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ABSTRACT 

Purpose: In this study, we use the hypoxia targeting agent (GdDO3NI, a nitroimidazole-

based T1 MRI contrast agent) for imaging hypoxia in the injured brain after experimental 

traumatic brain injury (TBI) using magnetic resonance imaging (MRI), and validate the 

results with immunohistochemistry (IHC) using pimonidazole. 

Methods: TBI induced mice (controlled cortical impact model) were imaged at 7T using 

a T2 weighted fast spin-echo sequence to estimate the extent of the injury. The mice were 

then were intravenously injected with either conventional T1 agent (gadoteridol) or 

GdDO3NI at 0.3 mmol/kg dose (n=5 for each cohort) along with pimonidazole (60 mg/kg). 

Mice were imaged pre- and post-contrast using a T1-weighted spin-echo sequence for 

three hours. Regions of interests were drawn on the brain injury region, the contralateral 

brain as well as on the cheek muscle region for comparison of contrast kinetics. Brains 

were harvested immediately post imaging for immunohistochemical analysis. 

Results: GdDO3NI is retained in the injury region for up to 3 hours post-injection (p< 0.05 

compared to gadoteridol) while it rapidly clears out of the muscle region. On the other 

hand, conventional MRI contrast agent gadoteridol clears out of both the injury region and 

muscle rapidly, although with a relatively more delayed wash out in the injury region. 

Minimal contrast enhancement was seen for both agents in the contralateral hemisphere. 

Pimonidazole staining confirms the presence of hypoxia in both gadoteridol and 

GdDO3NI cohorts, and the later cohort shows good agreement with MRI contrast 

enhancement. 

Conclusion: GdDO3NI was successfully shown to visualize hypoxia in the brain post-

TBI using T1-wt MRI. 
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1.  Introduction 

Traumatic brain injury (TBI) occurs due to damage to the brain resulting from an 

external mechanical force, including rapid acceleration or deceleration, blast waves, 

crushing force, an impact, or penetration by a projectile(1). An estimated 1.7 million TBI 

occur annually in the U.S., which results in the hospitalization of 373,000, and 99,000 

totally disabled individuals, and over 50,000 deaths (2,3). Disabilities as well as cognitive, 

behavioral, and productivity problems are the most common complications for survivors; 

in acute cases, the affected individuals face mortality(4,5). Upon sustaining a TBI, the 

mechanical forces from impact inflict heterogeneous tissue damage, referred to as the 

primary injury phase(1). This insult initiates a myriad of pathophysiological and 

biochemical secondary injury signaling cascades, including hypo- or hyper-perfusion, 

edema, blood-brain barrier (BBB) dysfunction, and inflammation that evolves from 

minutes to days post-trauma(6-8).  

Brain tissue hypoxia, defined as brain tissue oxygen tension (pO2) < 15 mm Hg, is a 

common consequence of TBI due to the rupture of blood vessels during impact(9). 

Studies have reported about 30-50% of TBI patients to have hypoxia as early as arriving 

in an emergency room(10,11). It is shown that brain hypoxia, as one of the post-traumatic 

insults, is associated with mortality and poor and unfavorable neurological outcomes(12-

17). Tissue hypoxia has a significant cross-talk with inflammatory processes, whereby 

hypoxia can trigger the upregulation of proinflammatory cytokines, and the resulting 

inflammation can further exacerbate hypoxia due to an increase in the metabolic 

demands of cells and a reduction in metabolic substrates caused by thrombosis, trauma, 

compression (interstitial hypertension)(18).  Cellular signaling continues acutely and post-
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acutely to restore homeostasis in injured tissue, which, if not controlled, can exacerbate 

the injury(8,19). Furthermore, studies suggest brain tissue oxygen-based therapy can 

reduce mortality rate and ameliorate neurological outcome for the patients (20,21).  

Noninvasive characterization of the injury microenvironment is often difficult to achieve 

through conventional neuroimaging methods (e.g. Computed tomography (CT), T1w and 

T2w Magnetic Resonance Imaging (MRI)) as they are not sensitive enough to identify 

regions undergoing microstructural changes (22-24). The CT scan is highly effective in 

detecting TBI induced skull fractures, bleeding within and surrounding the brain 

(hematomas) as well as brain swelling (edema) and the resolution of these over time. CT 

is much more limited in its ability to detect the widespread microscopic injury to axons 

which leads to many of the long-term problems experienced by TBI patients. MRI is a 

powerful diagnostic tool that can detect signs of injury such as minute bleeding 

(microhemorrhage), small areas of bruising (contusion) or scarring (gliosis), which are 

invisible to the CT scan. Several MR-based neuroimaging modalities have been used to 

qualitatively examine acute and chronic changes post TBI longitudinally (25,26): (a) fluid-

attenuated inversion recovery (FLAIR) MRI, a sequence that suppresses the high signal 

from CSF, is sensitive in detecting traumatic lesions and hematomas, (b)T1-weighted 

structural MRI is sensitive to morphological changes in gray matter volume and cortical 

thickness, (c) diffusion-weighted MRI (DWI) is sensitive to changes in the microstructural 

integrity of white matter, (d) MR spectroscopy provides a sensitive assessment of 

metabolic and neurochemical alterations in the brain, and (e) T2*-weighted blood oxygen 

level dependent (BOLD) functional MRI (fMRI) provides insight into the functional 

changes that occur as a result of structural damage and typical developmental 
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processes. BOLD fMRI only reflects vascular oxygenation and it cannot provide data in 

regions where BBB is disrupted. An unmet need in TBI diagnosis is the ability to assess 

tissue oxygenation or hypoxia.  

Among various invasive techniques to detect hypoxia, the 2-nitroimidazole 

pimonidazole, has been previously demonstrated to be reliable in detecting hypoxic 

regions in tissue (27). After intravenous administration and extravasation, pimonidazole 

gets activated under hypoxia and binds to thiol-containing proteins in hypoxic regions, 

and these adducts can be detected ex vivo utilizing  immunohistochemistry (IHC) in 

conjunction with fluorescent microscopy  (28). In addition, several noninvasive imaging 

approaches to assess hypoxia  (qualitatively or quantitatively)  have been developed and 

are in various stages of validation from preclinical to clinical use (29).  Currently, 

[18F]Fluoromisonidazole (18F-MISO)  [18F]fluoroazomycin arabinoside (FAZA) (30), [18F]-

EF5 (31), [18F] fluoroerythronitroimidazole (FETNIM) (32) and Cu-labelled diacetyl-

bis(N(4)-methylthiosemicarbazone (Cu-ATSM) are being used as  hypoxia targeting PET 

imaging agents (33). While PET based probes have significantly advanced the field of 

hypoxia imaging, there is a strong rationale for the development of MRI based hypoxia-

imaging techniques as well due to the ability of MRI to acquire higher resolution 

anatomical and complementary functional information in the same scanning session. 

BOLD and tissue oxygen level-dependent (TOLD) signal (34-37) and [19F] Tri-

fluoromisonidazole (TF-MISO)(38,39) are MRI techniques to qualitatively image hypoxia 

while 19F (29,40) and 1H(41-43) based MR oximetry techniques  quantitatively measure 

pO2 in tumors and muscle tissue. Recently, a novel nitroimidazole-based T1 contrast 

agent, gadolinium tetraazacyclododecanetetraacetic acid monoamide conjugate of 2-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435723doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435723


Imaging hypoxia post brain injury 

nitroimidazole (GdDO3NI, MW = 839 g/mol), was used to measure hypoxia, non-

invasively by MRI, in vitro using 9L glioma cells (44) and in vivo in a rat prostate cancer 

model (45) and MRI contrast enhancement showed correlation with pimonidazole 

staining. The relaxivity values of GdDO3NI were reported as r1=4.75±0.04 s-1mM-1 and r2 

=7.52±0.07 s-1mM-1 at 37 °C and 7 T(46). 

The objective of the present study is to utilize GdDO3NI enhanced MRI, for high 

resolution visualization of hypoxia in the rodent brain post TBI and to validate MRI data 

with pimonidazole based IHC. Here, we used the controlled cortical impact (CCI) injury 

model (47) to recapitulate elements of a focal TBI including focal lesion, axonal injury, 

BBB disruption, and necrosis (48,49).  

2.  Materials and Methods  

2.1. Materials 

ProHance (Gadoteridol; Bracco Diagnostics Inc., Monroe Township, NJ, USA), was used 

as control contrast agent. GdDO3NI, was synthesized as described previously(44). 

Briefly, DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was selected 

as Gd chelator along with conjugation to 2-nitroimidazole for hypoxia targeting. 

Pimonidazole and FITC linked mouse anti-pimonidazole MAb (Hypoxyprobe Inc, 

Burlington, MA, USA) was used as the gold standard  hypoxia indicator in tissue through 

IHC staining. 

2.2. Animal preparation  

All animal studies were approved by Arizona State University's Institute of Animal Care 

and Use Committee (IACUC) and were performed in accordance with the relevant 

guidelines. Two cohorts of 5 animals each were used in this study. All the procedures on 
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animals were performed under isoflurane (Baxter International Inc, Deerfield, IL). TBI was 

simulated using the CCI model of TBI (47).  Briefly, adult male C57Bl/6 mice (9-11 weeks 

old) placed in stereotaxic frame under isoflurane anesthesia (3% induction, 1.5% 

maintenance). The frontoparietal cortex was exposed via 3 mm craniotomy and the 

impact tip was centered at −1.5 mm bregma and 1.5 mm lateral from midline. The 

impactor tip diameter was 2 mm, the impact velocity was 6.0 m/s and the depth of cortical 

deformation was 2 mm with 100 ms impact duration (Impact ONE; Leica Microsystems). 

After the impact, the skin was sutured, and the animal was catheterized for tail vein 

injection. Once the catheter was connected, the animal was placed onto temperature 

controllable MR bed and kept at 37 °C and under anesthesia (isoflurane at 1.5%).  

2.3. Magnetic resonance imaging 

MRI studies were carried out on a 7 T Bruker system with a surface coil. Mice were placed 

into the magnet right after the injury and pre-injection T2 and T1 weighted scans were 

acquired in a one hour window after injury and before injection of contrast agents. A 

cocktail of 60 mg/kg pimonidazole (hypoxia marker) and 0.3 mmol/kg of either MRI agents 

(gadoteridol or GdDO3NI) in a 100 μL volume was injected via intravenous injection at 1 

hour post-injury and follow-up imaging began right after the injection. Multi gradient echo 

(MGE) sequence with TR= 80 ms, TE= 3 ms, flip angle= 35o, image acquisition time=5min 

27s, and FOV (2 cm X 2 cm X 2 cm) were used to monitor the contrast agent uptake in 

the site of injury over a period of three hours with 10 min intervals after injury. Image data 

(k-space) were acquired with grid size of 128*64*64 and zero-filled to 128*128*128 for 

further analysis. 
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2.4. Data processing 

Acquired data was processed using custom-written scripts in MATLAB. Regions 

of interests (ROI) for the muscle, injury, and the contralateral brain were manually 

delineating on the T2 maps, for each animal. These were registered and applied to the 

time course T1-wt images as masks to extract data for further analysis. From these data, 

the injury volume, normalized differential enhancement (NDE) and the contrast agent 

retention fraction, were calculated for each animal NDE is defined as the difference in 

percentage enhancement between the injury region and the contralateral brain and 

divided by the maximum value of the muscle enhancement for each data set.   NDE is 

used to reduce the influence of normal muscle and brain contrast retention, ensuring the 

calculated enhancement is due to injury-induced hypoxia. The contrast agent retention 

fraction is calculated as the fraction of pixels in the injury region with NDE values greater 

than the mean NDE + standard deviation of the conventional contrast agent cohort. The 

contrast agent retention fraction is used to discern the additional contrast retention of 

GdDO3NI when compared to gadoteridol. The pre-injection and 3-hour post-injection 

scans were used to create 3D percentage contrast enhancement maps for each animal 

using the 3D Slicer software (http://www.slicer.org). A percentage enhancement range 

between 10% and 100% were used to display the 3D videos of hypoxic regions 

(Supplementary data) to show the spatial extent and degree of contrast retention. 

2.5. Statistics 

All results are reported as means ± standard deviations (SD). Statistical comparisons 

were made between time-course gadoteridol and GdDO3NI data using analysis of 
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variance (ANOVA).  In pairwise statistical evaluations, the Tukey (α= 0.05, 95% 

confidence intervals) test was used between specific means. 

2.6. Tissue Collection 

The excision and fixing of the brain tissue was performed as reported previously (50). 

Immediately after imaging, animals were deeply anesthetized with lethal dose of sodium 

pentobarbital solution. Once a tail pinch produced no reflex movement, animals were 

transcardially perfused with cold phosphate-buffered saline (PBS), followed by 4 % (w/v) 

buffered paraformaldehyde solution. Whole brain tissue was harvested and fixed 

overnight in 4 % (w/v) buffered paraformaldehyde solution. The following day, brains were 

immersed in 30 % (w/v) sucrose solution in 1X PBS for cryoprotection until the tissue was 

fully infiltrated. Samples were embedded in optimal cutting temperature medium and 

frozen on dry ice. Samples were stored at −80°C until sectioned coronally at a 20 μm 

thickness with a cryostat (CryoStar™ NX70; Thermo Fisher Scientific) and collected onto 

positively charged microscope slides. Slides were retained in -80oC refrigerator for further 

staining and analyses. 

2.7. Histology and immunohistochemistry 

Pimonidazole staining was performed using FITC-conjugated anti-pimonidazole antibody. 

The slides, which were kept in -80 C were moved to the -20 C freezer for 20-30 minutes. 

Then, they were moved to a 4 C refrigerator for 15-20 minutes before being moved to 

room temperature PBS in a glass slide staining rack to avoid the temperature shock. The 

slides were moved to a tray and covered with the blocking buffer for 1 h. The slides were 

then washed using the waterfall technique with 1X PBS three times and were placed in 

the glass station filed with 1x PBS for 5 minutes and washed again. Following that, slides 
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were placed in a tray and moved to 4 C refrigerator and covered with 100 μL of the FITC 

conjugated anti pimonidazole antibody and incubation buffer mixture for overnight 

incubation.  

Sections were then washed with 1 mL of 1X PBS for three times in a dimmed light 

room and incubated with the nuclear stain  DAPI (4',6-diamidino-2-phenylindole)to help 

in identification of tissue in final visualization. Microscope images were acquired using a 

Leica microscope with 355-425 nm excitation / LP 470 nm emission filter for DAPI and 

450-490 nm excitation / 500-550 nm emission filter for FITC. 

3.  Results 

To verify the consistency of the TBI modeling, we calculated the injury volume for 

each cohort using MR images. T2 wt MRI allowed for delineation of injury regions and 

quantification of injury volumes in the gadoteridol and GdDO3NI injected cohorts at 1 hr 

post-injury. The mean injury volumes for the gadoteridol and GdDO3NI cohorts were 

4.82±0.50 mm3 and 5.23±1.13 mm3, respectively (p>0.05).  Fig. 1 shows the dynamic 

percentage enhancement maps of a representative animal from the gadoteridol (top row) 

and GdDO3NI injected animal over the course of three hours post-injection. The region 

of interest (ROI) defining the injury region is indicated using a white arrow on T2 weighted 

and T1 weighted images. The color map overlay represents the percentage changes in 

pixel intensities with respect to the pre-injection value. Gadoteridol (Fig 1, top row) shows 

almost complete clearance from the injury region while GdDO3NI (bottom row) shows 

significant accumulation at 3 hr post injection. Fig. 2a shows the mean time-course NDE 

of the two cohorts over three hours post-injection. Statistical analysis showed significant 

differences (p< 0.05) in NDE of the injury region after 150 min between gadoteridol and 
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GdDO3NI cohorts. The distribution of pooled NDE values over all animals (Fig. 2b) further 

underline the differences between the two agents.  The ROI analysis for both contrast 

agents revealed changes in the signal intensity in injury site and muscle but almost no 

changes in the healthy contralateral region over the three hours (Supplementary figure 

1). The intensity enhancement values in muscle showed rapid changes compared to the 

injury region that was slow and prolonged. Comparing the two cohorts (n=5) shows 

statistically significant retention (p < 0.05) of GdDO3NI in the injured region with 

significantly lower retention of gadoteridol at 150 minutes post-injection or later with the 

contrast agent retention factor values of 63.95±27.43 % and 20.68±7.43 %, respectively, 

at 3 hr post injection (4 hr post injury).  In order to visualize the hypoxic regions in 3D, the 

maps of hypoxia and videos were generated.  Fig. 3 (a, b) illustrate the 3D visualization 

of percentage enhancement at 3 hr post-injection for a representative animal from each 

cohort which shows the difference between the enhancement of each contrast agent can 

be seen, and the volumetric extent of the contrast agent retention. Corresponding videos 

(Supplementary data) allow for complete visualization of the injury region within the brain. 

Table 1 summarizes the injury volumes, NDE and the contrast agent retention factor for 

each animal as well as the means and standard deviations. We performed pimonidazole-

based immunohistochemical staining of the brain sections for each cohort to study the 

presence of hypoxia and sections from corresponding representative animals in Fig. 2 

and Fig. 3 are shown in Fig. 4. The DAPI staining is presented in blue and pimonidazole 

staining in green. The results from both cohorts confirmed the presence of pimonidazole 

in the injury region. 
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4.  Discussion and Conclusions 

The mean volume of injury for gadoteridol injected cohort and the GdDO3NI injected 

cohort showed no statistically significant difference between the cohorts, indicating the 

consistency of the lesion volume and TBI modeling across the animals. Our results 

showed the contrast agent retention factor was significantly different in the two cohorts. 

Under normal physiological conditions, small molecular non-targeting Gd contrast agents 

such as gadoteridol, once introduced to the bloodstream, do not extravasate into brain 

tissue due to the tightly regulated BBB (unlike the muscle tissue). In pathologies that 

disrupt the BBB (e.g TBI or brain tumors), dynamic contrast enhanced MRI shows 

accumulation and clearance of the contrast agent from the affected region enabling the 

estimation of BBB leakiness (51,52). GdDO3NI and gadoteridol had similar, slower 

uptake pharmacokinetics in the brain injury region compared to muscle in each case. This 

observation can be attributed to the complex dynamic of the injured brain and blood flow 

disruption due to BBB dysfunction in the injury region compared to the intact muscle (53). 

In contrast, the clearance pharmacokinetics of the two agents (GdDO3NI and gadoteridol) 

were markedly distinct in the injured brain while they were similar in the muscle region.  

In absence of hypoxia in the muscle, GdDO3NI behaves like any other small molecular 

MRI contrast agent, including gadoteridol)  with uptake/clearance kinetics that are 

predominantly flow-limited (54).  However, in the hypoxic injured region, the two agents 

behave differently, with GdDO3NI binding to proteins, via the 2-nitroimidazole moiety of 

the agent, showing significantly longer retention times compared to gadoteridol. This 

mechanism has been previously shown in prostate tumors as well where GdDO3NI was 

retained in hypoxic regions compared to a non-targeting Gd agent (45) . A qualitative 
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comparison between the MRI and IHC images shows a good agreement between the 

location of T1 hyper-intensity regions within in the injury site in the GdDO3NI cohort and 

pimonidazole binding. These observations confirm our hypothesis that GdDO3NI 

localizes in hypoxic regions in TBI. 

The contrast agent retention factor reflects the amount of contrast agent in the injury 

region at the 3 hr post injection. While we see significant differences in the retention of 

gadoteridol compared to GdDO3NI, the former does not appear to be completely 

eliminated possibly due to the irreversible retention (51). The dynamic nature of the BBB 

dysfunction can influence the amount of exogenous agents that are able to wash in or 

wash out, even over a matter of hours post injury, due to dynamic reduction in BBB 

leakiness (55). Our results showed the GdDO3NI cohort had significantly higher retention 

values compared to gadoteridol that can only be attributed to binding in the hypoxic 

regions. In case of the GdDO3NI the retention fraction is related to the hypoxic fraction 

but, unlike tumors, it may overestimate the hypoxic fraction due to some degree of 

irreversible retention arising from acute reduction in BBB leakiness over 3 hrs since the 

contrast agent was injected (as seen for the control agent, gadoteridol).  The IHC results 

from both cohorts confirmed the presence of hypoxia post TBI; however, only animals in 

the GdDO3NI cohort were able to represent that in MRI contrast enhancement studies. 

In summary, the results demonstrate that contrast enhanced MRI using GdDO3NI 

allows visualization of hypoxic regions in the brain following TBI. The MR results were 

validated by the gold standard method of IHC staining for pimonidazole. Non-invasive 

imaging of hypoxia in TBI could allow for injury prognosis as well as personalized 

treatment targeted towards alleviation of hypoxia.  
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Figures 

Fig 1.  MRI T2 weighted scout images and signal enhancement (%) overlay on T1 

weighted images of mice brains pre- and post-injection of conventional Gd agent 

gadoteridol (top row), and GdDO3NI (bottom row) over 3 hrs after injection. White arrow 

shows location of injury. 

Fig 2. Time course mean normalized differential enhancement (NDE) results for 

gadoteridol and GdDO3NI injected cohort during 3 hrs after injection. NDE is calculated 

as the difference between the % enhancements of the injury region and a contralateral 

brain region of interest (ROI) normalized to the peak % enhancement for a muscle ROI.  

 

Fig 3. 3D rendering of hypoxic regions in brains of representative (a) gadoteridol and (b) 

GdDO3NI injected animal. Color scale represents percentage enhancement at 3 hrs post 

injection of respective contrast agent. 3D rendering shows both the spatial extent as well 

as the severity of hypoxia in the GdDO3NI cohort and the degree of residual agent 

retention in the gadoteridol cohort. Color scale= 10% -100%, scale bar = 5 mm. 

Fig 4. Immunohistochemical staining for hypoxia in injured animals (corresponding to fig 

1), DAPI is visualized in blue and pimonidazole staining is visualized in green in 

representative animals injected with (a) gadoteridol or (b) GdDO3NI. Both cohorts display 

presence of hypoxia post injury. Scale bar = 1 mm. 
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Fig. 2a 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2b 
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Fig. 4 
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Table 1. Injury volume, normalized differential enhancement and contrast agent retention 

fraction for each animal in the gadoteridol (control) and GdDO3NI cohorts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animal 

number 

Injury 

volume 

(mm3) 

Normalized 

Differential 

Enhancement 

(NDE) 

Contrast 

agent 

retention 

fraction (%) 

Gadoteridol 

# 1 4.68 -0.26 15.17 

# 2 5.27 -0.04 13.41 

# 3 4.58 0.16 32.37 

# 4 4.20 0.10 21.71 

# 5 5.40 -0.09 20.74 

Mean 4.82±0.50 -0.03±0.17 20.68±7.43 

GdDO3NI 

# 1 6.81 0.89 51.25 

# 2 5.66 0.41 45.32 

# 3 3.77 0.18 93.67 

# 4 4.69 0.18 36.32 

# 5 5.22 0.13 93.20 

Mean 5.23±1.13 0.36±0.32* 63.95±27.43* 
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