caspase activation downstream of MOMP. For both processes, we previously devised and 108 

experimentally validated ordinary differential equation (ODE)-based, deterministic models, APOPTO-109 

CELL (Huber et al., 2007; Rehm et al., 2006) and DR_MOMP (Lindner et al., 2013), that calculate the 110 

sensitivity of cancer cells to undergo mitochondrial apoptosis with high accuracy (Lindner et al., 2017; 111 

Salvucci et al., 2017), using quantities of the above 9 proteins as model input. Additional proteins 112 

selected for this study included cell identity markers (CD3, CD4, CD8, CD45, FOXP3, PCK26 and 113 

cytokeratin AE1), established markers of cell proliferation (KI67), antigen-presenting protein (HLA-A) 114 

and bioenergetics (GLUT1, CA9), as well as proteins used for cell segmentation analysis (Na+/K+-115 

ATPase, cytokeratin AE1, PCK26, and S6). 116 

We proceeded with multiplexed data acquisition of colon tumor tissue as follows (Figure 1A): 117 

1-5) FFPE cores where formalin fixed paraffin embedded (FFPE) tissue microarrays first underwent 118 

antigen retrieval, followed by repeated cycles of protein staining, imaging and dye inactivation using 119 

cyanine dyes (Cy3 and Cy5) conjugated antibodies. DAPI staining and a background image was 120 

acquired in the beginning of each cycle for quality control and image processing. After rudimentary 121 

image processing (including illumination correction, distortion, stitching and registration) 6) we 122 

performed cell segmentation and single cell densitometry analysis. 7) We assessed the image quality 123 

of each core and removed 48 cores with insufficient quality. 8) We corrected possible batch effects 124 

between the five slides applying affine matrix transformations using an averaged distribution of 125 

protein intensities as reference for each protein marker. 9) Finally, we performed core and single cell 126 

analysis of the markers and performed model calculations within different cell populations. 127 
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This delivered a total of 54.6 million protein profiles (Figure 1B) in a total of 2.4 million cells which 128 

were used for cell identity analysis, construction of a tissue atlas of apoptotic proteins profiles, intra- 129 

and inter-tumor heterogeneity analysis, spatial tissue analysis as well as single cell systems modelling. 130 

Cell DIVE™ and cell segmentation analysis identified on average 6,492 (SD 1,228) cells per tissue 131 

microarray (TMA) core; totaling on average 14,414 (SD 4,196) cells per patient (1 to 3 cores; Figure 132 

1B). Cells were classified into different cell types based on cell identity markers for cancer/epithelial 133 

cells (positive for cytokeratin AE1 or PCK26), immune cells (positive for CD3, CD4, CD8 or CD45) and 134 

other stromal cells that were negative for any of these markers. For more extensive cell classification, 135 

a Random Forest model was trained with 15,184 manual annotated cells (0.6% of total cells) and CD3, 136 

CD4, CD8, CD45 and FOXP3, and applied on 99.9% of all cells to further differentiate immune cells into 137 

Cytotoxic, Regulatory, Helper T and other immune cells (Figure 1C). The model classified 65.7% as 138 

(epithelial like) cancer cells (type II error 3.0%; training set), 23.6% other stromal cells (type II error 139 

8.1%) and 10.7% as immune cells (type II error 3.0%), of which 2.0% were Helper (type II error 28.8%), 140 

1.4% Regulatory (type II error 7.4%), 1.3% Cytotoxic (type II error 28.0%) and 6.0% other T or immune 141 

cells (type II error 18.8%; Figure 1DE). Of note, the cell type composition in CRC core tissues varied 142 

significantly, with some cores showing predominantly cancerous/epithelial cells in the absence of 143 

immune cell infiltration, and others showing very high levels (up to 55%) of immune cells (Figure 1D). 144 

The median distribution of cells was 66.5% tumor, 7.8% immune and 22.2% stromal cells (Figure 1E). 145 

A bootstrap analysis with sampled pairings suggested that cell type composition in tumors of patients 146 

with paired-cores were, despite high heterogeneity, more similar to each other compared to random 147 

pairings. This suggests that cell type composition was a biological feature of individual tumors (Suppl. 148 

Figure 1). 149 

Tumor cell atlas shows heterogeneous and cell-type specific 150 

enrichment of key proteins of the mitochondrial apoptosis pathway  151 

We next calculated molar protein profiles for proteins that are key to control MOMP and are used as 152 

input for the deterministic systems model, DR_MOMP. For the calculations of protein profiles of 153 

individual cells, we normalized cell intensities to the mean intensity in HeLa cells and used previously 154 

established concentrations in HeLa cells as reference (Flanagan et al., 2015; Lindner et al., 2013). 155 

Analysis of the five key BCL2 proteins that control the process of MOMP demonstrated a significant 156 

enrichment in anti-apoptotic BCL2 in immune cells when compared to cancerous epithelial cells or 157 

other stromal cells, while anti-apoptotic BCL(X)L and MCL1 although statistically enriched in cancer 158 

epithelial cells were more homogenously distributed between the three cell types (Figure 2A-C). Mean 159 
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levels of MCL1 were in general lower compared to BCL2 and BCL(X)L, confirming previous studies 160 

(Lindner et al., 2013). Of note, pro-apoptotic BAK showed a strong enrichment in cancer cells 161 

(Figure 2A-C), while again BAX, although statistically enriched in cancer cells, was more homogenously 162 

distributed between the three cell types. 163 

For PRO-CASPASE 3, PRO-CASPASE 9, SMAC and XIAP single protein profiling we converted the batch-164 

corrected protein intensities to µM concentrations via alignment with reference distributions (Hector 165 

et al., 2012) using a pipeline that we previously developed (Salvucci et al., 2019a; Salvucci et al., 2017). 166 

Proteins that control executioner caspase activation downstream of MOMP also showed a 167 

heterogeneous distribution between cell types, with XIAP, SMAC, PRO-CASPASE 3 and PRO-168 

CASPASE 9, all at higher levels in cancer cells when compared to immune cells (Figure 2D-F). Stromal 169 

cells showed the lowest levels of these proteins, suggesting that the apoptotic machinery downstream 170 

of MOMP is suppressed in non-transformed cells when compared to cancer epithelial cells. 171 

Utilizing transcriptional data derived from flow-sorted immune (n = 6), epithelial (n = 6) and fibroblast 172 

(n = 6) populations isolated from CRC primary tumor tissue (GSE39396 (Calon et al., 2012); Suppl. 173 

Table 2), we identified elevated levels of bcl2 mRNA levels in leukocytes compared to cancer 174 

(epithelial) cells (ANOVA p = 0.006, Tukey post-hoc p = 0.005) but also significantly higher levels of bax 175 

and mcl1 mRNA levels in Leukocytes compared to cancer cells, and in Stroma (Fibroblasts) compared 176 

to cancer cells (ANOVA p ≤ 0.01, Tukey post-hoc p < 0.01; Suppl. Figure 2). We did not find any 177 

significant differences in mRNA levels of the bak1, bcl2l1 (BCL(X)L), caspases, nor xiap between the 178 

cell populations. 179 

Apoptotic protein profiles from approximate 115,923 identified T cells showed higher levels of BAK, 180 

XIAP, SMAC, PRO-CASPASE 3 and PRO-CASPASE 9 and lower levels of BCL2 in Cytotoxic T cells when 181 

compared to Helper or Regulatory T cells (Figure 3A-C). These findings suggests that Cytotoxic T cells 182 

may represent the T cells most sensitive to the activation of mitochondrial apoptosis. 183 

As expected, cancer epithelial cells also showed higher levels of the glucose transporter GLUT1, 184 

sodium-potassium ATPase, the hypoxia-inducible factor-1α (HIF-1a) target gene CA9, and the 185 

proliferation marker KI67, while HLA-A were enriched in immune cells (Figure 4AB). In contrast, 186 

protein levels of p70S6 kinase (S6) were more evenly distributed across all cell types. Calculating the 187 

cores’ quartile coefficients of dispersion (COD; Suppl. Figure 3), a measure of the spread of the protein 188 

levels, we found that immune cells had a greater COD for BCL2 and BAK compared to cancer and 189 

stroma cells. Stroma cells showed the highest, and cancer epithelial cells the lowest, COD for MCL1, 190 
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APAF1 and PRO-CASPASE 3. Cancer cells showed greater CODs of SMAC, GLUT1 and KI67 protein levels 191 

compared to immune and stroma cells. 192 

Correlation analysis (Figure 4C-D) of the 1,556,581 cancer cells demonstrated high, positive median 193 

Spearman’s correlation coefficients (ρ > 0.5) between BAK and BAX levels. Levels between BAK (and 194 

BAX) and PRO-CASPASE 3 (and PRO-CASPASE 9), BCL(X)L and BCL2, PRO-CASPASE 3 and BCL2, BCL2 195 

and MCL1, BCL2 and XIAP, SMAC and BCL(X)L, PRO-CASPASE 3 and PRO-CAPSASE 9, and PRO-196 

CASPASE 3 and XIAP had high positive median correlation coefficients in cancer and stromal, but not 197 

immune cells. The Spearman’s correlation coefficient between BCL(X)L and MCL1, CA9 and XIAP, and 198 

SMAC and XIAP levels was > 0.5 in all cells. Comparing GLUT1 to apoptosis protein levels returned 199 

coefficients around 0, but showed greater values when compared to HLA-A and CA9 in cancer cells. 200 

HLA-A levels correlated with PRO-CASPASE 3 levels only in stromal cells. Generally, correlations 201 

between individual proteins were nearly identical in leukocytes and stromal cells and frequently 202 

differed from those in cancer cells, validating at the single cell level that transformed cells deviate 203 

from a physiological regulation of apoptotic and metabolic pathways. 204 

Single cell systems modelling of apoptosis sensitivity shows inter-205 

individual differences in apoptosis sensitivity and an enhanced 206 

ability of tumor cells to undergo Caspase-3-dependent 207 

mitochondrial apoptosis 208 

Next, we used quantitative single cell protein profiles to predict the apoptosis sensitivity of the 209 

1.6 million colorectal tumor cells. We employed two systems models of the mitochondrial apoptosis 210 

pathway that were previously established and experimentally validated in our group to predict the 211 

intrinsic ability of cells to initiate and execute apoptosis. DR_MOMP (Flanagan et al., 2015; Lindner et 212 

al., 2013; Lindner et al., 2017) calculates the sensitivity of cells to undergo mitochondrial 213 

permeabilization by computing a score that, in summary, quantifies the amount of pro-apoptotic BH3-214 

only proteins required to trigger sufficient BAK or BAX pore formation to induce mitochondrial outer 215 

membrane permeabilization (MOMP) during genotoxic stress (Figure 5A). In contrast, APOPTO-CELL 216 

(Huber et al., 2007; Rehm et al., 2006) calculates the amount of caspase 3 mediated substrate cleavage 217 

as a consequence of MOMP and apoptosome formation (Figure 5A). 218 

Using the quantitative Bcl-2 protein profiles of BAK, BAX, BCL2, BCL(X)L and MCL1 as model input for 219 

DR_MOMP, we were able to calculate the sensitivity of individual tumor cells to the process of 220 

mitochondrial apoptosis initiation. Calculating mean DR_MOMP scores for each core (Figure 5B, top) 221 

and % cells with low sensitivity for MOMP for individual core (Figure 5B, bottom) using the calculated 222 
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average stress dose of the population as threshold (Flanagan et al., 2015; Lindner et al., 2013; Lindner 223 

et al., 2017), we were able to show significant differences in % cells with low sensitivity for MOMP in 224 

this otherwise homogeneous cohort of stage III CRC patients. Between patient-matched cores, we 225 

found a mean difference of 18.8% ± SD 14.1% and a mean SD of 14.0% cells with low sensitivity for 226 

MOMP. When stratifying DR_MOMP calculations for individual cell types, we found that, on average, 227 

significantly fewer cancer cells and stromal cells exhibited low sensitivity for MOMP when compared 228 

to immune cells (Figure 5C, upper). Among immune cells, Regulatory T cells were found to have largest 229 

population of single cells with low sensitivity for MOMP (Figure 5C lower). And, in line with our analysis 230 

on protein level (Figure 3), we found that cytotoxic T cells are overall significantly more susceptible to 231 

apoptosis stimuli compared to other immune cells. Figure 5D depicts examples of DR_MOMP 232 

predictions in cores with a majority of cells having a high sensitivity for MOMP (left) or a majority of 233 

cells having low sensitivity for MOMP (right). 234 

When investigating the sensitivity of individual tumor cells to undergo caspase 3 activation (once the 235 

process of MOMP is activated) using the APOPTO-CELL systems model, we similarly found significant 236 

differences between individual patients (Figure 5E, top) and cores (Figure 5E, bottom): Between 237 

patient-matched cores we found a mean difference of 18.8% ± SD 15.7% and a mean SD of 13.8% cells 238 

with low predicted caspase activity. Importantly, when investigating individual cell types, we found 239 

that cancer cells were predicted to show a higher caspase activity compared to immune cells and 240 

stromal cells, with the latter showing the greatest fraction of cells with low predicted caspase activity 241 

(Figure 5F). Figure 5G depicts examples of cores with APOPTO-CELL predicting the majority of cells 242 

showing high caspase activity (left) or the majority of cells exhibiting low caspase activity (right). 243 

The activation of mitochondrial (or intrinsic) apoptosis is considered to be a two-step process, with 244 

little feed-back from one to the other process (Ichim and Tait, 2016). The multiplexing, quantitative 245 

protein profiling and single cell systems modelling pipeline developed here hence also allowed us to 246 

address the question of whether cancer cells show differences in their ability to activate each of these 247 

two apoptotic control points. 248 

In line with the latter analysis, assessing apoptosis sensitivity up- and downstream of MOMP showed 249 

that cancer cells are sensitive for both apoptosis pathways in the majority of tumors and that only a 250 

small fraction of cores showed low sensitivity in both pathways at the same time (Figure 6A). In 251 

contrast, immune and stroma cells had a higher fraction of cells that showed low sensitivity in both 252 

pathways, and a lower fraction of cells that showed high sensitivity in both, compared to cancer cells 253 

(Figure 6AB). Of the cancer of cells that show low sensitivity in one and high sensitivity in the other 254 

pathway, we found that a majority of cancer cells showed a low MOMP sensitivity and a predicted 255 
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high caspase activity (Figure 6A-C). In contrast, the majority of immune cells showed a predicted high 256 

caspase activity but a low sensitivity for MOMP (Figure 6A-C), and the majority of stroma cells showed 257 

a high sensitivity for MOMP but a predicted low caspase activity (Figure 6A-C). Collectively, the data 258 

suggested that the majority of cancer cells showed a high sensitivity for at least one of the two 259 

apoptosis pathways, and that cancer cells were overall more likely to respond to both signaling 260 

pathways when compared to immune or stromal cells. 261 

Analysis of intra-tumoral heterogeneity 262 

While investigating apoptosis sensitivity at the single cell level using our systems models, we also 263 

noticed that certain patients showed a significant intra-tumor heterogeneity among cancer cells, while 264 

other patients showed a more homogenous distribution in model predictions (Figure 5BE).To further 265 

investigate such intra-tumoral heterogeneity, we assessed the Shannon Entropy between the models 266 

in each core to measure the unanimity of single-cell predictions. A low entropy, close to zero, suggests 267 

homogenous model predictions among all cells, which could either indicate systemic sensitivity or 268 

systemic resistance. In contrast, higher values suggest a more heterogeneous, or random, 269 

configuration of cell states, indicating a high diversity in distinct cells populations (Figure 7A). Overall, 270 

we did not find a significant difference in model predictions with the majority of cores having high 271 

entropy (> 0.5) for both models (Figure 7A). However, the cell composition of different cores may bias 272 

the calculation if not stratified for cell types. While the difference was small, cancer cells and immune 273 

cells had significantly lower entropy compared to stroma cells for DR_MOMP (Figure 7B). We found 274 

something similar for the predictions of the APOPTO-CELL model, however, the difference between 275 

cancer and immune cells was much more distinct (Figure 7C). Studying the entropy of protein levels 276 

using histograms (normalized bin size = 0.1 SD) in cancer cells (Figure 7D), suggested the highest 277 

entropy in BCL2 and the lowest entropy in MCL1 if comparing protein relevant for DR_MOMP. Among 278 

proteins relevant for APOPTO-CELL, we found the highest entropy in XIAP and the lowest PRO-279 

CASPASE 3. Overall, cancer epithelial cells showed higher entropy in levels of all proteins but BCL(X)L 280 

and PRO-CASPASE 3 when compered between epithelial cancer, immune and stroma cells (ANOVA p 281 

< 0.05, Tukey post-hoc p < 0.05; Suppl. Figure 5). Figure 6D depicts examples of low (left) and high 282 

(right) entropy. On average, protein levels of most proteins were greater in cancer compared to 283 

immune and stroma cells (Figure 2) which allows more states and leads naturally to high entropy in 284 

cancer cells. 285 

We also assessed the presence of systematic spatial variation of protein levels and model predictions 286 

(spatial autocorrelation) by measuring Moran’s I in each core (Figure 7F-J). A Moran’s I of 1 indicates 287 

a perfect spatial separation (e.g. left versus right separation), while a value of -1 indicates a perfect 288 
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dispersion (checkerboard pattern; Figure 7F). A Moran’s I is close to zero for a random distribution. 289 

Figure 6G depicts examples of low (left) and high (right) Moran’s I. 290 

Overall, we found little evidence of strong spatial autocorrelation or spatial separation in the majority 291 

of cores suggesting that cells that were close to each other did not have similar protein levels or similar 292 

apoptosis sensitivities. Overall, we did not find any statistically significant difference in Moran’s I 293 

between the different apoptosis models (Figure 7H). Similar to the Entropy, this value is biased if cells 294 

of different types are spatial separated, and Moran’s I needs to be studied individually. Although we 295 

observe only minor difference for the DR_MOMP model (Figure 7I), cancer cells with different 296 

predictions for APOPTO-CELL were significantly more randomly dispersed compared to stromal cells 297 

(ANOVA p = 0.004 and Tukey post-hoc p = 0.002; Figure 7E).  298 

Calculating Moran’s I for cells’ protein levels, we found that the majority of cancer cells have a score 299 

less than 0.2 suggesting a tendency towards a low correlation between protein level and the distance 300 

between cells (Figure 7K). However, individual cores showed high spatial clustering for individual 301 

protein suggesting that neighboring cells are more likely to have similar protein levels than distant 302 

cells in these cores. Among the proteins relevant for DR_MOMP, BAX and BCL2 showed the higher 303 

Moran’s I compared to BAX, BCL(X)L and MCL1 (Figure 7K). Among proteins used in the APOPTO-CELL 304 

model, SMAC had the lowest Moran’s I compared to PRO-CASPASE 3, 9 and XIAP (Figure 7K). Of note, 305 

since immune cells are more mobile than epithelial or stroma cells, we would assume to find the 306 

lowest Moran’s I in these cells. However, this was only the case for BAK, BCL2, PRO-CASPASE 3 and 307 

GLUT1 (Suppl. Figure 6). While numerically different, overall the Moran’s I was similar for BAX, 308 

BCL(X)L, MCL1, SMAC and CA9 if stratified for cell types. We observed the greatest difference between 309 

cells of different types for BAK, BCL2, GLUT1, HLA-I and KI67 (Suppl. Figure 6). 310 

Collectively, intra-tumoural heterogeneity in apoptosis signaling was surprisingly not increased in 311 

cancer cells when compared to leukocytes and other stromal cells, suggesting that heterogeneity in 312 

apoptosis signaling represents an intrinsic, non-genomic cell property that is not increased by the 313 

process of malignant transformation. 314 

Discussion 315 

The present study constitutes the first report describing the quantitative and spatial distribution of 316 

key mitochondrial apoptosis proteins at single cell resolution in intact cancer tissue. Using multiplexed 317 

immunofluorescence imaging (MxIF) we provide information on 2.4 million apoptosis protein profiles 318 

in six different cell types and deliver the first atlas of apoptosis signaling proteins  in a large cohort of 319 
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patients (164 colorectal cancer patients). We furthermore conducted a systems-based analysis of each 320 

individual cell’s apoptosis sensitivity. Our dynamic systems modelling estimated that cancer cells were 321 

generally more sensitive to apoptosis signaling than immune or stromal cells, however with significant 322 

heterogeneity between patients. We also characterized the level of intra-tumoral heterogeneity in 323 

apoptosis signaling in colorectal cancer, and demonstrate that intra-tumoral heterogeneity in 324 

apoptosis signaling was not increased in cancer cells when compared to leukocytes and other stromal 325 

cells. 326 

Apoptosis protein mapping in colorectal cancer and its implication for future therapy 327 

Our first analysis steps constituted the mapping of protein profiles to the different cell types present 328 

in the tumor microenvironment. Multiplexed protein imaging has been increasingly used as a tool for 329 

spatial analysis of tumor cell types and microenvironment over the last 10 years (Angelo et al., 2014; 330 

Gerdes et al., 2013; Goltsev et al., 2018; Gut et al., 2018; Kalra and Baker, 2017; Rashid et al., 2019; 331 

Saka et al., 2019; Tan et al., 2020) and there are increasing number of multiplexing methods for in situ 332 

RNA and DNA detection (Decalf et al., 2019; Kishi et al., 2019; Moffitt and Zhuang, 2016), Cell DIVE has 333 

been used to analyze tumor cell heterogeneity in CRC (Badve et al., 2021; Spagnolo et al., 2017), ductal 334 

carcinoma in situ (DCIS) (Badve et al., 2021; Gerdes et al., 2018), breast cancer (Sood et al., 2016), 335 

glioma and glioblastoma (Berens et al., 2019) and melanoma (Yan et al., 2019). Unlike standard 336 

immunohistochemistry methods which are limited to 1-5 markers in a single section, multiplexed 337 

immunofluorescence imaging methods can provide single cell data on up to 60 proteins in a single 338 

sample, including cell spatial coordinates, thus allowing analysis of co-expressed biomarkers and 339 

relationships between cells types and functional status, as described in this paper. 340 

Overall, we found that the ‘average protein level’ in a core (of the proteins we investigated), as 341 

evaluated in bulk assays, is predominantly due to by the signal from cancer cells compared to immune 342 

or stroma cells (Figure 2BE). However, among the analyzed key proteins regulating mitochondrial 343 

apoptosis, we found interesting differences between the cell types (Figure 2AD). One of the key 344 

findings was an enrichment in BCL-2 protein levels in immune cells when compared to cancer and 345 

other stromal cells. This finding may have important implications regarding the use of BCL2 346 

antagonists such as Venetoclax for the treatment of solid tumors. Venetoclax is well tolerated in 347 

patients with relatively few side effects and would represent an ideal adjuvant and sensitizer to 348 

chemotherapy for the treatment of chemotherapy-resistant solid tumors. 349 

Nevertheless, Rohner et al. (Rohner et al., 2020) have previously shown that inhibition of BCL2 by ABT-350 

199 caused cell death in all types of lymphocytes but specifically reduced the counts of B cells in 351 
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humans. In addition, the authors showed that while T cells showed equivalent high levels of BCL2, 352 

latter were significantly less affected compared to B cells, emphasizing that triggering apoptosis is “the 353 

sum of the interplay of a network of anti- and pro-apoptotic BCL-2 family members” (Rohner et al., 354 

2020) and highlighting the importance of a systematical assessment of apoptosis. Our data suggest 355 

that in certain patients BCL2 is also highly expressed in epithelial cancer cells, which could suggest that 356 

BCL2 antagonist therapy may effectively reduce the overall anti-apoptotic threshold of cancer cells. 357 

Due to complexity in cell-type specific BCL2 expression, our study suggests that evaluation of BCL2 358 

levels in bulk tissues samples may not be sufficient as a stratification tools for BCL2 antagonists. 359 

We found that MCL1 levels were enriched in epithelial and immune cells, with significantly lower levels 360 

in stroma tissue. As MCL1 antagonists are also being currently developed as apoptosis sensitizers for 361 

MCL-1-dependent cells, effects of MCL1 antagonists on immune cells may also need to be considered. 362 

Of note, quantitatively, MCL1 levels were lower in cancer cells when compared to the anti-apoptotic 363 

proteins BCL2 and BCL(X)L. Another interesting aspect of our study was the strong enrichment of BAK 364 

in cancer cells. Recently, agents have been developed that activate BAX and BAK directly (Walensky 365 

and Gavathiotis, 2011), including molecules that do not interact with the BH3-binding pocket of anti-366 

apoptotic proteins or pro-apoptotic BAK and induces cell death in a BAX-dependent fashion 367 

(Gavathiotis et al., 2012; Gavathiotis et al., 2008). Our results suggest that BAK in particular is a good 368 

target in colorectal cancer. Cancer cells also had significant higher levels of SMAC, XIAP and PRO-369 

CASPASE 9 compared to immune or stroma cells. It is therefore possible that colorectal tumors 370 

expressing high XIAP levels in cancer cells are effectively sensitized by SMAC mimetics (Fichtner et al., 371 

2020), however analysis of both XIAP and SMAC levels may be required for future patient 372 

stratification. 373 

Priming of cancer cells and the degree of inter-individual heterogeneity 374 

We also utilized the protein profiles for calculations of apoptosis sensitivity at the systems level. 375 

Because of the complexity of apoptosis signaling with multiple signaling redundancies and feed-back 376 

signaling, several groups have developed functional or computational models that describe apoptosis 377 

sensitivity on a systems level. One such as approach, termed ‘BH3-profiling’, interrogates the response 378 

of the mitochondrial apoptosis pathway to pro-apoptotic BH3-only protein peptide mimetics (Certo 379 

et al., 2006; Del Gaizo Moore and Letai, 2013; Montero and Letai, 2018). However, this technique 380 

requires fresh tissue and living cells. To enable analysis of fresh frozen or formalin-fixed paraffin-381 

embedded tissue, we developed DR_MOMP (Lindner et al., 2013) as an ODE-based model of MOMP 382 

that, similarly to BH3 profiling, calculates the response of the BCL2 signaling network to BH3-only 383 

proteins activated upon cellular stress (Flanagan et al., 2015; Lindner et al., 2013; Lindner et al., 2017). 384 
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It has been extensively validated experimentally in colon and other cancer cells (Lindner et al., 2013; 385 

Lindner et al., 2017; Lucantoni et al., 2018). Furthermore, we developed APOPTO-CELL as an ODE 386 

model that calculates the sensitivity of cells to activate caspase-3 downstream of MOMP (Huber et al., 387 

2007; Rehm et al., 2006), as this process represents an important second control step. APOPTO-CELL 388 

has also been extensively validated in-house using single cell imaging and population-based 389 

approaches in cervical, colorectal and glioblastoma cells (Murphy et al., 2013; Salvucci et al., 2019a; 390 

Salvucci et al., 2017; Schmid et al., 2012). Both models have also been shown to predict responses to 391 

apoptosis sensitizers in preclinical settings (Lucantoni et al., 2018; O'Farrell et al., 2020). Our study 392 

supports the previously developed concept that tumor cells are indeed ‘primed’ to undergo 393 

mitochondrial apoptosis (Llambi et al., 2011; Ni Chonghaile et al., 2011). Including additional markers 394 

for BH3-only proteins and caspase-independent cell death pathways will allow us to gain a more 395 

holistic picture of possible cell fates in the future. 396 

However, a surprising observation was that (based on model prediction) this appeared to result 397 

predominantly from an enhanced ability to overcome both apoptosis barriers, MOMP and activation 398 

of caspase-3 activation downstream of MOMP, as immune cells lack sensitivity for MOMP and other 399 

stromal cells showed less sensitivity to caspase-3 activation (Figure 6AC). When comparing the ability 400 

to undergo MOMP, cancerous cells were equally sensitive to stromal cells to undergo MOMP. In 401 

contrast, immune cells appeared to be highly resistant to MOMP due to their relatively high expression 402 

of increase in BCL2. Interestingly, we found that cytotoxic (CD8+) T cells were overall significantly more 403 

susceptible to apoptosis stimuli compared to other immune cells. This is clinical relevant since tumor 404 

infiltration by cytotoxic T Cells has been found to be significantly positively correlated with better 405 

survival in colorectal cancer(Naito et al., 1998). In patients with breast cancer, changes in the ratio 406 

between FOXP3+ (Regulatory) and CD8+ (cytotoxic) T cells (before and) after neoadjuvant 407 

chemotherapy was highly associated with clinical response (Ladoire et al., 2008). Similarly, a low 408 

density of cytotoxic T Cells in tumor tissue after chemotherapy was associated with poor response in 409 

patients with rectal cancer (Matsutani et al., 2018). Therefore, increased risk of apoptosis of cytotoxic 410 

T cells (e.g. following chemotherapy) may abrogate these benefits. 411 

Nevertheless, our study cannot address the questions whether cancer cells are capable of activating 412 

more BH3-only proteins at a given genotoxic (or metabolic) stress dose. We also observed significant 413 

patient-to-patient heterogeneity in apoptosis sensitivity at both levels, while core-to-core differences 414 

within single patients were less pronounced. Moreover, our combined analysis of both apoptosis 415 

signaling pathways in each individual cell also allowed us to investigate potential blocks in either of 416 

these pathways. Our combined analysis showed that the majority of cancer cells showed a high 417 
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sensitivity for at least one of the two apoptosis pathways up- and downstream of MOMP, which was 418 

not observed to a similar degree in immune or other stromal cells. 419 

Intra-tumoral heterogeneity 420 

One of the limitations of the current study was that tumor core regions were analyzed, while tumor 421 

margins in the invasive zone were not investigated. However other studies have pointed to the 422 

importance of core regions in tumor progression due to silencing/methylation as a consequence of 423 

tissue hypoxia (Thienpont et al., 2016). Based on this and other previous studies pointing to an 424 

importance of intra-tumor heterogeneity in tumor progression and resistance, we also investigated 425 

intra-tumor heterogeneity in apoptosis signaling. Collectively, our entropy and spatial image analyses 426 

of the mitochondrial apoptosis pathway did not suggest that cancer cells showed an increased cell-to-427 

cell or spatial heterogeneity when compared to immune or other stromal cells. However, as shown in 428 

the examples for Moran’s I (Figure 7G), there can be a significant different between the value of 0.0 429 

and 0.2 and assessing autocorrelation with alternative methods, such as Variograms, may be of 430 

benefit. Another limitation was that we resolved the cell’s phenotype in only three classes. Observed 431 

heterogeneity in predicted model response and measured protein levels could arise through a high 432 

number of various differentiated cells, and cells of the same type might have significantly lower 433 

heterogeneity if compared among each other. Notwithstanding these limitations, our studies indicate 434 

that intra-tumoral heterogeneity in apoptosis signaling was not increased in cancer cells, suggesting 435 

that this represents an intrinsic, non-genomic property not increased by the process of malignant 436 

transformation. This observation is supported by earlier studies in cell lines which demonstrated the 437 

importance of non-genomic heterogeneity in apoptosis signaling due to fluctuations in protein levels 438 

over the lifetime of a cell. Rehm et al. (Rehm et al., 2009) reported that sibling cells underwent 439 

apoptosis execution within a narrow time window and that random cell pairs were significantly less 440 

synchronous in undergoing apoptosis, independent of activating the intrinsic or extrinsic pathway. 441 

However, the authors also reported that neither cell-to-cell distance nor cell membrane contacts 442 

influenced the synchrony in apoptosis execution of sibling cells (Rehm et al., 2009). Similarly, Spencer 443 

et al. (Spencer et al., 2009) previously showed that differences in the protein levels regulating 444 

apoptosis are the primary causes of cell-to-cell variability in probability of death, with the protein state 445 

being transmitted from mother to daughter, and protein synthesis rapidly promoting divergence 446 

between these cells. 447 

While we here consider the levels of 9 apoptosis markers, we did not take into account proteins’ state 448 

such as BCL2’s phosphorylation status (Ruvolo et al., 2001) nor subcellular localization of proteins 449 

which is possible to account for with the Cell DIVE™ platform. For example, BAX’s localization at the 450 
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mitochondria or in the cytosol was reported to be clinically relevant in acute myeloid leukemia 451 

(Reichenbach et al., 2017) and hepatocellular carcinoma (Funk et al., 2020). BAX localization could be 452 

considered by including a mitochondrial marker, or by analyzing the BAX signal within the cytosolic 453 

cell mask, with an evenly distributed signal suggesting cytosolic localization, and uneven distribution 454 

suggesting localization at mitochondria. 455 

In conclusion, our study provides the first map of apoptosis sensitivity at individual protein and 456 

systems level in intact colorectal cancer tissue. We holistically describe both patient-to-patient and 457 

intra-tumor heterogeneity in apoptosis signaling in stroma, immune and cancer cells which has 458 

important implications for the future use of apoptosis sensitizers in the treatment of colorectal cancer. 459 
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Figure titles and legends 482 

Figure 1 – (A) Simplified workflow of the Cell DIVE™ platform and data analysis. (B) In total over 2 483 

million cells, stratified into cancer, immune and stroma classes were analyzed. (C) Random forest was 484 

used to differentiate cells using DAPI, and epithelial and CD markers. (D) The majority of cores 485 

consisted of epithelial like cancer and stroma cells, (E) with less than 20% of cells being immune cells 486 

in the majority of cores (ANOVA, Tukey post-hoc). 487 

Figure 2 – Protein analysis of apoptosis proteins relevant for (A-C) the DR_MOMP model upstream of 488 

MOMP and (D-F) the APOPTO-CELL model downstream of MOMP. (AD) To determine the difference 489 

between protein quantification based on cell masks and quantification using the whole image, we first 490 

determined the median protein concentration of each core, stratified for cancer (red), immune (blue) 491 

and stroma (gray) cells (ANOVA, Tukey post-hoc). x marks panels with cropped high value outliers. 492 

(BE) Subsequently, we compared the median pixel intensity of the core images (x-axes) with the 493 

stratified median pixel intensities determined using cell masks (y-axes) before batch correction. The 494 

scatter size indicates the numbers of stratified cells of the respective core. The panels C and F show 495 

examples of the pre-batch corrected protein staining, cell type classification and batch corrected mean 496 

cell intensities using cell masks. 497 

Figure 3 – Global immune cell protein analysis of apoptosis proteins relevant for (A-C) the DR_MOMP 498 

model upstream of MOMP and (D) the APOPTO-CELL model downstream of MOMP (ANOVA, Tukey 499 

post-hoc). (B) Virtual IHC staining with BCL2 (red), CD3 (green) and CD45 (blue) shows that BCL2 level 500 

vary largly between immune cells. 501 

Figure 4 – (A) Protein analysis of KI67, CA9, GLUT1 and HLA_I proteins using core median protein levels 502 

and stratified for cancer (red), immune (blue) and stroma (gray) cells (ANOVA, Tukey post-hoc). (B) 503 

We compared the median pixel intensity of the core images (x-axes) with the stratified median pixel 504 

intensities determined using cell masks (y-axes) before batch correction. The scatter size indicates the 505 

numbers of stratified cells of the respective core. We calculated the median spearman correlation 506 

coefficient between proteins, stratified for (C) cancer, (D) immune and (E) stroma cells. A more 507 

detailed correplation plot, including inter quantile ranges, is provided as supplementary figure 4. 508 

Figure 5 – Results of the cell-by-cell analysis using the apoptosis models DR_MOMP (Lindner et al., 509 

2013) and APOPTO-CELL (Huber et al., 2007; Rehm et al., 2006). (A) Graphical illustration of the 510 

modelled BCL2 pathway (DR_MOMP) upstream of MOMP and the modelled caspase pathway 511 

(APOPTO-CELL) downstream of MOMP. We first analyzed (B-D) DR_MOMP and subsequently (D-G) 512 
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APOPTO-CELL. (BE) First we determined model predictions of required stress to induce MOMP 513 

(DR_MOMP) and % substrate cleavage upon MOMP (APOPTO-ELL) based on aggregated mean protein 514 

level for each patient, using the pool of all cells of multiple cores. Subsequently we calculated the 515 

cores’ cell fractions with (B) high/low sensitivity for MOMP (DR_MOMP) and (E) high/low substrate 516 

cleavage (APOPTO-CELL) using individual cell protein levels. We compared cores’ fractions with 517 

high/low (C) sensitivity for MOMP and (F) caspase activity stratified for cancer (red), immune (blue) 518 

and stroma (gray) cells (ANOVA, Tukey post-hoc).The panels D and G show examples of individual 519 

cores with high/low (D) sensitivity for MOMP and (G) caspase activity. In B and E, cores were sorted 520 

from high apoptosis sensitivity (left) to low apoptosis sensitivity (right), respectively. 521 

Figure 6 –We determined cores’ cells that (A) exclusively showed high sensitivity for MOMP (left), high 522 

caspase activity, high responses in both apoptosis pathways and low responses in both apoptosis 523 

pathways (right; ANOVA, Tukey post-hoc).(BC) Ternary plot of individual core’s cell fraction for 524 

exclusively pathway responses or sensitivity in both pathways. Overall, cancer cells show high 525 

sensitivity for the DR_MOMP modelled BCL2 pathway upstream of MOMP with about half showing 526 

also high caspase activity modelled by APOPTO-CELL. Stroma cells showed exclusively high sensitivity 527 

for the apoptosis pathway upstream for MOMP while immune cells showed exclusively high sensitivity 528 

for MOMP. 529 

Figure 7 – Heterogeneity analysis calculating cells’ (A-E) Entropy and (F-K) Moran’s I for apoptosis 530 

model predictions as well protein levels. (A-E) Entropy (information theory) is a measurement for the 531 

bias to one state, (A) with low entropy marking captaincy for a one state and high entropy marking 532 

uncertainty for one or multiple states. We first determined the binary Shannon entropy for (B) 533 

low/high sensitivity for MOMP (DR_MOMP) and (C) low/high caspase activity (APOPTO-CELL; ANOVA, 534 

Tukey post-hoc), finding surprisingly significant lower entropy in cancer cells (red) compared to 535 

immune (blue) and stroma cells (gray). (D) Subsequently, we calculated the Shannon Entropy for the 536 

proteins using bins for protein level with a bin width of z-score = 0.1 SD for each protein respectively. 537 

The calculated Shannon Entropy for stroma and Immune cells can be found in supplementary figure 5. 538 

(E) shows examples with low (left) and high (right) entropy for the DR_MOMP model. (F) Moran’s I is 539 

a measurement of spatial autocorrelation with a Moran’s I approaching 0 and < 0 indicating spatial 540 

dispersion and a Moran’s I approaching 1 marking spatial clustering. Panel G shows examples of 541 

protein levels with low (left) and high (right) Moran’s Is. (G-K) We determined cores’ Moran’s I for 542 

low/high (I) sensitivity for MOMP, (J) caspase activity and (K) respective protein levels (in cancer cells). 543 

Calculated Moran’s I for Stroma and Immune cells can be found in supplementary figure 6. (G) While 544 
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a Moran’s I around 0 shows no spatial autocorrelation, values around 0.2 or greater indicate presence 545 

of local spatial autocorrelation within the cores. 546 

STAR★Methods 547 

Key Resource Table 548 

REAGENT or RESEOURCE SOURCE IDENTIFIER or CONTACT 

Antibodies 

APAF-1 Millipore 2E12 MAB3053 

Bak Cell Signaling D4E4 12105 

Bax Abcam E63 ab216985 

BCL-2 Lifespan 124 LS-C389442 

Bcl-xL Thermo 7D9 MS-1334 

CA9 Thermo polyclonal PA1-16592 

Caspase-3  Cell Signaling D3R6Y 14214 

Caspase-9 Santa Cruz 96.1.23 sc-56076 A647 

CD3 Dako F7.2.38 M7254 

CD4 Abcam EPR6855 ab181724 

CD8 Dako C8/144B M7103 

CD45 Dako 2B11 + PD7/26 M0701 

Cytokeratin AE1 eBioscience AE1 14-9001 

Cytokeratin PCK26 Sigma PCK26 C1801 

FOXP3 Biolegend 206D 320014 

Glut-1 Abcam EPR3915 ab196357 

HLA I Abcam EMR8 5 ab70328 

Ki67 Zeta SP6 Z2031 

MCL-1 Abcam Y37 ab186822 

NAKATPase Abcam EP1845Y ab167390 

S6 Santa Cruz C-8 sc-74459 A647 

Smac Cell Signaling 79-1-83 2954 

PD1 Abcam EPR4877(2) ab201825 

XIAP (API3) Thermo polyclonal APH937  

Cell Lines 

HCT-116 SMAC KO Dr. B Vogelstein (John Hopkins University, MD, USA) 

HCT-116 XIAP KO Dr. B Vogelstein (John Hopkins University, MD, USA) 

HeLa American Type Culture Collection (LGC Standards) 

JURKAT Dr. PH Krammer and Dr. H Walczak (DKFZ, Germany) 

MCF7 Dr. RU Jänicke (University of Düsseldorf, Germany) 

SKMEL DSMZ, Germany ACC 151 
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REAGENT or RESEOURCE SOURCE IDENTIFIER or CONTACT 

Biological Samples 

Stage III primary CRC tumour 
tissue resect prior 5-FU based 
chemotherapy 

Beaumont Hospital (RCSI, IE) NA 

Queen’s University Belfast (UK) NA 

Paris Descartes University (FR) NA 

Cell DIVE Platform 

Cell DIVE™ Cytiva; GE Research fiona.ginty@ge.com 

Multi tumor tissue array Pantomics MTU 481 

Software and algorithms 

R (3.6.3) R Foundation www.r-project.org 

Fiji (ImageJ; 1.51k)  Schindelin et al.(Schindelin et 
al., 2012) 

www.fiji.sc  

GE SingleCellMetrics Plugin GE Research fiona.ginty@ge.com 

Layers cell analysis software 
version 1 

GE Research fiona.ginty@ge.com 

APOPTO-CELL Rehm and Huber et al.(Huber 
et al., 2007; Rehm et al., 2006) 

prehn@rcsi.ie 

DR_MOMP Lindner et al.(Lindner et al., 
2013) 

prehn@rcsi.ie 

MATLAB with the Statistics 
and Parallel toolboxes 
(version 2014b) 

The MathWorks www.mathworks.com 

Resource Availability 549 

Lead Contact 550 

Further information and request for code or resources should be directed to and will be fulfilled by 551 

the lead contact, Prof. Jochen Prehn (prehn@rcsi.ie). 552 

Materials Availability 553 

 This study did not generate new unique reagents. 554 

Data and Code Availability 555 

 Imaging data, cell masks and generated single cell measurements of 20 markers is available 556 

from the lead contact. 557 

 The full pipeline for data analysis is available from the lead contact. 558 

 Any additional information required to reproduce this work is available from the Lead Contact. 559 
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Experimental Model and Subject Details 560 

This section does not apply to our computational study. 561 

Method Details 562 

Colorectal cancer cohort 563 

Formalin-fixed, paraffin-embedded (FFPE) primary tumor tissue sections were obtained from 564 

170 chemotherapy-naïve, resected stage III CRC patients. Tumor samples were collected from three 565 

centers: Beaumont Hospital (RCSI, Ireland), Queen's University Belfast (UK) and Paris Descartes 566 

University (France). All centers provided ethical approval for this study and informed consent was 567 

obtained from all participants. A summary of the clinical characteristics of the cohort is provided in 568 

Suppl. Table 1. Data of 46 cores of 36 patients were dropped after quality assessment of the stained 569 

tissue (see below). All cores of two patients were removed in this process.  570 

Cell lines 571 

Three technical replicates (cores) of pellets of formalin-fixed HeLa, Jurkat, MCF7, SKMEL, HCT-116 572 

SMACKO and HCT-116 XIAPKO cells in which quantities of mitochondrial apoptosis proteins were 573 

previously determined (Lindner et al., 2013; Passante et al., 2013; Rehm et al., 2006) were included in 574 

the construction of the tissue microarray (TMA) in parallel to the patients’ cores, and served as quality 575 

control and internal standards for protein quantification. 3 of 18 cores of two cell lines were removed 576 

after quality control. Cells were grown to 80% confluence. Media was replaced 12-24 hours before 577 

fixation. To fix cells, cells were gently washed in sterile 1XPBS solution. Cell monolayers were covered 578 

with 5 mL 10% neutral-buffered formalin (NBF) for 2-5 min. Cells were scraped into NBF, and collected 579 

into labelled 50 mL tubes, and stored at 4 C for at least 3-4 hours. For further processing, cells were 580 

centrifuged at 1,200 rpm for 5 min and washed in 1% low melt agarose solution XBPS before re-581 

suspension in 0.5 ml 80% ethanol and centrifugation at 12,000 rpm twice for 5 min. Subsequently 80% 582 

of ethanol was aspirated and cell pellets were molded into caps and frozen, prior to TMA construction. 583 

Antibody validation and conjugation 584 

Commercially acquired antibodies underwent multi-step process of validation and conjugation (as 585 

previously described by Gerdes et al. (Gerdes et al., 2013). Briefly, at least 2-3 clones for each target 586 

were stained in parallel using a multi-tissue array (MTU 481, Pantomics, CA) and staining performance 587 

visually compared. At least one antibody clone was down-selected for conjugation with either Cy3 or 588 

Cy5 bis-NHS-ester dyes. Epitopes were also tested for sensitivity to the dye inactivation solution (basic 589 
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hydrogen peroxide) by exposing multi-tissue arrays to 0, 1 and 10 rounds the solution and stained with 590 

the antibody of interest and compared. Approx. 10% of epitopes have been shown to have decreased 591 

signal following exposure to the inactivation solution and those antibodies are placed early in the 592 

multiplexing sequence (Gerdes et al., 2013). The key resource table shows the antibodies, clones and 593 

conjugates used in this study. Briefly the markers and staining rounds were as follows: Round 1: BCL2, 594 

APAF1; Round 2: MCL1, PRO-CASPASE-9; Round 3: S6, PRO-CASPASE-3; Round 4: BAX, SMAC; Round 595 

5: BAK, XIAP; Round 6: NaKATPase, BCL(X)L; Round 7: Cytokeratin PCK26, CD8; Round 8: Cytokeratin 596 

AE1, FOXP3; Round 9: CD4, Ki67; Round 10: HLA1, CD45; Round 11: Glut1, CA9; Round 12: CD3, PD1; 597 

Round 13: S6 (repeated). Note that in total, 9 background imaging rounds were also included. 598 

Immunofluorescence Imaging of Patient TMAs 599 

Multiplexed immunofluorescence iterative staining of the CRC TMAs was performed as previously 600 

described (Gerdes et al., 2013) using the Cell DIVE™ technology (Cytiva, Issaquah, WA; formerly GE 601 

Healthcare). This involves iterative staining and imaging of the same tissue section with 60+ antibodies 602 

and is achieved by mild dye oxidation between successive staining and imaging rounds. In total, there 603 

were 13 staining rounds using the antibodies described above and DAPI was imaged in each round. 604 

The Leica Bond (Leica Biosystems) was used for antibody staining and the IN Cell 2200 was used for 605 

imaging.  Staining and image recording was repeated twice for S6 due to staining failure. Exposure 606 

times were set to fixed values for all images of a given marker. 607 

Image pre-processing 608 

Immunofluorescent images were processed and cells were segmented and quantified as described 609 

previously (Gerdes et al., 2013). To summarize, cells in the epithelial and stromal compartments were 610 

segmented using DAPI, pan-cytokeratin, S6, and NaKATPase stains (Gerdes et al., 2013). Images and 611 

segmented cell data then underwent a multistep review process (described by Berens et al.(Berens et 612 

al., 2019): 1) images were visually reviewed and manual scoring of tissue quality and segmentation 613 

was determined by at least one researcher. Images with poor quality staining or too few cells were 614 

excluded from data analysis; 2) cell filtering based on minimum and maximum number of pixels in 615 

each sub-cellular compartment (> 10 pixels and < 1500 pixels per compartment) and 1-2 nuclei per 616 

cell; cells with values outside these limits were removed 3) confirmation of excellent alignment of all 617 

cells in all staining rounds compared to the first round of staining. For this, an automated QC score 618 

was generated for every cell in each imaging round by correlating baseline DAPI images with all 619 

corresponding DAPI images from other multiplexing rounds. A perfect score of 1 indicated perfect 620 

registration, no cell loss and no cell movement. A score of 0 indicated complete loss of that cell after 621 
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baseline imaging. After quality control, cells included in the analysis had a median QC score of 0.95, 622 

with 53% having a QC score greater than 0.8. The average QC score was 0.57. In comparison, 83% of 623 

cells removed during quality control had a QC score less than 0.1 with an average QC score of 0.15. 624 

From the single-cell segmentation masks, the mean intensity, standard deviation, and coherent 625 

statistics were quantified for each protein with respect to the whole cell as well as xy-location. From 626 

the single-cell segmentation masks, the mean, standard deviation, median, and maximum staining 627 

intensity for each protein were quantified with respect to the whole cell, cell membrane, cytoplasm, 628 

and nucleus as well as cell location, area, and shape. Following quantification, slides were normalized 629 

for batch effects and exposure time for each channel/marker analyzed. 630 

48 positions showing major cell loss during staining rounds were excluded from all analysis, as well as 631 

cells within the images’ margins of 15 pixel on the x-axis and 10 pixel on the y-axes were dropped from 632 

all data analysis. 74 positions showing major or minor cell loss during staining rounds were excluded 633 

from training datasets for post-processing such as batch correction or cell classification. 634 

Post pre-processing and batch correction 635 

To correct for a possible batch effects between slides, cells’ mean intensity were first normalized using 636 

upper-quantile normalization, grouped by protein marker and slide. Secondly, quantiles of the 637 

normalized intensities were plotted against their rankits, and an affine transformation matrices to 638 

rotate the function to the main diagonal were calculated. Obtained transformation matrices were 639 

applied on the intensities, and pixel intensity values were restored using linear regression and upper-640 

quantile normalized values. Solely for the batch correction, cells within 5% of the images’ margins 641 

were excluded for the calculation of the reference values. The batch correction was quality controlled 642 

with cell lines spotted in parallel to tissue samples on 3 of 5 slides. 643 

Immune Cell classification 644 

To differentiate cell types, we used CD3, CD4, CD8, CD45, FOXP3, PCK26 and Cytokeratin AE1 markers. 645 

We manually annotated 4,839 AE1- or PCK27-positive cells as (epithelial) cancer cells. Of 3,121 CD3- 646 

positive cells (Beare et al., 2008), 788 CD4-positive cells were annotated as Helper T cells (Beare et al., 647 

2008), 991 CD8-positive cells were annotated as Cytotoxic T cells (Beare et al., 2008), and 648 

1,360 FOXP3-positive cells were annotated as Regulatory T cells (Hori et al., 2003). 3,369 CD3-negative 649 

cells that were either CD4-, CD45- or CD8-positive were annotated as other leukocytes. 3,837 cells 650 

that lacked any marker but were DAPI positive were annotated as stroma-rich cells (other stromal 651 

cells). Using the manual annotations, we constructed a random forest of 2,000 trees (R package 652 

randomForest, version 4.6-14) and employed it to classify all cells. 653 
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Protein profiling and apoptosis sensitivity modelling  654 

Protein levels of BAK, BAX, BCL2, BCL(X)L and MCL1 were normalized to the mean protein levels in 655 

HeLa cells spotted in parallel to patients’ core on 3 of 5 slides. Protein’s molar concentrations were 656 

calculated using previously established HeLa concentrations (Lindner et al., 2013).The five proteins 657 

were used as input for the DR_MOMP mathematical model(Lindner et al., 2013) that models the BCL2 658 

signaling pathway before MOMP and is able to calculate the stress dose required for MOMP or if a cell 659 

undergoes MOMP due to a specified stress. DR_MOMP (Lindner et al., 2013) was translated from its 660 

MATLAB implementation to C++ and R using deSolve (1.28), doParallel (1.0.15) and Rcpp (1.0.5). 661 

APOPTO-CELL (Rehm et al., 2006) was executed in MATLAB with the Statistics and Parallel toolboxes 662 

(version 2014b, The MathWorks, Inc., Natick, MA, USA). The model requires molar concentrations 663 

[µM] of APAF1, PRO-CASPASE 3, PRO-CASPASE 9, SMAC and XIAP as input to predict amount of 664 

cleaved substrate, as a readout for apoptosis susceptibility [%]. Previous research(Hector et al., 2012; 665 

Salvucci et al., 2019a) has shown that APAF1 is not the limiting factor in apoptosome formation in the 666 

CRC settings(Hector et al., 2012; Salvucci et al., 2019a) and was set to 0.123 µM. Molar protein 667 

concentrations for PRO-CASPASE 3, PRO-CASPASE 9, SMAC and XIAP were estimated by aligning signal 668 

intensities [a.U.] to profiles [µM] determined in a reference clinically-relevant CRC cohort(Hector et 669 

al., 2012) with an established pipeline(Salvucci et al., 2019a; Salvucci et al., 2017). The pipeline was 670 

built upon the assumptions that 1) measurement ranking is preserved (monotonic relationship 671 

between batch-corrected signaling intensities and molar concentrations); and 2) absolute 672 

concentration profiles in clinically-matched cohorts are comparable. The pipeline implementation 673 

follows directly from the above assumptions. Briefly, for each protein smoothed kernel probability 674 

distribution objects were fitted to 1) the known protein molar concentrations of the reference CRC 675 

cohort (Hector et al., 2012) and 2) batch-corrected multiplexed signal intensities (restricted to high 676 

quality data points where no signal loss across staining rounds had been observed), with the MATLAB 677 

function fitdist (as detailed in Salvucci M et al. (Salvucci et al., 2017)). The inverse cumulative 678 

distribution transformation of the reference distribution kernel was applied on the batch-corrected 679 

signal intensities to determine the corresponding absolute concentrations (MATLAB function icdf). 680 

For both models, we performed two sets of simulations: 1) per-core and 2) per-cell. For the per-core 681 

simulations, we aggregated (by median) the batch-corrected protein intensities across all cells for each 682 

core per patient prior to conversion to molar concentrations, resulting in one simulations per-core 683 

and thus 2-3 simulations per patient. For the per-cell simulations, we performed a simulation for each 684 

cell, totaling ~3.5 million simulations for 164 patients included in the study. 685 
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Statistical Analysis 686 

All statistical tests were performed in R (3.6.3) and p values of < 0.05 were considered statistically 687 

significant. All data are presented as mean ± SEM. All statistical tests were performed in R. If not 688 

otherwise mentioned, two-tailed t tests were performed for pairwise comparison, while analysis of 689 

variance (ANOVA) with Tukey honest significance post-hoc tests were performed in cases of the 690 

comparison of three or more populations. The quartile coefficients of dispersion (COF) were calculated 691 

using (Q3 - Q1) / (Q3 + Q1) with Qn be the respective quartiles. Shannon Entropy was calculated either 692 

using log2 for binary populations or the natural logarithm, with 10-10 added to all values. Moran’s I was 693 

calculated using the R package ape (5.4-1) without outliers and only on populations > 100 cells. 694 

Distances > 2,000 px were set to 2,000 px. Consensus Clustering was performed using 695 

ConsensusClusterPlus (1.48.0) with a seed of 42, 100,000 repetitions, Spearman and Ward’s method 696 

as parameters. For the bootstrap analysis, slides were randomly 100,000 times randomly paired using 697 

a seed of 42. 698 

Supplemental Information titles and legends 699 

Supplementary Table 1 – Patient information with mean cell fractions and DR_MOMP and APOPTO-700 

CELL results for aggregated protein levels for patient-matched cores. 701 

Supplementary Table 2 - of transcriptional data derived from flow-sorted immune, epithelial and 702 

fibroblast populations isolated from CRC primary tumor tissue (GSE39396). 703 

Supplementary Figure 1 - Plot of patients’ consensus cluster score of patient-matched cores after 704 

hierarchical consensus clustering using cancer, immune and stroma cell fractions of each core. 705 

Patients with a low consensus score (0) show high difference in cell fractions between matched cores 706 

while patients with a high consensus score (1) show high similarity in cell fractions between matched 707 

cores. 708 

Supplementary Figure 2 – Box plot of transcriptional data derived from flow-sorted immune (n = 6), 709 

epithelial (n = 6) and fibroblast (n = 6) populations isolated from CRC primary tumor tissue (GSE39396 710 

(Calon et al., 2012); Suppl. Table 2; ANOVA and Tukey post-hoc). 711 

Supplementary Figure 3 - Box plot of quartile coefficients of dispersion of protein levels of each core 712 

and stratified for cancer (red), immune (blue) and stroma cells (grey). 713 
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Supplementary Figure 4 - In analog to the correlation plot in Figure 4C-E showing the median 714 

correlation coefficient in all (black), cancer (red), immune (blue) and stroma (gray) cells, but including 715 

the interquartile range. 716 

Supplementary Figure 5 - Calculated the Shannon Entropy for the proteins using bins for protein level 717 

with a bin width of z-score = 0.1 SD for each protein respectively and stratified for cancer (red), 718 

immune (blue) and stroma (gray) cells. Proteins were sorted base for (A) DR_MOMP, (B) APOPTO-CELL 719 

and (C) others. 720 

Supplementary Figure 6 - Calculated cores’ Moran’s I for low/high (I) sensitivity for MOMP for protein 721 

levels stratified for cancer (red), immune (blue) and stroma (gray) cells. Proteins were sorted base for 722 

(A) DR_MOMP, (B) APOPTO-CELL and (C) others.723 
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