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Abstract 

Metastatic urothelial carcinoma (mUC) is a lethal cancer for which few therapeutic options exist. To define the 

molecular landscape of mUC and to identify targets for therapy, we performed whole genome DNA- and RNA-

sequencing on fresh-frozen metastatic tumor biopsies of 116 mUC patients. Driver genes resembled those 

reported for primary UC; yet, three putative driver genes unique to mUC were identified: CNTNAP5, RARG and 

MGP. Consensus clustering based on mutational signatures revealed two major genomic subtypes. The most 

prevalent subtype (67%) consisted almost exclusively of tumors with high APOBEC mutagenesis. Five RNA-

based subtypes were identified, of which four resembled those reported for primary UC, and one had a non-

specified phenotype. By integrating the genomic and transcriptomic data potential therapeutic options per 

subtype and individual patient are proposed. This study serves as a reference for subtype-oriented and 

patient-specific research on the etiology of mUC, and for novel drug development.   
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Introduction 

Urothelial cancer (UC) is a molecularly and clinically heterogeneous disease. Non-muscle invasive bladder 

cancer (NMIBC) is characterized by excellent survival but high recurrence rates, whereas muscle-invasive 

bladder cancer (MIBC) has high metastatic potential and poor patient outcome despite aggressive local and 

systemic treatment (2). Comprehensive molecular profiling of UC has been restricted to NMIBC (3) and 

localized MIBC (4). At the genomic level, NMIBC is characterized by frequent FGFR3 and PIK3CA mutations, 

whereas TP53 mutations are uncommon (2). In MIBC, TP53 is the most commonly mutated gene (5). The 

Cancer Genome Atlas (TCGA) initiative molecularly characterized 412 chemotherapy-naïve primary MIBC 

patients and found that a subgroup of patients had high Apolipoprotein B mRNA Editing Catalytic Polypeptide-

like (APOBEC) signature mutagenesis and high mutational burden. The patients in this subgroup had an 

excellent 5-year overall survival rate of 75% (4). At the transcriptomic level, MIBC can be stratified into basal 

and luminal subtypes. A recent study proposed a consensus molecular classification of MIBC, consisting of six 

subtypes: basal/squamous, luminal non-specified, luminal papillary, luminal unstable, neuroendocrine-like 

(NE-like), and stroma-rich (6). These subtypes included distinct genomic alterations and clinical and 

pathological characteristics, which might guide therapeutic decision making. 

A comprehensive multi-omics characterization of mUC has not yet been performed. A previous study reported 

the clonal evolution of mUC by whole-exome sequencing (WES) in a cohort of 32 chemotherapy-treated 

patients, and showed that APOBEC mutagenesis was clonally enriched in chemotherapy-treated mUC (7). 

Having more knowledge on the molecular characteristics of mUC is crucial for more robust and accurate 

patient stratification and for rational drug development paths that will eventually improve the outcome of this 

lethal cancer. In the present study, we conducted a comprehensive genomic and transcriptomic analysis of 

freshly obtained metastatic biopsies of 116 mUC patients, with the aim of identifying key molecular insights 

into tumorigenesis and defining molecular subtypes of mUC.  
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Results 

Cohort description 

The study population consisted of 210 patients with advanced or mUC who were prospectively enrolled in a 

multicenter clinical trial (NCT01855477; Data S1.1) and who were scheduled for 1st or 2nd line palliative 

systemic treatment. Whole genome sequencing (WGS) was successfully performed on DNA obtained from 

freshly obtained biopsies from metastatic sites in 116 mUC patients (124 samples), and matched RNAseq was 

available for 90 patients (97 samples, Figure 1A-B). Sequential biopsies of a metastatic lesion taken at the time 

of clinical or radiological disease progression from eight patients were additionally sequenced. Patient 

characteristics are provided in Table S1.1. 

 

 

Figure 1 – Overview of the study design and biopsy sites of 116 patients with metastatic urothelial cancer 

(A) Flowchart of patient inclusion. Patients with advanced or metastatic urothelial cancer who were 

scheduled for systemic palliative treatment were selected from the prospective Center for 
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Personalized Cancer Treatment (CPCT-02) patient cohort (n = 210). Patients were excluded if the 

tumor cell percentage in the biopsy was <20%, resulting in WGS data and RNAseq for 116 and 90 

patients, respectively. Tissue slides of 79 patients were available for central pathology review 

(primary tumor and/or metastatic biopsy). DNA +8 and RNA +7 indicate the numbers of patients from 

whom a second biopsy was obtained at disease progression. 

(B) Overview of the number of biopsies per site analyzed by WGS. * Other biopsy sites included 

abdominal or pelvic masses (n = 3), adrenal gland (n = 1), and brain (n = 1), or unspecified biopsy site 

(n = 1). 

 

Genomic landscape of mUC 

Analysis of WGS (mean coverage 99 X) and matched blood samples (mean coverage 38 X) identified a median 

of 20,634 single nucleotide variants (SNVs), 1,018 small insertions/deletions (Indels) and 175 somatic multi-

nucleotide variants (MNVs; Figure S1A). SNVs were more frequent in coding regions (7.63 SNVs per Megabase 

pair; SNVs/Mbp) than in the whole genome (7.22 SNVs/Mbp; Wilcoxon signed-rank test p = 0.0024; Figure 

S1B). However, Indels and MNVs were less frequent in coding regions (Wilcoxon signed-rank test p < 0.001 and 

p = 0.0072, respectively). Analysis of all SNVs revealed that 68% of all SNVs were clonal with a median of 74% 

per tumor (Table S1.5), and that 91% of the tumors were enriched for APOBEC associated mutations (73% high 

and 18% low enrichment of APOBEC mutagenesis; Figure 2A). The mean contribution of APOBEC COSMIC 

signatures (Signatures 2 and 13) in tumors with high APOBEC mutagenesis enrichment was 52% versus 15% in 

tumors with low APOBEC mutagenesis. 

Genes harboring more mutations in their coding sequence than expected by random chance were analyzed 

with dNdScv; the analysis revealed 18 significantly mutated genes (Table S1.7). Three of those genes – 

CNTNAP5 (13%), RARG (6%) and MGP (4%) – were unique to this mUC cohort (8). Regarding known driver 

genes, mUC lesions harbored more somatic mutations in TP53 than numbers reported in TCGA (non-

synonymous mutations and indels; 60% vs 49%, Fisher’s exact test p = 0.021, Data S1.3).  
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Figure 2 – Genomic landscape of metastatic urothelial carcinoma stratified by genomic subtypes 

(A) Whole-genome sequencing data from biopsy samples of metastatic urothelial carcinoma were 

classified in genomic subtypes by hierarchical consensus clustering of the relative contribution of 

mutational signatures COSMIC v3 (9) grouped by etiology. The genomic features are displayed from 

top to bottom as follows: Genome-wide TMB; Genomic subtype (GenS1-5); APOBEC enrichment 

analysis showing tumors with no-, low- and high-APOBEC mutagenesis; mutational signatures 

grouped by etiology, except for APOBEC activity for which both signatures are shown separately; 

Relative contribution of seven de novo (custom) mutational signatures by deconvolution of SNVs in 96 
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tri-nucleotide context with NMF; Relative frequency of different types of structural variants; Mean 

ploidy; Tumors with MSI; HR deficiency status; Samples with at least one chromothripsis event; 

Samples with at least one kataegis event; Female patients; Primary origin of metastatic sample; Site of 

biopsy; Treatment-naïve patients. 

(B) Overview of recurrent hotspot mutations, driver genes and gene fusions for the genomic subtypes 

GenS1 and GenS2. Name of genes affected by hotspot mutations in >5% of samples are displayed in 

red when the hotspot has a COSMIC id. Significantly mutated genes were estimated by dNdScv (10); 

all genes with q < 0.05 were considered driver genes. Recurrent focal copy number changes were 

estimated by GISTIC2 (11); genes in genomic regions with q < 0.05 were considered significant. Only 

affected genes present in >10% of the samples are shown. Gene fusions were detected from RNAseq 

data. Benjamini-Hochberg adjusted p-values of Fisher’s exact test (for hotspot mutations and GISTIC2) 

and of logistic regression analysis corrected by mutational load (driver genes by dNdScv) are shown 

on the right to reflect the significance on the difference between GenS1 and GenS2. An additional 

logistic (logit) regression analysis was performed on hotspot mutations to show the linear relation 

with the number of APOBEC associated mutations. Bars beyond the dashed line (-log10(0.05)) are 

statistically significant. TMB = tumor mutational burden; Mbp = mutations per mega base pair; NMF = 

non-Negative Matrix Factorization; MSI = microsatellite instability; HR = Homologous Recombination; 

UTUC = upper tract urothelial carcinoma. 

 

Structural variants (SVs) were common with a median of 259 (40,297 in total) per tumor. Deletion was the 

most frequent type of SV with a median of 92 per tumor (Figure S1D). Chromothripsis, a complex event that 

produces SVs in which chromosomes are shattered and rearranged, was detected in 20% of the tumors (Data 

S1.4). The genes most frequently affected by SVs were CCSER1 (13%) and AHR (12%; Data S1.3). 

Chromosomal arm and focal copy number alterations (CNA) were analyzed with GISTIC2. This revealed 

frequent deletion of chromosome 9 and amplification of chromosome 20 (Data S1.5A). In total, 49 genomic 

regions were significantly altered by focal CNAs which included several oncogenic genes (Table S1.8). The most 

frequently amplified genes were SOX4 (28%), GATA3 (22%), PPARG (22%), and ERBB2 (19%); the most 

frequently deleted genes were CDKN2A/B (43%), FHIT (24%), CCSER1 (17%) and LRP1B (17%; Data S1.3).  
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Hotspot mutations in the TERT promoter were present in 62% of the tumors (Data S1.3; Table S1.11). Still, 

TERT expression did not differ between tumors with and without hotspot mutations (Figure S2B), in line with a 

previous report (12). However, differential gene expression analysis showed that tumors with hotspot 

mutations in the TERT promoter had downregulation of genes related to the muscle contraction pathway 

(Figure S2A, Table S1.12). Hotspot mutations in other driver genes concerned FGFR3 S249C (8%), PIK3CA E54K 

(7%), and TP53 E285K (5%). Furthermore, hotspot mutations were identified in non-coding regions of ADGRG6 

(40%), PLEKHS1 (28%), LEPROTL1 (18%), and TBC1D12 (15%; Data S1.3) with no apparent association with gene 

expression and minimal transcriptomic effect (Figure S2A-B). The hotspot areas of ADGRG6, PLEKHS1 and 

TBC1D12 form hairpin loop structures in the DNA with specific tri-nucleotide sequences frequently mutated by 

APOBEC enzymes (Figure S2C). Unlike other known driver genes affected by hotspot mutations (TERT, FGFR3, 

PIK3CA and TP53), these genes were not significantly affected by other somatic mutations in the coding region 

or by CNAs, suggesting that hotspot mutations in ADGRG6, PLEKHS1 and TBC1D12 are likely passenger 

hotspots attributed to APOBEC activity as theoretically predicted (13). 

Fusion gene analysis performed at the transcriptomic level (Table S1.14) detected 1394 fusion genes, of which 

10% were also reported in the TCGA cohort (14). Seventy-six percent of all individual genes found involved in 

fusion events have previously been implicated in fusions (14). FGFR3 gene fusions were present in seven out of 

90 samples with only one FGFR3-TACC3 fusion. Four PPARG fusions were detected, of which two PPARG-TSEN2 

fusions were confirmed at DNA level (Table S1.13). Other putative fusion events in cancer-related genes were 

found in CCSER1 (n = 9), ERBB4 (n = 5), RB1 (n = 4), MDM2 (n = 4), TERT (n = 3) and STAG2 (n = 3). 

A stratification based on the proposed etiology of SNV COSMIC signatures (Table S1.15) using unsupervised 

consensus clustering (1) revealed two major genomic subtypes (GenS; Figure 2; Data S1.6). Subtype GenS1 

(67%) contained almost exclusively tumors with high APOBEC mutagenesis, which was reflected by a large 

contribution of APOBEC signatures 2 and 13. In addition, we performed deconvolution of SNV patterns by non-

negative matrix factorization (NMF; Data S1.7), which confirmed APOBEC signatures as the main source of 

mutations in GenS1, with high contribution of de novo mutational signatures SigA (0.99 cosine similarity with 

APOBEC signature 2) and SigB (0.89 cosine similarity with APOBEC signature 13). Subtype GenS2 (24%) 

aggregated predominantly tumors with low APOBEC mutagenesis (16 out of 28), and was characterized by 

signatures of unknown etiology. De novo mutational signatures SigF (0.91 cosine similarity with SBS18 COSMIC 
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signature) and SigG (0.90 cosine similarity with SBS5 COSMIC signature) were dominant in GenS2. Analysis of 

the TCGA cohort (WES data) showed that GenS1 and GenS2 were also the two major genomic subtypes in 

localized UC (Figure S3A-B). The other three smaller subtypes (9% of the present cohort) were related to the 

platinum treatment signature (GenS3), which was not detected in the treatment naïve TCGA cohort, the 

defective DNA mismatch repair (MMR) signature and microsatellite instability (MSI, GenS4), and the reactive 

oxygen species signature (GenS5). 

The origin of somatic driver mutations was independent of the genomic subtypes, although amplifications of 

GATA3 and FGF19 were enriched in GenS1 and GenS2, respectively (Figure 2B). Hotspot mutations occurred 

more frequently in GenS1. In particular, ADGRG6, PLEKHS1 and TBC1D12 were significantly more often 

mutated in GenS1. However, these hotspot mutations are potentially irrelevant byproducts caused by APOBEC 

mutagenesis as logistic regression analysis showed a correlation between APOBEC mutational load (C>T and 

C>G mutations in TCW context, W = A or T) and occurrence of these hotspot mutations (Figure 2B). 

Other genomic differences between GenS1 and GenS2 (Data S1.2-3 and Data S1.8) included higher SNVs/Mbp 

in GenS1 and higher Indels/Mbp in GenS2, which pattern was also observed in the TCGA cohort (Figure S3C). 

All three tumors with homologous recombination (HR) deficiency identified were of subtype GenS2. Clinical 

characteristics such as sex, cancer subtype (bladder or upper tract UC), and pre-treatment status did not differ 

between GenS1 and GenS2. Thus, despite that two very different etiologies lead to UC development, the two 

mutagenic processes lead to similar profiles of somatically affected driver genes. 

APOBEC mutagenesis is an active process that generates new mutations in mUC 

APOBEC enzyme expression analysis revealed neither significant differences between GenS1 and GenS2 (Figure 

S4A), nor between tumors with and without APOBEC mutagenesis (Figure 3A). To investigate whether this 

outcome could be attributed to inactivation of APOBEC mutagenesis in mUC, we analyzed WGS data of eight 

tumors from patients who had undergone serial biopsies, and reconstructed their evolutionary paths (Figure 

3C). The cancer cell fraction was lower in the branches of the evolutionary trees than in the trunk, suggesting 

that these mutations were novel and not widely spread in the cancer cell population (Figure 4D). The rate of 

novel APOBEC mutations (number of APOBEC mutations divided by the number of days elapsed between serial 

biopsies) was calculated using only mutations from branches corresponding to the second biopsy. Tumors with 
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high APOBEC mutagenesis accumulated more novel APOBEC mutations than other tumors (Figure 3F, Wilcoxon 

rank-sum test p = 0.036), matching with the presence of APOBEC signatures (Figure 3E). 

Several studies have linked the expression of APOBEC3A/3B to APOBEC mutagenesis in UC (4, 15). When 

comparing the estimated relative activity of APOBEC3A and 3B in tumors with APOBEC mutagenesis, we 

observed differential expression of these enzymes (Figure 3G). Some tumors had high levels of APOBEC3A 

expression while the expression of APOBEC3B was low – or vice versa. This explains the lack of differential 

expression of APOBEC enzymes between tumors with different levels of APOBEC mutagenesis and suggests 

that APOBEC mutagenesis in some tumors may be triggered either by APOBEC3A or by APOBEC3B. Taking this 

into account, we combined the activity of both enzymes and calculated an APOBEC score (sum of APOBEC3A 

and 3B expression). It appeared that that tumors with high APOBEC mutagenesis had a higher APOBEC score 

than other tumors (Wilcoxon rank-sum test p = 0.012; Figure 3B). APOBEC score was also high in GenS1 (Figure 

S4B). This confirmed the link between APOBEC (3A and 3B) enzyme expression and APOBEC mutations in mUC, 

as previously shown for MIBC by Robertson et al.  

In tumors with high APOBEC mutagenesis, the mean ploidy and the number of genes affected by CNA were 

higher than in tumors without APOBEC mutagenesis (Wilcoxon rank-sum test p = 0.01 and p <0.001, 

respectively; Figure S4C-D). This phenomenon may indicate ongoing genomic instability in APOBEC-driven 

tumors. 
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Figure 3 – APOBEC expression and cancer evolution of eight tumors from metastatic urothelial carcinoma 

patients with serial biopsies 

(A) RNA-expression of different APOBEC enzymes compared between APOBEC and non-APOBEC 

mediated mutagenesis tumors. Kruskal-Wallis test p-values were Benjamini-Hochberg corrected. 

(B) APOBEC score (sum of APOBEC3A and APOBEC3B expression) across groups of tumors with distinct 

level of enriched APOBEC mutagenesis. Wilcoxon rank-sum test p-value is shown for non-APOBEC and 

high APOBEC mediated mutagenesis tumors. 
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(C) Evolutionary trees from eight tumors (five with high APOBEC and three with low APOBEC 

mutagenesis) with two biopsies were reconstructed from single nucleotide variants. Mutations in 

driver genes (dNdScv) and hotspot sites (hs) are shown, and their locations are indicated (trunk or 

branch). Branches represent subclonal populations (A, B or C), indicating their presence in the first or 

second biopsy (b1 or b2). For patient 1, a subclonal population is present in both biopsies. The cancer 

cell fraction of each single nucleotide variant was calculated and clustered using DPClust for paired-

biopsies. The evolutionary tree was reconstructed using the sum rule (17). 

(D) Comparing the cancer cell fraction of somatic mutations from the trunk and branches. Wilcoxon rank-

sum test was applied and p-values were Benjamini-Hochberg corrected. 

(E) COSMIC v3 mutational signatures calculated from the trunk and from the branch exclusive to the 

second biopsy. 

(F) The APOBEC mutation rate from novel (recent) mutations in the second biopsy was compared 

between low and high APOBEC mutagenesis tumors. Wilcoxon rank-sum test was applied. 

(G) APOBEC mutation rate is displayed as a function of APOBEC3A and APOBEC3B expression. APOBEC 

expression was estimated as the mean expression of both biopsies per tumor. Numbers indicate 

patient number. RNAseq was not available for patient 1. 

 

APOBEC associated mutations are randomly distributed across the genome in mUC 

The substrate of APOBEC enzymes is single-stranded DNA (ssDNA; Roberts et al., 2013), this has led to the 

hypothesis that APOBEC enzymes are mainly active during replication or in open chromatin and 

transcriptionally active genomic regions (18, 19). As our cohort contained primarily tumors with APOBEC 

mutagenesis, and WGS data of these tumors was available, we had the unique opportunity to explore the 

consequences of APOBEC enzymatic activity across the genome. 

The total number of SNVs/Mbp varied across the genome, and non-APOBEC mutations followed the same 

pattern (Figure 4A). The frequency of non-APOBEC mutations decreased as the predicted DNA accessibility and 

overall gene expression level increased (Figure 4B). In contrast, the frequency of APOBEC mutations was 

constant across the genome, demonstrating that APOBEC mutagenesis was likely independent of genomic 
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regions (Figure 4A-B and Data S1.9A). The flat distribution of APOBEC mutations supported the hypothesis that 

these mutations had been generated during replication, when APOBEC enzymes have equal access to ssDNA 

across the genome (19).  

 

 

Figure 4 – Differences in the load of APOBEC associated mutations between high and low DNA accessibility 

regions in metastatic urothelial carcinoma genomes 

(A) WGS data was analyzed to estimate the mean number of single nucleotide variants in windows of one 

mega base pairs across the entire genome. The Circos plot shows from outer to inner circles: the 

genomics ideogram from chromosome 1 to X where the centrosomes are indicated in red; Mutational 

load of APOBEC and non-APOBEC associated mutations; Relative contribution (mutational density) of 

the 6 single nucleotide variant types are displayed. The frequency of APOBEC associated mutations 

relative to the total is shown as well; Average RNA counts (expression) from 90 tumors with RNAseq 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

data; DNA accessibility estimation from different ChIPseq experiments in normal urothelial samples 

derived from the ENCODE (20). Peaks represent highly accessible DNA. 

(B) Linear regression (with 95% confidence interval) of mutational load per mega base pairs (absolute) 

and mutational density (relative) for APOBEC and non-APOBEC associated mutations with DNA 

accessibility and expression data. 

(C) Frequency of kataegis events (full cohort) in high and low DNA accessibility or in high and low gene 

expression regions. P-values of binomial test are shown for each comparison. 

 

Localized hypermutation events (kataegis) were present in 70% of the samples (Figure 2A); they were more 

frequent when APOBEC mutagenesis was high (Data S1.9B). This higher frequency confirmed a link between 

kataegis and APOBEC activity (21), and we therefore expected to find kataegis events scattered across the 

genome. However, our data suggested that kataegis was more likely to happen in regions with high DNA 

accessibility and high transcriptional activity (Figure 4C). Thus, while general APOBEC mutagenesis seemed to 

occur primarily during replication, kataegis-like APOBEC events seemed to occur during both replication and at 

transcribed loci. 

In summary, APOBEC mutagenesis was an ongoing process in mUC that equally affected the whole genome. In 

some tumors, it seemed to be triggered through activation of either APOBEC3A or APOBEC3B. Tumors with 

APOBEC mutagenesis were genomically less stable and displayed more kataegis events. 

Transcriptomic subtypes of mUC 

The consensus classifier of primary MIBC stratifies organ-confined UC of the bladder into one of six 

transcriptomic subtypes (6). Unlike primary bladder tumor samples, metastatic biopsies are derived from 

different organs with some degree of normal non-urothelial cell contamination. Using the consensus classifier 

would lead to misclassification of samples when no correction for organ-specific transcripts is applied. It would 

also limit the number of phenotypic subtypes that we can identify in mUC, which is crucial as the 

transcriptomic phenotypes of mUC are unknown. Therefore, it was mandatory to perform de novo subtyping 

for mUC samples. 
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High-quality RNAseq data was available for 90 (97 samples) out of 116 patients (Data S1.10). To reduce the 

bias introduced by biopsy location, we filtered the organ-specific transcripts prior to hierarchical consensus 

clustering (Figure S5). Five transcriptomic subtypes were identified (Figure 5). Several phenotypic markers 

were used to establish the phenotype of each subtype (Figure S6A). 

 

 

Figure 5 – Genomic and transcriptomic characteristics of patients with metastatic urothelial carcinoma 

stratified by mRNA subtypes 

Transcriptomic profiles of 90 metastatic urothelial carcinoma patients were clustered using 

ConsensusClusterPlus (1). Five transcriptomic subtypes were identified: luminal-a, luminal-b, stroma, 

basal/squamous and non-specified phenotype. From top to bottom: Transcriptomic subtypes; 
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Genomic subtypes (GenS1-4); Transcriptional subtypes based on the consensus MIBC classifier (6); 

Site of sampled biopsy; Subtype of primary tumor (UTUC = upper tract urinary cancer); Estimated 

tumor cell percentage; Female patients; Pre-treatment naïve patients; Tumors with hotspot 

mutations in TERT promoter; Tumors with fusion genes detected with RNAseq data; Samples with 

alterations in selected genes; Tumors with one or more kataegis events; Tumors with one or more 

chromothripsis events; APOBEC mutagenesis enrichment; APOBEC3B and APOBEC3A expression; 

Signature score (mean expression of genes related to each phenotype) of basal, squamous, luminal, 

stroma and neuroendocrine markers; Top overexpressed genes in each mRNA subtype; Immune cell 

fractions estimated with immunedeconv (22), using the quanTIseq method (23). 

 

The luminal subtypes, which are dominant in NMIBC ( > 90% of the tumors, Lindskrog et al., 2020), 

represented 51% of the tumors in the TCGA cohort versus 40% in the present cohort (p = 0.061, Figure S3D). 

Although the two subtypes detected in the present cohort were of clear luminal origin (Figure S6A), they did 

not reflect the luminal subtypes specified in the consensus MIBC clustering (Figure 5, top rows). The luminal-a 

subtype had high expression of MYCN, one of the MYC oncogene family members that regulates different 

species of RNA (24), and high expression of CD96 (Figure 5). This subtype had low tumor purity, a high fraction 

of NK cells, a low clonal fraction (interpreted as high heterogeneity), and relatively high expression of FGFR3, 

PPARG and NECTIN4 (Figure S6). NECTIN4 was amplified in 61% of these tumors. The luminal-b subtype had 

high tumor purity, a low number of SVs, a low fraction of NK cells, a high expression of FGFR3, PPARG, and 

S100A6 (Figure S6), and a higher proportion of ELF3 (56%) and FGFR3 (50%) DNA alterations compared to all 

other subtypes (Fisher’s exact test p = 0.0023 and p = 0.0053, respectively). 

In the stroma-rich subtype, genes known to be associated with stromal content and cancer-associated 

fibroblasts (THBS4, CNTN1, CXCL14 and BOC; Mathew et al., 2014; Kuroda et al., 2019; Zhang et al., 2019; Gu 

et al., 2020) were differentially expressed (Figure 5). This subtype was highly concordant with the stratification 

of the consensus MIBC clustering (79% of tumors identified as stroma-rich by the consensus MIBC were in this 

group). However, the stroma-rich subtype was more prevalent in the present cohort than in the TCGA cohort 

(24% vs 9%, Fisher’s exact test p < 0.001, Figure S3D). Tumors of the stroma-rich subtype showed high 

expression of TGFB3, a ligand of the TGF-β pathway (Figure 5), low tumor purity, a high signature score for 
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epithelial to mesenchymal transition (Figure S6), high expression of various collagens (Table S1.22), and a 

higher rate of TSC1 DNA alterations (45% of the tumors, Figure 5) compared to the rest of the cohort (Fisher’s 

exact test p < 0.001). 

The basal/squamous subtype was also highly concordant to the similarly named MIBC consensus cluster (86% 

of tumors identified as basal/squamous by the consensus MIBC were in this group). Yet, the prevalence of this 

subtype was lower in the present cohort than in the TCGA cohort (23% vs 38%, Fisher’s exact test p = 0.013; 

Figure S3D). This subtype was characterized by high expression of basal/squamous markers (DSG3, KRT5, 

KRT6A and S100A7) and enrichment in females (52%, Fisher’s exact test p = 0.0043). TGFBR1 (a receptor of the 

TGF-β pathway), CD274 (the gene that encodes PD-L1) and MSLN (a tumor-associated antigen) were highly 

expressed in this subtype (Figure 5). NECTIN4 amplifications were not found, and the NECTIN4 expression level 

was low (Figure S6D). In line with a previous study (29), the expression of adipogenesis regulatory factor 

(ADIRF) was low (Figure 5). The immune cell compartment consisted of a large fraction of M1 macrophages 

and a low fraction of neutrophils (Figure S6B). This subtype was less affected by kataegis and chromothripsis 

events than were the other subtypes (Figure 5, Fisher’s exact test p = 0.0006 and p = 0.019, respectively). 

The non-specified subtype did not reflect any of the phenotypic markers associated to phenotypes of the 

consensus MIBC subtypes. This subtype had overexpression of KIAA1324 (a diagnostic biomarker in different 

cancer subtypes; 30) and LRP2 (Figure 5), and a high score of claudin-low markers, a low fraction of 

neutrophils, high numbers of Indels/Mbp, high numbers of SVs, and high levels of APOBEC3B expression 

(Figure S6). This subtype was enriched for patients with a pre-treatment history (Fisher’s exact test p = 0.023, 

Figure 5).  

In summary, transcriptomic profiling revealed that mUC can be stratified into five transcriptomic subtypes, of 

which the luminal-a and b, stroma-rich and basal/squamous subtypes are concordant to primary MIBC 

subtypes. The phenotype of the non-specified subtype appeared to be unique for mUC as it did not match any 

of the phenotypes of the consensus subtypes established for MIBC. A complete overview of driver genes, gene 

fusions and hotspot mutations per transcriptomic subtype is presented in Figure S7. 
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Altered canonical signaling pathways in different transcriptomic subtypes  

Several canonical pathways involved in cell growth, proliferation and survival (33) were altered at the DNA 

level (Figure 6A). Of all subtypes, the luminal-a subtype showed most alterations in the Myc (72%) and TGF-β 

(72%) pathways (e.g. only 5% of basal/squamous tumors had TGF-β alterations). Perturbations in the TGF-β 

pathway were mainly driven by alterations in TGFBR2, SMAD4, SMAD2 and TGFBR1. The most altered genes 

per pathway are displayed in Data S1.11. 

 

 

Figure 6 – Pathway alterations at genomic and transcriptomic level across mRNA-based subtypes of 

metastatic urothelial carcinoma 

(A) The percentage of samples with DNA alterations in 11 canonical pathways is shown for each 

transcriptomic subtype (90 tumors in total) and for the entire cohort (n = 116). A patient was 

considered to have an altered pathway when at least one of the pathway-genes was altered either by 

non-synonymous mutations, structural variants or by deep copy number changes. 
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(B) Pathway activity was estimated as the mean expression of downstream genes targeted by each 

pathway. Only genes that were transcriptionally activated by these pathways were considered. 

Kruskal-Wallis test p-values were Benjamini-Hochberg corrected. 

(C) Pathways up- (red) or down-regulated (blue) were estimated with reactomePA (34) from RNAseq 

data. Only the top ten up- and top ten down-regulated pathways per subtype are shown. 

 

The luminal-b subtype was characterized by fewer alterations in Notch, Cell cycle, Hippo, PI3K, p53, Myc and 

JAK-STAT pathways. Alterations in the p53 pathway were common in the other subtypes, and most of them 

were the result of somatic mutations in TP53 or amplification of MDM2 (mutually exclusive p = 0.024). 

Amplification of MDM2 has been previously reported in a pan-cancer study (33) as an alternative to TP53 

alterations to inactivate the p53 pathway through direct inhibition of p53 protein (35). 

To assess the effect of genomic alterations on pathway activity, we calculated the mean expression of genes 

targeted by each pathway as a proxy of activity (Figure 6B). Myc and TGF-β pathway activities were low in the 

luminal-a subtype, corresponding with high frequencies of pathway alterations at the genomic level (Figure 

6A). The luminal-b subtype showed the highest RTK-RAS and high WNT pathway activity. The stroma-rich 

subtype had high TGF-β pathway activity; the basal/squamous subtype had high activity of the Hippo, Myc and 

TGF-β pathways. The non-specified subtype had very low p53 pathway activity and very active cell cycle 

pathway signaling, two pathways that are usually co-altered (33). 

In addition to the 11 oncogenic pathways described above, any pathway up- or down-regulated was analyzed 

by enriched pathway analysis with ReactomePA (Figure 6C). Up-regulation of pathways involved in collagen 

metabolism and extracellular matrix in the stroma-rich subtype corresponded with the stromal phenotype of 

this subtype (36). In the non-specified subtype, pathways related to cell cycle and chromosome integrity were 

up-regulated. Considering as well the high cell cycle activity (Figure 6B) and high frequency of mutations in the 

cell cycle pathway (Figure 6A), this up-regulation may suggest that the non-specified subtype is highly 

proliferative. 

In summary, signaling pathway analysis showed the extent of heterogeneity between the transcriptomic 

subtypes, reflecting phenotypic characteristics of each group. The most striking difference was observed for 
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the TGF-β pathway, in which genomic alterations greatly affected the luminal-a subtype – with consequences 

on pathway activity. 
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Discussion 

We defined, for the first time, molecular subtypes of mUC based on whole genome and transcriptome 

characteristics through WGS and RNAseq analysis of metastatic biopsies of 116 mUC patients. We found three 

novel driver genes specific for mUC and, in line with findings for primary UC, we identified a central role of 

APOBEC mutagenesis. Furthermore, we concluded that mUC is a heterogeneous disease with various genomic 

and transcriptomic subtypes revealing the main mutational processes and phenotypes of this cancer. 

The genomic landscape of mUC showed important similarities to that of primary UC. We validated our mUC 

findings in the TCGA cohort of primary UC, showing that aggregating mutational signatures by etiology is a 

robust approach to identify genomic subtypes. A recent study analyzed archived paraffin-embedded primary 

or metastatic tumor samples from MIBC patients who received palliative chemotherapy. By WES analysis, two 

major genomic subtypes were identified (37). The GenS2 subtype (enriched with SigG that correlates with 

COSMIC SBS5) in the present study largely overlapped with the SBS5 subtype reported by Taber et al., 2020. 

Furthermore, they identified an APOBEC high signature that was similar to GenS1 in our study.  

We identified CNTNAP5, RARG and MGP as exclusive driver genes of mUC. A pan-cancer study of the Hartwig 

Medical Foundation cohort previously identified driver mutations in RARG and MGP in mUC tumors (38). Only 

3% of the samples in the TCGA localized UC cohort had CNTNAP5 or RARG mutations, and MGP mutations 

were not detected, suggesting that these genes might be related to metastatic progression. CNTNAP5 is a 

member of the contactin-associated protein family, which is involved in cell contacts and communication in 

the nervous system (39). Mutations in this gene have been associated to autism but not to cancer (40). 

Genomic alterations in the retinoic acid receptor gamma (RARG) gene have not been associated to cancer, 

except for fusion genes which are well-documented for leukemia (41). The matrix Gla protein (MGP) is 

misregulated in several cancers, and this misregulation is associated with tumorigenesis (42). The exact role of 

this gene in cancer is unknown, although several recent studies suggest that oncogenic signaling pathways are 

altered through MGP (43, 44). Other affected driver genes we found in the present study were similar to those 

found in primary UC. Frequent hotspot mutations in the non-coding region of TERT, ADGRG6, PLEKHS1, 

LEPROTL1 and TBC1D12 occurred similarly in NMIBC and MIBC (45, 46). Evidence suggests that clones with 

known driver genes emerge early during bladder cancer development and colonize distant areas of the 

bladder, which may explain the genomic similarity of mUC with primary UC (47). 
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WGS analysis revealed frequent SVs affecting AHR (aryl hydrocarbon receptor) and CCSER1 (coiled-coil serine 

rich protein). SVs in AHR have not been described in cancer, but other molecular alterations in this gene have 

been associated with bladder cancer progression (48–50). CCSER1 is located in a common fragile site region; 

thus, it is exposed to chromosomal rearrangements (51). Altered transcripts created through the deletion of 

specific exons in CCSER1 have been associated with oncogenesis (51, 52); it is unclear, however, if SVs may 

have similar oncogenic effects in UC. 

Previous studies that performed RNA-based subtyping showed that NMIBC is a homogeneous disease primarily 

of luminal origin (> 90%) and that MIBC is highly heterogeneous with multiple subtypes (3, 6). Here, we 

showed that mUC is a heterogeneous disease too, with similar subtypes as described for MIBC. The phenotypic 

similarity of MIBC and mUC suggests that despite ongoing mutagenesis, UC cell behavior does not change 

significantly during the metastatic process – all subtypes have metastatic potential. Furthermore, some 

patients with primary non-metastatic MIBC, as assessed by cross-sectional imaging, actually have systemic 

rather than localized disease. In a previous study, lymph node metastases were present in the cystectomy 

resection specimen of 25% of clinically node-negative patients. Due to the development of metastatic disease, 

patients with locally advanced bladder tumors (pT3 tumors) have a poor 5-year overall survival rate of only 

35%, despite radical surgery (Stein et al., 2001, Mari et al., 2018). 

In the present cohort, we did not identify a NE-like subtype at transcriptional level. The prevalence of this 

subtype in UC is low; in the TCGA cohort, only 2% of tumors were of the NE-like subtype. Central pathology 

revision of the metastatic biopsies by an expert genitourinary pathologist identified only three NE-like tumors 

in our cohort (Table S.3-4). The non-specified subtype we identified did not express any of the markers used to 

identify MIBC phenotypes (luminal, basal, squamous, stroma or NE), suggesting rewiring of its transcriptomic 

profile for adaptation. Studies in various cancers have shown that therapeutic pressure may trigger a 

phenotype-switching event (54), which could have happened in the non-specified phenotype as it was 

enriched for patients who had received systemic therapy prior to biopsy. Studies with larger numbers of paired 

biopsies (obtained before and after treatment) would be needed to explore this phenomenon in mUC. 

APOBEC mutagenesis was widespread in mUC; the reconstruction of evolutionary paths from sequential 

biopsies of eight patients indicated that it was an ongoing process. This suggests that mUC is in continuous 

adaptation by generating novel mutations. A previous study indeed reported accumulating mutations in six 
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patients whose primary tumor and metachronous metastases were analyzed by WES (37). In our study, the 

accumulation of new mutations in the sequential biopsy specimen of one of eight patients led to the 

identification of new therapeutic targets (Data S1.12). 

In a previous study (38), the genomic landscape of 85 (72 re-analyzed here) mUC patients was compared with 

that of other metastatic tumor types. This pan-cancer study concluded that mUC was characterized by high 

tumor mutational load (with no difference between mUC and primary UC), high CNAs, the highest number of 

driver genes among all cancer types analyzed, and actionable targets in 75% of the patients. In our study, we 

identified a potential targetable alteration in the genome of 98% of the patients (Figure 7A). In line with 

Priestley et al., we found that 41% of patients could benefit from on-label therapies, and 63% from therapies 

approved by the US Food and Drug Administration for other tumor types. Additionally, we identified targets 

for therapies under investigation in clinical trials including basket trials in 109 of 116 patients. We identified 

four patients with MSI-high tumors that are potentially sensitive to immune checkpoint inhibitors (55). HR 

deficiency, observed in three patients, is a potential target for treatment with poly-ADP ribose polymerase 

inhibitors and/or double-stranded DNA break-inducing chemotherapy. At the RNA level, targetable FGFR3 and 

NTRK2 gene fusions were identified in eight patients. 
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Figure 7 – Overview of actionable targets and possible treatments per transcriptomic subtype for metastatic 

urothelial carcinoma 

(A) Per patient, overview of therapeutic targets based on gene fusions of RNA level, tumor with 

microsatellite instability or homologous recombination deficiency, and clinically-actionable 

genomic alterations for on- and off-label therapies of urothelial carcinoma. On the left, the most 
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effective treatment available per patient is shown. Bars on the right depict the genomic and the 

transcriptomic subtype per patient. 

(B) Summary of molecular features found in the present study, and potential therapeutic 

implications for metastatic urothelial carcinoma per transcriptomic subtype.  

 

In a previous study, the antibody-drug conjugate enfortumab vedotin targeting NECTIN4 induced objective 

clinical responses in 44% of mUC patients who experienced disease progression after chemotherapy and anti-

PD1/L1 therapy (56). Currently preselection for this treatment is not required. However, we found significant 

variation in the expression of NECTIN4, suggesting that patients with the basal/squamous subtype may be less 

likely to experience clinical benefit, as they did not have NECTIN4 amplifications, and the lowest NECTIN4 

expression level. Thus, subtype-specific treatment with enfortumab vedotin might result in better risk-benefit 

ratios. The 23 patients with HER2 aberrations may be sensitive to HER2 targeting agents; especially some of 

the newer antibody-drug conjugates with DNA damaging payloads could represent an effective treatment (57, 

58).  

Based on the identified transcriptomic subtypes we suggested potential therapeutic targets per subtype 

(Figure 7B). The luminal-a subtype was characterized by MYCN and PPARGC1B overexpression. In pre-clinical 

studies, treatment with a BET- or PPARγ-inhibitor downregulated the expression levels of both genes, and had 

an antiproliferative effect on tumor cells (59, 60). The immune cell compartment of tumors of the luminal-a 

subtype was found rich in NK cells, which could be explained by the large fraction of liver biopsies, which are 

known to be enriched for NK cells (61), showing this subtype. Thus, other potential treatment strategies 

comprise of cytokine-mediated stimulation of NK cells and TLR agonists (62). 

The luminal-b subtype was enriched with FGFR3 mutations and had high expression of FGFR3, suggesting that 

this subtype may be susceptible to FGFR inhibitors. This subtype may also be sensitive to RAS pathway 

inhibitors as the RTK-RAS pathway activity was high (63).  

The stroma-rich subtype was characterized by TSC1 alterations that confer sensitivity to MTOR inhibitors, 

which have been approved for treatment of several tumor types (64, 65). Compared with the other subtypes, 

the stroma-rich subtype displayed the highest TGF-β pathway activity and overexpression of different 
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collagens. Previous studies have shown that TGF-β can stimulate cancer-associated fibroblasts to produce 

collagens (66, 67). Other studies found that TGF-β expression was associated with resistance to immune 

checkpoint inhibition in bladder cancer (68, 69). Results from pre-clinical studies suggest that addition of a 

TGF-β inhibitor may improve anti-PD1 efficacy (70).  

The basal/squamous subtype has been found associated with high immune cell infiltration (significantly more 

M1 macrophages) and overexpression of PD-L1, which suggests that patients with tumors of this subtype are 

likely to benefit from immunotherapy (4). Since TGF-β pathway activity was also high in this subtype, 

combination therapy with a TGF-β inhibitor could be of added value. Furthermore, this subtype was 

characterized by overexpression of mesothelin, a known tumor antigen that is being investigated as a target 

for antibody-based, vaccine and CAR-T cell therapies in several tumor types (71). 

As our studied cohort was heterogeneous regarding pre-treatment history and type of treatment initiated 

after biopsy collection, we were unable to reliably correlate the characteristics of the molecular subtypes to 

clinical endpoints such as overall survival. Additional studies in which biopsies are collected from uniformly 

treated mUC patients would be crucial to be able to properly correlate large scale genomic and transcriptomic 

data with clinical outcomes. 

The findings of this study significantly add to our knowledge on the molecular biology of mUC; the identified 

potential therapeutic targets should be addressed in further research – with the ultimate aim to improve the 

management of mUC patients.
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Methods 

Patient cohort and study procedures 

Between 07 June 2012 up to and including 28 February 2019, patients with advanced or mUC (n = 210) from 23 

Dutch hospitals (Data S1.1, Figure 1A and Table S1.3) were included in the Netherlands nationwide study of 

the Center for Personalized Cancer Treatment (CPCT) consortium (CPCT-02 Biopsy Protocol, ClinicalTrial.gov 

no. NCT01855477) (1), which aimed to analyze the cancer genome and transcriptome of patients with 

advanced cancer. The study protocol was approved by the medical ethics review board of the University 

Medical Center Utrecht, the Netherlands. Patients eligible for inclusion were those aged ≥ 18 years old, with 

locally advanced or mUC, from whom a histological tumor biopsy could be safely obtained, and whom had an 

indication for initiation of a new line of systemic treatment with anti-cancer agents. Written informed consent 

was obtained from all participants prior to inclusion in the trial; the study complies with all relevant ethical 

regulations. Tumor biopsies and matched normal blood samples were collected following a standardized 

procedure described by the Hartwig Medical Foundation (https://www.hartwigmedicalfoundation.nl; 1). For 

the current analysis, biopsies were obtained from a safely accessible site, including lymph nodes, liver, bone 

and other organs (Figure 1). In five patients, a tumor biopsy was obtained from the primary bladder or upper 

urinary tract tumor as no safely accessible metastatic lesion was present. In two patients, a biopsy was 

obtained from a local recurrence after cystectomy and nephrectomy, respectively (Table S1.2). This study 

extends the pan-cancer analysis of Priestley et al., in which WGS data of 72 mUC patients included in the 

current cohort were initially analyzed (Table S1.2). 

Central pathology review 

Tumor tissue slides for central pathological revision of the diagnosis of UC was available for 79/116 patients. 

Hematoxylin and eosin (H&E) stained slides from primary tumor tissues (cystectomy and transurethral 

resection specimens of the bladder, n = 23 patients), metastatic tumor biopsies (n = 15 patients), or both (n = 

41 patients) were requested from the Nationwide Network and Registry of Histo- and Cytopathology in the 

Netherlands (PALGA) (2). Tissue slides and corresponding pathological reports were provided anonymously. All 

patient materials used for central pathology review were obtained within the CPCT-02 biopsy protocol or 

during routine patient care, and the use of these materials for research purposes was approved by the medical 
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ethics review board of the Erasmus University Medical Center, Rotterdam, the Netherlands (MEC-2019-0188). 

H&E slides were reviewed by an expert genitourinary pathologist (LLB), and used for re-evaluation of the 

diagnosis and description of aberrant histology (Table S1.3 and S1.4). Tumors were classified as pure UC (n = 

66), or predominant UC with variant histology (n = 9 squamous, n = 3 neuro-endocrine, n = 1 micropapillary 

UC), and pure squamous cell bladder carcinomas (n = 3). In patients for whom both the primary and the 

metastatic tumor biopsy was available for review, the highest grade (WHO 1973 classification) was assigned, 

and presence of aberrant histology in one of the tissue samples was considered as positive.  

 

Whole-genome sequencing and analysis 

Whole-genome DNA sequencing, alignment and data processing 

Sufficient amount of DNA was extracted (50-200 ng) from fresh-frozen tumor and blood tissue following 

standard protocols from Qiagen. DNA was fragmented by sonication for NGS Truseq library preparation and 

sequenced paired-end reads of 2x 150 bases with the Illumina HiSeqX platform. Alignment, somatic 

alterations, ploidy, sample purity and copy numbers estimations were performed as previously described (1). 

WGS was aligned to the reference human genome GRCH37 with BWA-mem v.0.7.5a (3), and duplicate reads 

were marked for filtering. Indels were realigned using GATK IndelRealigner (v3.4.46) (4). Recalibration of base 

qualities for SNVs and Indels was performed with GATK BQSR (5), and SNV and Indel variants were evaluated 

with Strelka v.1.0.14 (6) using matched blood WGS as normal reference (Table S1.5).In-house pipeline (7) was 

used to further annotate somatic mutations with Ensembl Variant Effect Predictor (VEP, v99, cache 

99_GRCh37) (8) using GENCODE v33 in combinations with the dbNSFP plugin (v3.5, hg19) (9) for gnomAD (10) 

population frequencies. SNVs, Indels and MNVs variants were removed if the following filters were not passed: 

default Strelka filters (PASS-only), gnomAD exome (ALL) allele frequency < 0.001, gnomAD genome (ALL) < 

0.005 and number of reads < 3. In addition, structural variants and copy number changes were estimated using 

GRIDDS, PURPLE and LINX suit v2.25 (11). Structural variants that passed the default QC filters (PASS-only) and 

Tumor Allele Frequency TAF ≥ 0.1 were annotated as “somatic structural variants” if there was overlap with 

coding region. Mean read coverages of tumor and reference samples were estimated using Picard Tools 

(v1.141; CollectWgsMetrics) based on GRCh37 (https://broadinstitute.github.io/picard/). Genomic and coding 
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tumor mutational burden (TMB; mutations per megabase pair (Mbp)) were calculated considering SNVs, Indels 

and MNVs. The total number of somatic mutations in coding region was divided by 28.71 Mbp (protein-coding 

region size) and in the whole genome by 2,858.67 Mbp (genomic alignment size). 

Detection and characterization of recurrent copy number alterations 

Ploidy and CNAs were estimated as described by Priestley et al.; and following the custom pipeline described 

by van Dessel et al., 2019, recurrent focal and broad CNAs were estimated with GISTIC2.0 v2.0.23 (12). CNAs 

were classified as shallow or deep according to the threshold in GISTIC2 calls. Significant recurrent focal CNAs 

were identified when q ≤ 0.05 and annotated with genes overlapping these regions, which were considered 

drivers (Table S1.8 and S1.10). The estimated copy number per gene was also estimated (Table S1.9). 

Detection of driver genes using dN/dS ratios 

We used the dNdScv R package (v0.0.0.9) to detect cancer driver genes under strong positive selection (13). 

This method used 192 mutation rates representing all combinations in trinucleotide context. Mutation rates of 

each gene were corrected by the global mutation rate. The ratio of non-synonymous over synonymous 

mutations was calculated with maximum-likelihood methods, and statistical significance was estimated. Genes 

with either qglobal_cv ≤ 0.05 or qallsubs_cv ≤ 0.05 were considered drivers of mUC (Table S1.7 and S1.10). 

Other known driver genes that were frequently mutated were considered, and are shown in Data S1.3. 

APOBEC enrichment and mutagenesis 

For each sample, the total number of C>T or C>G (G>A or G>C) mutations was calculated (Cmut (C>T,C>G)). From 

these mutations, the total number of APOBEC mutations was estimated by counting all mutations in TCW 

(WGA) context (TCWCmut). The total number of TCW (WGA) motifs and total C (G) nucleotides in the reference 

genome were estimated (TCWcontext and Ccontext, respectively). Using this information and following Roberts et 

al., 2013 , a contingency table was constructed; one-sided Fisher’s exact test was applied to calculate the 

overrepresentation of APOBEC mutations. P-values were Benjamini-Hochberg corrected. Tumors with adjusted 

p-values lower than 0.01 were considered APOBEC enriched. 

The magnitude of APOBEC enrichment E was estimated as (14) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

𝐸𝐸 =
TCW𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∙ C𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶

TCW𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶 ∙ C𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶>𝑇𝑇,𝐶𝐶>𝐺𝐺) . (1) 

APOBEC enriched tumors (always E > 1) were classified as high APOBEC mutagenesis when E ≥ 2, and as low 

APOBEC mutagenesis when E < 2. Tumors without APOBEC enrichment were considered tumors with no 

APOBEC mutagenesis (Table S1.6).  

Clonality fraction estimation 

Mutations start as a single copy in the DNA, and multiple copies of the mutated nucleotide may appear if 

affected by CNAs events. Correcting for tumor purity and CNA, the number of copies nSNV of each SNV was 

calculated as follows (15) 

𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑓𝑓𝐶𝐶
𝑝𝑝

[𝑝𝑝𝐶𝐶𝐶𝐶 + (1 − 𝑝𝑝)𝐶𝐶ℎ], (2) 

where fm is the relative frequency of the mutant variant reads, p is the tumor purity, Ct is the copy number 

affecting the region where a particular SNV was located, and Ch is the healthy copy number (2 for autosomes 

and 1 for allosomes). 

Equation (2) is equivalent to the cancer cell fraction (CCF) with nSNV ≈ 1 in haploid and heterozygous-diploid 

regions; i.e., the fraction of tumor cells carrying a particular mutation. For regions with CNAs, nSNV > 1, we must 

estimate the fraction of cancer cells carrying a particular SNV. As described previously (16, 17), we assume that 

all SNVs are present in the major copy number CM; hence nSNV ≤ CM covering mutations that were acquired 

after copy number change events or present only in the minor copy number. Given the number of reference 

and mutant reads, and assuming binomial distribution, we estimated the expected number of allelic copies 

(nchr) carrying the observed SNV resulting from fm values when the mutation is present in 1, 2, 3,…, Nchr allelic 

copies. In some cases (sequencing noise) nSNV > CM, which was corrected with Nchr = max(CM, nSNV). We also 

corrected each fm value with normal cell contamination – multiplying it by p. The resulting estimated nchr with 

the maximum likelihood serves to calculate the CCF as nSNV/nchr. 

Dirichlet process from the DPClust R package (https://github.com/Wedge-lab/dpclust) with 250 iterations and 

125 burn in iterations was applied to the CCF distribution to estimate the fraction of clonal and subclonal SNVs 

per tumor (18). Multiple distributions (clusters) were obtained, representing different cancer cell populations. 
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The mean of the distributions was used to classify clusters of SNVs as clonal or subclonal. Clusters of SNVs with 

mean distribution > 0.8 were considered clonal (Table S1.5). 

Mutational signatures and genomic subtypes 

The mutational pattern of each sample was established by categorizing SNVs according to their 96-

trinucleotide context. The contribution of each of the 67 mutational signatures from COSMIC v3 (as deposited 

on May 2019) (19) was subsequently estimated with MutationalPatterns v1.4.2 (Table S1.16) (20). To reduce 

the noise attributed to mutational signatures with very low contribution, mutational signatures were grouped 

into 26 proposed etiology categories (Table S1.15) derived from Alexandrov et al. (2020), Petljak et al. (2019), 

Angus et al. (2019) and Christensen et al. (2019). All 26 proposed etiology contributions were used, and 

hierarchical clustering was applied on 1-Pearson’s correlation coefficient, 80% resampling and 1,000 iterations 

from the R package ConsensusClusterPlus v1.48.0 (25). Considering average stability of each cluster and the 

size of the clusters (favoring large clusters) after each partition, samples were grouped into five distinct 

clusters (Data S1.6). 

Independently, mutational patterns were deconvoluted to estimate de novo mutational signatures. Non-

negative Matrix Factorization from the NMF R package (v0.21.0) was used with 1000 iterations (26). Evaluating 

different metrics provided by the NMF R package (high cophenetic correlation coefficient, high dispersion 

coefficient, high silhouette consensus, high sparseness basis and low sparseness coefficients), seven de novo 

signatures were recovered from the mutational patterns (Data S1.7). Cosine similarity was applied to compare 

the de novo signatures with mutational signatures from COSMIC v3. 
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Detection of chromothripsis 

Catastrophic-like events, such as chromothripsis, were detected with Shatterseek v0.4 (27) using default parameters. 

Absolute copy numbers (as derived by PURPLE) were rounded to the nearest integer; only structural variants with TAF ≥ 

0.1 at either end of the breakpoint were considered, and chrY was excluded. The following filters were applied and 

chromothripsis was considered when: a) the number of intra-chromosomal structural variants ≥ 25; b) the maximum 

number of oscillating CN segments with two states ≥ 7 or with three states ≥ 14; c) the size of the chromothripsis event ≥ 

20 Mbp; d) random distribution of breakpoints p ≤ 0.05; and e) chromosomal breakpoint enrichment p ≤ 0.05 (Table 

S1.19). 

MicroSatellite Instabilty (MSI) status 

As previously described (1), MSI status was determined by estimating the MSI score as the number of indels 

(length < 50 bp) per Mbp occurring in homopolymers of five or more bases, dinucleotide, trinucleotide and 

tetranucleotide sequences of repeat count above five. Tumors with MSI score > 4 were considered MSI 

positive (Table S1.21). 

Detection of homologous recombination (HR) deficiency 

The Classifier for Homologues Recombination Deficiency (CHORD; v2.0) with default parameters was used to identify 

tumors with HR proficiency and deficiency (28). Four samples had very high number of indels corresponding with 

MSI samples (Figure 2A) and were discarded for the HR deficiency analysis (Table S1.20). 

Detection of kataegis 

Following the method described by van Dessel et al. (2019), kataegis events were estimated using SNVs. Each 

chromosome was divided into segments (maximum 5000 segments) of five or more consecutive SNVs. 

Segments were considered a kataegis event when the mean intermutational distance was ≤ 2000 bp (Table 

S1.18). 
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Mutational load across genomic regions  

The genome was divided in regions (bins) with one Mbp size. The number of SNVs was counted in each bin, 

and the mean number of SNVs was estimated from the entire cohort. These values represented the average 

SNVs/Mbp reflecting the mutational load in each genomic region. APOBEC mutations were identified as C>T 

and C>G mutations in TCW trinucleotide context (14), where W is A or T. The relative density of APOBEC 

mutations was calculated as the proportion of APOBEC mutations over the total SNVs/Mbp at each genomic 

bin position. The average SNVs/Mbp and relative APOBEC density were smoothed by applying a moving 

average with k = 9 bins. This approach was used per sample and for mean values from the entire cohort. 

Genomic alteration of oncogenic pathways  

Eleven oncogenic pathways were analyzed for somatic alterations. The list of genes was modified from 

Sanchez-Vega et al. (2018) and Leonard (2001) (Table S1.23). Altered pathways were defined when at least one 

of the pathway-genes was affected by any somatic mutation (SNV, Indel, MNV, SV or deep CNA; excluding 

synonymous mutations). 

Inventory of clinically-actionable somatic alterations and putative therapeutic targets 

Current clinical relevance of somatic alterations in relation to putative treatment options or resistance 

mechanisms and trial eligibility was determined based upon the following databases: CiViC (31) (Nov. 2018), 

OncoKB (32) (Nov. 2018), CGI (33) (Nov. 2018) and the iClusion (Dutch) clinical trial database (Sept. 2019, 

Rotterdam, the Netherlands). The databases were aggregated and harmonized using the HMF knowledgebase-

importer (v1.7; https://github.com/hartwigmedical/hmftools/tree/master/knowledgebase-importer). 

Subsequently, we curated the linked putative treatments and selected treatments for which level A (biomarker 

for approved therapy or in guidelines) or level B (biomarker on strong biological evidence or used in clinical 

trials) evidence was available (1). Genomic alterations that confer resistance to certain therapies were 

excluded for the analysis. Treatment strategies including anti-hormonal therapy (as used for breast and 

prostate cancer), surgical resection, or radioiodine uptake therapy were excluded. Furthermore, closed trials 

(according to www.clinicaltrials.gov), and trials with only pediatric patients or patients with hematological 

malignancies were excluded (Table S1.24). The data base was complemented with FGFR3 and NTRK2 gene 

fusions (at RNA level) and patients with MSI high and HR deficient tumors. On-label treatments included 
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chemotherapy (cisplatin, gemcitabine, doxorubicin, mitomycin, and valrubicin) and the FGFR3 inhibitor 

erdafitinib. Off-label treatments included treatments that are on-label for other tumor types (FDA approved 

drugs according to the US national cancer institute; https://www.cancer.gov/about-

cancer/treatment/drugs/cancer-type), and treatments available in clinical trials or basket trials. When patients 

had more than one possible treatment, on-label treatment was the preferred treatment, followed by on-label 

treatments for other tumor types. 

DNA accessibility estimation (ChIPseq) 

All available ChIPseq data for healthy urinary bladder (H3K4me1, H3K4me3, H3K36me3 and H3K27ac) were 

downloaded from the ENCODE portal (https://www.encodeproject.org) to our local server. The bed.gz files 

were imported with narrowPeak format for analysis. The signal of each experiment was divided in regions of 

one Mbp, and a moving average with k = 9 bins was applied. The scale of the signal was normalized; hence the 

sum of all regions at each chromosome is one. This step was taken to compensate for the bias observed in 

peak intensity signals across different chromosomes, possible due to technical issues in the ChIPseq 

technology, e.g. hyper-ChIPable regions or mappability (34). 

High DNA accessible regions (open chromatin) were determined as such if the ChIPseq signal value of the 

region was above the median. Otherwise, the region was considered as low DNA accessible (condensed 

chromatin). This procedure was applied on each chromosome. Figure 5-B-C and Data S1.9A were generated 

using results from H3K4me1 ChIPseq. Using other ChIPseq experiments showed the same result. 

Whole-transcriptome sequencing and analysis 

RNA-sequencing, alignment and data pre-processing 

Total RNA was extracted using the QIAGEN QIAsymphony kit (Qiagen, FRITSCH GmbH, Idar-Oberstein, 

Germany). Samples with a minimum of 100 ng total RNA were sequenced according to the manufacturer’s 

protocols. Paired-end sequencing of RNA was performed on the Illumina NextSeq 550 platform (2x75bp) and 

Illumina NovaSeq 6000 platform (2x150bp). 

Prior to alignment, samples were visually inspected with FastQC (v0.11.5). Sequence adapters (Illumina 

TruSeq) were trimmed using Trimmomatic v0.39 (35) at the following settings: 
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ILLUMINACLIP:adapters.fa:2:30:10:2:keepBothReads MINLEN:36. The trimmed paired-end reads were aligned 

to the human reference (GRCh37) using STAR v2.7.1a (36) with genomic annotations from GENCODE hg19 

release 30 (37). Multiple lanes and runs per sample were aligned simultaneously and given respective read-

group identifiers for use in downstream analysis to produce two BAM files per sample, consisting of genome- 

and transcriptome-aligned reads respectively. 

STAR was performed using the following command:  

STAR --genomeDir <genome> --readFilesIn <R1> <R2> --readFilesCommand zcat --outFileNamePrefix 

<outPrefix> --outSAMtype BAM SortedByCoordinate --outSAMunmapped Within --chimSegmentMin 12 --

chimJunctionOverhangMin 12 --chimOutType WithinBAM --twopassMode Basic --twopass1readsN -1 --

runThreadN 10 --limitBAMsortRAM 10000000000 --quantMode TranscriptomeSAM --outSAMattrRGline <RG> 

After alignment, duplicate reads were marked and alignment quality metrics (flagstat) were generated using 

Sambamba v0.7.1 (38). For each genome-aligned sample, the uniformity of read distributions across transcript 

lengths was assessed using tin.py v 2.6.6 (39) from the RSeQC library v3.0.0 (40). 

FeatureCounts v1.6.3 (41) was applied to count the number of overlapping reads per gene using genomic 

annotations from GENCODE (hg19) release 30 (37); only primary (uniquely mapped) reads were counted per 

exon and summarized per gene in a strand-specific manner: 

featureCounts -T 50 -t exon -g gene_id --primary -p -s 1 -a <gencode> -o <output> <genomic BAMs> 

RSEM v1.3.1 (42) was applied to quantify RNA expression into transcripts per million (TPM) values using 

transcript annotations from GENCODE (hg19) release 30 (37): 

rsem-calculate-expression --bam --paired-end --strand-specific --alignments -p 8 <transcriptome BAM> <RSEM 

Index> <output> 

Transcriptome expression data mapped to genomic regions 

MultiBamSummary from deepTools (43) (v1.30.0) was used to read BAM files and estimate number of reads in 

genomic regions with a size of one Mbp. The average raw read count per Mbp was calculated, and a moving 

average with k = 9 bins was applied. The scale of the read counts was normalized following the method for 
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DNA accessibility regions, and high transcriptional regions were defined as such when the expression value of 

one region was above the median. This procedure was applied on each chromosome. 

Transcriptomic subtypes: clustering samples by RNAseq data 

Transcripts were normalized using DESeq2 v1.24.0 (44) with variance stabilizing transformation. Only 

transcripts with base mean above 100 were kept. The top 50% most variably expressed genes (7,030 

transcripts) were used for cluster analysis. 

Samples were grouped according to their biopsy site: liver (n = 31), lymph node (n = 30) and bone (n = 5), other 

(n = 23) and unknown (n=1). Differential analysis was performed to compare tumors from a specific biopsy site 

(liver, lymph node and bone ) against all other tumors using DESeq2 v1.24.0 (44) with Wald test p-values 

estimation. Tissue-specific transcripts with log2 Fold Change (log2FC) > 1 and Benjamini-Hochberg corrected p-

value < 0.05 were considered differentially expressed and tagged as tissue-specific. A total of 754 transcripts 

were tissue-specific, and were removed from the data set (Figure S5). 

The remaining 6,276 normalized transcripts were grouped using hierarchical clustering with 1-Pearson’s 

correlation coefficient, 80% resampling and 1,000 iterations from the R package ConsensusClusterPlus v1.48.0 

(25). The mean cluster consensus value was obtained as a measure of cluster stability. Increasing the number 

of clusters will increase the stability by creating smaller clusters. Taking this into account, the criteria for 

selecting five clusters was based on cluster stability and the size of the clusters by not allowing clusters with <5 

samples (Table S1.17). 

All normalized transcripts (excluding biopsy specific transcripts) were used as input to classify each tumor into 

one of the six molecular classes identified in primary UC using the ConsensusMIBC classifier v1.1.0 (45). 

To identify transcripts that contribute most to each cluster, we followed the same strategy used to identify 

tissue-specific transcripts. The top five transcripts with the highest log2FC and with Benjamini-Hochberg 

adjusted p-values lower than 1x10-5 are shown in Figure 5. Other differentially expressed genes are included in 

Figure 5 for their clinical relevance (TGFB3, DDR2, PDGFRA, CD274 and TGFBR1). All differentially expressed 

genes per cluster with adjusted p < 1x10-5 and log2FC > 1 are listed in Table S1.22. 
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Phenotypic markers and signature score 

Marker genes for basal (CD44, CDH3, KRT1, KRT14, KRT16, KRT5, KRT6A, KRT6B, KRT6C), squamous (DSC1, 

DSC2, DSC3, DSG1, DSG2, DSG3, S100A7, S100A8), luminal (CYP2J2, ERBB2, ERBB3, FGFR3, FOXA1, GATA3, 

GPX2, KRT18, KRT19, KRT20, KRT7, KRT8, PPARG, XBP1, UPK1A, UPK2), neuroendocrine (CHGA, CHGB, SCG2, 

ENO2, SYP, NCAM1), cancer-stem cell (CD44, KRT5, RPSA, ALDH1A1), EMT epithelial-mesenchymal (ZEB1, ZEB2, 

VIM, SNAI1, TWIST1, FOXC2, CDH2) and claudin-low (CLDN3, CLDN7, CLDN4, CDH1, SNAI2, VIM, TWIST1, ZEB1, 

ZEB2) were used for signature score (46). Stroma (FAP) and Interferon and CD8+ effector T cells (IFNG, CXCL9, 

CD8A, GZMA, GZMB, CXCL10, PRF1, TBX21) markers were also included (47). All normalized expression values 

were median centered, and the mean expression of each group of genes was defined as signature score 

(Figure 5 and S6A). 

Pathway activity score 

Genes transcriptionally activated by the eleven canonical pathways analyzed in this study were used to 

estimate pathway activity score (Figure 6B). All normalized expression values were median centered, and the 

mean expression of each group of genes was defined as activity score. Activity score was estimated for TGFβ 

pathway (ACTA2, ACTG2, ADAM12, ADAM19, CNN1, COL4A1, CCN2, CTPS1, RFLNB, FSTL3, HSPB1, IGFBP3, 

PXDC1, SEMA7A, SH3PXD2A, TAGLN, TGFBI, TNS1, TPM1) (48), cell cycle pathway (MKI67, CCNE1, BUB1, 

BUB1B, CCNB2, CDC25C, CDK2, MCM4, MCM6, MCM2) (47), WNT pathway (EFNB3, MYC, TCF12, VEGFA) (48), 

Notch pathway (HES1, HES5, HEY1) (49), PI3K pathway (AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, 

CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBXO32, GADD45A, INSR, MXI1, NOS3, PCK1, POMC, 

PPARGC1A, PRDX3, RBL2, SOD2, TNFSF10) (50), hippo pathway (TAZ, YAP1) (51), p53 pathway (CDKN1A, 

RRM2B, GDF15, SUSD6, BTG2, DDB2, GADD45A, PLK3, TIGAR, RPS27L, TNFRSF10B, TRIAP1, ZMAT3, BAX, 

BLOC1S2, PGF, POLH, PPM1D, PSTPIP2, SULF2, XPC) (52), Nrf2 pathway (GCLM, NQO1, PHGDH, PSAT1, SHMT2) 

(53), MYC pathway (TFAP4, BMP7, CCNB1, CCND2, CCNE1, CDC25A, CDK4, CDT1, E2F1, GATA4, HMGA1, 

HSP90AA1, JAG2, CDCA7, LDHA, MCL1, NDUFAF2, MTA1, MYCT1, NPM1, ODC1, SPP1, PIN1, PTMA, PRDX3, 

PRMT5, DNPH1, TFRC, EMP1, PMEL, C1QBP) (54), RTK-RAS pathway (SPRY2, SPRY4, ETV4, ETV5, DUSP4, 

DUSP6, CCND1, EPHA2, EPHA4) (55) and JAK-STAT pathway (IRGM, ISG15, GATA3, FCER2, THY1, NFIL3, ARG1, 

RETNLB, CLEC7A, CHIA, OSM, BCL2L1, CISH, PIM1, SOCS2, GRB10) (56). 
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Pathway enrichment analysis 

All differentially expressed genes with adjusted p < 0.05 and absolute log2FC > 1 in each of the transcriptomic 

subtypes were used for pathway enrichment analysis. Using reactomePA (57), the top ten (sorted by adjusted 

p-value) up- and down-regulated pathways were selected, and these are shown in Figure 6C. 

Immune cell infiltration 

To quantify immune cell fractions in each sample (Figure 5 and S6B), we analyzed RSEM read counts of all 

transcripts with the R package immunedeconv (58), using the quanTIseq method (59). 

Detection of fusion genes 

In-frame gene fusions were detected at DNA level by the GRIDDS, PURPLE, LINX suite v2.25 (11), and reported 

relevant if they appear in the ChimerDB 4.0 (Table S1.13) (60). At RNA level, Arriba 

(https://github.com/suhrig/arriba/) was used to infer gene fusion events with the option to discard known 

false positives from a list provided by Arriba. High confidence fusions were retained, and only events where at 

least one transcript is protein coding were kept (Table S1.14). Fusion genes previously identified by other 

studies, mostly from the TCGA data, were evaluated with ChimerDB 4.0 (60). All “deletion/read-through” 

events were discarded as possible false positives unless they were supported by the ChimerDB 4.0 data base. 

Medium confidence fusions were included in the final list if one of the fused genes appears in a high 

confidence event. 

APOBEC mutation rate and APOBEC expression in tumors with multiple sequential biopsies 

A second metastatic tumor biopsy was taken in eight patients from the same (n = 5) or a different (n = 3) 

metastatic lesion, and analyzed by WGS (n = 8) and RNAseq (n = 7). Each patient’s first and second biopsies 

shared a high proportion of mutations (SNVs, Indels and MNVs), confirming the clonal relation of the sampled 

sites (Figure S4A). Dirichlet process from the DPClust R package (https://github.com/Wedge-lab/dpclust) with 

250 iterations and 125 burn in iterations was applied to the CCF distribution of paired-biopsies to estimate the 

subclonal (clusters) composition of each tumor. All unique mutations in each biopsy were considered a 

subclone; only subclones with >5% of SNVs were considered relevant. Small populations of subclones (<5% of 
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SNVs) were merged to the nearest subclone. The evolutionary tree (Figure S4A) was reconstructed using the 

sum rule (61). 

The CCF of somatic mutations in the branches was lower than that in the trunk (Figure 4B), suggesting that 

these mutations are recently acquired mutations. To estimate the rate of novel APOBEC associated mutations, 

only unique SNVs from the second biopsy were kept, as these somatic alterations may probably correspond to 

new mutations acquired during the time frame between the biopsies. As the time elapsed between the first 

and the second biopsy varied between tumors, we normalized the number of recent APOBEC associated 

mutations by dividing the total over the number of days elapsed between the biopsies. The value estimated is 

proportional to the mutation rate of APOBEC associated mutations (mutations per day). 

In seven tumors, RNAseq data was available. Expression of APOBEC3A and APOBEC3B in Figure 3D is the mean 

normalized expression of the two biopsies. 

Analysis of the The Cancer Genome Atlas primary bladder cancer cohort 

Public open data of the TCGA bladder cancer cohort, including somatic mutations detected by Mutect (SNVs 

and Indels) of 412 tumors, GISTIC copy number changes at gene level of 410 tumors and RNAseq (HTSeq 

counts; Affymetrix SNP6 arrays) data available for 410 tumors were analyzed (Figure S3). Some samples had 

very few mutations, and only tumors with total SNVs > 50 were considered in this analysis (367/412). The 

same method applied on our mUC cohort was applied on the TCGA data to deconvolute mutational signatures 

and to identify genomic subtypes. Twelve genomic subtypes were identified, but several of them formed small 

groups with very specific mutational signature patterns, including one sample with very high POLE signature. 

All genomic subtypes with < 1% of the total cohort were grouped together in GenS0. We compared the 

genomic subtypes between mUC and the TCGA cohort using cosine similarity.  

Transcript counts were normalized with DESeq2 (44) following the same procedure as used for the mUC 

cohort. All tumors were from primary UC, and organ-specific transcript were not discarded. The consensus 

MIBC classifier (45) was applied to infer the transcriptomic subtype of each tumor. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

Code availability 

All custom code and scripts are available at https://bitbucket.org/ccbc/dr31_hmf_muc/ and 

https://github.com/hartwigmedical/. 

Statistical analysis 

Analysis was performed using the statistical analysis platform R v3.6.1 (65). 

 

 

Data availability 

WGS data, RNA-seq data and corresponding clinical data have been requested from Hartwig Medical 

Foundation and were provided under data request number DR-031. All data is freely available for academic 

use from the Hartwig Medical Foundation through standardized procedures. Request forms can be found at 

https://www.hartwigmedicalfoundation.nl (1). 

ChIPseq data experiments are freely available through The ENCODE Project Consortium (62) and the Roadmap 

Epigenomics Consortium (63) on the ENCODE portal (https://www.encodeproject.org) (64). We downloaded 

files with the following identifiers: ENCSR065IQH, ENCSR054BKO, ENCSR632OWD and ENCSR449TNC. 

TCGA data for the bladder cancer cohort was downloaded through the portal: https://www.cancer.gov/tcga. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://www.hartwigmedicalfoundation.nl/
https://www.encodeproject.org/
https://www.cancer.gov/tcga
https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

References to main text 

1.  MD Wilkerson, DN Hayes, ConsensusClusterPlus: A class discovery tool with confidence assessments 

and item tracking. Bioinformatics 2010;26:1572–1573. 

2.  MA Knowles, CD Hurst, Molecular biology of bladder cancer: New insights into pathogenesis and 

clinical diversity. Nat Rev Cancer 2015;15:25–41. 

3.  SV Lindskrog, FF Prip, P Lamy, A Taber, S Clarice, I Nordentoft, et al., An integrated multi-omics analysis 

identifies clinically relevant molecular subtypes of non-muscle-invasive bladder cancer. medRxiv 

2020;2020.06.19.20054809. 

4.  AG Robertson, J Kim, H Al-Ahmadie, J Bellmunt, G Guo, AD Cherniack, et al., Comprehensive Molecular 

Characterization of Muscle-Invasive Bladder Cancer. Cell 2017;171:540-556.e25. 

5.  A Giannopoulou, A Velentzas, E Konstantakou, M Avgeris, S Katarachia, N Papandreou, et al., Revisiting 

Histone Deacetylases in Human Tumorigenesis: The Paradigm of Urothelial Bladder Cancer. Int J Mol 

Sci 2019;20:1291. 

6.  A Kamoun, A de Reyniès, Y Allory, G Sjödahl, A Gordon Robertson, R Seiler, et al., A Consensus 

Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol 2019;77:420–433. 

7.  BM Faltas, D Prandi, ST Tagawa, AM Molina, DM Nanus, C Sternberg, et al., Clonal evolution of 

chemotherapy-resistant urothelial carcinoma. Nat Genet 2016;48:1490–1499. 

8.  F Martínez-Jiménez, F Muiños, I Sentís, J Deu-Pons, I Reyes-Salazar, C Arnedo-Pac, et al., A 

compendium of mutational cancer driver genes. Nat Rev Cancer 2020;20:555–572. 

9.  JG Tate, S Bamford, HC Jubb, Z Sondka, DM Beare, N Bindal, et al., COSMIC: The Catalogue Of Somatic 

Mutations In Cancer. Nucleic Acids Res 2019;47:D941–D947. 

10.  I Martincorena, KM Raine, M Gerstung, KJ Dawson, K Haase, P Van Loo, et al., Universal Patterns of 

Selection in Cancer and Somatic Tissues. Cell 2017;171:1029-1041.e21. 

11.  CH Mermel, SE Schumacher, B Hill, ML Meyerson, R Beroukhim, G Getz, GISTIC2.0 facilitates sensitive 

and confident localization of the targets of focal somatic copy-number alteration in human cancers. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

Genome Biol 2011;12:R41. 

12.  Y Allory, W Beukers, A Sagrera, M Flández, M Marqués, M Márquez, et al., Telomerase reverse 

transcriptase promoter mutations in bladder cancer: High frequency across stages, detection in urine, 

and lack of association with outcome. Eur Urol 2014;65:360–366. 

13.  R Buisson, A Langenbucher, D Bowen, EE Kwan, CH Benes, L Zou, et al., Passenger hotspot mutations in 

cancer driven by APOBEC3A and mesoscale genomic features. Science 2019;364:eaaw2872. 

14.  YE Jang, I Jang, S Kim, S Cho, D Kim, K Kim, et al., ChimerDB 4.0: an updated and expanded database of 

fusion genes. Nucleic Acids Res 2019;48:D817–D824. 

15.  AP Glaser, D Fantini, Y Wang, Y Yu, KJ Rimar, JR Podojil, et al., APOBEC-mediated mutagenesis in 

urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, 

and immune response. Oncotarget 2018;9:4537–4548. 

16.  SA Roberts, MS Lawrence, LJ Klimczak, SA Grimm, D Fargo, P Stojanov, et al., An APOBEC cytidine 

deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 2013;45:970–976. 

17.  HX Dang, BS White, SM Foltz, CA Miller, J Luo, RC Fields, et al., ClonEvol: clonal ordering and 

visualization in cancer sequencing. Ann Oncol 2017;28:3076–3082. 

18.  MD Kazanov, SA Roberts, P Polak, J Stamatoyannopoulos, LJ Klimczak, DA Gordenin, et al., APOBEC-

Induced Cancer Mutations Are Uniquely Enriched in Early-Replicating, Gene-Dense, and Active 

Chromatin Regions. Cell Rep 2015;13:1103–1109. 

19.  JII Hoopes, LMM Cortez, TMM Mertz, EPP Malc, PAA Mieczkowski, SAA Roberts, APOBEC3A and 

APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication. Cell Rep 

2016;14:1273–1282. 

20.  CA Davis, BC Hitz, CA Sloan, ET Chan, JM Davidson, I Gabdank, et al., The Encyclopedia of DNA 

elements (ENCODE): data portal update. Nucleic Acids Res 2018;46:D794–D801. 

21.  S Nik-Zainal, LB Alexandrov, DC Wedge, P Van Loo, CD Greenman, K Raine, et al., Mutational processes 

molding the genomes of 21 breast cancers. Cell 2012;149:979–993. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

22.  G Sturm, F Finotello, F Petitprez, JD Zhang, J Baumbach, WH Fridman, et al., Comprehensive evaluation 

of transcriptome-based cell-type quantification methods for immuno-oncology in Bioinformatics, 

(Oxford University Press), pp. i436–i445. 

23.  F Finotello, C Mayer, C Plattner, G Laschober, D Rieder, H Hackl, et al., Molecular and pharmacological 

modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome 

Med 2019;11:34. 

24.  A Baluapuri, E Wolf, M Eilers, Target gene-independent functions of MYC oncoproteins. Nat Rev Mol 

Cell Biol 2020;21:255–267. 

25.  K Kuroda, M Yashiro, T Sera, Y Yamamoto, Y Kushitani, A Sugimoto, et al., The clinicopathological 

significance of Thrombospondin-4 expression in the tumor microenvironment of gastric cancer. PLoS 

One 2019;14:e0224727. 

26.  Y Gu, T Li, A Kapoor, P Major, D Tang, Contactin 1: An important and emerging oncogenic protein 

promoting cancer progression and metastasis. Genes (Basel) 2020;11:1–22. 

27.  Q Zhang, N Zhou, W Wang, S Zhou, A novel autocrine CXCL14/ACKR2 Axis: The achilles’ heel of cancer 

metastasis? Clin Cancer Res 2019;25:3476–3478. 

28.  E Mathew, Y Zhang, AM Holtz, KT Kane, JY Song, BL Allen, et al., Dosage-dependent regulation of 

pancreatic cancer growth and angiogenesis by Hedgehog signaling. Cell Rep 2014;9:484–494. 

29.  P Eriksson, M Aine, S Veerla, F Liedberg, G Sjödahl, M Höglund, Molecular subtypes of urothelial 

carcinoma are defined by specific gene regulatory systems. BMC Med Genomics 2015;8:25. 

30.  BL Fridley, J Dai, R Raghavan, Q Li, SJ Winham, X Hou, et al., Transcriptomic characterization of 

endometrioid, clear cell, and high-grade serous epithelial ovarian carcinoma. Cancer Epidemiol 

Biomarkers Prev 2018;27:1101–1109. 

31.  N Hauptman, E Boštjančič, M Žlajpah, B Ranković, N Zidar, Bioinformatics Analysis Reveals Most 

Prominent Gene Candidates to Distinguish Colorectal Adenoma from Adenocarcinoma. Biomed Res Int 

2018;2018:9416515. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 
 

32.  DZ Dieters-Castator, PF Rambau, LE Kelemen, GM Siegers, GA Lajoie, LM Postovit, et al., Proteomics-

derived biomarker panel improves diagnostic precision to classify endometrioid and high-grade serous 

ovarian carcinoma. Clin Cancer Res 2019;25:4309–4319. 

33.  F Sanchez-Vega, M Mina, J Armenia, WK Chatila, A Luna, KC La, et al., Oncogenic Signaling Pathways in 

The Cancer Genome Atlas. Cell 2018;173:321-337.e10. 

34.  G Yu, QY He, ReactomePA: An R/Bioconductor package for reactome pathway analysis and 

visualization. Mol Biosyst 2016;12:477–479. 

35.  Y Haupt, R Maya, A Kazaz, M Oren, Mdm2 promotes the rapid degradation of p53. Nature 

1997;387:296–299. 

36.  NI Nissen, M Karsdal, N Willumsen, Collagens and Cancer associated fibroblasts in the reactive stroma 

and its relation to Cancer biology. J Exp Clin Cancer Res 2019;38:115. 

37.  A Taber, E Christensen, P Lamy, I Nordentoft, F Prip, SV Lindskrog, et al., Molecular correlates of 

cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics 

analysis. Nat Commun 2020;11:1–15. 

38.  P Priestley, J Baber, MP Lolkema, N Steeghs, E de Bruijn, C Shale, et al., Pan-cancer whole-genome 

analyses of metastatic solid tumours. Nature 2019;575:210–216. 

39.  W Traut, D Weichenhan, H Himmelbauer, H Winking, New members of the neurexin superfamily: 

Multiple rodent homologues of the human CASPR5 gene. Mamm Genome 2006;17:723–731. 

40.  Y Zou, W Zhang, H Liu, X Li, X Zhang, X Ma, et al., Structure and function of the contactin-associated 

protein family in myelinated axons and their relationship with nerve diseases. Neural Regen Res 

2017;12:1551. 

41.  MR Conserva, I Redavid, L Anelli, A Zagaria, G Specchia, F Albano, RARG Gene Dysregulation in Acute 

Myeloid Leukemia. Front Mol Biosci 2019;6:114. 

42.  SR Gheorghe, AM Craciun, Matrix Gla protein in tumoral pathology. Clujul Med 2016;89:319–321. 

43.  X Li, R Wei, M Wang, L Ma, Z Zhang, L Chen, et al., MGP Promotes Colon Cancer Proliferation by 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 
 

Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway. Mol Ther - 

Oncolytics 2020;17:371–383. 

44.  M Wang, L Chen, Y Chen, R Wei, Q Guo, S Zhu, et al., Intracellular matrix Gla protein promotes tumor 

progression by activating JAK2/STAT5 signaling in gastric cancer. Mol Oncol 2020;14:1045–1058. 

45.  S Wu, T Ou, N Xing, J Lu, S Wan, C Wang, et al., Whole-genome sequencing identifies ADGRG6 

enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer. Nat 

Commun 2019;10:1–12. 

46.  RJA Bell, HT Rube, A Xavier-Magalhães, BM Costa, A Mancini, JS Song, et al., Understanding TERT 

promoter mutations: A common path to immortality. Mol Cancer Res 2016;14:315–323. 

47.  ARJ Lawson, F Abascal, THH Coorens, Y Hooks, L O’Neill, C Latimer, et al., Extensive heterogeneity in 

somatic mutation and selection in the human bladder. Science 2020;370:75–82. 

48.  MJ Shi, XY Meng, J Fontugne, CL Chen, F Radvanyi, I Bernard-Pierrot, Identification of new driver and 

passenger mutations within APOBEC-induced hotspot mutations in bladder cancer. Genome Med 

2020;12:85. 

49.  LHG Matheus, SV Dalmazzo, RBO Brito, LA Pereira, RJ De Almeida, CP Camacho, et al., 1-Methyl-D-

tryptophan activates aryl hydrocarbon receptor, a pathway associated with bladder cancer 

progression. BMC Cancer 2020;20:869. 

50.  J YU, Y LU, S MUTO, H IDE, S HORIE, The Dual Function of Aryl Hydrocarbon Receptor in Bladder 

Carcinogenesis. Anticancer Res 2020;40:1345–1357. 

51.  SU Kang, JT Park, Functional evaluation of alternative splicing in the FAM190A gene. Genes and 

Genomics 2019;41:193–199. 

52.  K Patel, F Scrimieri, S Ghosh, J Zhong, MS Kim, YR Ren, et al., FAM190A deficiency creates a cell division 

defect. Am J Pathol 2013;183:296–303. 

53.  JP Stein, G Lieskovsky, R Cote, S Groshen, AC Feng, S Boyd, et al., Radical cystectomy in the treatment 

of invasive bladder cancer: Long-term results in 1,054 patients. J Clin Oncol 2001;19:666–675. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 
 

54.  J-C Marine, S-J Dawson, MA Dawson, Non-genetic mechanisms of therapeutic resistance in cancer. Nat 

Rev Cancer 2020;20:1–14. 

55.  XB Pivot, I Bondarenko, M Dvorkin, E Trishkina, J-H Ahn, S-A Im, et al., A randomized, double-blind, 

phase III study comparing SB3 (trastuzumab biosimilar) with originator trastuzumab in patients treated 

by neoadjuvant therapy for HER2-positive early breast cancer. J Clin Oncol 2017;35:509–509. 

56.  JE Rosenberg, PH O’Donnell, A V. Balar, BA McGregor, EI Heath, EY Yu, et al., Pivotal Trial of 

Enfortumab Vedotin in Urothelial Carcinoma After Platinum and Anti-Programmed Death 

1/Programmed Death Ligand 1 Therapy. J Clin Oncol 2019;37:2592–2600. 

57.  V Boni, MR Sharma, A Patnaik, The Resurgence of Antibody Drug Conjugates in Cancer Therapeutics: 

Novel Targets and Payloads. Am Soc Clin Oncol Educ B 2020;40:e58–e74. 

58.  X Sheng, X Yan, L Wang, Y Shi, X Yao, H Luo, et al., Open-label, Multicenter, Phase II Study of RC48-ADC, 

a HER2-Targeting Antibody–Drug Conjugate, in Patients with Locally Advanced or Metastatic Urothelial 

Carcinoma. Clin Cancer Res 2021;27:43–51. 

59.  JE Delmore, GC Issa, ME Lemieux, PB Rahl, J Shi, HM Jacobs, et al., BET bromodomain inhibition as a 

therapeutic strategy to target c-Myc. Cell 2011;146:904–917. 

60.  JT Goldstein, AC Berger, J Shih, FF Duke, L Furst, DJ Kwiatkowski, et al., Genomic activation of PPARG 

reveals a candidate therapeutic axis in bladder cancer. Cancer Res 2017;77:6987–6998. 

61.  H Peng, E Wisse, Z Tian, Liver natural killer cells: Subsets and roles in liver immunity. Cell Mol Immunol 

2016;13:328–336. 

62.  MC Ochoa, L Minute, I Rodriguez, S Garasa, E Perez-Ruiz, S Inogés, et al., Antibody-dependent cell 

cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol 2017;95:347–

355. 

63.  AR Moore, SC Rosenberg, F McCormick, S Malek, RAS-targeted therapies: is the undruggable drugged? 

Nat Rev Drug Discov 2020;19:533–552. 

64.  D Chakravarty, J Gao, S Phillips, R Kundra, H Zhang, J Wang, et al., OncoKB: A Precision Oncology 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

Knowledge Base. JCO Precis Oncol 2017;1:1–16. 

65.  D Tamborero, C Rubio-Perez, J Deu-Pons, MP Schroeder, A Vivancos, A Rovira, et al., Cancer Genome 

Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med 

2018;10:25. 

66.  XM Meng, DJ Nikolic-Paterson, HY Lan, TGF-β: The master regulator of fibrosis. Nat Rev Nephrol 

2016;12:325–338. 

67.  LA Borthwick, TA Wynn, AJ Fisher, Cytokine mediated tissue fibrosis. Biochim Biophys Acta - Mol Basis 

Dis 2013;1832:1049–1060. 

68.  T Powles, M Kockx, A Rodriguez-Vida, I Duran, SJ Crabb, MS Van Der Heijden, et al., Clinical efficacy and 

biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. 

Nat Med 2019;25:1706–1714. 

69.  N van Dijk, A Gil-Jimenez, K Silina, K Hendricksen, LA Smit, JM de Feijter, et al., Preoperative 

ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat Med 

2020;26:1839–1844. 

70.  S Mariathasan, SJ Turley, D Nickles, A Castiglioni, K Yuen, Y Wang, et al., TGFβ attenuates tumour 

response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018;554:544–548. 

71.  J Lv, P Li, Mesothelin as a biomarker for targeted therapy. Biomark Res 2019;7:18. 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 
 

References to methods 

1.  P Priestley, J Baber, MP Lolkema, N Steeghs, E de Bruijn, C Shale, et al., Pan-cancer whole-genome 

analyses of metastatic solid tumours. Nature 2019;575:210–216. 

2.  M Casparie, ATMG Tiebosch, G Burger, H Blauwgeers, A van de Pol, JHJM van Krieken, et al., Pathology 

Databanking and Biobanking in The Netherlands, a Central Role for PALGA, the Nationwide 

Histopathology and Cytopathology Data Network and Archive. Cell Oncol 2007;29:19. 

3.  H Li, R Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. 

Bioinformatics 2009;25:1754–1760. 

4.  A McKenna, M Hanna, E Banks, A Sivachenko, K Cibulskis, A Kernytsky, et al., The genome analysis 

toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 

2010;20:1297–1303. 

5.  GA Van der Auwera, MO Carneiro, C Hartl, R Poplin, G del Angel, A Levy-Moonshine, et al., From fastQ 

data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr Protoc 

Bioinforma 2013;43:11.10.1-11.10.33. 

6.  CT Saunders, WSW Wong, S Swamy, J Becq, LJ Murray, RK Cheetham, Strelka: Accurate somatic small-

variant calling from sequenced tumor-normal sample pairs. Bioinformatics 2012;28:1811–1817. 

7.  LF van Dessel, J van Riet, M Smits, Y Zhu, P Hamberg, MS van der Heijden, et al., The genomic 

landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with 

potential clinical impact. Nat Commun 2019;10:1–13. 

8.  W McLaren, L Gil, SE Hunt, HS Riat, GRS Ritchie, A Thormann, et al., The Ensembl Variant Effect 

Predictor. Genome Biol 2016;17:122. 

9.  X Liu, C Wu, C Li, E Boerwinkle, dbNSFP v3.0: A One-Stop Database of Functional Predictions and 

Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat 2016;37:235–241. 

10.  M Lek, KJ Karczewski, E V. Minikel, KE Samocha, E Banks, T Fennell, et al., Analysis of protein-coding 

genetic variation in 60,706 humans. Nature 2016;536:285–291. 

11.  D Cameron, J Baber, C Shale, A Papenfuss, JE Valle-Inclan, N Besselink, et al., GRIDSS, PURPLE, LINX: 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 
 

Unscrambling the tumor genome via integrated analysis of structural variation and copy number. 

bioRxiv 2019;1:781013. 

12.  CH Mermel, SE Schumacher, B Hill, ML Meyerson, R Beroukhim, G Getz, GISTIC2.0 facilitates sensitive 

and confident localization of the targets of focal somatic copy-number alteration in human cancers. 

Genome Biol 2011;12:R41. 

13.  I Martincorena, KM Raine, M Gerstung, KJ Dawson, K Haase, P Van Loo, et al., Universal Patterns of 

Selection in Cancer and Somatic Tissues. Cell 2017;171:1029-1041.e21. 

14.  SA Roberts, MS Lawrence, LJ Klimczak, SA Grimm, D Fargo, P Stojanov, et al., An APOBEC cytidine 

deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 2013;45:970–976. 

15.  PJ Stephens, PS Tarpey, H Davies, P Van Loo, C Greenman, DC Wedge, et al., The landscape of cancer 

genes and mutational processes in breast cancer. Nature 2012;486:400–404. 

16.  N Bolli, H Avet-Loiseau, DC Wedge, P Van Loo, LB Alexandrov, I Martincorena, et al., Heterogeneity of 

genomic evolution and mutational profiles in multiple myeloma. Nat Commun 2014;5:2997. 

17.  G Gundem, P Van Loo, B Kremeyer, LB Alexandrov, JMC Tubio, E Papaemmanuil, et al., The 

evolutionary history of lethal metastatic prostate cancer. Nature 2015;520:353–357. 

18.  SC Dentro, DC Wedge, P Van Loo, Principles of Reconstructing the Subclonal Architecture of Cancers. 

Cold Spring Harb Perspect Med 2017;7:a026625. 

19.  JG Tate, S Bamford, HC Jubb, Z Sondka, DM Beare, N Bindal, et al., COSMIC: The Catalogue Of Somatic 

Mutations In Cancer. Nucleic Acids Res 2019;47:D941–D947. 

20.  F Blokzijl, R Janssen, R van Boxtel, E Cuppen, MutationalPatterns: Comprehensive genome-wide 

analysis of mutational processes. Genome Med 2018;10:33. 

21.  LB Alexandrov, J Kim, NJ Haradhvala, MN Huang, AW Tian Ng, Y Wu, et al., The repertoire of 

mutational signatures in human cancer. Nature 2020;578:94–101. 

22.  M Petljak, LB Alexandrov, JS Brammeld, S Price, DC Wedge, S Grossmann, et al., Characterizing 

Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis. Cell 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 
 

2019;176:1282-1294.e20. 

23.  L Angus, M Smid, SM Wilting, J van Riet, A Van Hoeck, L Nguyen, et al., The genomic landscape of 

metastatic breast cancer highlights changes in mutation and signature frequencies. Nat Genet 

2019;51:1450–1458. 

24.  S Christensen, B Van der Roest, N Besselink, R Janssen, S Boymans, JWM Martens, et al., 5-Fluorouracil 

treatment induces characteristic T>G mutations in human cancer. Nat Commun 2019;10:1–11. 

25.  MD Wilkerson, DN Hayes, ConsensusClusterPlus: A class discovery tool with confidence assessments 

and item tracking. Bioinformatics 2010;26:1572–1573. 

26.  R Gaujoux, C Seoighe, A flexible R package for nonnegative matrix factorization. BMC Bioinformatics 

2010;11:367. 

27.  I Cortés-Ciriano, JJK Lee, R Xi, D Jain, YL Jung, L Yang, et al., Comprehensive analysis of chromothripsis 

in 2,658 human cancers using whole-genome sequencing. Nat Genet 2020;52:331–341. 

28.  L Nguyen, J Martens, A van Hoeck, E Cuppen, Pan-cancer landscape of homologous recombination 

deficiency. bioRxiv 2020; https:/doi.org/10.1101/2020.01.13.905026. 

29.  F Sanchez-Vega, M Mina, J Armenia, WK Chatila, A Luna, KC La, et al., Oncogenic Signaling Pathways in 

The Cancer Genome Atlas. Cell 2018;173:321-337.e10. 

30.  WJ Leonard, Role of JAK kinases and stats in cytokine signal transduction. Int J Hematol 2001;73:271–

277. 

31.  M Griffith, NC Spies, K Krysiak, JF McMichael, AC Coffman, AM Danos, et al., CIViC is a community 

knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet 

2017;49:170–174. 

32.  D Chakravarty, J Gao, S Phillips, R Kundra, H Zhang, J Wang, et al., OncoKB: A Precision Oncology 

Knowledge Base. JCO Precis Oncol 2017;1:1–16. 

33.  D Tamborero, C Rubio-Perez, J Deu-Pons, MP Schroeder, A Vivancos, A Rovira, et al., Cancer Genome 

Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 
 

2018;10:25. 

34.  R Nakato, K Shirahige, Recent advances in ChIP-seq analysis: from quality management to whole-

genome annotation. Brief Bioinform 2017;18:279–290. 

35.  AM Bolger, M Lohse, B Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. 

Bioinformatics 2014;30:2114–2120. 

36.  A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, et al., STAR: Ultrafast universal RNA-seq 

aligner. Bioinformatics 2013;29:15–21. 

37.  J Harrow, A Frankish, JM Gonzalez, E Tapanari, M Diekhans, F Kokocinski, et al., GENCODE: The 

reference human genome annotation for the ENCODE project. Genome Res 2012;22:1760–1774. 

38.  A Tarasov, AJ Vilella, E Cuppen, IJ Nijman, P Prins, Sambamba: Fast processing of NGS alignment 

formats. Bioinformatics 2015;31:2032–2034. 

39.  L Wang, J Nie, H Sicotte, Y Li, JE Eckel-Passow, S Dasari, et al., Measure transcript integrity using RNA-

seq data. BMC Bioinformatics 2016;17:58. 

40.  L Wang, S Wang, W Li, RSeQC: quality control of RNA-seq experiments. Bioinforma Oxford Engl 

2012;28:2184–2185. 

41.  Y Liao, GK Smyth, W Shi, FeatureCounts: An efficient general purpose program for assigning sequence 

reads to genomic features. Bioinformatics 2014;30:923–930. 

42.  B Li, CN Dewey, “RSEM: Accurate transcript quantification from RNA-seq data with or without a 

reference genome” in Bioinformatics: The Impact of Accurate Quantification on Proteomic and Genetic 

Analysis and Research, p. 323. 

43.  F Ramírez, DP Ryan, B Grüning, V Bhardwaj, F Kilpert, AS Richter, et al., deepTools2: a next generation 

web server for deep-sequencing data analysis. Nucleic Acids Res 2016;44:W160–W165. 

44.  MI Love, W Huber, S Anders, Moderated estimation of fold change and dispersion for RNA-seq data 

with DESeq2. Genome Biol 2014;15:550. 

45.  A Kamoun, A de Reyniès, Y Allory, G Sjödahl, A Gordon Robertson, R Seiler, et al., A Consensus 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 
 

Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol 2019;77:420–433. 

46.  AG Robertson, J Kim, H Al-Ahmadie, J Bellmunt, G Guo, AD Cherniack, et al., Comprehensive Molecular 

Characterization of Muscle-Invasive Bladder Cancer. Cell 2017;171:540-556.e25. 

47.  T Powles, M Kockx, A Rodriguez-Vida, I Duran, SJ Crabb, MS Van Der Heijden, et al., Clinical efficacy and 

biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. 

Nat Med 2019;25:1706–1714. 

48.  S Mariathasan, SJ Turley, D Nickles, A Castiglioni, K Yuen, Y Wang, et al., TGFβ attenuates tumour 

response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018;554:544–548. 

49.  T Borggrefe, F Oswald, The Notch signaling pathway: Transcriptional regulation at Notch target genes. 

Cell Mol Life Sci 2009;66:1631–1646. 

50.  H van Ooijen, M Hornsveld, C Dam-de Veen, R Velter, M Dou, W Verhaegh, et al., Assessment of 

Functional Phosphatidylinositol 3-Kinase Pathway Activity in Cancer Tissue Using Forkhead Box-O 

Target Gene Expression in a Knowledge-Based Computational Model. Am J Pathol 2018;188:1956–

1972. 

51.  X Varelas, The hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Dev 

2014;141:1614–1626. 

52.  M Fischer, Census and evaluation of p53 target genes. Oncogene 2017;36:3943–3956. 

53.  H Kitamura, H Motohashi, NRF2 addiction in cancer cells. Cancer Sci 2018;109:900–911. 

54.  M Hartl, The quest for targets executing MYC-dependent cell transformation. Front Oncol 2016;6:132. 

55.  M-C Wagle, D Kirouac, C Klijn, B Liu, S Mahajan, M Junttila, et al., A transcriptional MAPK Pathway 

Activity Score (MPAS) is a clinically relevant biomarker in multiple cancer types. npj Precis Oncol 

2018;2:1–12. 

56.  PJ Murray, The JAK-STAT Signaling Pathway: Input and Output Integration. J Immunol 2007;178:2623–

2629. 

57.  G Yu, QY He, ReactomePA: An R/Bioconductor package for reactome pathway analysis and 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 
 

visualization. Mol Biosyst 2016;12:477–479. 

58.  G Sturm, F Finotello, F Petitprez, JD Zhang, J Baumbach, WH Fridman, et al., Comprehensive evaluation 

of transcriptome-based cell-type quantification methods for immuno-oncology in Bioinformatics, 

(Oxford University Press), pp. i436–i445. 

59.  F Finotello, C Mayer, C Plattner, G Laschober, D Rieder, H Hackl, et al., Molecular and pharmacological 

modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome 

Med 2019;11:34. 

60.  YE Jang, I Jang, S Kim, S Cho, D Kim, K Kim, et al., ChimerDB 4.0: an updated and expanded database of 

fusion genes. Nucleic Acids Res 2019;48:D817–D824. 

61.  HX Dang, BS White, SM Foltz, CA Miller, J Luo, RC Fields, et al., ClonEvol: clonal ordering and 

visualization in cancer sequencing. Ann Oncol 2017;28:3076–3082. 

62.  I Dunham, A Kundaje, SF Aldred, PJ Collins, CA Davis, F Doyle, et al., An integrated encyclopedia of DNA 

elements in the human genome. Nature 2012;489:57–74. 

63.  Roadmap Epigenomics Consortium, A Kundaje, W Meuleman, J Ernst, M Bilenky, A Yen, et al., 

Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317–329. 

64.  CA Davis, BC Hitz, CA Sloan, ET Chan, JM Davidson, I Gabdank, et al., The Encyclopedia of DNA 

elements (ENCODE): data portal update. Nucleic Acids Res 2018;46:D794–D801. 

65.  R Core Team, R Core Team (2017). R: A language and environment for statistical computing. R Found 

Stat Comput Vienna, Austria URL http//wwwR-project.org/ 2017;R Foundation for Statistical 

Computing. 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


54 
 

Acknowledgements 

This research was funded by the Barcode for Life foundation through M.P. J. L. The Hartwig Medical 

Foundation and the Center of Personalized Cancer Treatment are acknowledged for making the clinical and 

genomic data available to the study. H.J.G.W., J.A.N. and the Erasmus MC Cancer Computational Biology 

Center were financed through a grant from the Daniel den Hoed Foundation and the Dutch Uro-Oncology 

Study group (DUOS). Revision of pathological diagnosis was funded by a DUOS research grant. This study was 

also partially financed by a grant from Merck Sharpe & Dome, Kenilworth, N.J., U.S.A., through M.P.J.L. We 

thank all local principal investigators and the nurses of all contributing centers for their help with patient 

recruitment. We are particularly grateful to all participating patients and their families.  

 

Author contributions 

Conceptualization: JAN, MR, HJGvdW, MPJL, JLB; Methodology: JAN, MR, HJGvdW, MPJL, and JLB; Software: 

JAN, HJGvdW, and JvR; Validation: MPJL, JLB, JvR ; Formal Analysis: JAN and HJGvdW; Investigation: MR, 

MSvdH, JV, NM, SvW, SO, HMW, ECZ, RdW, AAMvdV; Resources: HJGvdW, MPJL, JLB, MSvdH, JV, EC, NM, SvW, 

SO, HMW, ECZ, RdW, AAMvdW, MPJL and JLB; Data Curation: JAN, MR, HJGvdW, JvR, and EC ; Writing – 

Original Draft: JAN, MR, HJGvdW, MPJL and JLB; Writing – Review & Editing: JAN, MR, JvR, MSvdH, JV, EC, NM, 

SvW, SO, HMW, ECZ, RdW, AAMvdW, HJGvdW, MPJL and JLB; Visualization: JAN and MR; Supervision: JLB, 

HJGvdW and MPJL; Project Administration: JAN, MR, HJGvdW, MPJL and JLB; Funding Acquisition: JLB , 

HJGvdW, and MPJL 

 

Competing Interests statement 

Michiel S. van der Heijden has received research support from Bristol-Myers Squibb, AstraZeneca and Roche, 

and consultancy fees from Bristol-Myers Squibb, Merck Sharp & Dohme, Roche, AstraZeneca, Seattle Genetics 

and Janssen (all paid to the Netherlands Cancer Institute). Niven Mehra has received research support from 

Astellas, Janssen, Pfizer, Roche and Sanofi Genzyme, and consultancy fees from Roche, MSD, BMS, Bayer, 

Astellas and Janssen (all paid to the Radboud University Medical Center). Sjoukje F. Oosting has received 

research support from Celldex and Novartis (both paid to the University Medical Center Groningen). Hans M. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/


55 
 

Westgeest has received consultancy fees from Roche and Astellas (all paid to the Amphia hospital, Breda),  

Ronald de Wit has received research support from Sanofi and Bayer, and consultancy fees from Sanofi, Merck, 

Astellas, Bayer, Janssen, and Roche (all paid to the Erasmus MC Cancer Institute). Astrid A.M. van der Veldt has 

received consultancy fees from for BMS, MSD, Merck, Novartis, Roche, Sanofi, Pierre Fabre, Ipsen, Eisai, Pfizer 

(all paid to the Erasmus MC Cancer Institute). Martijn P. J. Lolkema has received research support from JnJ, 

Sanofi, Astella and MSD, and personal fees from Incyte, Amgen, JnJ, Bayer, Servier, Roche, INCa, Pfizer, Sanofi, 

Astellas, AstraZeneca, MSD, Novartis and Julius Clinical (all paid to the Erasmus MC Cancer Institute). Joost L. 

Boormans has received research support from Decipher Biosciences and Merck Sharp & Dohme, and 

consultancy fees from Merck Sharp & Dohme, Eight Medical, Ambu, APIM therapeutics and Janssen (all paid to 

the Erasmus MC Cancer Institute). J. Alberto Nakauma-González, Maud Rijnders, Job van Riet, Jens Voortman, 

Edwin Cuppen, Sandra van Wilpe, L. Lucia Rijstenberg, Ellen C. Zwarthoff, and Harmen J. G. van de Werken 

declare no competing interests.  

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435757
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Results
	Cohort description
	Figure 1 – Overview of the study design and biopsy sites of 116 patients with metastatic urothelial cancer
	Genomic landscape of mUC
	Figure 2 – Genomic landscape of metastatic urothelial carcinoma stratified by genomic subtypes
	APOBEC mutagenesis is an active process that generates new mutations in mUC
	Figure 3 – APOBEC expression and cancer evolution of eight tumors from metastatic urothelial carcinoma patients with serial biopsies
	APOBEC associated mutations are randomly distributed across the genome in mUC
	Figure 4 – Differences in the load of APOBEC associated mutations between high and low DNA accessibility regions in metastatic urothelial carcinoma genomes
	Transcriptomic subtypes of mUC
	Altered canonical signaling pathways in different transcriptomic subtypes
	Figure 6 – Pathway alterations at genomic and transcriptomic level across mRNA-based subtypes of metastatic urothelial carcinoma

	Discussion
	Figure 7 – Overview of actionable targets and possible treatments per transcriptomic subtype for metastatic urothelial carcinoma

	Methods
	Patient cohort and study procedures
	Central pathology review
	Whole-genome sequencing and analysis
	Whole-genome DNA sequencing, alignment and data processing
	Detection and characterization of recurrent copy number alterations
	Detection of driver genes using dN/dS ratios
	APOBEC enrichment and mutagenesis
	Clonality fraction estimation
	Mutational signatures and genomic subtypes
	Detection of chromothripsis
	Catastrophic-like events, such as chromothripsis, were detected with Shatterseek v0.4 (27) using default parameters. Absolute copy numbers (as derived by PURPLE) were rounded to the nearest integer; only structural variants with TAF ≥ 0.1 at either en...
	MicroSatellite Instabilty (MSI) status
	The Classifier for Homologues Recombination Deficiency (CHORD; v2.0) with default parameters was used to identify tumors with HR proficiency and deficiency (28). Four samples had very high number of indels corresponding with MSI samples (Figure 2A) an...
	Detection of kataegis
	Mutational load across genomic regions

	Genomic alteration of oncogenic pathways
	Inventory of clinically-actionable somatic alterations and putative therapeutic targets
	DNA accessibility estimation (ChIPseq)
	Whole-transcriptome sequencing and analysis
	RNA-sequencing, alignment and data pre-processing
	Transcriptome expression data mapped to genomic regions
	Transcriptomic subtypes: clustering samples by RNAseq data
	Phenotypic markers and signature score

	Pathway activity score
	Pathway enrichment analysis
	Immune cell infiltration

	APOBEC mutation rate and APOBEC expression in tumors with multiple sequential biopsies
	Code availability
	Statistical analysis

	Data availability
	References to main text
	References to methods
	Acknowledgements
	Author contributions
	Competing Interests statement

