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Abstract14

Functional neuroimaging research on depression has traditionally targeted neural networks associated15

with the psychological aspects of depression. In this study, in stead, we focus on alterations of sensori-16

motor function in depression. We used resting-state functional MRI data and Dynamic Causal Modeling17

(DCM) to assess the hypothesis that depression is associated with aberrant effective connectivity within18

and between key regions in the sensorimotor hierarchy. Using hierarchical modeling of between-subject19

effects in DCM with Parametric Empirical Bayes we first established the architecture of effective connec-20

tivity in sensorimotor cortices. We found that in (interoceptive and exteroceptive) sensory cortices across21

participants, the backward connections are predominantly inhibitory whereas the forward connections22

are mainly excitatory in nature. In the motor cortices these parities were reversed. With increasing23

depression severity, these patterns are depreciated in exteroceptive and motor cortices and augmented24

in interoceptive cortex: an observation that speaks to depressive symptomatology. We established the25

robustness of these results in a leave-one-out cross validation analysis and by reproducing the main re-26

sults in a follow-up dataset. Interestingly, with (non-pharmacological) treatment, depression associated27

changes in backward and forward effective connectivity partially reverted to group mean levels. Overall,28
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altered effective connectivity in sensorimotor cortices emerges as a promising and quantifiable candidate29

marker of depression severity and treatment response.30
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Introduction31

The search for the neurological bases of depression has provided many important insights, yet we are far32

from a comprehensive, translatable understanding [1–4]. This warrants further research and, possibly, new33

approaches.34

Neuroimaging research on depression largely focuses on complex affective and psychological components35

of depression, prefrontal cortex and limbic formation being two of the most investigated brain regions [5].36

At the network level, apart from fronto-limbic circuitry , default mode network, cognitive control network,37

and corticostriatal circuits are some of the major neurocircuits that are known to be involved in depression38

[6–17].39

However, depression is an embodied phenomena and is known to cause alterations in several sensorimo-40

tor functions. Persons suffering from depression, for example, are known to have reduced visual contrast41

sensitivity [18], impaired auditory processing of non-speech stimuli [19] and increased pain tolerance for42

exteroceptive stimulation [20]. In addition to these exteroceptive alterations, depression has been shown43

to cause interoceptive changes like decreased pain tolerance for interoceptive stimulation [20] and reduced44

heartbeat accuracy [21]. The psychomotor retardation (reduced speed, slow speaking rate, delayed motor45

initiation, body immobility, loss of facial expression [22]) is a prominent feature of depression. Moreover,46

rumination, an important feature of depression [23], has prominent sensorimotor components.47

Although there are a few neuroimaging studies of sensorimotor changes in depression, our understanding48

of sensory and motor function of brain is undergoing a paradigm shift. Spearheaded by predictive coding and49

related theoretical frameworks, there is an emerging consensus among neuroscientists that perception is not50

a simple ‘bottom-up’ mechanism of progressive abstraction of sensory input [24–26]. Bottom-up, top-down51

and intrinsic neuronal message passing play distinct but crucial roles. This general idea is also applicable52

to motor function (see active inference [27]). Motivated by these novel insights, we analysed effective con-53

nectivity (spectral dynamic causal modelling [28]) in resting state functional MRI data among hierarchical54

sensorimotor regions in unmedicated depression patients and neurotypical individuals. For exteroceptive55

perception, effective connectivity among lateral frontal pole - one of the terminal regions of sensory relays56

- and primary visual, auditory, and somatosensory cortex was considered. Effective connectivity between57

anterior and posterior insula was characterised for interoception and between supplementary motor area and58

primary motor cortex was analysed for motor function (Figure 5). Both group mean effective connectivity59

and connections showing significant association with Beck Depression Inventory (BDI) scores [29] (after con-60

trolling for age and sex) were identified. In a leave-one-out cross-validation [30]- using parametric empirical61

Bayesian - the effect size was estimated. A subset of participants, who were either treated with cognitive62

behaviour therapy [31], neurofeedback therapy [32] or not treated were scanned again a few months later63

and same analysis was implemented, with the addition of treatment effect as a covariate.64
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Results65

The primary experiment66

Accuracy of DCM model estimation67

The accuracy of DCM estimates of effective connectivity for individual participants was excellent. Across68

participants, the minimum percentage variance-explained by DCM - when fitted to the observed (cross69

spectra) data - were 73.55%, 68.84%, and 55.00% for left motor, exteroceptive and interoceptive networks70

respectively. For right hemisphere ROIs, these values were 63.2%, 50.79%, and 30.75%. In general, for most71

participants variance explained was 80% or more.72

73

Effective connectivity74

Results are displayed in Figure 1 and detailed further in supplementary Figure 175

76

Group mean effective connectivity77

The mean effective connectivity among sensorimotor regions is depicted in Figure 1 (a) and (b). Among78

extensive network of connections in both hemispheres,the most consistent pattern emerged in the forward79

and backward effective connectivity. In sensory regions (exteroceptive and interoceptive), backward connec-80

tions were inhibitory, whereas forward connections were excitatory ( exception: SSC to FP1 connection). In81

motor regions, opposite was true ( backward: excitatory, forward: inhibitory).82

83

Changes in effective connectivity with BDI scores84

The connections that showed an association with BDI scores are shown in Figure 1 (c) and (d). As with85

mean connectivity, the severity associated changes were most consistent in (extrinsic or between region)86

forward and backward connections across both hemispheres. For exteroceptive and motor cortices, with87

increasing BDI scores top-down and bottom-up effective connectivity show changes in the opposite direction88

with respect to group level estimation. For example, in exteroceptive sensory regions (with one exception,89

see below) bottom-up connections become more negative and top-down connections become more positive90

(i.e., disinhibition). In the motor regions, top-down connections become more negative and bottom-up con-91

nections become more positive. In interoceptive regions top-down inhibitory influences are enhanced.92

93

Effective connectivity analysis for left auditory regions94

One notable exception to general pattern of changes in exteroceptive sensory regions with BDI scores was95

found in the left auditory regions. Here top-down inhibitory and bottom-up excitatory influences were96

enhanced with depression. One possible explanation is that this effect reflects enhanced rumination and97

self-speech in depression (please note left auditory cortex is specialized for speech perception). To further98
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Figure 1: Effective connectivity in the primary study (left and right hemispheres). (a),(b): Group mean effective

connectivity in sensory and motor networks. Arrow colours code nature of connections red, excitatory; blue, inhibitory.

(c),(d): Connections showing significant association with Beck depression inventory (BDI) scores in sensory and

motor networks. Arrow colours code direction of connectivity changes relative to the group mean: red, increased;

blue, decreased. (e): Connections showing significant association with Beck depression inventory (BDI) scores in a

network composed of left thalamus, left primary auditory cortex, Broca’s region and left lateral frontal pole. For all

subfigures line thickness is kept constant and does not code for the effect size. For the exact values of the estimated

connectivity parameters see supplementary Figure 1. Colours of the planes denote position of the node in cortical

hierarchy. Green is higher than blue, red is higher than both blue and green. SMA: supplementary motor area,

MC: primary motor cortex, FP1: lateral frontal pole, V1: primary visual cortex, A1: primary auditory cortex, SSC:

primary somatosensory cortex, AI: anterior insula, PI: posterior insula. Bro: Broca’s region. Thal: Left thalamus.

The images were created using tikz-network (https: // github. com/ hackl/ tikz-network ) package in LATEX.

probe this hypothesis we implemented spectral DCM analysis among left thalamus, Broca’s area, left A199

and left FP1 regions. We found that left A1 was driven mainly by Broca’s area rather than left Thalamus100

(see second sub-figure below). We will return to this observation in discussion.101

102

Cross Validation103

Network Correlation p Value

Left Motor 0.11 0.19765

Left Exteroceptive 0.35 0.00232

Left Interoceptive -0.08 0.72076

Right Motor 0.08 0.27481

Right Exteroceptive -0.15 0.87381

Right Interoceptive 0.11 0.18547

Table 1: leave-one-out cross validation: results from the primary study

104

In a leave-one-out cross-validation, among all six networks, the left exteroceptive network was found to105

predict BDI scores at a significant level of α = 0.05 (see Table 1). When individual connections were con-106

sidered, three connections of left exteroceptive network, namely left V1 to FP1 ( corr=0.23, p-value=0.036),107

left A1 to SSC (corr=0.22, p-value=0.045), left SSC to A1 (corr=0.23, p-value=0.03) were found to have sig-108

nificant predictive power for BDI scores. Note that these measures of effect size correspond to out of sample109

measures (i.e., the effect sizes one would see using effective connectivity estimates from new participants).110
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The follow-up experiment111

Accuracy of DCM model estimation112

As in primary analyses, the accuracy of DCM predictions for individual participants was excellent for the113

follow up study. The minimum percentage variance-explained by DCM model estimation across participants114

were 57.14%, 76.90%, and 73.33% for left motor, exteroceptive and interoceptive networks and 76.02%,115

68.70%, and 44.06% for right motor, exteroceptive and interoceptive networks. For most of the participants116

variance explained was 80% or more.117

118

Figure 2: Violin plots of the Beck depression inventory (BDI) scores in (a) no treatment and (b) treatment groups

across sessions. A violin plot is a box plot with the width of the box proportional to the estimated density of the

observed data.

Change in BDI scores119

The BDI scores of participants during the first and the second sessions are plotted in Figure 2. As evident120

from the figure, for most of the participants in the treatment as well as no treatment group, BDI scores121

improved with time; however, improvement was more prominent in the treatment group. This was also122

corroborated by statistical testing. The paired samples Wilcoxon test indicated that BDI scores during the123

first session were statistically significantly higher than the second session for both groups at significance level124

α = 0.05. However, at significance level α = 0.01, this held true only for the treatment group (p-value =125

0.009491) but not for the no treatment group (p-value = 0.01176).126

Effective connectivity127

Results are displayed in Figure 3 and are further detailed in supplementary Figure 2.128

129

Group mean effective connectivity130

Overall, the main pattern of mean effective connectivity was reproduced by the follow up analysis. The131

backward connections in exteroceptive and interoceptive cortices are inhibitory and forward connections are132
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excitatory. The opposite pattern was observed in bilateral motor cortex.133

134

Changes in effective connectivity with BDI scores135

Like mean effective connectivity, the changes in effective connectivity between hierarchical cortical regions136

with increasing depression severity follow the same pattern found in the primary analysis: with increasing137

BDI scores the top-down and bottom-up mean effective connectivity is enhanced in interoceptive network138

and is diminished in exteroceptive and motor networks.139

140

Changes in effective connectivity with treatment141

With treatment, top-down and bottom-up effective connectivity revert towards group mean levels, i.e., in the142

exteroceptive network, top-down effective connections become more inhibitory and bottom-up connections143

becomes more excitatory; whereas in the motor network top-down connections became more excitatory. In144

the interoceptive network, no change in top-down or bottom-up effective connectivity survived at the 95%145

threshold set for the posterior probability of the estimated parameters.146

147

Cross Validation148

149

Network Correlation p Value

Left Motor -0.19 0.81218

Left Exteroceptive -0.09 0.66537

Left Interoceptive 0.17 0.21104

Right Motor 0.15 0.23712

Right Exteroceptive -0.02 0.53970

Right Interoceptive -0.17 0.79505

Table 2: leave-one-out cross validation: results from the follow-up study

In a leave-one-out cross-validation, none of the effective connections were found to predict BDI scores at150

a significant level of α = 0.05 (see Table 2).151
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Figure 3: Effective connectivity in the follow-up study (left and right hemispheres). (a),(b): Group mean effective

connectivity. Arrow colours code nature of connections red, excitatory; blue, inhibitory. (c),(d): Connections showing

significant association with Beck depression inventory (BDI) scores. Arrow colours code direction of connectivity

changes relative to the group mean: red, increased; blue, decreased. (e),(f): Connections showing significant associa-

tion with treatment (treatment vs no treatment). Arrow colours code direction of connectivity changes relative to the

group mean: red, increased; blue, decreased. For all subfigures line thickness is kept constant and does not code for

the effect size. For the exact values of the estimated connectivity parameters see supplementary Figure 2. Colours of

the planes denote position of the node in cortical hierarchy. Green is higher than blue, red is higher than both blue and

green. SMA: supplementary motor area, MC: primary motor cortex, FP1: lateral frontal pole, V1: primary visual

cortex, A1: primary auditory cortex, SSC: primary somatosensory cortex, AI: anterior insula, PI: posterior insula.

The images were created using tikz-network (https: // github. com/ hackl/ tikz-network ) package in LATEX.
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Discussion152

Overall, the most exciting findings from our study are the average backward (top-down) and forward (bottom-153

up) effective connectivity in sensory and motor cortices that showed consistent patterns across hemispheres154

and sessions and consistent changes with depression severity and treatment. The backward effective con-155

nections in exteroceptive and interoceptive sensory networks were predominantly inhibitory in nature while156

forward connections were predominantly excitatory (except SSC to FP1 connections in primary experi-157

ment). The opposite pattern was observed in bilateral motor networks. With increased depression scores,158

this pattern is weakened in exteroceptive and motor networks and is strengthened in interoceptive network.159

Interestingly, with treatment, a partial recovery towards the group average was observed. In leave-one-out160

cross validation analysis, connections in left exteroceptive networks were found to have sufficiently large161

effect size to predict whether somebody has a high or a low BDI score.162

There is a growing recognition that the depression is associated with dysfunction of distributed brain163

networks rather than of individual brain regions [33, 34]. Four networks have been the focus of most of the164

published research in this area: the affective network (AN), the reward network (RN), the default mode165

network (DMN), and the cognitive control network (CCN). Hyperconnectivity among the regions of AN166

[12, 14] and DMN [6, 10, 13, 15, 35] has been consistently reported in depression. Enhanced resting state167

functional connectivity in AN and DMN has been postulated to be associated with negative affectivity and168

maladaptive rumination in depression patients. Hypoconnectivity in RN [7, 16, 17] and CCN [9, 11, 36] has169

been another consistent finding in depression ( but also see [8, 37] for divergent findings). Anhedonia and170

ineffective cognitive control over emotional processing seen in depression have been attributed to diminished171

interactions among the regions of RN and CCN, respectively.172

As evident from above, the affective and psychological components of depression have been the prime173

focus of neurobiological research on depression. Yet, several sensorimotor interventions including light,174

music, tone, physical exercise are well known to modulate mood and depressive symptoms [38]. Association175

of depression with visual [39, 40] or hearing impairment [41–43] is also well established. Depression, in176

turn, gives rise to several sensorimotor alterations. Some of them, for instance, psychomotor retardation or177

agitation and feelings of fatigue are part of the diagnostic criteria for depression [44]. Besides, there is a178

repertoire of subjective feelings that depressed patients experience. These include pain in several parts of179

the body, chest discomfort, feeling cold or nauseous, heaviness of limbs, feeling of emptiness, to mention a180

few [45]. These feelings change the subjective experience of one’s own body and one’s sense of relatedness181

with the world outside.182

There are only a few neuroimaging studies that independently examined functional connectivity in sen-183

sory and motor networks as biomarkers for depression. Among them, one recent study [46] found reduced184

within and between-network functional connectivity in the auditory and visual networks associated with185

depression. In another study, Kang et al. [47] demonstrated that primary somatosensory area-thalamic186

functional connectivity is abnormal in major depressive disorder. Moreno-Ortega et al. [48] showed that187
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including resting state functional connectivity within visual network in the analysis greatly increases the188

predictive power for the treatment response to electroconvulsive therapy in depression compared to model189

consisting of only AN and DMN.190

However, our understanding of neuronal mechanisms underlying sensory perception is going through a191

major shift. There is an emerging consensus that perception is not a passive ‘bottom-up’ mechanism of192

progressive abstraction from sensory input and both bottom-up and top-down connectivity between hierar-193

chically organized brain regions play crucial roles in perception. This recognition has led to several theoretical194

frameworks highlighting the importance of top-down information flow in the context of sensory perception.195

The most prominent of them - predictive coding [24–26] - has also been extended to motor function (see active196

inference [27]). These novel insights motivated us to analyse effective connectivity among hierarchical brain197

regions in sensory and motor cortices. In contrast to data-driven approaches (e.g., functional connectivity198

analyses) mentioned above, ours is a model-based approach informed by theoretical frameworks and empiri-199

cal knowledge of functional architectures. In motor regions we chose primary motor area and supplementary200

motor area. The later is responsible for planning complex movements of the contralateral extremities and201

is posited to occupy a higher level of hierarchy in the motor system. Similarly, in interoceptive cortex we202

chose posterior and anterior insula based on known role of insula in interoception and a posterior to anterior203

hierarchical organization in insula [49, 50]. For exteroception, we selected three primary sensory cortices:204

visual, auditory, and somatosensory and lateral frontal pole - the terminal relay station for exteroceptive205

sensory information [51, 52].206

A consistent and intriguing finding from our study is top-down inhibitory and bottom-up excitatory207

average effective connectivity in sensory cortices; a pattern that reverses in motor cortices. The pattern208

in sensory cortices is consistent with the role of top-down predictions explaining away prediction errors at209

lower levels, via interactions with inhibitory interneurons in canonical microcircuits (as proposed by the210

predictive coding framework). In other words, although long-range connections in the brain are excitatory211

(i.e., glutamatergic), backward connections may preferentially target inhibitory interneurons in superficial212

and deep layers to evince an overall decrease in neuronal message passing. In predictive coding, this is often213

read as ‘explaining away’ prediction errors at lower levels in sensory cortical hierarchies [53]. However, the214

completely opposite pattern was observed in the motor network. Descending excitatory connections in the215

motor system may reflect one of two things. First, it could be a reflection of the fact that ascending prediction216

errors in the executive motor system may play a small role – because these prediction errors are thought217

to be resolved through cortical spinal reflexes; i.e., through action [27]. Put simply, in sensory hierarchies218

exteroceptive prediction errors are caused by bottom-up sensory input, which are resolved by (inhibitory)219

top-down predictions. Conversely, in motor hierarchies prediction errors are generated by (excitatory) top-220

down proprioceptive predictions, which are resolved by motor reflexes at the level of the spinal-cord. An221

alternative explanation is that descending predictions include predictions of precision that may mediate222

things like attention and sensory attenuation [54–56]. In this instance, there can be an explaining away of223

12

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.14.435324doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.14.435324
http://creativecommons.org/licenses/by-nd/4.0/


certain prediction errors, while there precision may be increased, resulting in an overall excitatory drive.224

In other words, some descending predictions may be of proprioceptive gain that mediates the selection225

of intended movements. In this context it is noteworthy that descending predictions of precision play an226

important role in active inference accounts of psychiatric conditions – in which the synaptic pathophysiology227

and psychopathology can be accounted for by a failure of sensory attenuation; namely, the attenuation or228

suspension of the precision of sensory prediction errors. This failure of attention and attenuation has been229

used to explain several conditions, including autism, schizophrenia, Parkinson’s disease and depression [57–230

61].231

In line with the marked consistency of the patterns of average effective connectivity - across hemispheres232

and sessions - the changes in effective connectivity with depression severity were also conserved across sessions233

and corroborate well with depressive symptomatology. Instead of categorically dividing participants into234

patients and neurotypical subjects, we examined (across participants) variation of effective connectivity with235

depression severity as assessed by the Beck Depression Inventory. This leverages the heterogeneity within each236

group that might contain useful clinical information [62]. With increasing depression severity, the patterns237

found in top-down and bottom-up connections at the group level are weakened in exteroceptive (except238

left auditory cortex-see below) and motor cortices and strengthened in interoceptive cortex. Depreciation239

in exteroceptive networks is in line with the reduced visual contrast sensitivity [18] and impaired auditory240

processing of non-speech stimuli [19]. Psychomotor poverty or retardation is a prominent feature of depression241

[22] that might well be reflected in the weakening of motor network effective connectivity. The enhancement in242

the interoceptive network is consistent with increased interoceptive ( e.g., pain) sensitivity [20] in depression.243

On the contrary, a few studies reported a subtle but non-significant association of depression with decreased244

interoceptive awareness like reduced heartbeat perception accuracy [63, 64]. However, small sample sizes245

and/or inclusion of individuals with mild or comorbid presentations of depression may undermine this claim246

[65, 66]. Moreover, Pollatos, Traut-Mattausch, and Schandry [21] found that a negative relationship between247

depression and heartbeat perception accuracy is only present in those with relatively higher trait anxiety.248

Thus, it might reflect an interaction of anxiety with depression. Furthermore, Dunn et al. [67] found that249

heartbeat perception accuracy was affected in mild depression but, paradoxically, was not affected in more250

severely depressed group thus further complicating the association.251

One notable exception - to general pattern of changes in effective connectivity within exteroceptive net-252

work with BDI scores - was found in the left auditory regions. Here top-down inhibitory and bottom-up253

excitatory influences were enhanced with depression. One possible explanation is that this reflects enhanced254

rumination and self-speech in depression; noting that left auditory cortex is specialized for speech perception255

[68]. Rumination is implicated in the development, severity and maintenance of depression and other psychi-256

atric disorders [69–71]. Given the central role of rumination in depression, it has been considered a key target257

in modern cognitive and behavioural therapies [72]. One of the most salient features of rumination is that it258

is mostly expressed in a verbal modality [73–75]. In other words, while ruminating, we are mostly talking to259
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ourselves silently. Thus, enhancement of effective connectivity within auditory network, with increasing BDI260

scores, might reflect depressive rumination during the acquisition of resting-state scans. To further probe261

this hypothesis we implemented spectral DCM effective connectivity analysis among left thalamus, Broca’s262

area, left A1 and left FP1 regions. Broca’s area, also known as the left inferior frontal gyrus (LIFG), is263

involved in production of both outer and inner speech (e.g., [76]). We hypothesized that if the change in264

the pattern of effective connectivity with increasing depression severity is associated with rumination, left265

auditory area (A1) would be driven mainly by Broca’s area. Conversely, if it reflects some form of aberrant266

sensory processing, left thalamus will be main driver of left A1 [77]. DCM analysis demonstrated that with267

increasing BDI score effective connectivity from left Broca’s area to left A1 becomes more excitatory but268

there is no significant change in effective connectivity from left Thalamus to left A1, thus providing an269

indirect support for the rumination hypothesis.270

The model comparison discussed above furnishes clear evidence for changes in a number of extrinsic271

(between region) and intrinsic (within region) connections that underwrite depression, as scored with the272

BDI. One might ask whether these changes can be used diagnostically in individual patients. In other273

words, are the underlying effect sizes sufficiently large to predict whether somebody has a high or a low BDI274

score. This question goes beyond whether there is evidence for an association and addresses the utility of275

connectivity phenotyping for personalised medicine. One can address this using out of sample estimates of276

the effect size using cross validation under a parametric empirical Bayesian scheme [30]. In other words,277

one can establish the predictive validity by withholding a particular subject and ask whether one could278

have predicted the BDI score given the effective connectivity estimates from that subject. This question279

can be posed at the level of a single connection or sets of connections. For example, when looking at single280

connections, three connections in the left hemisphere all showed a significant out of sample correlation with281

BDI score. This suggests that a nontrivial amount of variance in the BDI score could be explained by282

effective connectivity. This variance explained increased when considering the left exteroceptive network –283

attaining a correlation coefficient of 0.35 or, an R-squared of about 10% (which was extremely significant284

p < 0.001). Although relatively small from a psychological perspective, this is almost an order of magnitude285

greater than the variance can be explained by genomic phenotypes [78, 79].286

Clinicopathological significance of effective connectivity in sensory and motor cortices is further supported287

by the DCM analysis of treatment-associated changes in connectivity in the follow up study. Several top-288

down and bottom-up connections in bilateral exteroceptive and motor cortices were found to be associated289

with treatment. More importantly, the parity of these connections is opposite to the connections showing290

an association with depression severity, suggesting a prognostic relevance of these connectivity measures.291

Remarkably, none of the feedforward or feedback connections in the interoceptive cortex was found to be292

associated with treatment, but the clinical significance of this finding is unknown. Taken together, the293

patterned alterations in bidirectional connectivity with BDI scores and treatment offer a strong case for294

effective connectivity in sensory and motor cortices as a biomarker in depression.295
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Findings from the current study should be appreciated within the context of certain limitations. Although296

our study sample was modestly large for neuroimaging measures - and we undertook steps like cross-validation297

and replication of the main results to ensure the generalizability of our findings - replication in an independent298

sample would be an important next step. Secondly, in the context of connectivity analysis, there are several299

potential confounding factors other than age and sex of the participants that we have not controlled for. For300

example, level of anxiety in individuals could affect top-down information flow in the brain [80]. Anxiety301

is also a common comorbidity found in depression patients [81]. None of our participants reported to be302

diagnosed with anxiety disorders. However, the presence of subclinical anxiety was not ruled out or controlled303

for. We will consider testing for the association of anxiety with effective connectivity in sensory and motor304

networks in a companion paper.305

In summary, our results advance our mechanistic understanding of depression pathophysiology. Tradi-306

tional accounts of depression (e.g. Beck’s [82] cognitive model) have neglected bodily symptoms [67]. The307

present work re-establishes depression as an embodied phenomenon by demonstrating that effective connec-308

tivity in sensory and motor cortices affords a promising neural signature of depression. It also establishes the309

generalizability and predictive validity of this novel marker – and may portend a new avenue of research into310

the neural underpinnings and therapeutic interventions of depression and other mental health conditions.311
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Methods312

Figure 4: Schematic of data analysis pipeline

The analytic pipeline is illustrated in Fig 4.313

Participant characteristics314

Fifty-one adult patients (mean age: 32.78 years, SD: 8.89, 38 females, 13 males) with a diagnosis of mild315

depressive episode or moderate depressive episode according to ICD-10 and twenty-one adult individuals316

(mean age: 33.8 years, SD: 8.5, 15 females, 8 males) with no history of neurological or psychiatric illness317

participated. None of the participants received antidepressants during the study period. The depressed and318

neurotypical participants did not differ in level of intelligence (mean (SD) Raven’s Progressive Matrices test319

score, for neurotypicals: 105.9(16.5), for depression patients: 103.7(14.6)). All participants gave informed320

consent in accordance with the Declaration of Helsinki. Ethical review board of Research Institute of321

Molecular Biology and Biophysics approved the study. Beck depression inventory evaluation could not be322

done on four patients and three neurotypical participants. Consequently, sixtyfive participants were included323

in the final analysis.324

Twenty-nine depression patients from the primary study were included in the follow-up study ( gap325

between two sessions, minimum: 56 days, maximum: 234 days). Among them fifteen individuals received326
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no treatment, eight received cognitive behavioural therapy (CBT) and six received neurofeedback therapy327

(NFBT). BDI scores could not be retrieved for one participant during the first scan and for four participants328

during the second scan and subsequently twenty-four participants were included in the final analysis.329

It is noteworthy here, data from a subset of participants from the present study has been published [35,330

83, 84]. However, those works mainly employed a data-driven approach based on independent component331

analysis (ICA) decomposition of the whole-brain data and correlation based (undirected) functional connec-332

tivity analysis unlike the current study that tests a specific hypothesis by investigating (directed) effective333

connectivity in functionally characterised brain regions.334

Brain MRI acquisition335

Imaging data were acquired with an Ingenia (Philips) 3T scanner using a 32-channel dStream HeadSpine336

coil (digital). The structural and functional images have the following parameters:337

Structural MRI: T1 3D TFE, Field of View: 250× 250× 280 mm3, TR/TE=7.5/3.7 ms, Flip Angle= 8◦,338

Voxel size: 1× 1× 1 mm3
339

Functional MRI: T2* Single shot SPIR EPI, Field of View: 220× 220 mm2, TR/TE=2500/35 ms, Flip340

Angle= 90, Voxel size: 2× 2× 5 mm3, 25 slices341

During the resting state sequence (duration: four minutes each), participants were instructed to lie still342

and motionless in the scanner with their eyes closed while letting their mind wander.343

Preprocessing344

The pre-processing and statistical analysis of fMRI data were executed with the SPM12 v7771 toolbox (Sta-345

tistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm). The initial five scans were discarded346

to allow the magnetization to stabilize to a steady state. Prior to statistical analysis, images were slice-time347

corrected, realigned with the mean image, motion corrected, coregistered with the corresponding T1-weighted348

images, normalized to a Montreal Neurological Institute (MNI, https://www.mcgill.ca) reference template349

and resampled to 4× 4× 5 mm3. During motion correction, 2nd-degree B-Spline interpolation was used for350

estimation and 4th-degree B-Spline for reslicing. Coregistration used mutual information objective func-351

tion while normalization used 4th-degree B-Spline interpolation. Images were smoothed with a full-width352

at half-maximum (FWHM) Gaussian kernel 4× 4× 10 mm3 and further denoised by regressing out several353

nuisance signals, including the Friston-24 head motion parameters and signals from cerebrospinal fluid and354

white matter. Temporal high pass filtering above 1/128 Hz was employed to remove low-frequency drifts355

caused by physiological and physical (scanner related) noises.356
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Figure 5: Regions of interest for (a) Motor, (b) Exteroceptive, and (c) Interoceptive networks. SMA: supplementary

motor area, MC: primary motor cortex, FP1: lateral frontal pole, V1: primary visual cortex, A1: primary auditory

cortex, SSC: primary somatosensory cortex, AI: anterior insula, PI: posterior insula. The images were created using

MRIcroGL (https: // www. nitrc. org/ projects/ mricrogl/ ) program.

Spectral Dynamic Causal Modelling and Parametric Empirical Bayes357

The Spectral DCM approach using DCM12.5 as implemented in SPM12 v7771 (http://www.fil.ion.ucl.358

ac.uk/spm) was used to estimate the effective connectivity within each network. Dynamic causal modelling359

(DCM) is Bayesian framework that infers the causal architecture of distributed neuronal systems from the360

observable BOLD (blood-oxygen-level-dependent) activity recorded in fMRI. It is primarily based on two361

equations. First, the neuronal state equation models the change of a neuronal state-vector in time, depending362

on modulation of connectivity within a distributed system and experimental perturbations. Second, an363

empirically validated hemodynamic model that describes the transformation of neuronal state into a BOLD364

response. For task fMRI, external stimuli usually forms the external perturbation component. For resting-365

state fMRI, in the absence of external stimuli – a stochastic component capturing neural fluctuations is366
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included in the model and the neural state equation can be represented as367

ẋ(t) = f
(
x(t), θ

)
+ v(t) (1)

where ẋ is the rate of change of the neuronal states x, θ represents unknown parameters (i.e., intrinsic368

effective connectivity) and v(t) is the stochastic process modelling the random neuronal fluctuations that369

drive the resting-state activity. The observation equation could be written as:370

y(t) = h
(
x(t), φ

)
+ e(t) (2)

Here, y(t) is the observed BOLD activity, φ are the unknown parameters of the (haemodynamic) obser-371

vation function, and e(t) is the stochastic process representing the measurement or observation noise.372

Spectral DCM offers a computationally efficient inversion of the stochastic model for resting state fMRI.

Spectral DCM simplifies the generative model by replacing the original BOLD time-series with their second-

order statistics (i.e., cross spectra). This allows circumventing estimation of time varying fluctuations in

neuronal states by estimating their covariance, which is time invariant. In other words, the problem of

estimating hidden neuronal states disappears and is replaced by the problem of estimating their correlation

functions of time or spectral densities over frequencies (and observation noise) where a scale free (power law)

form is used (motivated from previous works on noise in fMRI [85] and underlying neuronal activity [86, 87])

as follows:

gv

(
ω, θ

)
= αvω

−βv

ge

(
ω, θ

)
= αeω

−βe

(3)

Here, {α, β} ⊂ θ are the parameters controlling the amplitudes and exponents of the spectral density of the373

neural fluctuations. Finally, standard Bayesian model inversion (i.e. Variational Laplace) is used to infer374

the parameters of the models from the observed signal. A detailed mathematical treatment of spectral DCM375

can be found in [28] and [88].376

Time series for DCM analysis were extracted for each region of interest by taking the first principal377

components of the time series from all voxels included in the masks for that region. Masks were defined378

according to SPM Anatomy toolbox [89]. The regions of interest for each network are depicted in Figure 5.379

We also adjusted data for “effects of interest”, thus effectively mean-correcting the time series.380

At the first level, fully-connected models (i.e., between all nodes plus self-loops) were estimated for each381

subject individually, separately for bilateral exteroceptive, interoceptive and motor networks.382

A basic diagnostic of the success of model inversion is to look at the average percentage variance-explained383

by DCM model estimation when fitted to the observed (cross spectra) data. We implemented this diagnostic384

test across participants.385

At the second (group) level, we used parametric empirical Bayes (PEB) — a between-subjects hierarchical386

Bayesian model over parameters — which models how individual (within-subject) connections relate to387
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different between-subjects effects [30, 90]. Unlike a classical test (e.g., t-test), it uses the full posterior388

density over the parameters from each subject’s DCM – both the expected strength of each connection and389

the associated uncertainty (i.e., posterior covariance) – to inform the group-level result. The group mean,390

by default, is the first regressor or covariate. In the primary study, BDI scores, age, sex are the next three391

regressors. Age and BDI scores were mean-centred (across all subjects) to enable the first regressor to be392

interpretable as the mean. In the follow up study, treatment (treatment received vs not treated) was included393

as the fifth regressor. To evaluate how regions in the network of interest interact, we used Bayesian model394

comparison to explore the space of possible hypotheses (or models). Candidate models were obtained by395

removing one or more connections to produce nested or reduced forms of the full model. As there is large396

number of possible nested models in the model space, the search algorithm used Bayesian model reduction397

(BMR) [30] that enables an efficient (greedy) search of the model space. BMR prunes connection parameters398

from the full model and scores each reduced model based on the log model-evidence or free energy. The399

process continues until there is no further improvement in model-evidence. The parameters of the selected400

models from this search procedure were then averaged, weighted by their model evidence (Bayesian Model401

Averaging) [91].402

Leave-one-out validation analysis403

Finally, we tested whether the severity of depression could be predicted based on the modulation of effective404

connectivity. In other words, was the effect size large enough to have predictive validity. We chose connections405

that survived a threshold of 95 % posterior probability (very strong evidence) in the previous analysis406

(primary study). We used a leave-one-out scheme as described in [30] . A parametric empirical Bayesian407

model was estimated while leaving out a subject, and was used to predict the BDI score of the left out408

subject, based on the specific connections chosen. The Pearson’s correlation between the predicted score409

and known score was calculated.410

Data and code availability411

Our analysis code is available on GitHub (https://github.com/dipanjan-neuroscience/depression2021).412

Imaging data are available on OpenNeuro (https://openneuro.org/datasets/ds002748/versions/1.0.3413

& https://openneuro.org/datasets/ds003007/versions/1.0.0).414
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