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Abstract 
 
Molecular clocks record cellular ancestry. However, currently used clocks ‘tick too slowly’ to 
measure the short-timescale dynamics of cellular renewal in adult tissues. Here we develop 
‘rapidly oscillating DNA methylation clocks’ where ongoing (de)methylation causes the clock 
to ‘tick-tock’ back-and-forth between methylated and unmethylated states like a pendulum. 
We identify oscillators using standard methylation arrays and develop a mathematical 
modelling framework to quantitatively measure human adult stem cell dynamics from these 
data. Small intestinal crypts were inferred to contain slightly more stem cells than colon 
(6.5 ± 1.0 vs 5.8 ± 1.7 stem cells/crypt) with slower stem cell replacement in small intestine 

(0.79 ± 0.5 vs 1.1 ± 0.8 replacements/stem cell/year). Germline APC mutation increased the 
number of replacements per crypt (13.0 ± 2.4 replacements/crypt/year vs 6.9 ± 4.6 for 

healthy colon). In blood, we measure rapid expansion of acute leukaemia and slower growth 
of chronic disease. Rapidly oscillating molecular clocks are a new methodology to 
quantitatively measure human somatic cell dynamics. 
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Introduction 
 
The fates of individual human cells in vivo are difficult to reconstruct. In animal models, the 
use of transgenic or exogeneous cell labelling enables straightforward clonal lineage tracing 
(Monné et al., 2005; Lopez-Garcia, Allon M. Klein, et al., 2010; Snippert et al., 2010, 2014; 
Blanpain and Simons, 2013; Sánchez-Danés et al., 2016; Aragona et al., 2017; Lan et al., 
2017; Andersen et al., 2019; Han et al., 2019), but in humans these methods are precluded.  
Instead, human studies must utilize somatic genomic alterations, termed ‘molecular clocks’, 
to trace somatic cell fates. The idea is that ancestry of a population of cells is revealed by 
the somatic alterations shared amongst the cells: closely related cells are likely to share 
multiple alterations, whereas distantly related cells will have few alterations in common. In 
other words, human lineage tracing studies leverage the notion that the clonal history of a 
cell is recorded in its genome. Various types of somatic genomic alterations have been 
exploited for lineage tracing, including mitochondrial DNA (mtDNA) mutations (Taylor et al., 
2003; Greaves et al., 2006; Fellous et al., 2009; Gutierrez-Gonzalez et al., 2009; Gaisa, 
Graham, McDonald, Cañadillas-Lopez, et al., 2011; Gaisa, Graham, McDonald, Poulsom, et 
al., 2011; Humphries et al., 2013; Baker et al., 2014, 2019; Lavery et al., 2014; Moad et al., 
2017; Stamp et al., 2018; Cereser et al., 2018; Ludwig et al., 2019), DNA methylation at 
neutral loci (Yatabe, Tavaré and Shibata, 2001; Kim and Shibata, 2004; Kim et al., 2005; 
Kim, Tavaré and Shibata, 2006; Chu et al., 2007; Nicolas et al., 2007; Siegmund et al., 
2009; Graham et al., 2011), allelic loss at heterozygous loci (Campbell et al., 1994; Novelli et 
al., 2003) and the detection of single nucleotide variants (SNVs) via genome sequencing 
(Leedham et al., 2008, 2009; Thirlwell et al., 2010; Galandiuk et al., 2012; Pipinikas et al., 
2014; Martincorena et al., 2015; Blokzijl et al., 2016; Williams et al., 2016, 2018; Simons, 
2016; Lee-Six et al., 2018; Caroline J. Watson et al., 2020; Moore et al., 2020).  

These molecular clocks use ‘unidirectional’ measurements that essentially count the 
accumulation of changes since birth to infer the relatedness between lineages. The 
resolution at which a molecular clock can track clonal ancestry is a function of the rate at 
which genomic alterations accrue. A low rate of alteration accrual (situations where the 
molecular clock ‘ticks’ slowly) reveal clonal dynamics occurring over long timescales. For 
example, genome sequencing studies of normal skin (Martincorena et al., 2015), blood (Lee-
Six et al., 2018), intestinal crypts (Blokzijl et al., 2016), and endometrial glands (Moore et al., 
2020) identified multiple subclones in each tissue, but in most cases reconstructed lineages 
diverged many years in the past and recent cell turnover was not evident in the data. In 
comparison, a fast rate of alteration accrual (situations where the clock ticks rapidly) has the 
potential to reveal rapid and/or recent clonal dynamics, but in practice the clock becomes 
compromised by ‘saturation’ wherein the same pattern of alterations convergently evolve in 
distinct clonal populations (Kuipers et al., 2017), and effectively recording stops in childhood. 

Here we introduce the concept of a new class of rapidly oscillating molecular clocks where, 
like a pendulum, genomic alterations can reversibly change their states (the clock ‘tick-tocks’ 
back and forth). We propose that certain CpG sites rapidly and stochastically oscillate their 
DNA methylation between 0% (homozygously unmethylated CpG), 50% (heterozygous 
methylation), and 100% (homozygous methylation) in individual diploid cells (Fig. 1A). When 
this oscillation occurs at a timescale similar to the cell division rate, we show that 
measurements of these oscillators can be used to infer contemporary cell population 
dynamics. The analysis of oscillator clocks is more complicated than unidirectional 
(“hourglass”) clocks. However, the rapid ‘tick-tock’ (methylation-demethylation) alterations 
facilitate the study of contemporary events that occur later in life, or indeed which recur 
throughout life.  

Here we show how ‘tick-tock clock’ CpG oscillator methylation can be conveniently 
measured with commercial microarrays (Illumina EPIC arrays) that provide the methylation 
value at thousands of candidate CpG clocks. We develop a mathematical inference 
methodology to extract ancestral information encoded within oscillating sites. We validate 
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our methodology using a simplified spatial model of a crypt cell evolution driven by different 
stem cell numbers then apply our tick-tock clock methodology to measure stem cell 
dynamics in individual human intestinal crypt and endometrial gland populations. The 
oscillators are further applied to whole blood to detect and distinguish between acute and 
chronic leukaemias.  

 

 

Figure 1: The Tick-Tock Clock – Oscillatory Methylation as a Lineage Tracing 
Marker 

A: Illustration of the three possible methylation states at a specific CpG locus within a 
particular cell. A cell can either be homozygously (de)methylated, or heterozygously 
methylated at that CpG locus. It is the spontaneous transitions between these states that 
allow methylation to act as a lineage tracing marker. B: Illustration of the link between the 
methylation status of a given CpG locus within a particular cell and the beta value (the 
fraction of methylated DNA at that locus) associated with that cell. C: Graphical 
representation of how the methylation status in a small population of 5 stem cells at a 
particular CpG locus can change over time due to (i) methylation, (ii) demethylation, or (iii) 
cell replacement. D: Methylation (beta) distributions from an individual crypt, the peaks 
near 0% and 100% correspond to a clonal methylated or unmethylated CpG loci 
respectively, whereas the peak at 50% corresponds both to clonal heterozygous CpG loci 
and subclonal populations caught mid-sweep. 
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Results 
Here, we present evidence that a set of CpG loci rapidly oscillate their methylation status 
and can be used to perform lineage tracing of recently and/or rapidly occurring clonal 
expansions in human tissues. We apply the new method to quantify the dynamics of clonal 
expansions in human colon, small intestine, endometrium and blood. 

 

Identification of Oscillatory CpG Loci 
 

We isolated DNA from individual single colon or small intestinal (SI) crypts (31 colon 
samples originating from 8 patients, and 28 SI samples originating from 7 patients) and 
measured DNA methylation in each crypt using Illumina EPIC arrays (methods). Samples 
from each tissue were treated separately to account for tissue-specific differences in DNA 
(de)methylation processes.  

To select oscillating CpG sites, we first removed ~400,000 CpG loci from the ~850,000 on 
the EPIC array that were likely to be actively regulated or associated with probes that co-
hybridize highly homologous sequences (methods). CpG sites with oscillating methylation 
were then detected by comparing between-patient versus within-patient heterogeneity in 
methylation value. At rapidly oscillating sites, we expect the average methylation in non-
clonal ‘bulk’ samples to be 0.5 (since methylation at the site is uncorrelated between the 
multiple lineages that make up the bulk sample), whereas in individual clonal samples the 
methylation value can take any value between 0 and 1. Thus, to select for oscillating CpGs, 
we selected CpG sites that had the highest 5% of variance in beta value between individual 
samples, and then filtered these for sites with mean methylation across all samples and 
patients of ~0.5 (mean beta value between 0.4 and 0.6) (Fig. 2A). This process identified 
7073 putative oscillatory CpGs within the colon sample cohort and 8828 CpGs within the 
small intestine cohort, of which 1794 CpGs were shared between tissue types (Fig. S1A). 
There was a good correlation (R^2=0.62) in the heterogeneity scores between colon and 
small intestine samples (Fig. S1B), and CpG loci that were exclusive to the colon had a 
substantially higher average variability score in the small intestine compared to all CpG loci 
(Fig. S1C), suggesting that the relatively large number of non-overlapping loci was due to 
the arbitrary strictness of our 5% threshold. Further analysis was performed upon these 
shared 1794 oscillatory CpG loci (see supplementary table 1) with the goal of aiding the 
generalizability of our approach. The 1794 oscillators had ~50% average methylation among 
the 31 crypts, but exhibited a characteristic “W-distribution” of methylation values within the 
recently clonally-derived population of cells that make up an individual crypt (Fig. 1D).  

 

To demonstrate technical accuracy in methylation measurement from the small amounts of 
DNA in single SI crypts (~400 cells), colon crypts (~2,000 cells) or endometrial glands 
(~5,000 cells), we identified similar oscillators on the X-chromosome and compared 
methylation between male and female individuals. In males, there is only a single copy of the 
X-chromosome, hence only two modal peaks near 0 and 100% methylation should be 
present in clonal populations, as opposed to the trimodal distribution observed on 
autosomes. Consistent with the ability to measure oscillator methylation in small tissue 
samples, the X-chromosome oscillators exhibited W-shaped distributions in female SI crypts 
and “U-shaped” distributions in male SI crypts (Fig. S1D). 
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Figure 2: Identification of Selectively Neutral Oscillatory CpG Loci  

A: Workflow used to identify oscillatory CpG loci that exhibit high intra-patient 
heterogeneity. Input data was the ~850,000 CpG loci assayed by an Illumina EPIC array.  
We removed Type I probes and probes which cross-hybridize highly homologous DNA 
regions. For each CpG locus, we calculated the standard deviation for each set of ~4 
crypts per patient, and then calculated the mean standard deviation across the patient 
cohort as a metric for the intra-patient heterogeneity. We selected the top 5% most highly 
variable CpG loci, and then removed CpG loci which have a mean beta value (across the 
entire patient cohort) less than 0.4 or greater than 0.6. B: (left) Oscillatory CpGs are 
enriched for CpG loci not associated with any genes. (right) The set of genes associated 
with the oscillatory CpGs exhibit a lower average RNA expression in normal colon than 
those genes associated with non-oscillatory CpG loci. C: Beta values of oscillatory CpG 
loci are correlated between the bottom and top halves of a crypt.  

 

Oscillatory CpG Loci Are Enriched in Minimally Expressed Genes 
 

For CpG loci to act as a molecular clock, the loci must not be subject to evolutionary 
selection or cell-specific regulation. We compared the proportion of the 1794 oscillatory CpG 
sites that were associated with a specific gene to the 428511 CpG sites that were not 
identified as oscillatory (methods). Oscillatory CpG loci were strongly enriched for non-genic 
CpG sites (Fig. 2B 1.8 OR, chi-squared test, p<0.001). We tested RNA expression using 40 
normal colon samples from TCGA (Muzny et al., 2012) and found that the mean expression 
of genes associated with oscillatory CpG loci was lower than of genes associated with the 
non-oscillatory CpG loci (Fig. 2B, -0.24 Cohen’s d calculated for log-transformed expression, 
Welch’s unequal variance t-test, p<0.001). Together, these analyses indicated that 
methylation at the oscillatory CpG sites was unlikely to be under strict regulation or 
evolutionary selection in the colon. 
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Methylation status of oscillatory CpG loci are preserved along the length of the 
colon crypt 
 

Previous research (Kaaij et al., 2013) has found that the methylation profile of the whole 
crypt was, on the whole, representative of that of the stem cell population at the base of the 
crypt. To ensure that this was the case specifically for the oscillatory CpG loci identified 
above, we split 7 crypts into their respective tops and bottoms, and ran Illumina EPIC arrays 
upon both halves using the same protocol described previously. Due to the low input DNA 
amounts, 3 of the samples failed the QC step. The remaining 4 crypts exhibited a good 
correlation between the beta values of the oscillatory CpG loci in the tops and bottoms of the 
crypts (Fig. 2C, R2 > 0.6, p < 0.001 in all cases).  

 

Mathematical Model of Stem Cell Evolution and the Beta Distribution of 
Oscillatory CpG Loci 
 

We hypothesized that the precise shape of the methylation beta-value distribution for 
oscillatory CpGs was determined by the underlying dynamics of cellular evolution. To test 
this hypothesis in the context of intestinal crypts, we developed a mathematical model and 
associated Bayesian inference framework to relate the competitive dynamics of stem cells 
within their crypt to the measured distribution of oscillatory CpG methylation.  

The mathematical model consisted of a hidden Markov chain that simulated the time-
dependent probability distribution of the number of methylated and unmethylated copies of a 
single CpG locus within a stem cell niche of fixed size 𝑆. We described 3 possible processes 

that changed the methylation status at a given CpG locus: (1) spontaneous methylation (at 
constant rate μ per allele per stem cell per year), (2) spontaneously demethylation (constant 
rate γ per allele per stem cell per year), and (3) one stem cell replacing another stem cell 
(constant rate 𝜆 per stem cell per year) (Fig 1C). We further assumed that the stem cells 
could be treated as a well-mixed population, such that each stem cell could replace any 
other stem cell within the niche with equal probability. The probability distribution of the 
methylation value at a single CpG site could be fully characterized with just two state 
variables: 𝑘 the number of stem-cells in the crypt with just one allele methylated, and 𝑚 the 

number of stem cells with both alleles methylated. By considering the possible (𝑘,𝑚) →
(𝑘′, 𝑚′) transitions, we derived a system of ordinary differential equations describing how the 

probability (P(𝑘, 𝑚|𝜆, 𝜇, 𝛾; 𝑡)) of the system being in state (𝑘, 𝑚) changes over time (see the 
methods section for an overview and the appendix for a full derivation). For a pool of 𝑆 stem 

cells, there are 2𝑆 + 1 discrete states the niche methylation level could take, with a beta 

value of 
𝑧

2𝑆
 (for 𝑧 ∈ [0, 2𝑆]). To link the probability that a particular CpG locus has a 

population methylation status 𝑧 to the output of our stem cell dynamics model, we 
marginalised over the various combinations of 𝑘 and 𝑚 that correspond to a particular 𝑧-

value, as described in the methods section. 

We developed a Bayesian inference framework (Methods), that allowed for simultaneous 
inference of the number of stem cells (𝑆), the replacement rate per stem cells (𝜆), and the 

methylation (𝜇) and demethylation (𝛾) rates per stem cell per allele per year for an individual 
patient-derived gland. This Bayesian pipeline accounted for the error profile of the 
methylation array technology, such as the observed ‘offset’ from 0% and 100% methylation 
owing to background noise, and the uncertainty in the methylation (beta value) 
measurement due to technical noise in the assay and the noise generated by sampling a 
limited number of alleles for analysis. Thus, we could fit our model of stem cell dynamics to 
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the data from individual crypts, allowing us to probe tissue-specific stem cell dynamics whilst 
accounting for intra- and inter-patient heterogeneity. 

 

Evolutionary Dynamics Are Inferred with High Accuracy In Silico 
 

To verify that our Bayesian inference framework was able to accurately infer the stem cell 
dynamics of a crypt, we generated three “synthetic” crypts each containing 5 stem cells, a 
mean replacement rate of 1 per stem cell per year and a de novo (de-)methylation event rate 
of 0.0005, 0.05 and 0.5 per allele per stem cell per year (Fig. 3A) and used our inference 
framework to attempt to recover the (known) underlying parameter values from the 
simulated methylation distributions.  

 

At low (de)methylation rates (where the tick-tock clock oscillated “too slowly”), the 
methylation distribution was essentially concentrated near 0% and 100% methylated, with a 
small minority of CpG loci in the intermediate 50% methylation state, mainly due to clonal 
heterogeneous methylation. Conversely, a high (de)methylation rates (where the tick-tock 
clock oscillated “too fast”) the methylation distribution approached a binomial-like distribution 
centered at 50%. Unlike the “too slow” crypt, the peak at 50% is largely due to sub-clonal 
mutations caught mid-drift, rather than a single fixed mutation. At intermediate 
(de)methylation rates (where the tick-tock clock oscillated at a “just right” rate) crypt 
methylation distributions showed the same characteristic W-shape that we observed in the 
real patient crypt data. Major peaks were evident near 0%, 50% and 100%, and additional 
minor peaks ~10%-40% and ~60-90%, which are due to methylation events that had not 
fixed (sub-clonal (de)methylation events).  

Bayesian inference could not satisfactorily determine the posterior for the number of stem 
cells for the “too slow” crypt, as there were too few CpG sites with intermediate values that 
held information on stem cell number. In contrast, the inference framework accurately 
recovered the number of stem cells for the “too fast” crypt, as there was an abundance of 
sub-clonal methylation events, but the replacement rate could not be inferred accurately. 
This is because the clonal information that is propagated by stem cell replacement 
(increase/decrease in beta values from the expanding clone) is almost immediately lost due 
to the high (de)methylation rate. 

 

When the simulated methylation rate was “just right” the model was accurately able to 
recover all known parameter values with good confidence (Fig. 3B & 3C). We note that this 
in silico analysis shows that we are able to confidently confirm that the (de)methylation rate 
for a given set of CpG loci is within the “just right” range by the presence of the characteristic 
W-shape. Note that the range of the methylation error rates that give rise to the W-shape 
and which are suitable for timing using our analysis is relatively broad, covering over 2 
orders of magnitude. 

 

To further validate our Bayesian inference framework, we implemented a simplified agent 
based spatial model of crypt cell evolution (methods) where each cell (agent) incorporates 
molecular level CpG tracking with (de)methylation errors possible upon each cell division. 
We used this in silico crypt model to generate tick-tock CpG patterns from a range of stem 
cell pool sizes. Then applying our inference framework on the resulting CpG patterns we 
were able to accurately recover the stem cell numbers (Fig. 3D), for each of the three 
different pool sizes (3.76±0.73, 6.42±0.98, and 12.39±1.16 stem cells; mean ± standard 
deviation). 
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Figure 3: W-Shaped Beta Distributions Are Indicative of Informative Clonal 
Information 

In silico evaluation of the accuracy of Bayesian inference on stem cell number (S), 
replacement rate (𝜆) and (de)methylation rates (𝜇, 𝛾) as a function of input (de)methylation 

rates. Three regimes were evaluated: 𝜇 = 𝛾 = 0.0005 methylation events per allele per 
stem cell per year, termed “too slow”, very high methylation rates 𝜇 = 𝛾 = 0.5 per allele 

per stem cell per year, termed “too fast”, and intermediate methylation rates (𝜇 = 𝛾 = 0.05 

per allele per stem cell per year, termed “just right”. A: Simulated oscillatory CpG 
methylation distributions from individual crypts at each of three input (de)methylation 
rates. The characteristic W-distribution is only evident for the “just-right” (de)methylation 
rate. B: Posterior distributions of inferred replacement and (de)methylation rates for each 
input (de)methylation rate. C: Posterior distributions of inferred stem cell number. In 
panels B and C, red dashed lines indicate the true (inputted) value of the parameter. The 
simulated datasets each contained 𝑆 = 5 stem cells, had a replacement rate of 𝜆 = 1.0 per 
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stem cell per year, and the noise due to sampling was simulated with offsets due to 
background noise ∆= 휀 = 0.05 and peak specific noise with sample size 𝑘𝑧 = 100. D: 

Independent validation of the inference method on a spatial representation of the single 
crypt with varying stem cells. Beta distributions are noise adjusted (methods) for the 
inferences on the stem pool only. Mean inferred stem cells are shown for ten replicate 
simulations, error bars denote standard deviations. 

 

Measurement of Stem Cell Dynamics in Human Intestine 
 

We applied our inference framework to the distribution of methylation values observed 
across oscillatory CpG loci from human colon and small intestinal crypts. Fits were 
performed on each crypt and patient individually, generating crypt and patient-specific 
posterior estimates of effective stem cell number and replacement rate (Fig 4A). 

 

The mean number of stem cells was similar across tissues, with 5.8 ± 1.7 stem cells in 

normal colon samples, and 6.5 ± 1.0 stem cells within small intestinal glands (mean ± 1 
standard deviation, Fig. 4B). The replacement rate in normal colon was 1.1 ± 0.8 

replacements/stem cell/year, reduced to 0.79 ±  0.5 replacements/stem cell/year in small 

intestine (Fig. 4C). 

We used a hierarchical Bayesian generalized linear model (GLM) to account for patient 
structure in our data and compared stem cell numbers and replacement rates between 
tissues. We found that glands from the small intestine had a greater number of stem cells 
(Fig. 4D, p<0.05; GLM), but a lower replacement rate per stem cell compared to normal 
colon (Fig. 4E), such that the total number of replacements per crypt was not significantly 
different between colon and small intestine (Fig. 4F, p<0.05; GLM).  

Patients with familial adenomatous polyposis (FAP) carry a heterozygous germline mutation 
in the APC gene and are increased risk of developing colorectal cancer (Groden et al., 1991; 
Kinzler et al., 1991; Nishisho et al., 1991).  APC is a key regulator of wnt-signalling, and 
consequently pathogenic APC mutations cause alterations to wnt-signalling (Korinek et al., 
1997; Sansom et al., 2004; Zhan, Rindtorff and Boutros, 2017). Wnt-signalling is essential 
for maintenance of intestinal stem cells (Korinek et al., 1998; Pinto et al., 2003; Pinto and 
Clevers, 2005).  Consequently, we hypothesized that FAP patients would have altered stem 
cell dynamics. Inference on oscillating CpG sites showed that stem cell numbers were 
similar in FAP crypts to normal colon (6.7 ± 0.3 stem cells per crypt), but the stem cell 

replacement rate was almost doubled at 1.9 ± 0.3 replacements/stem cell/year (Fig. 4A-C), 

resulting in a significantly higher total number of replacements per crypt per year in FAP 
(Fig. 4F). 
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Figure 4: Tissue Specific Differences in the Stem Cell Dynamics 

A: Examples of the posterior predictive distributions, the discrete stem cell number 
posterior, and the posterior for the replacement rate, methylation rate and demethylation 
rate in crypts derived from normal colon, small intestine and the colon of patients with FAP 
(left to right panels). B: individual crypt and posterior mean per patient for the stem cell 
number and C: replacement rate per stem cell, with the 95% credible range of the 
generalized linear model (GLM) expectation, accounting for age, sex, tissue, disease state 
and intra- and inter-patient heterogeneity. D-F: posterior distributions for the effect of 
patient age (per decade), sex (with female encoded as reference), tissue type and disease 
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state on the relative number of stem cells, replacement rate per stem cell and total 
number of replacements when compared to normal colon. A Bayesian parameter 
estimation hypothesis testing approach was taken, such that a difference was called 
significant if the 95% credible region did not overlap 1.   

 

Stem Cell Dynamics in Human Endometrial Glands 
 

We analyzed tick-tock rapidly oscillating CpG methylation in 32 endometrial glands derived 
from 8 patients using the same methodology as for intestinal crypts (Fig. 5). We derived a 
set of 7721 oscillatory CpG sites, of which 807 were shared with the set of oscillatory loci 
identified in the colon. The resulting methylation beta distributions exhibited the same 
characteristic W-shape as in the intestine (Fig. 5A). 

We then applied our Bayesian inference pipeline to each endometrial gland to infer the 
effective stem cell dynamics (Kim, Tavaré and Shibata, 2005). The inferred stem cell 

replacement rate was broadly similar compared to colon at 1.2 ± 0.3 (mean ± 1 standard 
deviation) replacements/stem cell/year (Fig. 5B), whereas the number of stem cells per 
gland was significantly higher in endometrium compared to colon (p<0.05; GLM), with each 
endometrial gland containing 8.6 ± 2.9 stem cells (Fig. 5C). Intriguingly, the endometrium 
exhibited a significantly greater degree of intra-patient variability with regards to the number 
of stem cells (p<0.05; GLM), perhaps due to the dynamic nature of the endometrium through 
menstrual cycles and age-related changes. We acknowledge that the stem cell structure of 
endometrial glands is likely more complex than that of colon crypts (Tempest et al., 2020), 
limiting the degree to which our simple model reflects the underlying biology. Nevertheless, 
the fact that we still observe large clonal peaks near 0% and 100% methylation suggests 
that monoclonal conversion does still occur, and our model is still applicable as a simplified 
caricature of the complicated dynamics present in endometrial glands.  
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Figure 5: The Tick-Tock Method Is Generalizable to Other Glandular Tissue 

A: Measured methylation beta values (blue bars) and posterior predictive distribution 
(salmon overlay) for an example endometrial gland. The methylation patterns exhibit a 
similar W-shape to that observed in intestinal crypts. B: Posterior distributions for the 
replacement rate per stem cell and (de)methylation rates for the gland shown in (A). C: 
Posterior distribution for stem cell number for the gland shown in (A). D: Inferred relative 
replacement rate per stem cell, number of stem cells and total replacement rate, in 
endometrium versus colon, indicating that there are significantly more stem cells per gland 
in endometrium than colon. Bars showed 95% credible intervals derived from a GLM. E: 
Inferred number of stem cells and replacement rate per stem cell for each individual gland 
from each patient (dots) with the 95% credible range of the GLM expectation (bars).  

 

 

Tick-Tock Clock in Human Blood 
  
The CpG oscillator behavior seen in intestinal crypts and endometrial glands are likely to be 
present across tissues. Therefore, we next searched for similar oscillators in whole human 
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blood, which has abundant public methylation array data for normal and disease states. 
Unlike intestinal crypts which recurrently drift to clonality, blood is a large, well-mixed tissue 
with diverse cell types and is normally polyclonal because it is produced by thousands of 
bone marrow stem cells (Lee-Six et al., 2018; Caroline J Watson et al., 2020). However, 
blood becomes oligoclonal or clonal in disease states such as leukaemias. As in the 
intestines, CpG sites that rapidly oscillate through 0, 50 and 100% methylation will have 
average methylation around 50% in normal polyclonal blood samples.  

 

We identified suitable tick-tock loci by averaging normal whole blood DNA methylation at 
~450,000 autosomal CpG loci from a commonly used aging database of 656 healthy 
individuals (Hannum et al., 2013). We selected all loci (N = 27,634) with average values 
between 40 and 60% methylation in these 656 specimens. CpG oscillators appear tissue 
specific because only ~5% of the intestinal tick-tock loci were in the blood set. Tick-tock 
methylation for each individual sample revealed tight distributions around 50% methylation, 
which can be described by its variance (Fig 6A). Consistent with oscillators, average tick-
tock methylation remained ~50% with aging (S1). Serial samples ten years apart (Tan et al., 
2016) revealed tick-tock variance to be relatively stable for an individual, with a slight 
significant trend for increases with age (Fig 6B), which was also observed throughout aging 
(Fig 6A).  

 

Clonal hematopoiesis in the blood is an early step in the evolution of neoplasia and will 
increase tick-tock variances. For rapid clonal expansions (i.e. acute leukaemias), W-shaped 
blood distributions similar to those observed in the crypts are expected. Consistent with 
these expectations, whole blood samples from different types of major hematopoietic 
neoplasm had higher than normal tick-tock variances (Fig 6C). Acute lymphoblastic 
leukaemias (ALL) and acute myeloid leukaemias (AML) had the highest tick-tock variances 
and characteristic W-shaped distributions. More indolent chronic myeloproliferative or 
myelodysplastic whole blood specimens showed more modest tick-tock variance increases 
and generally lacked the “W” shape of the acute leukaemias, crypts and glands.  
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Figure 6: Tick-Tock Dynamics Can Further be Observed in Chronic and Acute 
Leukemia 

A: The variance of the oscillatory CpG beta distribution experiences a gradual increase 
with age in normal patients. B: The variance of paired blood samples taken 10 years apart 
(1997 and 2007) also exhibits a small but marked increase (0.37 Cohen’s d, p<0.001 
paired t test). C: The variance of the oscillatory CpG beta distribution is a proxy for the 
rapidity of the clonal expansion within the blood. In normal samples the large stem cell 
population size leads to the beta distribution being concentrated near 50% (as one would 
expect for uncorrelated oscillators). However, as a clonal cancerous population expands, 
clonal peaks begin to separate from the 50% peak. In the case of ALL, the large, well-
separated peaks near 0% and 100% are indicative of a single clonal population making up 
the majority of the remaining stem cells following rapid growth. D: Simulations confirm that 
a simple model of hematopoiesis can recapitulate the observed beta distribution 
overserved in patient data.  

 

  

Hematopoiesis Simulations 
 
We simulated hematopoiesis to better understand how oscillators detect clonality in whole 
blood (Fig 6 and Supplemental). Tick-tock methylation oscillates between 0, 50 and 100% in 
single cells and the simulations indicate polyclonal whole blood variance is low and stable 
through time because human hematopoiesis is maintained by large numbers of stem cells.  
Clonal expansion by a single cell synchronizes oscillators and results in higher whole blood 
variances that depend on growth rates. As in the crypts, there is a balance between clonal 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.435426doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435426
http://creativecommons.org/licenses/by-nc-nd/4.0/


expansion rates, which increase population variances, and the rates at which oscillators drift 
back to 50% average methylation, which decreases variance. A rapid expansion (less than 2 
years) to high blood levels as in acute leukemias produces high variances and W-shaped 
distributions. The “W” methylation pattern resembles the methylation at 0, 50 and 100% 
methylation of the initiating cell. Expansions that grow more slowly have variances greater 
than normal blood but lack the W-shape as clonal oscillators become increasing 
desynchronized with time. These more indolent expansions are more consistent with the 
experimental data for chronic myeloproliferative neoplasms, which may be asymptomatic 
and persist for years. Clones that grow even slower and arise later, as may occur with CHIP 
(Jaiswal and Ebert, 2019), leads to slightly higher variances, as seen with aging in the 
normal whole blood cohort. Hence, a simple model with 27,634 oscillating CpG sites and 
different rates of clonal expansion is broadly consistent with the experiment data from 
hundreds of clinical samples. 

 

Discussion 
 

Here we discover and demonstrate how to model a novel class of rapidly oscillating CpG 
methylation molecular clocks that can reconstruct contemporary human cell population 
dynamics that start or recur at different times during life, using standard Illumina EPIC 
methylation arrays applied to bulk tissue samples. Large numbers of CpG sites reversibly 
oscillate their methylation like a pendulum between 0, 50 and 100% (representing 
homozygous and heterozygous (de)methylation). In polyclonal populations, these 
oscillations are unsynchronized between individual cells, and average oscillator CpG 
methylation is around 50%. However, oscillator methylation that occurs at similar rate to the 
rate of cell division and replacement within a clonal population, leads to a characteristic W-
shaped distribution with modal peaks at 0, 50 and 100% methylation for each CpG site upon 
bulk measurement of the clone that resemble the ‘tick-tock’ state of the most recent common 
ancestor cell of the extant clone.  

 

Intestinal crypts contain multiple stem cells but are clonal populations because neutral drift 
recurrently eliminates all stem lineages except one (Lopez-Garcia, Allon M Klein, et al., 
2010; Snippert et al., 2010). The clonality of human crypts has been previously inferred by a 
number of methods that use single or relatively few markers (Baker et al., 2014; Nicholson et 
al., 2018). The oscillator CpG sites represent a magnitude (>100 fold) increase in clock-like 
loci suitable for inferring recently-occurred stem cell dynamics. These oscillator CpG sites 
are common in methylation array data and show tissue specificity, likely reflecting differential 
gene expression between tissues (tick-tock sites are enriched at non-expressed loci). One of 
the major difficulties experiments with human tissue often encounter is the ‘snapshot’ nature 
of the data, making inference concerning dynamic processes difficult. To address this, we 
assessed how different temporal dynamics affect the distribution of methylation patterns 
across cells as measured in a ‘bulk’ sample consisting of many cells (such as an individual 
crypt) which, together with the relatively high de novo error rate of methylation, allowed us to 
track the stem cell dynamics within individual crypts. Oscillator CpG sites have different error 
rates and a key to analysis is to match error rates with the underlying rate of cellular 
dynamics. An oscillator that changes too fast fails to record cell dynamics because tick-tock 
methylation becomes desynchronized even in closely related cells. An oscillator that 
changes too slowly will maintain synchrony between distantly related cells and not capture 
more contemporary cell turnover. However, by matching CpG methylation oscillation rates 
with the biological interval of interest, we demonstrated the ability to infer the stem cell 
dynamics within glands.  
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Stem cell numbers may have important fundamental roles in cancer risks because mutations 
that lead to cancer can only accumulate in long lived stem cell lineage (Ricci-Vitiani et al., 
2007). Interestingly, consistent with experiments in mice (Kozar et al., 2013), we inferred 
only small differences in stem cell numbers between SI and colon crypts (SI crypts contains 
approximately 16% more stem cells than colon). Whereas colon carcinoma is the fourth 
most common human cancer (Siegel et al., 2021), SI carcinoma is between 14-50 times less 
common (Raghav and Overman, 2013; Siegel et al., 2021), even though their tissues have 
similar numbers of crypts and accumulate similar numbers of mutations during aging 
(Blokzijl et al., 2016). According to the “bad luck hypothesis” (Tomasetti, Li and Vogelstein, 
2017), the discrepancy in cancer rates could be explained by differences in the stem cell 
dynamics of the two tissues, with more stem cells dividing more rapidly carrying a higher risk 
of progressing to cancer. We only detect moderate differences in the number of stem cells 
and the replacement rates per crypt between small intestine and colon. Hence, our data and 
analysis indicate that much lower SI carcinoma rates are unlikely to be solely attributable to 
the difference in stem cell dynamics between the two tissue types. We did observe a slight 
increase in the total number of replacements per crypt in non-dysplastic familial 
adenomatous polyposis (FAP) colon crypts that carry heterozygous APC mutations, perhaps 
suggesting that the “first-hit” loss of APC in the development of sporadic CRC confers a 
selective advantage, which may help explain why APC mutations are common in colorectal 
cancers. 

We further demonstrate that CpG oscillators are present in hematopoietic cells and can be 
used to reconstruct clonal dynamics within the hematopoietic system.  The identity of the 
oscillating CpG sites in hematopoietic cells differs from the epithelial oscillators, likely 
reflecting that oscillators tend to be found at non-expressed genes and the fact that gene 
expression patterns vary between tissues. Our blood studies illustrate the ability of 
oscillators to detect clonal hematopoiesis, with increases in average oscillator variances with 
clonality and characteristic W-shaped distributions in acute leukaemias. Chronic leukaemias 
had intermediate tick-tock variance increases and generally lacked W-shaped distributions, 
likely reflecting their slower growth and clinical persistence for years. Interestingly, there was 
a trend for an age-related increase in tick-tock variances that may reflect the increased 
incidence of clonal hematopoiesis of indeterminate significance or CHIP that becomes 
common with aging (Jaiswal and Ebert, 2019).   

Our stem cell dynamics inference method relies on relatively inexpensive methylation arrays, 
but nevertheless a potential limit to this technique is the requirement of high-quality DNA 
derived from relatively small quantities of input material. The mathematical model-based 
inference necessarily relies on a number of assumptions (discussed in the methods) and the 
validity of these naturally affects the accuracy of our inference. Additionally, the 
dimensionality of the matrix encoding the stem cell dynamics scales quadratically with the 
number of stem cells, hence our inference framework is only tractable for reasonably small 
numbers of stem cells.  

In summary, CpG methylation oscillator molecular clocks have many features ideal for the 
analysis of human cell populations. The oscillatory behavior of tick-tock CpG sites is 
otherwise elusive in polyclonal populations but becomes detectable in clonal cell 
populations. Oscillators can measure alterations that start or recur later in life and can infer 
changes that occur over a few years. Data are relatively easy to obtain with cheap, 
commercially available methylation arrays. Large numbers of potential tick-tock CpG sites 
suitable for the time intervals and cell populations of interest are found on these arrays. The 
ability to harness rapidly changing molecular clocks opens new opportunities to infer the 
histories of many different human somatic cell populations.  
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Methods 
 

Methylation Array 
 

Tissues were collected at the University of Southern California Keck School of Medicine 
from excess surgical samples taken in the course of routine clinical care, with Institutional 
Review Board approval. Crypts or endometrial glands were isolated using an EDTA-washout 
method as previously described (Yatabe, Tavaré and Shibata, 2001; Kim, Tavaré and 
Shibata, 2005). DNA methylation was measured with EPIC bead arrays (Illumina) using the 
using the Restore protocol and the manufacturers protocols (Illumina, 2011). IDAT files were 
processed with using the noob normalization function in the minfi R package (Aryee et al., 
2014). 

 

Blood methylation data were obtained from GEO (Edgar, Domrachev and Lash, 2002; 
Barrett et al., 2013) using beta values as provided. The data sets are GSE40279 (normal 
blood, Fig 6A (Hannum et al., 2013)), GSE73115 (ten-year serial samples, Fig 6B (Sierra, 
Fernández and Fraga, 2015)), GSE51759 (MDS (Zhao et al., 2014)), GSE42042 (ET, PRV, 
PMF (Pérez et al., 2013)), GSE106600 (CML (Maupetit-Mehouas et al., 2018)), GSE105420 
(CMML (Palomo et al., 2018)), GSE62298 (AML (Ferreira et al., 2016)) and GSE69229 (ALL 
(Gabriel et al., 2015)).  

 

RNA expression data for normal tissue derived from 40 patients was retrieved from The 
Cancer Genome Atlas (Muzny et al., 2012). 

 

Derivation of Oscillatory CpG loci 
 

To isolate those CpG sites that behave in a clock-like fashion, it was first necessary to filter 
out those loci which are likely to have a regulatory function or change their methylation 
status over the length of the crypt. This was done by selecting only those CpG sites that lie 
in the ‘open sea’ (further than 4kb from a CpG island). Furthermore, probes of CpG loci that 
were identified (Chen et al., 2013; Pidsley et al., 2016) as being cross-reactive were filtered 
out, along with CpG loci positioned on sex-determinant chromosomes. Given the relatively 
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low amounts of DNA contained within a single crypt, we also filtered out probes that were 
likely to have experienced incomplete binding by restricting our analysis to probes which had 
a total intensity greater than 1200 (arbitrary units). 

 

The Illumina EPIC array features two different probe types, Type I and Type II (Pidsley et al., 
2016). Type I probes feature a higher dynamic range, leading to the two probe types having 
different underlying distributions of beta values. Due to difficulties in simultaneously 
modelling the two different probe types, and given that Type I probes are overrepresented in 
CpG dense regions of the genome, the analysis was restricted to Type II probes.  

 

Mathematical Model of Methylation Within the Stem Cell Niche 
 

We developed a stochastic model to describe how the fraction of methylated alleles (beta 
value) in the stem cell niche of a given CpG locus changes over time. This model draws on 
previous attempts (Lopez-Garcia, Allon M Klein, et al., 2010; Kozar et al., 2013) to model the 
behavior of the stem cell niche in colonic crypts, but with a number of modifications that 
account for the differences when considering methylation as a lineage tracing marker, rather 
than DNA. Namely, whilst DNA mutations occur relatively infrequently, allowing for a model 
that only considers a single mutant population expanding or contracting with reference to a 
single wild-type population, the relatively high methylation switching rate requires us to 
consider the potential of multiple clones existing simultaneously. Further, whilst DNA 
mutations can be generally regarded as irreversible, the methylation status of a given cell 
(that is, whether a particular cell is homozygously (de)methylated, or heterozygously 
methylated) can theoretically oscillate, necessitating a careful consideration regarding the 
possible ways the overall beta value can change. 

 

For this reason, we made the simplifying assumption that the population was well-mixed, 
such that any of the 𝑆 stem cells can replace any of the other 𝑆 − 1 stem cells with equal 

probability, and that these replacements occur at a constant rate 𝜆 per stem cell. This 
assumption greatly simplified our analysis, as the system can be fully characterised using 
just 2 state variables:  𝑘 – the number of stem cells containing a single methylated allele, 
and 𝑚 – the number of stem cells containing 2 methylated alleles. The admitted states are 

constrained by the inequality 0 ≤ 𝑘 + 𝑚 ≤ 𝑆, for a total of 
1

2
(𝑆 + 1)(𝑆 + 2) states. 

 

Along with the replacement process, we assumed that a previously unmethylated CpG locus 
could spontaneously become methylated with a rate 𝜇 per year, and conversely, that a 
previously methylated CpG locus could spontaneously become demethylated with a rate 𝛾 

per year. 

 

To develop the series of ordinary differential equations that fully determine the system, we 
considered the ways in which a state (𝑘,𝑚) could transition to a state (𝑘′, 𝑚′). As an 
example, if we consider Figure 1C, we observe that of the 𝑆 = 5 stem cells, 3 of the stem 

cells are heterozygously methylated and 1 of the cells is homozygously methylated, hence 
the system is initially in state (𝑘 = 3,𝑚 = 1). To transition to state (𝑘′ = 3,𝑚′ = 2), the 

homozygously methylated stem cell must clonally expand, replacing the homozygously 
demethylated cell. The rate at which any one of the stem cells replaces another is 𝜆𝑆 = 5𝜆, 
but of the 𝑆(𝑆 − 1) = 20 possible transitions, only 1 would lead to the desired (3, 2) state, 

hence the rate at which the system transitions (3, 1) → (3, 2) is 
1

20
∗ 5𝜆 =

1

4
𝜆. We continue 
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this process (see the supplementary information), considering the general transition (𝑘,𝑚) →
(𝑘′, 𝑚′), deriving the master equation:  

𝑑P(𝑘,𝑚|𝜆, 𝜇, 𝛾; 𝑡)

𝑑𝑡

= (𝑆 − 𝑚 − (𝑘 − 1)) ((𝑘 − 1)
𝜆

𝑆 − 1
+ 2𝜇)P(𝑘 − 1,𝑚|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑚 − 1)(𝑆 − (𝑚 − 1) − 𝑘)
𝜆

𝑆 − 1
P(𝑘,𝑚 − 1|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑘 + 1) ((𝑚 − 1)
𝜆

𝑆 − 1
+ 𝜇)P(𝑘 + 1,𝑚 − 1|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑘 + 1) ((𝑆 − 𝑚 − (𝑘 + 1))
𝜆

𝑆 − 1
+ 𝛾) P(𝑘 + 1,𝑚|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑚 + 1)(𝑆 − (𝑚 + 1) − 𝑘)
𝜆

𝑆 − 1
P(𝑘,𝑚 + 1|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑚 + 1) ((𝑘 − 1)
𝜆

𝑆 − 1
+ 2𝛾) P(𝑘 − 1,𝑚 + 1|𝜆, 𝜇, 𝛾; 𝑡)

− (2(𝑘(𝑆 − 𝑘) + 𝑚(𝑆 − 𝑘 − 𝑚))
𝜆

𝑆 − 1
+ (2𝑆 − (𝑘 + 2𝑚))𝜇

+ (𝑘 + 2𝑚)𝛾)P(𝑘,𝑚|𝜆, 𝜇, 𝛾; 𝑡) 

 

This linear series of differential equations can be solved computationally by rewriting the 

equations into a matrix equation, 
𝑑�⃑� (𝑡)

𝑑𝑡
= 𝑻�⃑� (𝑡), and applying matrix exponentiation to the 

resulting transition matrix, 𝑻. 

�⃑� (𝑡) = 𝑒𝑡𝑻�⃑� (𝑡 = 0) 

 

Given that all the stem cells within a niche are initially clonal, we assumed that it was equally 
likely to find a given CpG locus as homozygously methylated or unmethylated across all the 
stem cells within the niche at time 0.  

P(𝑘, 𝑚|𝜆, 𝜇, 𝛾; 𝑡 = 0) = {
0.5 𝑖𝑓 𝑘 = 0 ∧ 𝑚 = 𝑆
0.5 𝑖𝑓 𝑘 = 0 ∧ 𝑚 = 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

However, the methylation status of individual cells is not available using methylation arrays, 
hence the hidden states must be marginalized over to calculate the probability of there being 
𝑧 methylated copies within the stem cell niche (note that 0 ≤ 𝑧 ≤ 2𝑆). This can be achieved 
by summing the various combinations of 𝑘 and 𝑚 states that satisfy the equation 𝑧 = 𝑘 +
2𝑚. 

P(𝑧|𝜆, 𝜇, 𝛾; 𝑡) = ∑ ∑ P(𝑘,𝑚|𝜆, 𝜇, 𝛾; 𝑡)𝛿𝑘+2𝑚,𝑧

𝑆−𝑚

𝑘=0

𝑆

𝑚=0

 

The resulting distribution of P(𝑧|𝜆, 𝜇, 𝛾; 𝑡) can qualitatively reproduce the characteristic W-

shape exhibited in the methylation fraction of individual crypts. 
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In developing our mathematical model describing the stem cell niche of intestinal crypts, a 
number of simplifying assumptions were made. Firstly, the assumption of a well-mixed 
population differs from Lopez-Garcia et al.’s (Lopez-Garcia, Allon M Klein, et al., 2010) 
assumption of a ring geometry; Lopez-Garcia et al.’s model considers the clonal expansion 
or retraction of a single clone, whereas our model must account for the possibility of multiple 
clones due to the increased mutation rate of the epigenome. As such, the assumption of a 
well-mixed population was chosen to minimize the mathematical complexity of the resulting 
model. Whilst it is true that LGR5+ cells likely reside in a roughly ring like structure, previous 
findings (Ritsma et al., 2014) that murine stem cells can exchange places within the niche 
lends support to treating the population as well mixed.  

 

Furthermore, we assumed that the replacement rate, methylation rate and demethylation 
rate are constant over a patient’s lifetime. Whilst previous research indicates that the stem 
cell division rate lowers over a patient’s lifetime (Tomasetti et al., 2019), and our findings are 
consistent with such a decrease, it is likely that both the replacement rate and the 
methylation error rate are proportional to the cell division rate, such that the ratio of the two 
does not change over time. In this way, our model describes the stem cell dynamics of an 
individual crypt, averaged over a patient’s lifetime. 

 

Error Model 
 

The probability distribution calculated above, P(𝑧|𝜆, 𝜇, 𝛾; 𝑡), gives the probability that exactly 𝑧 

of the 2𝑆 alleles (across 𝑆 stem cells) are methylated at a particular CpG locus; however, the 
Illumina EPIC array quantifies the methylation level at specific loci aggregated over the 
whole crypt. As such, we introduced an error model to link the measured 𝛽-value with the 

‘true’ 𝑧-value at a specific site. We chose to model the measured 𝛽 values as a mixture of 𝑧 
beta distributed random variables, each with a mean value determined by 𝑧 and a scale 

parameter 𝑘𝑧. 

 

To account for the background noise of the array, the mean value of each beta peak was set 

to be equal to a linear transform of 𝑧: 𝑥 = (𝜖 − Δ)
𝑧

2𝑆
+ Δ, with the parameters describing this 

transform (𝜖 and Δ)  to be inferred. The scale parameters (sometimes referred to as the 
sample size), 𝜅, of each beta peak were modelled as hierarchical, with each 𝜅𝑧 being drawn 

from a lognormal distribution parameterized in terms of the population mean, 휃, and its 

standard deviation, 𝜎. These hyperparameters were also inferred during the Bayesian 

inference. 

 

 

Likelihood and prior functions 
 

As rate parameters are naturally positive quantities, 𝜆, 𝜇 and 𝛾 were constrained to positive 

real values by defining the prior distributions in terms of positive half-normals with a scale 
informed by prior literature. Following Nicholson et al.’s (Nicholson et al., 2018) finding that 
the replacement rate is approximately 1.3 replacements per stem cell per year, we set the 
scale of the prior on the replacement rate equal to 1. Similarly, 휃 and 𝜎 were also 
constrained to positive values using broad half-normal prior distributions, with a scale of 500 
and 50 respectively. The lognormal hierarchical prior distribution naturally constrains 𝜅 to 

real values. The “offsets” in the linear transform, Δ and 𝜖, were constrained to lie between 0 
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and 1 by placing a beta distribution on each parameter, such that the mean prior value was 
0.05 and 0.95 respectively. 

 

The behavior of individual CpG loci was assumed to be independent, such that the likelihood 
of all 𝑁 = 1794 CpG loci was the simply the product of the per-CpG likelihood, computed 

according to the mathematical model outlined above. 

 

Likelihood: 

𝑥 = (𝜖 − Δ)
𝑧

2𝑆
+ Δ 

P(𝛽𝑖|𝑧, Δ, 𝜖, 𝜅𝑧) =
𝛽𝑖

𝜅𝑧𝑥−1(1 − 𝛽𝑖)
𝜅𝑧(1−𝑥)−1

B(𝜅𝑧𝑥, 𝜅𝑧(1 − 𝑥))
 

ℒ(𝜆, 𝜇, 𝛾, Δ, 𝜖, 𝜅, 𝑆|𝛽) = ∏∑P(𝛽𝑖|𝑧, Δ, 𝜖, 𝜅𝑧)P(𝑧|𝜆, 𝜇, 𝛾; 𝑡)

2𝑆

𝑧=0

𝑁

𝑖=1

 

 

Hyperpriors: 

휃~halfnormal(500) 

𝜎~halfnormal(50) 

Priors: 

𝜆~halfnormal(1.0) 

𝜇~halfnormal(0.05) 

𝛾~halfnormal(0.05) 

Δ~beta(5,95) 

𝜖~beta(95,5) 

𝜅𝑧~lognormal (ln (
휃2

√휃2 + 𝜎2
) ,√ln (1 +

𝜎2

휃2)) 

 

Bayesian inference 
 

A Bayesian inference methodology was developed to infer the biological model parameters 
(number of stem cells within the stem cell niche (𝑆), replacement rate per stem cell per year 

(𝜆), and methylation (𝜇) and demethylation (𝛾) rate per CpG locus per stem cell per year) 

directly from the distribution of oscillatory beta values for each crypt.  

Investigation of simulated datasets revealed that the resulting posterior distributions were 
multi-modal, with each 𝑆 value associated with a local-maxima (due to the correlation in the 
posterior between 𝑆 and 𝜆). This multi-modality can make the posterior difficult to explore 

using traditional MCMC techniques, such as Hamiltonian Monte Carlo. To overcome this, a 
nested sampling method (Skilling, 2006) was developed to calculate the Bayesian evidence 
(marginal probability density, 𝒵) of each 𝑆 value considered (𝑆 ∈ [3. .20]) whilst 

simultaneously generating samples from the posterior associated with each value of 𝑆. The 

probability of 𝑆 for a given crypt can then be calculated as: 
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P(𝑆|𝛽) =
𝒵(𝑆|𝛽)

∑ 𝒵(𝑆𝑗|𝛽)𝑗

 

The full posterior can be approximated by drawing samples from each 𝑆 mode with a weight 

equal to the inferred probability of 𝑆. The nested sampling was performed using dynesty 
(Speagle, 2019), a python implementation of the nested sampling algorithm, using the ‘rwalk’ 
sampling option, such that new live points are generated from existing live points under 
random walk behavior.  

To ensure that the posterior samples had converged to the equilibrium distribution, four 
independent samples were run with random initializations for each sample, and the rank-

normalized potential scale reduction statistic (�̂�) calculated (Gelman and Rubin, 1992; 

Vehtari et al., 2020). �̂� was found to be less than 1.1 (a typical threshold used to determine 

convergence) in all cases. The inference code can be obtained from 
https://github.com/CalumGabbutt/ticktockclock.git  

 

Tissue-specific differences in stem cell dynamics 
 

To compare the stem cell dynamics of different tissue and disease types in a statistically 
rigorous manner, we must account for the hierarchical patient structure (that is, we have 
multiple glands from each patient which are likely to be correlated) whilst controlling for the 
age and sex of each patient. We developed a hierarchical Bayesian generalized linear 
model (GLM) using a log-link function to constrain our dependent variable to be positive 
(presented fully in the supplementary material), and take a hypothesis testing by parameter 
estimation approach (that is, the difference between small intestine and colon is statistically 
significant if the 95% equal-tailed credible interval excludes 0). 

 

Spatial Model of the Crypt 
 

A crypt ignoring villi in the small intestine, forms a cylindrical geometry with stem cells at the 
base and a crypt wall moving up the crypt. Here we have developed an off-lattice 
mechanistic agent-based model of the human crypt using the HAL modeling framework 
(Bravo et al., 2020) capable of representing a crypt of the small intestine or colon (Fig. 3D). 
The cylindrical unit is separated into two compartments, the stem cell compartment 
represented as a pool at the base of the crypt and then the wall of the crypt where transient 
amplifying cells are pushed upwards until they are removed from the top of the crypt. The 
spatial model of the crypt is dynamic in the sense that the 𝑥 and 𝑦 dimensions are calculated 
using the total populations size (𝑁𝑇) and the stem cell pool radius (𝜓). The 𝑥 dimension is 

defined as 𝑥 =  2𝜋𝜓. The center of the stem cell pool is placed such that the origin of the 

center of this circular stem cell pool whose size, and thus number of stem cells allowed 
within this pool, is placed at (ℎ, 𝑘) where ℎ = 𝑥/2 and 𝑘 = 𝜓 + 5. Division for each stem cell 

is defined by 𝜌𝑐 which is randomly assigned as the hourly cell cycle defined by 

𝑝𝑐~𝑈(𝜌𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥) where 𝜌𝑚𝑖𝑛 and 𝜌𝑚𝑎𝑥 are 𝜌 ± 4 hours.  

As a cell approaches 𝜌𝑐 the cells diameter doubles for the five hours/timesteps preceding 
the cells division. Upon division, both daughter cells occupy this space. When a stem cell, 

defined by 𝑑(𝑥𝑐 , 𝑦𝑐) ≤ 𝜓 where 𝑑(𝑥𝑐 , 𝑦𝑐) =  √(𝑥𝑐 − ℎ)2 + (𝑦𝑐 − 𝑘)2, divides the daughter cells 

can be placed in any arrangement around the parent cells 𝑥𝑐 and 𝑦𝑐 position, differentiated 

cells can only be placed vertically (i.e. the 𝑥𝑐 values are equal). The base of the crypt wall is 
set just above the origin of the stem cell pool plus 𝜓 and a small offset to provide space so 

that no cell forces interact between the stem cell pool and the base of a stem cell wall. If 
𝑑(𝑥𝑐 , 𝑦𝑐)  > 𝜓 then the cell is moved to the base of the stem cell wall where the cells new 
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position (𝑥2, 𝑦2) is given as 𝑦2 and 𝑥2 is given by the cells exit radians, 𝑟𝑎𝑑𝑠, given by 

𝑎𝑡𝑎𝑛2(𝑦𝑐 , 𝑥𝑐) so that the cells position along the 𝑥 dimension is 𝑥2 = (𝑟𝑎𝑑𝑠 + 𝜋) (
𝑥

2𝜋
). 

Boundary conditions for the cells within the crypt wall are periodic (i.e. allowed to wrap 
around) and no-flux at the top and bottom of the crypt (i.e. no cell can breach these 
boundaries). A run step in the model is hourly and updates to cell positions occur for the 
whole crypt are applied each timestep. We give each cell 1794 CpG loci (with the possible 
status of 0 for de-methylated or 1 for methylated). At each division these loci can switch 
methylation status at a rate defined by 𝜔 upon division. 

At each hourly time step we assume that the forces acting on each individual cell to be at 
equilibrium, 𝐹𝑐𝑖

= 0, where 𝐹𝑐𝑖
 is equal to the contact force between cell 𝑖 and its neighbors. 

For two cells whose radius is 𝑅𝑖 and 𝑅𝑗, respectively, their contact force between them is 

based on a linear spring contant model (Hooke’s law) and is calculated as 

𝐹𝑐𝑖𝑗
=

{
 
 

 
 𝑘𝑖

Δ𝑅𝑖𝑗

𝑅𝑖 + 𝑅𝑗
     if    

Δ𝑅𝑖𝑗

𝑅𝑖 + 𝑅𝑗
> 0

0                      if    
Δ𝑅𝑖𝑗

𝑅𝑖 + 𝑅𝑗
< 0

 

Assuming that each cell has the same spring constant 𝑘, the overlap of cells (
Δ𝑅𝑖𝑗

𝑅𝑖+𝑅𝑗
), and the 

overall number of cells in contact with any given cell (𝑛𝑖) gives the velocity for an individual 

cell is 𝑣𝑖 = 𝑘 ∑
Δ𝑅𝑖𝑗

𝑅𝑖+𝑅𝑗

𝑛𝑗

𝑗=1 . The modelling framework can be obtained from 

https://github.com/MathOnco/ticktockspatialmodel.git. 

 

Inference of Stem Cell Numbers on the Spatial Model 
 

In order to provide insights into the oscillatory signal from a first principles model of the 
homeostatic crypt (balanced birth/death with a methylation error rate) we have to add noise 
to the output data of the spatial model. This is because the inference framework is designed 
to fit the noisy experimental data and that oscillatory CpG sites with values of zero or one 
are not captured within the data. In order to add a small amount of noise to the output of the 
perfect beta distributions output by the spatial model a binomial is used with two offsets to 
provide a distribution that the inferences can be performed on. For each beta value a sample 
size (𝜅) of 1000 is taken from a beta distribution using an offset from zero (Δ = 0.04) and an 
offset from one (휂 = 0.92) (Fig. 3D). The script required to add noise to this model is 

accompanied with the inference framework (see add_noise.py). Once the beta values with 
noise are added the inference framework is executed for each model simulation’s beta va lue 
distributions for across stem cell number ranges from 2-9, 3-10 and 8-15 respectively using 
400 live points for the dynesty sampler (Speagle, 2019). 
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Supplementary Information 
 

Supplementary Figures 

 

Supplementary Figure 1: Additional Analysis of Oscillatory CpG Identification 
Process 

A: Venn diagram showing the overlap of CpG loci identified as oscillatory in the colon and 
the small intestine. B: Scatter density plot (with the density plotted on the log-scale) of the 
heterogeneity metric (mean intra-patient standard deviation) of CpGs in the colon and 
small intestine, with the cutoff of the top 5% most heterogenous loci indicated in red. C: 
Comparison of the heterogeneity metric of the colon exclusive oscillatory CpG loci (i.e. 
those identified in the colon but not the small intestine) to all type II CpGs, within the small 
intestine samples. The colon exclusive CpG loci are significantly more variable (p<0.001, 
Mann Whitney U test). D: An extension of the oscillatory CpG identification process to 
CpG loci located on the X chromosome. We present example tick-tock distributions for 
these X-chromosome CpG loci for a male and a female crypt, confirming the predictions 
from theory that the male crypts lack the peak at 50% as they contain only a single copy. 
To test whether this relationship holds in general, we compare the proportion of tick-tock 
CpG’s with an intermediate beta value (0.4 ≤ 𝛽 ≤ 0.6) between all colon crypts from males 

and females, confirming that males have a significantly lower probability mass near 50% 
(p<0.001, Mann Whitney U test). 

 

Derivation of Model Describing Methylation Within the Stem Cell Niche 
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Consider a single CpG locus within a fixed population of 𝑆 stem cells. Within each stem cell, 
the locus is assumed to be diploid, so each stem cell contains 2 alleles at this locus. In this 
way, there are 3 possible “states” for a given stem cell, (i) neither allele methylated, (ii) both 
alleles methylated, (iii) or one allele methylated whilst the other is unmethylated. We are 
interested in the population methylation level, so we assume that the population is well-
mixed, which allows us to characterize the system using just 2 state variables: 𝑘 – the 
number of stem cells containing a single methylated allele, and 𝑚 – the number of stem cells 

containing 2 methylated alleles. The number of stem cells containing 0 methylated alleles is 
then given by 𝑆 − 𝑚 − 𝑘.  

 

The states are constrained such that 0 ≤ 𝑘,𝑚 ≤ 𝑆 and 𝑘 + 𝑚 ≤ 𝑆, which allows us to 

calculate the total number of possible states by considering all possible combinations of 𝑘 

and 𝑚. If we first consider the case when 𝑚 = 0, then 𝑘 can take any value between 0 and 𝑆 
giving a total of 𝑆 + 1 states. If we next consider the 𝑚 = 1 case, then 𝑘 can take any value 

between 0 and 𝑆 − 1, a total of 𝑆 states. We can continue in this fashion for each of the 𝑆 + 1 

possible states for 𝑚, such that the total number of states is 

 
∑ 𝑆 + 1 − 𝑚

𝑆

𝑚=0

=
1

2
(𝑆 + 1)(𝑆 + 2) 1 

 

We assume that there are three possible processes that can change the population 
methylation level (𝑘,𝑚) → (𝑘′, 𝑚′): 

(1) an unmethylated allele spontaneously becoming methylated (which, for a single 
unmethylated CpG locus, occurs at a rate 𝜇 per allele per stem cell per year) 

(2) a methylated allele spontaneously becoming unmethylated (which occurs at a 
rate 𝛾 per allele per stem cell per year) 

(3) one stem cell replacing one of the other 𝑆 − 1 stem cells (which occurs at a rate 𝜆 

per stem cell per year). 

To formulate a system of differential equations that characterize the rates at which the 
population methylation changes, we first consider the probability the system in state (𝑘, 𝑚) at 

time 𝑡 transitions to state (𝑘′, 𝑚′) within the time 𝑡 + 𝛿𝑡 (where we assume 𝛿𝑡 is small 

enough that the probability of a “double-jump” is negligible).  

 

If we are in state (𝑘,𝑚), then the probability that one of the 𝑘 heterozygous methylated stem 

cells becomes unmethylated (via process (2)) in a time period 𝛿𝑡 is: 

 P((𝑘, 𝑚) → (𝑘 − 1,𝑚)) = 𝑘𝛾𝛿𝑡 2 

 

And the probability that the one of the 𝑚 homozygous methylated stem cells (representing 

2m methylated alleles) undergoes process (2) is: 

 P((𝑘, 𝑚) → (𝑘 + 1,𝑚 − 1)) = 2𝑚𝛾𝛿𝑡 3 

 

Similarly, considering methylation (process (1)), there are a total of 2𝑆 − 𝑘 − 2𝑚 

unmethylated alleles where the process could occur. The probability that one of the 
homozygous S-k-m unmethylated stem cells becomes heterozygous is: 

 P((𝑘, 𝑚) → (𝑘 + 1,𝑚)) = 2(𝑆 − 𝑘 − 𝑚)𝜇𝛿𝑡 4 
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And the probability that one of the heterozygous methylated stem cells becomes 
homozygous methylated is:  

 P((𝑘, 𝑚) → (𝑘 − 1,𝑚 + 1)) = 𝑘𝜇𝛿𝑡 5 

 

Let us now consider the replacement process. In a time period 𝛿𝑡 the probability that a 

replacement occurs is 𝑆𝜆𝛿𝑡. There are 𝑆(𝑆 − 1) possible replacements: 𝑆 possible cells that 
can expand, which must replace any of the 𝑆 − 1 other cells. To go from state (𝑘,𝑚) to a 

different state (𝑘′, 𝑚′), we require the expanding stem cell to replace a cell with a different 
methylation status. Therefore, the probability of the transition (𝑘, 𝑚) → (𝑘′, 𝑚′) is equal to the 

probability that any of the cells replaces another, 𝑆𝜆𝛿𝑡, multiplied by the number of ways that 

particular transition could occur, and normalised by the total possible number of transitions.  

 

To give a concrete example, consider the stem the cell niche illustrated in Figure 1C, which 
contains 5 stem cells and is initially in the state (𝑘 = 3,𝑚 = 1). There are a total of 5 ∗ 4 =
20 possible replacements. Clearly, if one of the heterozygous stem cells replaces another of 
the heterozygous stem cells, the population methylation level will not change. To jump to the 
state (𝑘 = 3,𝑚 = 2) as illustrated in Figure 1C, only one replacement (the homozygous 

methylated stem cell replacing the homozygous unmethylated stem cell) allows the specified 

jump, hence the probability of the jump (3,1) → (3,2) in the time 𝛿𝑡 is 
1

5∗4
5𝜆𝛿𝑡 =

1

4
𝜆𝛿𝑡. To 

generalise this, the fraction of possible transitions that give rise to the particular jump 
(𝑘,𝑚) → (𝑘′, 𝑚′) is equal to the multiplicity of the expanding cell multiplied by the multiplicity 

of the replaced cell, divided by 𝑆(𝑆 − 1). 

 

Applying the same logic, we can derive the probability of all six possible state transitions via 
replacement: 

 
P((𝑘, 𝑚) → (𝑘,𝑚 + 1)) =  

𝑚(𝑆 − 𝑚 − 𝑘)𝜆𝛿𝑡

𝑆 − 1
 6 

 
P((𝑘,𝑚) → (𝑘 + 1,𝑚)) =  

𝑘(𝑆 − 𝑚 − 𝑘)𝜆𝛿𝑡

𝑆 − 1
 7 

 
P((𝑘,𝑚) → (𝑘 − 1,𝑚 + 1)) =

𝑘𝑚𝜆𝛿𝑡

𝑆 − 1
  8 

 
P((𝑘,𝑚) → (𝑘 + 1,𝑚 − 1)) =

𝑘𝑚𝜆𝛿𝑡

𝑆 − 1
 9 

 
P((𝑘, 𝑚) → (𝑘,𝑚 − 1)) =  

𝑚(𝑆 − 𝑚 − 𝑘)𝜆𝛿𝑡

𝑆 − 1
 10 

 
P((𝑘,𝑚) → (𝑘 − 1,𝑚)) =  

𝑘(𝑆 − 𝑚 − 𝑘)𝜆𝛿𝑡

𝑆 − 1
 11 

 

The methylation switching and replacement processes that we have considered separately 
above are independent, allowing us to simply add the probabilities together (again, 
assuming that 𝛿𝑡 is small enough that the probability of two processes occurring in 𝛿𝑡 is 

negligible) to find the total probability that a given transition would occur: 

 
P((𝑘,𝑚) → (𝑘,𝑚 + 1)) =  

𝑚(𝑆 − 𝑚 − 𝑘)𝜆𝛿𝑡

𝑆 − 1
 12 
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P((𝑘,𝑚) → (𝑘 + 1,𝑚)) =  

𝑘(𝑆 − 𝑚 − 𝑘)𝜆𝛿𝑡

𝑆 − 1
+ 2(𝑆 − 𝑚 − 𝑘)𝜇𝛿𝑡 13 

 
P((𝑘,𝑚) → (𝑘 − 1,𝑚 + 1)) =

𝑘𝑚𝜆𝛿𝑡

𝑆 − 1
+ 𝑘𝜇𝛿𝑡  14 

 
P((𝑘, 𝑚) → (𝑘 + 1,𝑚 − 1)) =

𝑘𝑚𝜆𝛿𝑡

𝑆 − 1
+ 2𝑚𝛾𝛿𝑡 15 

 
P((𝑘,𝑚) → (𝑘,𝑚 − 1)) =  

𝑚(𝑆 − 𝑚 − 𝑘)𝜆𝛿𝑡

𝑆 − 1
 16 

 
P((𝑘,𝑚) → (𝑘 − 1,𝑚)) =  

𝑘(𝑆 − 𝑚 − 𝑘)𝜆𝛿𝑡

𝑆 − 1
+ 𝑘𝛾𝛿𝑡 17 

 

We have considered above the transitions leading “out” of the state (𝑘, 𝑚) into adjacent 

states (𝑘′, 𝑚′). However, we can also consider the jumps “into” the state (𝑘,𝑚) from the 

adjacent states (𝑘′, 𝑚′): 

 
P((𝑘,𝑚 − 1) → (𝑘,𝑚)) =  

(𝑚 − 1)(𝑆 − (𝑚 − 1) − 𝑘)𝜆𝛿𝑡

𝑆 − 1
 18 

 
P((𝑘 − 1, 𝑚) → (𝑘,𝑚)) =  

(𝑘 − 1)(𝑆 − 𝑚 − (𝑘 − 1))𝜆𝛿𝑡

𝑆 − 1
+ 2(𝑆 − 𝑚 − (𝑘 − 1))𝜇𝛿𝑡 19 

 
P((𝑘 + 1,𝑚 − 1) → (𝑘,𝑚)) =

(𝑘 + 1)(𝑚 − 1)𝜆𝛿𝑡

𝑆 − 1
+ (𝑘 + 1)𝜇𝛿𝑡  20 

 
P((𝑘 − 1,𝑚 + 1) → (𝑘,𝑚)) =

(𝑘 − 1)(𝑚 + 1)𝜆𝛿𝑡

𝑆 − 1
+ 2(𝑚 + 1)𝛾𝛿𝑡 

 

21 

 
P((𝑘, 𝑚 + 1) → (𝑘, 𝑚)) =  

𝑚(𝑆 − (𝑚 + 1) − 𝑘)𝜆𝛿𝑡

𝑆 − 1
 22 

 
P((𝑘 + 1,𝑚) → (𝑘,𝑚)) =  

(𝑘 + 1)(𝑆 − 𝑚 − (𝑘 + 1))𝜆𝛿𝑡

𝑆 − 1
+ (𝑘 + 1)𝛾𝛿𝑡 

 

23 

So far, we have considered the probability that the system changes from state (𝑘, 𝑚) to state 
(𝑘′, 𝑚′) within time 𝛿𝑡. However, we primarily want to know the probability of the system 
being in state (𝑘,𝑚) at time 𝑡, P(𝑘, 𝑚; 𝑡), and how this changes over time. For the system to 

be in state (𝑘,𝑚) at time 𝑡 + 𝛿𝑡, either (i) the system must have been in state (𝑘,𝑚) at time 𝑡 
and has not transitioned out of the state (which is equal to 1 minus the probability of 
transitioning to an adjacent state, defined by equations 12-17), (ii) or the system was in a 
different (adjacent) state (𝑘′, 𝑚′) at time 𝑡 and has transitioned into the state (𝑘,𝑚) in time 𝛿𝑡 
(defined by equations 18-23): 

 

P(𝑘, 𝑚; 𝑡 + 𝛿𝑡) = P(𝑘,𝑚; 𝑡) (1 − ∑ P((𝑘, 𝑚) → (𝑘′, 𝑚′))

𝑘′,𝑚′

)

+ ∑ P(𝑘′, 𝑚′; 𝑡)P((𝑘′, 𝑚′) → (𝑘, 𝑚))

𝑘′,𝑚′

 

24 

 

We can rearrange equation 24, factoring out the common factor of 𝛿𝑡 in the P((𝑘′, 𝑚′) →

(𝑘,𝑚)) terms and take the limit 𝛿𝑡 → 0: 
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 𝑑P(𝑘,𝑚; 𝑡)

𝑑𝑡
= lim

𝛿𝑡→0
(
P(𝑘,𝑚; 𝑡 + 𝛿𝑡) − P(𝑘,𝑚; 𝑡) 

𝛿𝑡
)

= ∑ P(𝑘′, 𝑚′; 𝑡)
P((𝑘′, 𝑚′) → (𝑘,𝑚))

𝛿𝑡
𝑘′,𝑚′

−  P(𝑘,𝑚; 𝑡) 
P((𝑘,𝑚) → (𝑘′, 𝑚′))

𝛿𝑡
 

25 

 

The sum over equation 12-17 in the final term evaluates as: 

 
∑

P((𝑘,𝑚) → (𝑘′, 𝑚′))

𝛿𝑡
𝑘′,𝑚′

= (𝑘(𝑆 − 𝑘) + 𝑚(𝑆 − 𝑘 − 𝑚))
2𝜆

𝑆 − 1

+ (2𝑆 − (𝑘 + 2𝑚))𝜇 + (𝑘 + 2𝑚)𝛾 

 

26 

Due to the constraints on 𝑘 and 𝑚, we consider the differential equations for (𝑘 = 0,𝑚 = 0), 
(𝑘 = 𝑆,𝑚 = 0) and (𝑘 = 0,𝑚 = 𝑆) separately. Combining equations 25, 26 and 18-23, we 

derive the following set of differential equations: 

 𝑑P(0,0|𝜆, 𝜇, 𝛾; 𝑡)

𝑑𝑡
= (𝜆 + 𝛾)P(1,0|𝜆, 𝜇, 𝛾; 𝑡) + 𝜆P(0,1|𝜆, 𝜇, 𝛾; 𝑡) − 𝑆𝜇P(0,0|𝜆, 𝜇, 𝛾; 𝑡) 27 

 𝑑P(𝑆, 0|𝜆, 𝜇, 𝛾; 𝑡)

𝑑𝑡
= (𝜆 + 2𝜇)P(𝑆 − 1,0|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝜆 + 2𝛾)P(𝑆 − 1,1|𝜆, 𝜇, 𝛾; 𝑡)
− 𝑆(𝜇 + 𝛾)P(𝑆,𝑚|𝜆, 𝜇, 𝛾; 𝑡) 

28 

 𝑑P(0, 𝑆|𝜆, 𝜇, 𝛾; 𝑡)

𝑑𝑡
= (𝜆 + 𝜇)P(1, 𝑆 − 1|𝜆, 𝜇, 𝛾; 𝑡)

+ 𝜆P(0, 𝑆 − 1|𝜆, 𝜇, 𝛾; 𝑡)
− 𝑆𝛾P(0, 𝑆|𝜆, 𝜇, 𝛾; 𝑡) 

29 

 

Otherwise: 

 𝑑P(𝑘, 𝑚|𝜆, 𝜇, 𝛾; 𝑡)

𝑑𝑡

= (𝑆 − 𝑚 − (𝑘 − 1)) ((𝑘 − 1)
𝜆

𝑆 − 1
+ 2𝜇) P(𝑘 − 1,𝑚|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑚 − 1)(𝑆 − (𝑚 − 1) − 𝑘)
𝜆

𝑆 − 1
P(𝑘,𝑚 − 1|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑘 + 1) ((𝑚 − 1)
𝜆

𝑆 − 1
+ 𝜇) P(𝑘 + 1,𝑚 − 1|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑘 + 1) ((𝑆 − 𝑚 − (𝑘 + 1))
𝜆

𝑆 − 1
+ 𝛾) P(𝑘 + 1,𝑚|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑚 + 1)(𝑆 − (𝑚 + 1) − 𝑘)
𝜆

𝑆 − 1
P(𝑘,𝑚 + 1|𝜆, 𝜇, 𝛾; 𝑡)

+ (𝑚 + 1) ((𝑘 − 1)
𝜆

𝑆 − 1
+ 2𝛾) P(𝑘 − 1,𝑚 + 1|𝜆, 𝜇, 𝛾; 𝑡)

− (2(𝑘(𝑆 − 𝑘) + 𝑚(𝑆 − 𝑘 − 𝑚))
𝜆

𝑆 − 1
+ (2𝑆 − (𝑘 + 2𝑚))𝜇

+ (𝑘 + 2𝑚)𝛾)P(𝑘, 𝑚|𝜆, 𝜇, 𝛾; 𝑡) 

30 
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This master equation determines how the methylation statues of a single CpG locus within 
the stem cell niche evolves over time. The replacement, methylation and demethylation rate 
are assumed to be constant, hence this process is Markovian and we are able to solve this 
using standard matrix exponentiation. 

 

Bayesian Analysis of the Effect of Tissue Location and Disease State on Stem 
Cell Dynamics 
 

The Bayesian pipeline described in the main body of the text allowed the posterior 
distribution of the parameters defining the stem cell dynamics (namely, the effective number 
of stem cells, 𝑆, and the replacement rate per stem cell, 𝜆) of each individual crypt to be 
inferred. To interrogate the effect of age, sex, tissue location (colon, small intestine and 
endometrium) and the disease state of colonic crypts (AFAP/FAP) on stem cell dynamics, 
we take the posterior mean of 𝑆 and 𝜆 as representative of the inferred distribution for each 

crypt. 

As a matter of notation, let there be 𝐾 patients subscripted with 𝑘 = [1 . .  𝐾] and 𝑁 crypts 

subscripted with 𝑖 = [1 . .  𝑁]. The age of the 𝑘𝑡ℎ patient is 𝑡𝑘, which we normalise to be 

between 0 and 1 by dividing each patient’s age by the maximum age in the patient cohort. 

Similarly, the sex the 𝑘𝑡ℎ patient is encoded as a dummy variable, which equals 0 for female 

patients and 1 for male patients. The location/disease state of each crypt is encoded with the 
dummy variables  𝑥𝑖,𝑗 for 𝑗 ∈ {𝐶𝑜𝑙𝑜𝑛, 𝑆𝑚𝑎𝑙𝑙 𝐼𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑒, 𝐹𝐴𝑃,  𝐴𝐹𝐴𝑃, 𝐸𝑛𝑑𝑜𝑚𝑒𝑡𝑟𝑖𝑢𝑚}.  

We fit the parameters determining stem cell dynamics 𝑦 = {𝑆, 𝜆} using a generalised linear 
model with a gamma-distributed dependent variable (this accounts for the fact 𝑆 and 𝜆 are 

strictly positive). Let 𝑦𝑖,𝑘 be the dependent variable with expectation �̂�𝑖,𝑘, then we employ the 

natural log as a link function 𝑔(�̂�𝑖,𝑘) = ln(�̂�𝑖,𝑘). 𝑦𝑖,𝑘 is then gamma distributed with mean �̂�𝑖,𝑘 

and a tissue/disease-specific standard deviation 𝜙𝑗. 

We use the parameterization of the gamma distribution in terms of its shape (𝜓) and rate 

(𝜔): 

Gamma(𝑦|𝜓,𝜔) =
𝜔𝜓

Γ(ψ)
𝑦𝜓−1𝑒−𝜔𝑦 

The mean of this distribution is 
𝜓

𝜔
 and the variance is 

𝜓

𝜔2. Hence, to parameterise the gamma 

distribution in terms of its mean (�̂�) and standard deviation (𝜙), we apply the transformation 

𝜓 =
�̂�2

𝜙2, 𝜔 =
�̂�

𝜙2. 

Our dataset contains multiple samples from the same patient, so we assume the offset in the 
linear predictor is drawn for each patient from a hierarchical normal distribution with mean 𝜈 

and variation 𝜎 (hence accounting for random inter-patient variability, not attributable to the 
factors we are explicitly modelling). Similarly, to maximize the information that can be drawn 
from the data, we allowed the tissue/disease-specific intrapatient standard deviation, 𝜙𝑗, to 

be drawn from a lognormal distribution, with a population mean 𝜌 and standard deviation 휁. 

Priors: 

𝑎𝑘~normal(𝜈,  𝜎) 

ln(𝜙𝑗)~normal(𝜌, 휁) 

Model: 
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ln(�̂�𝑖,𝑘) = 𝑎𝑘 + 𝑏𝑗𝑥𝑖
𝑗 +  𝑐𝑡𝑘 + 𝑑𝑠𝑘 

𝑦𝑖,𝑘~gamma(
�̂�𝑖,𝑘

2

𝜙𝑗
2 ,

�̂�𝑖,𝑘

𝜙𝑗
2) 

The hierarchical Bayesian model was fit to the data using pystan, a python implementation 
of Stan (Carpenter et al., 2017), a probabilistic programming language that allows for rapid 
MCMC sampling. 

 

Because a log-link function was used to ensure the positivity of �̂�𝑖,𝑘, the coefficients of the 

regression, 𝑏𝑗, encode the difference between each tissue-type or disease-state, and colon 

on the log scale. We take the exponential transform of each of these regression coefficients 
to derive the posterior for the relative stem cell number and replacement rate of each tissue-
type and disease-state relative to colon. We take a hypothesis testing by parameter 
inference approach, where the effect of a particular tissue/disease on the dependent 
variable is termed significant when the 95% equal-tailed credible interval does not overlap 0. 
The hierarchical Bayesian model that we have developed naturally penalizes increasing 
numbers of parameters, hence there is no need to apply a multiple test (Gelman, Hill and 
Yajima, 2012). 

 

Whole Blood Simulations 
 
Whole blood was simulated in Java using the HAL framework (Bravo et al., 2020) as a non-
spatial agent-based model using 27,634 oscillating CpG sites as measured in the 
experimental data. Parameters (Table 1) for normal hematopoiesis are numbers of 
hematopoietic stem cells (N, HSCs), number of possible division events (T), CpG error rates 
(S, methylation and demethylation) for the oscillators, and HSC replacement dynamics (R). 
To model clonal expansion, a single cell is selected to grow upon induction, and added 
parameters are its expansion rate (E) and its final blood frequency of the clonal expansion 
(M). These clonal expansions result in the overall population size to grow until the 
appropriate final blood frequency is reached. The output of the simulations provides the beta 
values from the oscillating CpG sites and the overall distribution’s variance over time. 

The number of HSCs was set at a lower value of 1000 initiating cells. This is much lower 
than the 30,000 based on the large number of HSC inferred by DNA sequencing studies 
(Lee-Six et al, 2018; Watson et al., 2020); however, the results shown here are invariant to 
more than 100 initiating cells. CpG error rates varied between CpG sites and were assigned 
based on the distribution averages of the 656 normal individuals from GSE40279. We found 
that some of the whole blood oscillators did not appear to have equal methylation and 
demethylation error rate because their averages tended to always be above or below 50% in 
multiple individuals. Hence, to better model and match the data, we used a look-up 
distribution table in the simulations in order to initialize cell’s oscillatory CpG parameters, 
with lower and unequal error rates at CpG sites with average methylation typically found 
near 0.4 (demethylation > methylation) or near 0.6 (methylation > demethylation) to maintain 
the variance of the 27,634 oscillators around 0.1 during cell divisions. The error rates varied 
between 0.0001 to 0.001 changes per division, with the highest error rates and more equal 
methylation and demethylation rates at CpG sites near 50% methylation. 

Cell survival was set at exact replacement (one cell produces one living offspring), and 
results did not vary much if random replacement was simulated. A proportion of cells, no 
matter if it’s a founding disease cell undergo replacement at each timestep (Supplemental 
Table 1). For the neoplastic simulations in Fig 6D in the manuscript, the expansion rate (E) 
was varied to model either rapid expansion (visible or more than 5% leukemic cells within 1 
year or 200 divisions) akin to acute leukemia, modest expansion (visible within 4 years or 
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12,000 divisions), or very slow expansion (visible within 6 years or 18,000 divisions). The 
extent of blood involvement was varied between 20% (black lines), 50% (blue lines) and 
90% (red lines). These simulations indicate that how clonal expansions change whole blood 
oscillator variances depends both on how fast the expansion grows and to what extent it 
involves the blood. Rapid growth to high levels like acute leukemias results in high oscillator 
variances and characteristic W-shaped tick tock distributions. Slower growth to lower levels 
like chronic leukemias results in low oscillator variances and broader distributions that lack 
the W-shape. Interestingly, very indolent clonal expansions which may occur with CHIP 
(Jaiswal and Ebert, 2019) can result in small increases in oscillator variances, which may 
account for the age-related increase in oscillator variances seen in Fig 6A in the manuscript. 

More sophisticated modelling with a better selection of whole blood oscillators could improve 
the extraction of ancestral information. For example, a selection of slower oscillators may 
improve the detection and analysis of indolent clonal expansions, where many of the faster 
oscillators return to average ~50% methylation by the time the expansion reaches detectable 
blood levels. 

The simulation framework can be obtained, along with sample simulation results, on GitHub 
through https://github.com/MathOnco/ticktockblood.git. A GUI compatible with most 
operating systems is accompanied to allow for rapid evaluation of different parameters. 

 

Parameter Description Values 

N Number of HSCs, initial population 100 

T Simulation time 2,500 

S CpG error rates 0.0001-0.001 per division 

λ Cell survival, exact replacement 0.6 

E Disease expansion rate (0.1, 0.005, 0.00225) 

ω  Final blood frequency (0.2, 0.5, 0.9) 

Supplementary Table 1: Parameters of Whole Blood Simulations  

Parameters used in simulations describing how the methylation distribution of well-mixed 
hematopoietic stem cells (HSCs) changes in response to the expansion of a single clonal 
population. 
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