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ABSTRACT 20 

Discovery of protein quantitative trait loci (pQTLs) has been enabled by affinity-based proteomic 21 

techniques and is increasingly used to guide genetically informed drug target evaluation. Large-scale 22 

proteomic data are now being created, but systematic, bidirectional assessment of platform 23 

differences is lacking, restricting clinical translation. We compared genetic, technical, and phenotypic 24 

determinants of 871 protein targets measured using both aptamer- (SomaScan® Platform v4) and 25 

antibody-based (Olink) assays in up to 10,708 individuals. Correlations coefficients for overlapping 26 

protein targets varied widely (median 0.38, IQR: 0.08-0.64). We found that 64% of pQTLs were 27 

shared across both platforms among all identified 608 cis- and 1,315 trans-pQTLs with sufficient 28 

power for replication, but with correlations of effect estimates being lower than previously reported 29 

(cis: 0.41, trans: 0.34). We identified technical, protein, and variant characteristics that contributed 30 

significantly to platform differences and found contradicting phenotypic associations attributable to 31 

those. We demonstrate how integrating phenomic and gene expression data improves genetic 32 

prioritisation strategies, including platform-specific pQTLs. 33 

  34 
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INTRODUCTION 35 

Proteins are the essential functional units of human metabolism that translate genomic information 36 

and enable growth, development, and homeostasis. Naturally occurring sequence variation in the 37 

human genome, either in close physical proximity to the protein-encoding gene (cis) or anywhere 38 

else in the genome (trans), has wide-ranging effects on proteins, including, but not limited to, 39 

expression, structure, or function, with possible major health consequences
1,2

. Early studies have 40 

started to describe the genetic architecture of protein targets measured in plasma but have been 41 

small scale or restricted to one platform3–8.  42 

Modulating protein abundances or function represents the most common mode of action of drugs9 43 

and major pharmaceutical companies now integrate protein quantitative trait loci (pQTLs) into their 44 

strategies to identify new drug targets or repurpose existing drugs
10–12

. This has only been possible 45 

through the commercial development and application of scalable affinity-based proteomic 46 

techniques that can measure thousands of protein targets simultaneously. Projects are now 47 

underway to apply these techniques to large-scale studies, such as the UK Biobank
13,14

, which will 48 

provide major scientific opportunities. However, information about the consistency of protein 49 

measures and pQTLs across platforms is needed to inform the generalisability of genetic findings and 50 

strategies for future data integration and meta-analytical approaches. 51 

The deep coverage of the plasma proteome, including thousands of proteins, is possible using large-52 

scale libraries of affinity reagents, with the SomaScan® assay (aptamer-based) and the Olink 53 

proximity extension assay (PEA, antibody-based) providing the broadest coverage. Briefly, the 54 

SomaScan assay utilizes short single-stranded oligonucleotides, which are chemically modified to 55 

increase affinity to specific protein targets and DNA microarray technology is used to quantify the 56 

number of aptamers bound to protein targets
15

. Olink relies on monoclonal or polyclonal antibodies 57 

labelled with single oligonucleotides that create pairs of antibodies binding to different epitopes of 58 

the protein target. The oligonucleotides hybridise only if a matched pair of antibodies bind, and the 59 

resulting short DNA fragment is measured using qPCR or next generation sequencing
16

. Despite 60 

measurement units, i.e., relative intensities, not being directly comparable between platforms, 61 

analysis of correlations and rank based variation between platform is scale-free and, further, 62 

orthogonal evidence from genetic variation at protein-encoding genes (cis-pQTLs) can be used to 63 

compare platforms. 64 

Both techniques rely on conserved binding regions of the protein target, epitopes, to provide 65 

reliable estimates of protein concentrations and protein altering variants mapping to epitopes haven 66 
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been widely recognized to possibly introduce binding artefacts1,17,18. While we and others3,5,18,19 have 67 

recently demonstrated that pQTLs can successfully be replicated across platforms for a selected set 68 

of overlapping proteins, this has not been systematically evaluated across hundreds of protein 69 

targets than can now be mapped across the latest versions of these platforms. 70 

Here we assess 871 proteins targeted by both the Somalogic and Olink platforms and measured in 71 

up to 10,708 individuals, including overlapping measurements by both technologies in a subset of 72 

485 participants. We use a machine learning approach to identify technical parameters and protein 73 

characteristics that contribute to variation between platforms. We identify hundreds of pQTLs and 74 

systematically assess their consistency in a reciprocal design, that is, by taking each pQTL forward for 75 

assessment irrespective of the discovery platform, generating a unique benchmark for future 76 

studies.  77 

RESULTS 78 

We used the SomaScan v4 platform (SomaLogic Inc., Boulder, Colorado, US) to measure protein 79 

abundances of 4,775 unique human protein targets (covered by 4,979 unique aptamers) from frozen 80 

EDTA-plasma samples in 12,345 participants in the Fenland study. We assessed 1,069 protein targets 81 

based on 1,104 measures across 12 Olink® Target 96-plex panels, based on the proximity extension 82 

assay (PEA) technology using the same EDTA-plasma samples from 485 Fenland study participants. 83 

Measurements were performed by the manufacturers and methods have previously been described 84 

in detail
19,20

 and are provided in the Methods section. 85 

We identified overlapping protein targets between both techniques using either UniProt identifiers 86 

(www.uniprot.org) or based on the same encoding gene as provided by the manufacturers. Where 87 

multiple measurements were available for a protein assayed on multiple Olink panels, we selected 88 

one of the protein measures from one of the panels at random for two reasons. Firstly, Olink uses 89 

the same type of antibodies irrespective of the panel and secondly, the average correlation was 0.90 90 

(range 0.68-0.99) for the same protein target across different panels. We kept each SOMAmer 91 

reagent matching to one Olink reagent for downstream analysis, since they bind to distinct structural 92 

characteristics of the protein target
15

. This procedure yielded 937 unique SOMAmer – Olink 93 

measurement pairs, comprising 871 unique protein targets (Fig. 1 and Supplementary Tab. S1).   94 
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Figure 1 Scheme of the study design. The Venn diagram displays the overlap in protein targets 96 

captured by the SomaScan assay and the Olink proximity extension assay (PEA). Modes of binding to 97 

the protein target are depicted simplified next to each ellipse. Correlation coefficients were used to 98 

compare both technologies and factors possibly accounting for measurement differences and low 99 

correlation coefficients examined in a subset of 485 individuals with overlapping measurements. For 100 

the set of 871 common protein targets genome-wide association analysis were performed in 10,708 101 

(SomaScan assay) and 485 (Olink PEA) participants of the Fenland cohort. Correspondence of genetic 102 

associations was analysed by examining local genetic architecture, comparison of effect estimates, 103 

and evaluation of phenotypic consequences.   104 

Technical factors affecting correlations between protein targets 105 

The median Spearman correlation coefficient between overlapping protein targets was 0.38 (IQR: 106 

0.08-0.64), with large variation (range: -0.61 to 0.96), including examples with high (Leptin, r=0.95), 107 

absent (Interleukin-12, r=0.02), and inverse correlations (Heat shock protein beta-1, r=-0.48) (Fig. 2a 108 

and Supplementary Tab. 1). We tested for systematic variation among correlation coefficients due 109 

to technical factors or protein characteristics using a random forest-based feature selection 110 

algorithm (see Methods). We identified assay characteristics, including values below the detection 111 

limit of the assay, the affinity of the SOMAmer reagent to its protein target (‘apparent Kd’), or the 112 

proportion of measurements far off from the median value (‘%-outlier SomaScan/Olink’ – median 113 

±5*MAD), to be more relevant to explain varying correlation coefficients compared to any structural 114 
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properties of the assayed protein targets (Fig. 2). Proteins with a transmembrane domain showed on 115 

average lower correlations compared to those without (Fig. 2). We suspect that SOMAmer reagents 116 

or antibodies binding to the part of the plasma protein excluding the transmembrane domain may 117 

measure both intact and post-translationally modified proteins, those that are generated after 118 

proteolytic removal of the ectodomain
21

. Inflammatory mediators, such as tumour necrosis factor 119 

alpha, are activated by proteolytic cleavage from the transmembrane domain and hence the ability 120 

to specifically target and distinguish this active fraction of the protein target may be relevant to the 121 

studying of its pathological relevance. Further, selection of affinity reagents against proteins with 122 

transmembrane domains might be complicated by the incomplete in vitro folding of synthetic 123 

peptides.  124 

We did not find evidence for a systematic pathway bias for either of the two technologies in that 125 

protein targets with lower correlations (r<0.2) were not enriched for any particular biological 126 

pathway. 127 

 128 

Figure 2 Summary of correlations between measurements on both platforms. a) Distribution of 129 

correlation coefficients across 937 mapping aptamer – Olink measure pairs (n=871 unique protein 130 

targets). b) Importance measures derived from a random forest-based variable selection procedure 131 

to predict Spearman correlation coefficients including technical factors and protein characteristics. 132 

Coloured box plots indicate variables for which the importance measure remained significant after 133 

accounting for multiple testing. c-g) Individual-level plots of correlation coefficients for the most 134 

important characteristics. %-below LOD = Fraction of measurement values below the detection limit 135 

of the assay. 136 
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 137 

 138 

Variation of genetic effect estimates between platforms    139 

To systematically test for cross-platform consistency of protein-quantitative trait loci (pQTLs) we 140 

performed a reciprocal comparison of effect estimates of genome-wide association analysis of 871 141 

common protein targets using the SomaScan v4 assay (N=10,708, p<1.004x10-11) with 12 Olink 142 

panels (N=485, p<4.5x10
-11

, Fig. 3) in the Fenland study. This analysis overcomes the biased 143 

assessment of previous one-way or within platform replication efforts4,5,18. To test the potential 144 

influence of sample size on this comparison, we additionally compared the SomaScan-derived pQTLs 145 

to published genetic effect estimates for 90 protein targets from the Olink CVD-I panel including up 146 

to 22,000 participants from the SCALLOP consortium8.  147 

We identified a total of 1,923 SOMAmer - Olink - genetic variant triplets (N=608 in cis, N=1,315 in 148 

trans, Supplementary Tab. 2) with evidence from either platform, including 816 SOMAmer reagents, 149 

770 Olink measures, and 1,267 single nucleotide variants (SNVs), following pruning of variants in 150 

high linkage disequilibrium (LD, R²>0.8). The correlation of effect estimates was higher for cis-pQTLs 151 

(r=0.41) than trans-pQTLs (r=0.34) and was considerably lower than those reported in previous 152 

studies which did not perform bidirectional assessment or inflated correlation estimates by not 153 

aligning effect estimates to either the protein-increasing or -decreasing allele and thereby 154 

‘artificially’ increasing the scale of observed effect estimates
5,19

 (Fig. 3). Correlations of genetic effect 155 

estimates differed according to observational correlations between targets, with high correlations 156 

(0.68 and 0.75 for cis- and trans-pQTLs, respectively) seen across the 351 protein targets with 157 

observational correlations r≥0.5 (Supplementary Fig. 1), but no correlation (r=-0.07 for cis-pQTLs 158 

and r=-0.10 for trans-pQTLs) for those 265 with low observational correlations (r<0.2). 159 

Results were consistent (r=0.49 for cis-pQTLs and r=0.34 for trans-pQTLs, Fig. 3) when using 160 

summary statistics from up to 22,000 participants for the subset of Olink CVD-I panel proteins 161 

(Supplementary Tab. 3) and comparing 496 SOMAmer - Olink - SNV triplets (N=95 in cis, N=401 in 162 

trans). 163 
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 164 

 165 

Figure 3 Results from genome-wide association analysis and reciprocal look-up. a) Fraction of 166 

protein targets with at least one protein-quantitative trait loci (pQTL) in cis (opaque) or trans 167 

(shaded) using either Olink (yellow) or the SomaScan assay (orange) in an overlapping set of 485 168 

participants, grouped by Olink panel. Numbers refer to the set of 871 protein targets measured by 169 

both techniques. b) The fraction of protein targets with pQTLs in the entire Fenland cohort 170 

(N=10,708) based on the SomaScan assay. c) Comparison of beta estimates from linear regression 171 

models across 816 corresponding SOMAmer - Olink pairs (n=770 unique protein targets) with at 172 

least one genome-wide associated genetic variant for either of the two, including 1,267 distinct 173 

genetic variants (R2<0.8). Colouring is based on the genomic location of genetic variants. Red 174 

indicates variants close to the protein encoding gene (cis, ±500kb) and blue otherwise. d) 175 

Comparison of beta estimates from linear regression models across 85 corresponding SOMAmer - 176 

Olink pairs (n=77 unique protein targets) with at least one genome-wide associated genetic variant 177 

for either of the two, including 428 distinct genetic variants (R
2
<0.8). Genetic variants for Olink 178 

measures were derived from the most recent SCALLOP effort covering the CVD-I panel8.  179 

 180 

Cross-platform pQTLs are target-dependent 181 

We collapsed pQTLs discovered by either platform using a distance-based threshold (±500kB, Fig. 4) 182 

to define shared (‘cross-platform’) versus ‘platform-specific’ pQTLs. This procedure resulted in 479 183 

(N=333 in cis, N=146 trans, 390 protein targets, Supplementary Tab. 4) genomic region - protein 184 
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target combinations for which we had sufficient statistical power to replicate effects, that is, pQTLs 185 

observed in the larger SomaScan study that had at least a p-value<10
-5

 when restricting the analysis 186 

to the sample of 485 participants with overlapping measurements (see Methods). 187 

We applied the following criteria to consider a pQTL/genomic region to be shared across both 188 

platforms: 1) genome-wide significance in either discovery approach of the same SNV or a proxy in 189 

high LD (R
2
>0.6) and/or sufficient effect strength to be detected in the smaller Olink sample, and 2) 190 

to be directionally concordant (Fig. 4). We further performed a regional look-up (±500kB) if the 191 

regional sentinels for the SomaScan assay and Olink were not in LD with the respective lead variant 192 

and tested if a conditionally independent pQTL in the same region may align (Fig. 4). We identified 193 

306 (63.9%) cross-platform genomic region - protein target associations with approximately similar 194 

fractions for cis and trans-pQTLs (Fig. 4). Among those were 7 regions for which two independent 195 

pQTLs (R2<0.1) were shared between SomaScan and Olink, but with different ranking in effect 196 

strengths, and further 13 regions for which out of two SomaScan signals only the secondary signal at 197 

the locus was also seen with Olink. The remaining 36.1% genomic region - protein target associations 198 

were platform-specific because they were either 1) only evident for one of the two assays (24.6%, 199 

N=59 for the SomaScan assay and N=59 for Olink), or 2) showed evidence for distinct genetic signals 200 

at the same locus (10%, 48 pairs).  201 

We identified seven pairs for which the lead pQTL was shared but with opposite directions of effect 202 

for the same protein target or its isoforms (Supplementary Fig. 2 and Supplementary Tab. 4). For 203 

instance, the missense variant rs1859788 (p.G78R, AF=31.7% for the A-allele) in PILRA was the lead 204 

cis-pQTL for Paired immunoglobulin-like type 2 receptor alpha (PILRA) for the Olink measure (beta=-205 

0.74, p<3.48x10-29) and we found positive associations with two SOMAmer reagents targeting 206 

soluble isoforms of the same protein (6402-8 targeting isoform FDF03-deltaTM (beta=1.26, 207 

p<2.67x10-5193) and 10816-150 targeting isoform FDF03-M14 (beta=1.26, p<1.53x10-5360), but not the 208 

SOMAmer reagent designed to target the extra-cellular domain of the canonical protein (8825-4, 209 

beta=0.004, p=0.75). Using statistical colocalisation we provide strong evidence of a genetic signal 210 

shared between all three different protein measures and Alzheimer's disease (Supplementary Tab. 5 211 

and Supplementary Fig. 3), in line with the A-allele of rs1859788 having been identified as 212 

protective for Alzheimer’s disease. PILRA is an inhibitory receptor expressed in dendritic and myeloid 213 

cells22 and p.G78R was shown to reduce signalling via reduced ligand binding, likely modulating 214 

microglia migration and activation in the brain23. G78R is located in the extracellular-domain 215 

common to all three forms of PILRA
22

. Therefore, the positive effect directions of the SOMAmer 216 

reagents targeting the two isoforms in the absence of an association with the canonical protein 217 
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suggest aptamer binding affinity introduced by p.G78R being restricted to the soluble isoform. 218 

However, our results cannot distinguish which isoform the polyclonal Olink antibodies target and 219 

whether the inverse association reflects reduced binding affinity to the variant protein of at least 220 

some of them. We identified similar examples with possible downstream consequences for 221 

phenotypic interpretation, including Hepatoma-derived growth factor and HDL-cholesterol levels or 222 

Intracellular adhesion molecule 1 and lymphocyte cell count (Supplementary Tab. 5).  223 

To test the influence of an unbalanced design, we performed a sensitivity analysis including 307 224 

genomic region - protein targets pairs (N=67 cis, N=240 trans, N=76 protein targets, Supplementary 225 

Tab. 5) overlapping with the SCALLOP CVD-I panel GWAS summary statistics. We identified 120 226 

(39.1%) of the pairs as cross-platform, with higher rates in cis (55.2%) compared to trans (24.5%) 227 

(Fig. 4). The higher fraction of platform-specific pairs in trans (157 out of 187, 83.9%) might be best 228 

explained by two factors. Firstly, variants in trans might increase DNA-binding affinity of abundant 229 

circulating proteins such as complement factor H (rs1061170 within CFH) or Butyrylcholinesterase 230 

(rs1803274 within BCHE)  possibly interfering with SOMAmer reagents19, and, secondly, reflect 231 

study-specific handling of blood samples like rs3443671 within NLRP12, which might only be 232 

identified as a pQTL as a result of white blood cell lysis. Out of the 140 platform-specific trans-pQTLs, 233 

26 and 25, respectively, were likely attributable to those reasons.  234 
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235 
  236 

Figure 4 Cross-platform agreement of genomic region – protein target associations. a Workflow to 237 

determine shared (‘cross-platform’) and platform-specific effects of protein-quantitative trait loci 238 

(pQTLs) between SomaScan and Olink based in the Fenland study. b Summary of platform 239 

agreement for 479 genomic region – protein target associations with sufficient power among the 240 

Fenland subsample with available Olink measures (left plot) and 307 genomic region – protein target 241 

associations with sufficient power in the Fenland SomaScan study and the SCALLOP CVD-I 242 

consortium (right plot). 243 

 244 

Identification of factors for cross-platform pQTLs 245 

To identify factors that are associated with pQTLs that are shared across platforms as opposed to 246 

those that are platform-specific, we used logistic regression models to systematically test the odds 247 

of platform-specificity for 22 factors, including functional annotation of variants, associations with 248 

diverse phenotypic traits, gene expression QTL (eQTL), and protein characteristics. We considered 249 

three control groups: 1) protein targets with distinct pQTLs in the same genomic region, 2) pQTLs 250 
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unique to the SomaScan assay, and 3) pQTLs unique to the Olink assay (Fig. 5 and Supplementary 251 

Fig. 4 and Supplementary Tab. 7-9). In general, the likelihood of a pQTL being shared across 252 

platforms was greater compared to either of the three control groups and in both the Fenland and 253 

SCALLOP data when the correlation between measurements (‘observational correlation’) and the 254 

binding affinity of the SOMAmer reagent was higher (Fig. 5 and Supplementary Fig. 4). 255 

We identified a few factors that were significantly associated only when using specific control 256 

groups. For example, LD with a (benign) PAV decreased the odds for cross-platform pQTLs only when 257 

comparing to SomaScan-specific pQTLs, which might be best explained by the putative change in 258 

shape of the protein target among carriers of the alternative allele of PAVs and the reliance of 259 

SOMAmer reagents on a conserved shape of the protein target (Supplementary Tab. 10). Strong 260 

effects of single genetic variants on assay results, indicated by the factor “%-outlier SomaScan”, may 261 

even mask associations that would otherwise be expected from the protein target, that is only seen 262 

with the Olink assay. Further, colocalization with (cis)-eQTLs and phenotypic traits was associated 263 

with a higher likelihood of cross-platform pQTLs comparing to SomaScan-specific and distinct pQTLs, 264 

respectively (Fig. 5). 265 

 266 

 267 
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 268 

Figure 5 Factors associated with pQTLs that are shared across platforms compared to three sets of 269 

platform-specific controls. Odds ratios and 95%-confidence intervals for factors associated with 270 

cross-platform protein quantitative trait loci (pQTL) across the SomaScan v4 and Olink assays. The 271 

panels are based on 540 variant – protein target pairs (306 shared, 234 platform-specific) with 272 

sufficient power for replication in the Fenland sample. PAV = protein altering variant; eQTL = 273 

expression quantitative trait loci; Coloc. = colocalisation; GWAS = genome-wide association analysis; 274 

LOD = limit of detection; KdM = estimated apparent dissociation constant (Kd) of SOMAmer reagents 275 

in molar units (M) 276 

 277 

Platform-specific pQTLs with strong evidence for colocalization with a phenotypic trait may provide 278 

evidence about the biological relevance of the pQTL. Therefore, exploring those associations may 279 

provide insights that would otherwise be hidden if only one platform was analysed. Out of 17 and 47 280 
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cis-pQTLs unique to the SomaScan and the Olink assay, respectively, in the Fenland study, three and 281 

14 had either been reported in the GWAS catalog or colocalised in a phenome-wide scan 282 

(Supplementary Tab. 7-8). While we cannot completely rule out that cis-pQTLs attributed solely to 283 

the SomaScan assay might not have been observed with Olink due to limited samples size, the 14 cis-284 

pQTLs unique to Olink which are demonstrable in only 485 samples suggest that these are strong 285 

phenotypic links. For instance, the cis-pQTLs rs11589479 (ADAM15) and rs34687326 (SLAMF8) 286 

colocalised (posterior probability for a shared genetic signal >90%) with Crohn’s disease 287 

(Supplementary Tab. 5), of which the missense variant rs34687326 (p.Gly99Ser) within SLAMF8 has 288 

been identified as a risk factor for inflammatory bowel disease as well
24

. We observed a similar 289 

distribution of unique cis-pQTLs in the larger SCALLOP comparison, with two and 15 cis-pQTLs 290 

unique to the SomaScan assay and SCALLOP (Olink), respectively, of which one (rs140934622 for IL-291 

27 with the SomaScan assay, in LD, R²=0.96, with a lead signal for intelligence
25

) and seven (e.g., 292 

rs4512994 for sRANKL on Olink, which is a known susceptibility locus for bone mineral density26) had 293 

a link to phenotypic traits.  294 

IL-27 is an inflammatory protein and encoded at the two distinct genes IL27 (IL-27p28 cytokine 295 

subunit) and EBI3 (soluble EBI3 essential for correct folding and secretion)27. We identify a 296 

SomaScan-specific variant located at IL27 (rs140934622 on 16p11) and an Olink-specific variant at 297 

EBI3 (rs4905 on 19p13), both of which were in strong LD (R2>0.99) with missense variants (rs181206 298 

- p.L119P and rs4740 - p.V201I). It is possible that both missense variants might: 1) differentially 299 

affect heterodimerization of the two different gene products required to build IL-27 or 2) both 300 

assays have a critical binding epitope on the respective subunit and binding of the affinity reagent is 301 

impaired by PAVs.  302 

We considered the identification of secondary signals conditioning on the lead cis-pQTL as a strategy 303 

to overcome strong platform-specific pQTLs motivated by a subset of 12 protein targets for which 304 

not the lead but the secondary cis-pQTL was shared across platforms. For three out of those targets, 305 

this approach let to the observation of additional phenotypic associations, including IGFBP-3, for 306 

which a cis-pQTL colocalised (PP>92%) with systolic blood pressure, or FBLN3, which colocalised 307 

(PP>80%) with 24 anthropometric traits and operation codes related to hernia (Supplementary Tab. 308 

S5). Doing the same across 36 protein targets with cis-pQTLs unique to SomaScan and evidence for a 309 

secondary signal (p<5x10-8) revealed three protein targets with a high posterior probability of a 310 

shared genetic signal with phenotypes (PP>80%), including CD58 and primary biliary cirrhosis 311 

(Supplementary Tab. S5).  312 

pQTLs account for measurement differences 313 
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We identified 22 instances in which the correlation coefficient between measurements of the same 314 

protein target across both platforms significantly differed by genotype (false discovery rate<20% for 315 

an interaction term), including pQTLs in cis and trans (Fig. 6). That is, once carriers of the minor or 316 

major allele were excluded, the correlation coefficient between both assays improved. For example, 317 

stratifying observational correlations by the two weakly related (R²=0.23, D’=0.93) lead cis-pQTLs for 318 

YKL-40 (rs2071579 - SomaScan, rs4950928 - Olink) raised the correlation coefficients across all 319 

categories up to 0.95 (range: 0.56 - 0.95) for carriers of the minor C allele (MAF=45.7%) of rs2071579 320 

(Fig. 6). Rs2071579 is in LD with a possibly damaging missense variant (rs88063, R²=0.99, CADD score 321 

= 22.9, p.R145G), located at a predicted protein-protein interaction site in a highly conserved region 322 

of the protein. However, none of the pQTLs has been genetically linked to phenotypes other than 323 

the protein itself.  324 

While such findings in cis are likely to indicate possible interference with binding epitopes, variants 325 

in trans act through various pathways (Supplementary Tab. 10). For example, variants mapping to 326 

ubiquitously expressed glycosyltransferases may act through alerted glycosylation of protein targets 327 

affecting the accessibility for affinity reagents. We observed two such examples, namely rs281379 328 

(associated with TECK and in LD, R²=0.83, with a missense variant in FUT2) and rs779860630 329 

(associated with SARP-2 and intronic of ABO) mapping to genes encoding glycosyltransferases. 330 

Another possibility is a higher affinity for RNA or DNA binding of the gene product conferred by the 331 

genetic variant, similar to what was discussed previously for variants mapping to CFH and BCHE. We 332 

observed rs9501393 (MAF=13.5%) modulating the correlation coefficient of Endothelin-converting 333 

enzyme 1 (Fig. 6). Rs9501393 is in strong LD (R²=0.94) with a missense variant of uncertain 334 

significance in SKIV2L (rs449643, p.A1071V) encoding an RNA helicase, a protein with high affinity to 335 

bind to RNA or single-stranded DNA oligomers.  336 

We next identified factors that influenced measurement differences at the individual participant 337 

data level, considering pQTLs as well as phenotypic measures that could have an impact on protein 338 

abundances, namely age, sex, body mass index (BMI), estimated glomerular filtration (eGFR; 339 

calculated from serum creatinine, age, and sex), and plasma alanine transaminase activities (ALT). 340 

The combination of all factors explained a median amount of 5.6% (IQR: 3.5% - 9.2%) of the 341 

differences in measurements reaching values of up to 69.4% for YKL-40 (Fig. 6 and Supplementary 342 

Tab. 11). For 211 (23%) out of 814 protein targets with at least one pQTL, the pQTL accounted for 343 

most of the explained variance (median: 1.0%, IQR: 0.2% - 3.4%), including 85 protein targets with 344 

>10%. The strong contribution of certain genetic variants aligns with the results for platform-specific 345 

cis- and trans-pQTLs outlined above.  346 
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347 
   348 

Figure 6 Genetic variants modulate correlation coefficients and explain measurement differences 349 

between both assays. a) Spearman correlation coefficients stratified by genotype. The first bar in 350 

each column indicates the overall correlation, and the three successive bars indicate the correlation 351 

among homozygous carriers of the major allele, heterozygous carriers, and homozygous carriers of 352 

the minor allele (if any). Colours indicate whether the pQTL was in cis (orange) or trans (blue). 353 

Protein target – pQTL pairs were selected based on a linear regression model (see Main text). b) 354 

Protein targets ordered by the amount of variance explained in the differences between 355 

measurements. Contribution of protein quantitative trait loci (pQTL), age, sex, body mass index 356 

(BMI), plasma alanine aminotransferase activities (ALT), and estimated glomerular filtration rate 357 

(eGFR) are given in colours. Selected protein targets are annotated.  358 

     359 

DISCUSSION 360 

Identification of DNA sequence variants modulating protein levels or activities and shared with 361 

disease loci can identify disease-causing mechanisms and help to prioritize new and repurpose 362 

existing drug targets10. To inform and advance such strategies, comparison across different 363 

measurement techniques can not only validate identified signals but help to better understand the 364 

potential biological relevance of platform-specific signals. Broad, systematic assessment of this 365 

across many protein targets has until now been hindered by limited overlap across different 366 

proteomic platforms. Previous smaller scale studies3,5,18 have performed unidirectional validation of 367 

pQTLs for a selected set of protein targets and reported inflated correlation estimates due to missing 368 

alignment of effect directions to the protein increasing or decreasing allele, thereby introducing an 369 
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artificially large reference range. We provide the largest systematic identification and 370 

characterisation of pQTLs shared across platforms and those that are platform-specific pQTLs based 371 

on reciprocal, that is, bidirectional assessment of the two most comprehensive techniques covering 372 

871 overlapping protein targets. We show that the majority of pQTLs are shared across platforms 373 

(64%) but with substantially lower correlations than previously reported in cis and trans. We identify 374 

factors associated with platform-specific pQTLs for both platforms, which can directly help to inform 375 

strategies for prioritising pQTLs in academic and pharmaceutical efforts that have used either 376 

platform at scale, in particular for the thousands of protein targets only assayed by the Somalogic 377 

platform and providing unprecedented breadth for discovery studies.  378 

We provide multiple examples for platform-specific pQTLs with strong evidence of a shared disease 379 

signal, which, in case of the SomaScan assay, could suggest a biological link via the shape of the 380 

protein rather than an effect mediated by the abundance of the protein target (Supplemental Tab. 381 

10). This has important implications for protein level based casual inference techniques such as 382 

Mendelian randomization, where genetic instruments acting in cis are used to typically proxy 383 

abundance rather than function of the encoded protein, and where such findings can be used for 384 

drug target validation, if the encoded protein is druggable. However, strong platform-specific signals 385 

can also hide signals that would otherwise be shared across platforms. We demonstrate that the use 386 

of conditional association statistics, upon the lead pQTL in the region, provides a strategy to recover 387 

relevant biological information.   388 

We identify several characteristics affecting the correlation between both assays, including technical 389 

variation, certain protein characteristics, and a strong effect of genetic variants (Fig. 7). However, 390 

the lack of full technical details of the assays that are not in the public domain as they are 391 

commercially sensitive and general methodological differences between the assays did not permit a 392 

more rigorous assessment of non-biological factors. This includes the similarity of synthetic peptides 393 

used to select bindings reagents or a measure of binding affinity for antibodies, which might likely 394 

yield additional insights into possible differences. Incorporation of complementary techniques such 395 

as mass spectrometry may help to resolve some of these issues28, for example by linking a pQTL to 396 

an actually measured peptide sequence, which would provide important scientific opportunities if 397 

the approach can be applied at scale. In addition, structural characterization of proteins bound to 398 

affinity reagents using mass spectrometry has the potential to identify the concrete protein species 399 

bound to the affinity reagent4,18.  400 
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 401 

Figure 7 Sources of variation. Graphical summary of factors contributing to variation in the affinity-402 

based discovery of the plasma proteome. PAV = protein altering variant; SNV = single nucleotide 403 

variant  404 

 405 

METHODS 406 

MRC Fenland cohort 407 

The Fenland study is a population-based cohort of 12,435 participants, predominantly of White 408 

British ancestry, born between 1950 and 1975 who underwent detailed phenotyping at a baseline 409 

visit between 2005 and 2015. Participants were recruited from general practice surgeries in the 410 

Cambridgeshire region of the UK. Exclusion criteria were clinically diagnosed diabetes mellitus, 411 

inability to walk unaided, terminal illness, clinically diagnosed psychotic disorder, pregnancy, or 412 

lactation. The study was approved by the Cambridge Local Research Ethics Committee (NRES 413 

Committee – East of England Cambridge Central, ref. 04/Q0108/19) and all participants provided 414 

written informed consent. Participants in the study were on average 48.6 years old (standard 415 

deviation: 7.5 years) and 53.4% of them were female, as previously described
29

.  416 

Proteomic measurements 417 
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Proteomic profiling of fasting EDTA plasma samples from 12,084 Fenland Study participants 418 

collected at the baseline visit was performed by SomaLogic Inc. (Boulder, US) using an aptamer-419 

based technology (SomaScan v4 assay). Relative protein abundances of 4,775 human protein targets 420 

were evaluated by 4,979 aptamers (SomaLogic V4) and a detailed description can be found 421 

elsewhere
20

. Briefly, the SomaScan assay utilises a library of short single-stranded DNA molecules, 422 

which are chemically modified to specifically bind to protein targets and the relative amount of 423 

aptamers binding to protein targets is determined using DNA microarrays. To account for variation in 424 

hybridization within runs, hybridization control probes are used to generate a hybridization scale 425 

factor for each sample. To control for total signal differences between samples due to variation in 426 

overall protein concentration or technical factors such as reagent concentration, pipetting or assay 427 

timing, a ratio between each aptamer's measured value and a reference value is computed, and the 428 

median of these ratios is computed for each of the three dilution sets (40%, 1% and 0.005%) and 429 

applied to each dilution set. Samples were removed if they were deemed by SomaLogic to have 430 

failed or did not meet our acceptance criteria of 0.25-4 for all scaling factors. In addition to passing 431 

SomaLogic QC, only human protein targets were taken forward for subsequent analysis (4,979 out of 432 

the 5284 aptamers). Aptamers’ target annotation and mapping to UniProt accession numbers as well 433 

as Entrez gene identifiers were provided by SomaLogic.  434 

We estimated a limit of detection (LOD) for each SOMAmer reagent using a “robust estimate” 435 

method suggested by SomaLogic, based on the median plus 4.9 * median absolute deviation (MAD) 436 

signal of the blank (buffer) samples. We further defined outliers for SOMAmer and Olink 437 

measurements as being outside the median ± 5*MAD based on test sample signals and used the 438 

fraction of outliers as a variable to explain variation. 439 

Plasma samples for a subset of 500 Fenland participants were additionally measured using 12 Olink 440 

92-protein panels using proximity extension assays16. Of the 1104 Olink proteins, 1069 were unique 441 

(n=35 on >1 panel, average correlation coefficient 0.90). We imputed values below the detection 442 

limit of the assay using raw fluorescence values. Protein levels were normalized (‘NPX’) and 443 

subsequently log2-transformed for statistical analysis. A total of 15 samples were excluded based on 444 

quality thresholds recommended by Olink, leaving 485 samples for analysis.      445 

Protein target mapping 446 

We mapped each candidate protein to its UniProt-ID30 and used those to select mapping SOMAmer 447 

reagents and Olink measures based on annotation files provided by the vendors. We further queried 448 
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the UniProt database to obtain protein domain information and other characteristics of overlapping 449 

protein targets. 450 

Statistical analysis  451 

We used rank-based inverse normal transformations to make protein measurements between both 452 

technologies comparable and reported Spearman rank-based and Pearson correlation coefficients as 453 

a measure of concordance between platforms. 454 

To derive factors explaining the Spearman correlation gradient across protein targets, we created a 455 

matrix with meta-information for each protein target, including information about technical 456 

characteristics of each platform as well as characteristics of the protein target (Fig. 2) and used those 457 

as input for a Random-forest based feature selection approach, called Boruta-feature selection31. 458 

Briefly, this method employs multiple rounds of Random-forest generation and includes so-called 459 

shadow variables, which are permuted versions of the original input variables, to derive test 460 

statistics for the variable importance measure.  461 

Genotyping and imputation 462 

Fenland participants were genotyped using one of three genotyping arrays: the Affymetrix UK 463 

Biobank Axiom array (OMICs, N=8994), Illumina Infinium Core Exome 24v1 (Core-Exome, N=1060) 464 

and Affymetrix SNP5.0 (GWAS, N=1402). Samples were excluded for the following reasons: 1) failed 465 

channel contrast (DishQC <0.82); 2) low call rate (<95%); 3) gender mismatch between reported and 466 

genetic sex; 4) heterozygosity outlier; 5) unusually high number of singleton genotypes or 6) 467 

impossible identity-by-descent values. Single nucleotide polymorphisms (SNPs) were removed if: 1) 468 

call rate < 95%; 2) clusters failed Affymetrix SNPolisher standard tests and thresholds; 3) MAF was 469 

significantly affected by plate; 4) SNP was a duplicate based on chromosome, position and alleles 470 

(selecting the best probeset according to Affymetrix SNPolisher); 5) Hardy-Weinberg equilibrium 471 

p<10-6; 6) did not match the reference or 7) MAF=0. 472 

Autosomes for the OMICS and GWAS subsets were imputed to the HRC (r1) panel using IMPUTE432, 473 

and the Core-Exome subset and the X-chromosome (for all subsets) were imputed to HRC.r1.1 using 474 

the Sanger imputation server33. All three arrays subsets were also imputed to the 475 

UK10K+1000Gphase334 panel using the Sanger imputation server in order to obtain additional 476 

variants that do not exist in the HRC reference panel. Variants with MAF < 0.001, imputation quality 477 

(info) < 0.4 or Hardy Weinberg Equilibrium p < 10
-7

 in any of the genotyping subsets were excluded 478 

from further analyses. 479 
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GWAS and meta-analysis 480 

After excluding ancestry outliers and related individuals, 10,708 Fenland participants had both 481 

phenotypes and genetic data for the GWAS (OMICS=8,350, Core-Exome=1,026, GWAS=1,332). 482 

Within each genotyping subset, aptamer abundances were transformed to follow a normal 483 

distribution using the rank-based inverse normal transformation. Transformed aptamer abundances 484 

were then adjusted for age, sex, sample collection site and 10 principal components in STATA v14 485 

and the residuals used as input for the genetic association analyses. Test site was omitted for protein 486 

abundances measured by Olink as those were all selected from the same test site. Genome-wide 487 

association was performed under an additive model using BGENIE (v1.3)
32

. Results for the three 488 

genotyping arrays were combined in a fixed-effects meta-analysis in METAL35. Following the meta-489 

analysis, 17,652,797 genetic variants also present in the largest subset of the Fenland data (Fenland-490 

OMICS) were taken forward for further analysis. 491 

For each protein target, we used a genome-wide significance threshold of 1.004x10-11 (SomaScan) or 492 

4.5 x10-11 (Olink) and defined non-overlapping regions by merging overlapping or adjoining 1Mb 493 

intervals around all genome-wide significant variants (500kb either side), treating the extended MHC 494 

region (chr6:25.5–34.0Mb) as one region. We classified pQTLs as cis-acting instruments if the variant 495 

was less than 500kb away from the gene body of the protein encoding gene.   496 

We performed conditional analysis as implemented in the GCTA software using the slct option for 497 

each genomic region - aptamer pair identified. We used a collinear cut-off of 0.1 and a p-value below 498 

5x10
-8

 to identify secondary signals in each region. As a quality control step, we fitted a final model 499 

including all identified variants for a given genomic region using individual level data in the largest 500 

available data set (‘Fenland-OMICs’) and discarded all variants no longer meeting genome-wide 501 

significance. 502 

To facilitate comparison between SomaScan and Olink, we repeated genetic variant – protein target 503 

associations within the same sample for which Olink was available. To account for differing sample 504 

sizes between the SomaScan data in Fenland and the varying sample sizes within SCALLOP, we 505 

recomputed p-values holding the beta estimates constant and re-estimated standard errors using 506 

the respective sample size. We considered a predicted p-value threshold of 10
-5

 to include pQTLs for 507 

consistency assessment in case there was evidence for a genome-wide signal from either approach. 508 

Annotation of pQTLs 509 
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For each identified pQTL we first obtained all SNPs in at least moderate LD (r²>0.1) using PLINK 510 

(version 2.0) and queried comprehensive annotations using the variant effect predictor software
36

 511 

(version 98.3) using the pick option. For each cis-pQTL we checked whether either the variant itself 512 

or a proxy in the encoding gene (r²>0.1) is predicted to induce a change in the amino acid sequence 513 

of the associated protein, so-called protein altering variants (PAVs). 514 

Phenome-wide association analyses 515 

To enable linkage to reported GWAS-variants we downloaded all SNPs reported in the GWAS 516 

catalog37 (19/12/2019) and pruned the list of variant-outcome associations manually to omit 517 

previous protein-wide GWASs. For each SNP identified in the present study we tested whether the 518 

variant or a proxy in LD (r²>0.8) has been reported to be associated with other outcomes previously. 519 

We used the Open GWAS database38 to query for each genomic region association with non-520 

proteomic phenotypes and tested for a shared genetic signal between a protein target and a 521 

phenotype with at least suggestive evidence (p<10-6) using statistical colocalisation39. We considered 522 

a posterior probability of 80% as highly likely. We repeated this analysis for all cis-regions from the 523 

SomaScan-based discovery with evidence for a secondary signal (p<5x10
-8

) by creating conditional 524 

summary statistics using the lead signal in the locus as additional covariate. We computed 525 

conditional association statistics using the cond option from GCTA-cojo to align with the 526 

identification of secondary signals. 527 

Expression quantitative trait loci 528 

We obtained lead eQTLs from the most recent release of the GTEx project v840 across all 49 tissues 529 

and mapped cis-pQTLs to cis-eQTLs by LD (R²>0.8) restricting to the respective protein-encoding 530 

gene. We further generated a simple LD-based mapping (R
2
>0.8) considering any overlap between 531 

lead pQTLs and eQTLs to allow for incorporation of trans-pQTLs. 532 

Analysis of genetic associations 533 

We used logistic regression models to test whether variant or protein characteristics as well as 534 

technical factors were associated with the likelihood of a shared genetic region. We stratified these 535 

analyses by having a common set of shared control regions but three different sets of platform-536 

specific regions, including regions with evidence for distinct signals within the same region (±500kB) 537 

or regions only seen when using either of the two assay platforms. We derived robust standard 538 

errors using the sandwich method. We applied log-transformation (‘apparent Kd’) or square root-539 
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transformation (number of colocalising traits, absolute effect estimate, and predicted explained 540 

variance) to reduce the impact of highly skewed factors.  541 

To decompose the variance of measurement differences we computed the differences in rank-542 

transformed measurements between SomaScan and Olink for each overlapping protein target. We 543 

used this variable as outcome for a variance decomposition model as implemented in R package 544 

variancePartition using a corresponding pQTL, age, sex, body mass index, plasma alanine 545 

aminotransferase, and estimated glomerular filtration rate as explanatory variables. We selected the 546 

only one pQTL for each overlapping pair based on a simple linear regression model explaining the 547 

differences in measurements. 548 

Finally, we used a linear regression model to test whether the association between the Olink 549 

measure (outcome) and the SomaScan measure (exposure) differed by genotype of associated 550 

pQTLs. The resulting p-value for the interaction term between the SomaScan variable and the pQTL 551 

can be interpreted as a test of differential correlation coefficients based on genotype. We accounted 552 

for multiple testing by adopting a false discovery rate of 20%. We took a permissive approach given 553 

the small sample size (N=485) and the generally low statistical power to detect interaction terms.  554 

We used R version 3.6.0 (R Foundation for statistical computing, Vienna, Austria) and BioRender.com 555 

for visualization of results. 556 

DATA AVAILABILITY 557 

Information about the Fenland cohort is available at the study website (https://www.mrc-558 

epid.cam.ac.uk/research/studies/fenland/information-for-researchers/), which includes a link to the 559 

MRC Epidemiology Unit metadata access portal (https://epi-meta.mrc-epid.cam.ac.uk/) which 560 

describes how data can be accessed by bona fide researchers for specified scientific purposes. Data 561 

will either be shared through an institutional data sharing agreement or arrangements will be made 562 

for analyses to be conducted remotely without the necessity for data transfer. Publicly available 563 

summary statistics for look-up and colocalisation of pQTLs were obtained from 564 

https://gwas.mrcieu.ac.uk/ and https://www.ebi.ac.uk/gwas/. We obtained genome-wide summary 565 

statistics for 90 protein targets from Folkersen et al.8, which are also available from the GWAS 566 

catalog (GCST90011994-GCST90012083).  567 
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