
TITLE PAGE 

 GlucoCEST MRI for the early evaluation response to chemotherapeutic and metabolic 

treatments in a murine triple negative breast cancer: a comparison with [18F]F-FDG-PET.  

Martina Capozza1, Annasofia Anemone2, Chetan Dhakan3, Melania Della Peruta1, Martina 

Bracesco1, Sara Zullino2, Daisy Villano2, Enzo Terreno1,2, Dario Livio Longo3*, Silvio Aime2 

1 Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, 

University of Torino, Turin, Italy 

2Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, 

University of Torino, Turin, Italy 

3Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, 

Italy 

Corresponding Author: 

Dario Livio Longo, Istituto di Biostrutture e Bioimmagini (IBB), Consiglio Nazionale delle 

Ricerche (CNR), Via Nizza 52, 10126, Torino, Italy 

Phone: +39-011-6706473, Fax: +39-011-6706487, email: dario.longo@unito.it , 

dariolivio.longo@cnr.it 

Short title: GlucoCEST vs FDG-PET for the early monitoring of therapeutic response in TNBC. 

Manuscript category: original article 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.432430doi: bioRxiv preprint 

mailto:dario.longo@unito.it
mailto:dariolivio.longo@cnr.it
https://doi.org/10.1101/2021.03.16.432430


Purpose: Triple-negative breast cancer (TNBC) patients have usually poor outcome after 

chemotherapy and early prediction of therapeutic response would be helpful. [18F]F-FDG-PET/CT 

acquisitions are often carried out to monitor variation in metabolic activity associated to response to 

the therapy, despite moderate accuracy and radiation exposure limit its application. The glucoCEST 

technique relies on the use of unlabelled D-glucose to assess glucose uptake with conventional MRI 

scanners and is currently under active investigations at clinical level. This work aims at validating 

the potential of MRI-glucoCEST in monitoring early therapeutic responses in a TNBC tumor murine 

model. 

Procedures: Breast tumor (4T1) bearing mice were treated with doxorubicin or dichloroacetate for 

one week. PET/CT with [18F]F-FDG and MRI-glucoCEST were performed at baseline and after 3 

cycles of treatment. Metabolic changes measured with [18F]F-FDG-PET and glucoCEST were 

compared and evaluated with changes in tumor volumes. 

Results: Doxorubicin treated mice showed a significant decrease in tumor growth when compared to 

the control group. GlucoCEST imaging provided early metabolic response after three cycles of 

treatment, conversely, no variations were detect by in [18F]F-FDG uptake. Dichloroacetate treated 

mice did not show any decrease either in tumor volume or in tumor metabolic activity as assessed by 

both glucoCEST and [18F]F-FDG-PET. 

Conclusions: Early metabolic changes during doxorubicin treatment can be predicted by glucoCEST 

imaging that appears more sensitive than [18F]F-FDG-PET in reporting on early therapeutic response. 

These findings support the view that glucoCEST may be a sensitive technique for monitoring 

metabolic response, but future studies are needed to explore the accuracy of this approach in other 

tumor types and treatments.  

Keywords: glucoCEST, [18F]F-FDG-PET, MRI, doxorubicin, dichloroacetate, triple negative 

breast cancer, therapy monitoring, glucose metabolism  
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INTRODUCTION  

Breast cancer is the most common invasive malignancy in women worldwide, with triple-negative 

breast cancer (TNBC) accounting for 15% of invasive breast cancers and characterized by high 

aggressiveness and different sensitivity to chemotherapy [1].  In clinical settings, tumor diagnosis 

and therapy response are often performed by Positron Emission Tomography (PET) in combination 

with 2-deoxy-2-18F-Fluoro-D-glucose (18F-FDG) [2-3] to exploit the elevated glucose uptake in 

tumors [4]. A change in tumor metabolic activity, as assessed by a decrease of [18F]F-FDG uptake, is 

an important hallmark of treatment efficacy [5-6] and it is associated to pathological responders [7-

9].  

However, the radioactivity dose and X-ray exposure associated with the [18F]F-FDG-PET/CT 

methodology are source of concerns that limit its use, especially when repeated exams are required 

[10-11]. Additionally, [18F]F-FDG-PET/CT has reasonable sensitivity but low specificity in assessing 

response to chemotherapy in breast cancer [12]. 

Therefore, a molecular imaging approach, without the use of ionizing radiation, able to report on the 

tumor metabolic activity appears most of need. For these reasons, the development of radiation-free 

MRI methods based on the CEST (Chemical Exchange Saturation Transfer) technique has gained 

much interest in the biomedical community for investigating tumor metabolism [13-15]. Briefly, a 

CEST experiment consists in the application of radio frequency pulses at the frequency of the contrast 

agent protons that are involved in chemical exchange with bulk water protons. Each saturated proton 

transferred to the bulk water by the chemical exchange is then replaced by an “unsaturated” water 

proton in a continuous process that, in turn, will result in a detectable decrease of the water resonance 

[16-18]. MRI glucoCEST is an emerging technique that exploits native glucose for non-invasively 

tumor characterization both at preclinical [13, 19-22] and clinical levels [23-25]. D-glucose was 

proposed for the first time in 2012 as CEST contrast agent to discriminate between two breast tumor 

models with a different tumor metabolism [21]. Although glucose and [18F]F-FDG possess a different 

metabolic fate, with both readily taken up by cancer cells, a good spatial accordance between the 
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[18F]F-FDG autoradiography and glucoCEST images was observed in colorectal tumor models [26]. 

After these first studies, several not metabolizable glucose analogues were proposed as CEST contrast 

agents for the assessment of tumor metabolism as more closer mimics to the [18F]F-FDG [27-31]. 

However, D-glucose has still a great advantage in terms of safety and bio-tolerability, that pushed the 

clinical investigations in several cancer patients [23, 32-33], albeit further optimization and some 

technical challenges need to be solved [34-35]. Several other metabolites, including lactate, can also 

be detected by this technique or by exploiting dedicated probes [36-39]. Besides tumor detection and 

staging, the CEST technique can also be applied for therapy response monitoring [39-42]. Recently, 

glucoCEST imaging was exploited to assess the response to a mTOR inhibitor, rapamycin, in a 

glioblastoma tumor model [43]. 

The aim of this study was to investigate whether glucoCEST approach is a valid radiation-free 

alternative to [18F]F-FDG-PET in monitoring the metabolic response to anticancer therapies in a 

preclinical breast cancer murine model. 4T1 murine cancers were used as a clinical relevant highly 

metastatic TNBC phenotype and treated with two different therapies, based on the chemotherapeutic 

doxorubicin or specifically targeting tumor metabolism with dichloroacetate. 

Doxorubicin is widely used in the neoadjuvant setting for TNBC as it kills rapidly proliferating cancer 

cells by inhibiting topoisomerase II [44]. However, [18F]F-FDG-PET/CT has a moderate accuracy in 

predicting the pathological response during chemotherapy in breast cancer patients [45]. 

Dichloroacetate reverses the Warburg effect in tumor cell metabolism redirecting pyruvate back into 

the mitochondria and reducing lactate production [46]. Although the effective clinical administration 

in cancer therapy is still limited to clinical trials, few studies included [18F]F-FDG-PET to assess the 

metabolic response [47]. 

We evaluated the tumor volume growth in treated and untreated mice and determined whether MRI-

glucoCEST or [18F]F-FDG-PET are useful for assessing the early treatment response after few cycles 

of therapy.  
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MATERIALS AND METHODS 

Materials and methods are presented in the electronic supplementary material (ESM). 

RESULTS 

Tumor volume reduction in doxorubicin treated mice compared to control mice was already observed 

five days after treatment (19 days post-implantation, Fig 1). Differences in tumor volumes between 

the two groups of mice became more evident and statistically significant after the second doxorubicin 

dose (292 mm3 and 188 mm3, P = 0.0004; 430 mm3 and 302 mm3 P <0.0001, 628 mm3 and 321 mm3 

P <0.0001 for control and treated mice, after 21, 24 and 26 days post tumor implantation, 

respectively), indicating that the doxorubicin treatment was effective in reducing the tumor growth. 

Conversely, dichloroacetate was not effective in reducing tumor growth in the investigated murine 

breast tumor model, with similar tumor volumes between control and treated mice. 

The mean glucoCEST contrast (ΔST%) was similar between pre and post saline treatment in control 

group (ΔST% = 3.2 ± 1.1 and 2.9 ± 1.2, Fig 2. (a)), likewise the fraction pixel that is the number of 

pixels within the tumor region where glucose was detectable revealed a similar amount of pixels (0.80 

± 0.15 and 0.85 ± 0.16, Fig. 2 (b)). There were no significant changes in [18F]F-FDG uptake from 

baseline to post-treatment (%ID/g = 2.0 ± 0.2 and 2.3 ± 0.3, Fig. 3 (c)).  

Doxorubicin treated group showed a marked glucoCEST contrast decrease after three doses of 

doxorubicin (5 mg/Kg ip each). The ΔST% was 4.0% ± 1.8% before treatment and 2.5% ± 1.2% after 

treatment (p = 0.0334, t-test Fig. 3 (a)). The fraction pixel showed a slight but not significant decrease 

before and after treatment (0.86 ± 0.13 and 0.78 ± 0.19, Fig. 3 (b)). Similarly, the [18F]F-FDG uptake 

was constant before and after treatment (%ID/g = 2.3 ± 0.5 and 2.3 ± 0.4, Fig. 3 (c)). 

The mean glucoCEST contrast detected before and after dichloroacetate treatment was constant 

(ΔST% = 3.4 ± 1.4 and 3.4 ± 1.5, Fig. 4 (a)). The calculated fraction pixel revealed a similar number 

of pixels where glucose was detectable inside the tumor volume (0.80 ± 0.18 before and 0.89 ± 0.10 

after treatment, Fig. 4 (b)). Similarly, when comparing the [18F]F-FDG uptake values between groups, 
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no differences were observed before and after treatment (%ID/g values were 2.2 ± 0.3 and 2.3 ± 0.5 

before and after treatment, Fig. 4 (c)). The native D-glucose was well detected in the glucoCEST 

representative parametric maps (Fig. 6) in control and treated groups at baseline, with a marked 

decrease in the glucoCEST contrast for the post doxorubicin treated group. Noteworthy, the average 

signal was lower in doxorubicin treated tumor, but the distribution of the signal was similar between 

groups as reported by the fraction pixel values.  The [18F]F-FDG accumulation provided a good 

visualization of the radiolabelled glucose uptake within the tumor regions, with no appreciable 

differences after any treatment (Fig. 6). At the end of the therapeutic regimen, the tumor tissue of 

each group was removed and H&E staining was performed. Fig. S2 in the supplementary (see ESM) 

shows a similar percentage area of tumor necrosis for all the three groups.  

DISCUSSION  

The aim of this work was to investigate the capability of the MRI glucoCEST methodology to assess 

the early therapeutic response to anticancer treatments based on doxorubicin or on dichloroacetate. 

The glucoCEST results were compared with the [18F]F-FDG-PET technique and with the tumor size 

changes that are the established standard approach for monitoring  therapy response in oncology [5-

6, 48]. 

 

The herein used murine breast (4T1) tumor model resulted responsive to the doxorubicin treatment, 

with a marked and significant reduction in tumor volume with respect to the control group, while the 

dichloroacetate treatment was not effective in reducing tumor size. According with the volume 

measurements, a reduction in the observed glucoCEST contrast for the doxorubicin treated mice when 

compared to baseline was observed while in dichloroacetate treated mice the glucoCEST contrast did 

not vary between pre- and post-treatment time points thus in agreement with the absence of tumor 

size reduction. Conversely, the pixel fraction and the [18F]F-FDG-PET approach were not able to 

report on the effects associated with both doxorubicin and dichloroacetate treatments.  
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Doxorubicin is a potent anthracycline antibiotic and DNA intercalator that inhibiting topoisomerase 

II slows down cancer cell growth[49-50]. Doxorubicin is responsible for cell apoptosis, autophagy, 

senescence and necrosis[51] and it is effective in the treatment of leukaemia and Hodgkin's lymphoma 

[52-53], as well as several other cancers [54-55]. Our results reporting the poor diagnostic potential 

of [18F]F-FDG-PET are in agreement with observations performed in different cancer models where 

doxorubicin inhibited tumor growth but the [18F]F-FDG-PET parameters were not significantly 

affected[56-59]. As hypothesized by Malinen et al[57], in a complex environment such as the tumor, 

different factors could affect the [18F]F-FDG uptake. For example, decreases of tumor metabolism 

and increases of vascularization may balance out and results in a constant [18F]F-FDG uptake. In 

another study, murine mammary tumors were treated with doxorubicin and, in spite of a decrease of 

[18F]F-FDG uptake after 1 day of treatment, a transient increase was reported 7 days later[60]. The 

limits of [18F]F-FDG-PET in assessing treatment response in comparison to novel imaging 

approaches based on tumor acidosis have been reported also following metformin treatment[61]. 

These results suggest the need of reconsidering the accuracy of [18F]F-FDG-PET as biomarker of 

doxorubicin treatment efficacy in clinical routine [62-63] to avoid the risk of overestimate or 

underestimate the therapeutic response.  

Dichloroacetate shifts metabolism from glycolysis to oxidative phosphorylation, hence reducing 

lactate production[64-65]. Several clinical trials have already been performed to test dichloroacetate 

activity as an anticancer agent[66]. However, at preclinical level, the effects of dichloroacetate appear 

to be dependent on the investigated cancer cell line and imaging technology [67]. A decrease of 

[18F]F-FDG uptake was observed in patients with solid tumors treated with dichloroacetate [47] while 

in human breast cancer (MDA-MB-231) and human cervical cancer (SiHa) mouse models the [18F]F-

FDG uptake is not affected by dichloroacetate treatment[68]. In a glioma model the early metabolic 

response to dichloroacetate treatments has been monitored with hyperpolarized 13C-pyruvate MRI 

showing marked metabolic changes in lactate and bicarbonate levels [69]. Dichloroacetate in a TS/A 

breast cancer xenograft model had no overall effect in tumor size but a marked tumor pH increase 
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was observed in treated tumors by MRI-CEST pH imaging that correlated with a lactate decrease at 

earlier time points[70]. In a U87MG glioma model the intracellular acidification was detected even 

one hour post dichloroacetate  administration using MRI-CEST[71]. Our results showed that the 

dichloroacetate treatment was not effective in the 4T1 tumor model, since neither tumor volume, nor 

18F-FDG-PET uptake and glucoCEST uptake were affected.  

The fraction pixel metric, an indirect measurement of tumor vascularization based on the contrast 

agent detectability, highlighted a similar vascularization between control and treated groups. Also the 

histological evaluation showed a comparable extension of the necrotic areas among the three groups. 

We can ascribe the larger necrosis in the control and dichloroacetate groups due to the larger tumor 

volumes, in contrast to the smaller tumor volumes for the doxorubicin group. Even though it has been 

reported that doxorubicin treatment induces necrosis[51], several studies on the 4T1 breast cancer 

model showed a similar necrotic area between treated and control tumors[72-73].  

GlucoCEST imaging suffers of low contrast enhancement, hence requiring high magnetic fields to 

improve the detectability and the sensitivity of this approach [33-34, 74]. However, a great deal of 

effort is putting into sequences and irradiation pulse optimization in order to improve glucoCEST 

detection[75-76].   

CONCLUSION  

To the best of our knowledge, this is the first preclinical evaluation of the ability of glucoCEST 

imaging for assessing the early treatment efficacy in two different therapies with a direct comparison 

with [18F]F-FDG-PET technique. Overall, the findings reported herein support the use of glucoCEST 

imaging as a valid alternative to [18F]F-FDG-PET for assessing early treatment response to 

conventional chemotherapy. However, additional preclinical studies are needed to further determine 

the capability of glucoCEST imaging in assessing therapeutic response in other tumor models and 

therapeutic regimens. 
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Figure 1. Tumor volume. Bar graph showing tumor volume calculation of 4T1 tumor bearing mice 

over time for control, doxorubicin and dichloroacetate treated groups (mean ± SD). Two-way 

ANOVA Bonferroni post, * p=0.0002, ** p<0.0001. 
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Figure 2. Control group. GlucoCEST and [18F]F-FDGsignal measured in the 4T1 tumor model for 

the control group before (PRE, 14 days after tumor implantation) and after saline treatment (POST, 

21 days after tumor implantation). A) Bar graph showing mean ± SD glucoCEST contrast obtained 

injecting glucose at 3g/Kg dose via intravenous bolus for each 4T1 tumor group. Data are reported 

as the variation (ΔST%) between the ST effect post-injection minus the ST effect pre-injection. B) 

Bar graph showing the fraction pixel values (mean ± SD). C) Bar graphs show the average values for 

the injected dose per gram (%ID/g, mean ± SD) for the 18F-FDG-PET study. 

Figure 3: Doxorubicin treated group. GlucoCEST and [18F]F-FDGsignal measured in the 4T1 

tumor model for the doxorubicin group before (PRE, 14 days post tumor implantation) and after 

doxorubicin treatment (POST, 21 days post tumor implantation). A) Bar graph showing mean ± SD 

GlucoCEST contrast obtained injecting glucose at 3g/Kg dose via intravenous bolus for each 4T1 

tumor group. Data are reported as the variation (ΔST%) between the ST effect post-injection minus 

the ST effect pre-injection. Unpaired t-test * p= 0.0334. B) Bar graph showing the fraction pixel 

values (mean ± SD). C) Bar graphs showing the average values for the  injected dose per gram 

(%ID/g, mean ± SD) for the 18F-FDG-PET study 

Figure 4. Dichloroacetate group. GlucoCEST and [18F]F-FDGsignal measured in the 4T1 tumor 

model for dichloroacetate group before (PRE, 14 days post tumor implantation) and after 

dichloroacetate treatment (POST, 21 days post tumor implantation). A) Bar graph showing mean ± 

SD GlucoCEST contrast obtained injecting glucose at 3g/Kg dose via intravenous bolus for each 

4T1 tumor group. Data are reported as the variation (ΔST%) between the ST effect post-injection 

minus the ST effect pre-injection. B) Bar graph showing the fraction pixel values (mean ± SD). C) 

Bar graphs showing the average values for the  injected dose per gram (%ID/g, mean ± SD) for the 

18F-FDG-PET study.  

Figure 5. Representative glucoCEST ΔST% maps of 4T1 tumor bearing mice for control and 

treated groups before and after treatment. Data are reported as the difference (ΔST %) between the 
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ST effect before and after the intravenous glucose injection. Parametric maps are overimposed to 

T2w anatomical images and glucoCEST contrast is shown only in the tumor region.  

Figure 6.  Representative [18F]F-FDG images of 4T1 tumor bearing mice for control and treated 

groups before and after treatment. Data are reported as %ID/grams after [18F]F-FDG intravenous 

injection. Fused PET/CT axial view are shown.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.432430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.432430


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.432430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.432430


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.432430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.432430


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.432430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.432430


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.432430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.432430


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.432430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.432430


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.432430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.432430

