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Abstract 
Fate decisions in developing tissues involve cells transitioning between a set of discrete cell states, each 
defined by a distinct gene expression profile. Geometric models, often referred to as Waddington landscapes, 
in which developmental paths are given by the gradient and cell states by the minima of the model, are an 
appealing way to describe differentiation dynamics and developmental decisions. To construct and validate 
accurate dynamical landscapes, quantitative methods based on experimental data are necessary. To this end 
we took advantage of the differentiation of neural and mesodermal cells from pluripotent mouse embryonic 
stem cells exposed to different combinations and durations of signalling factors. We developed a principled 
statistical approach using flow cytometry data to quantify differentiating cell states. Then, using a framework 
based on Catastrophe Theory and approximate Bayesian computation, we constructed the corresponding 
dynamical landscape. The result was a quantitative model that accurately predicted the proportions of neural 
and mesodermal cells differentiating in response to specific signalling regimes. Analysis of the geometry of 
the landscape revealed two distinct ways in which cells make a binary choice between one of two fates. We 
discuss the biological relevance of these mechanisms and suggest that they represent general archetypal 
designs for developmental decisions. Taken together, the approach we describe is broadly applicable for the 
quantitative analysis of differentiation dynamics and for determining the logic of developmental cell fate 
decisions. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.03.11.434982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434982
http://creativecommons.org/licenses/by/4.0/


 2 

Introduction 
Cell fate decisions in developing tissues involve gene regulatory networks comprising multiple genes, many 
molecular components and elaborate signalling dynamics. Despite the complexity, the outcome of cellular 
decisions is relatively simple: cells transition between a limited set of discrete cell fates, each defined by a 
distinct gene expression profile (Enver et al., 2009; MacArthur et al., 2009; Schiebinger et al., 2019). These 
transitions occur in a characteristic sequence regulated by extrinsic signalling. While quantitative models 
that describe signalling pathways and gene regulatory networks in great detail have been used to investigate 
cell differentiation and decision making, these suffer from a plethora of parameters and their behaviour is 
difficult to predict without case-by-case simulation. Hence, quantitative methods based on experimental data 
that represent and permit analysis of developmental processes at the scale of cell fate decisions would 
provide insight into the underlying principles and allow quantitative and testable predictions.   

A popular and intuitive metaphor for the process of developmental decision making is the Waddington 
landscape, in which the differentiation trajectory of a cell is conceived as a ball rolling down a landscape of 
branching valleys, representing specific cell fates (Waddington, 1957). This can be mathematically 
formalised, with only minor changes, using dynamical systems theory (Camacho-Aguilar et al., 2021; 
Corson and Siggia, 2012, 2017; Huang, 2012; Mojtahedi et al., 2016). In this formulation the relevant 
dynamical systems are gradient-like and the system’s trajectories, which represent the developmental path 
of a cell, move downhill in this landscape. Thus, Waddington’s valleys correspond to the attractors of the 
system and sit at the minima of the landscape. Moreover, variation in the parameters of the dynamical 
system, caused by changes in the signals the cell receives, alter the landscape and give rise to bifurcations 
that destroy or create attractors. The transition to a new fate is signified by a cell entering a new basin of 
attraction, caused either by a signal-induced bifurcation or by a stochastic fluctuation resulting in a cell 
jumping from one attractor’s pull to another. In both cases the route from the old to the new cell state is 
defined by a saddle point in the landscape. This approach enables a rigorous link between the dynamical 
systems underlying gene regulatory networks and Waddington’s landscapes.  

There are several advantages to a geometrical viewpoint. Firstly, since motion is always downhill, it gives a 
hierarchical structure to the dynamics and an intuitive understanding of the eventual fates. Secondly, a body 
of dynamical systems theory indicates that the qualitative structure of the landscape can be described by a 
relatively small corpus of universal normal forms (Zeeman, 1976). In particular, Rene Thom’s Catastrophe 
Theory provides a powerful classification scheme of the relevant bifurcations of such systems that is 
facilitated by the existence of the gradient-like structure (Smale, 1961; Thom, 1972). This theory suggests 
that although a system’s dimension might be large, the bifurcations can be described by low-dimensional 
systems. For example, in developmental systems it is common that differentiating cells transition from a 
progenitor state to one of two progeny fates. Such a decision can be an all-or-nothing one in which all cells 
make the same choice, or it can be one in which some cells make one choice and some the other one, enabling 
the allocation of a cell population to both fates. We introduce two 3-attractor landscapes, the binary choice 
(all-or-nothing) and the binary flip (allocation), that are the simplest archetypes underlying these two 
decision types. 

To transform a developmental process from a metaphorical landscape description into a geometric model 
that allows quantitative and qualitative experimental predictions, quantitative data are needed together with 
methods to connect experimental measurements to a parameterised dynamical landscape. A framework 
based on Catastrophe theory and approximate Bayesian computation (ABC) has been developed and applied 
to experiments measuring the final outcome of a developmental process (Camacho-Aguilar et al., 2021). 
However, to test the full power of this approach and assess its general usefulness, quantitative measurements 
and perturbations during a differentiation process are necessary. To this end, we took advantage of the 
differentiation of neural and mesodermal cells from pluripotent progenitors using mouse embryonic stem 
cells (ESCs) exposed to different combinations and durations of signalling factors (Fig 1A; (Gouti et al., 
2014; Tsakiridis et al., 2014; Wymeersch et al., 2021). ABC methods for parameter estimation based on 
matching summary statistics of temporally ordered data to those produced from simulations of candidate 
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models naturally lend itself to our data and we use the proportion of cells in cell states at different time points 
as the summary statistic. 

Initiating the differentiation of ESCs, by withdrawing media supplements that sustain pluripotency, results 
in cells adopting a state that mimics the post-implantation epiblast. In the absence of further signals, these 
cells differentiate into neural progenitors with a molecular identity of the anterior nervous system (Ying et 
al., 2008). However, exposure to Wnt signalling at the epiblast stage blocks ESCs from adopting an anterior 
neural fate and instead cells acquire a caudal epiblast identity (Tsakiridis et al. 2014; Gouti et al. 2014a). 
This cell type, which in the embryo fuels axis elongation and the formation of trunk tissue, is responsible for 
generating the progenitors of the spinal cord and paraxial mesoderm (Wymeersch et al., 2021). Similarly, in 
vitro, caudal epiblast-like cells differentiate into spinal cord and mesoderm progenitors, with longer 
durations of Wnt signalling resulting in a higher proportion of mesodermal cells at the expense of neural 
cells (Blassberg et al., 2020; Gouti et al., 2017). Each of the cell states in this differentiation process is 
recognizable from well-defined gene expression profiles that can be assayed using representative marker 
genes. Hence the differentiation of ES cells into neural and mesodermal derivatives offers a well-
characterised system in which to develop and test a dynamical landscape model of developing tissues and 
cellular decision making. 

We used flow cytometry to measure the expression levels of representative marker genes in differentiating 
ESCs exposed to different signalling dynamics. These data provided an informative low-dimensional 
representation of cell states from which we developed a principled statistical approach to identify the 
attractors and the geometric form of the dynamical landscape. Using the ABC approach based on summary 
statistics we parameterised and refined the landscape and its changes with extensive training and validation 
datasets and tested it against specific experiments prompted by predictions from the model. The result was 
a quantitative model of the differentiation of neural and mesodermal tissue from pluripotent progenitors. 
Strikingly, the geometry of the landscape revealed two distinct decision-making mechanisms – a ‘binary 
choice’ as a one-or-other decision that commits cells to either anterior neural or caudal epiblast, and a ‘binary 
flip’ that simultaneously allocates cells to posterior neural and mesodermal fates. We discuss the biological 
relevance of these different mechanisms and suggest that they represent two dynamical archetypes that play 
a general role in differentiation dynamics. Taken together, the approach is broadly applicable for the 
quantitative analysis of cell fate dynamics and determining the design logic of developmental decisions. 
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Results 
An in vitro system to quantify cell fate decisions 

To develop a quantitative landscape model of cell fate decision making we took advantage of an in vitro 
system in which pluripotent mouse ESCs are directed to differentiate to distinct neural and mesodermal fates 
in response to defined signalling dynamics (Fig. 1A; (Gouti et al., 2014)). ESCs removed from pluripotency 
conditions and grown in basal media containing FGF2 (FGF) and an inhibitor of endogenous WNT secretion 
(LGK974), adopt a post-implantation epiblast-like (EPI) identity by Day (D)2 of culture (Fig. 1Ba; 
(Blassberg et al., 2020)), and subsequently, following removal of exogenous FGF, adopt an OTX2+/ SOX1+ 
molecular identity characteristic of anterior neural progenitors (AN) (Fig. 1Bb). By contrast, if WNT 
signalling is activated at D2 by the GSK3b antagonist CHIRON99021 (CHIR) concurrently with FGF 
signalling, EPI cells no longer differentiate to AN but instead, acquire a CDX2+ caudal epiblast (CE) identity 
at D3 (Fig. 1Bc). These differentiate to SOX1+ posterior neural progenitors (PN) in response to withdrawal 
of FGF and WNT signal activation (Fig. 1Be), while sustained WNT signalling drives the progressive 
differentiation of CE to TBX6+ early paraxial mesoderm (EM) and FOXC2+ late paraxial mesoderm (LM) 
identities (Fig. 1Bf and 1Ca). 

To develop a quantitative description of the differentiation process we developed a flow-cytometry assay to 
measure simultaneously the expression of multiple marker proteins in individual cells. This enabled us to 
generate time-course data at single-cell resolution in a manner that was sufficiently scalable to explore the 
differentiation outcomes resulting from combinatorial modulation of FGF and WNT signalling dynamics. 
By inhibiting endogenous WNT secretion in all culture conditions with LGK974 we ensured that WNT 
signalling dynamics were entirely dependent upon the timing and concentration of CHIR addition. 
Moreover, as WNT signalling is known to induce FGF ligand production in CE cells (Amin et al., 2016) we 
tightly controlled FGF signalling dynamics through a combination of exogenous FGF withdrawal and 
inhibition of downstream FGF signalling with the small-molecule PD0325901 (PD). In total, we obtained 
149 datasets in 4 experimental series, comprising 23 different signalling conditions assayed at 7 timepoints 
each (Supp Table T1).  

We first defined a minimal set of markers sufficient to classify cells into distinct progenitor types. We 
employed the anterior marker OTX2 to distinguish between AN and PN progenitors, both of which express 
the neural progenitor markers SOX2 and SOX1. As expected (Gouti et al., 2014), OTX2 expression was 
permanently extinguished in SOX2+ SOX1+ PN progenitors following combined activation of FGF and 
WNT signalling between D2 and D3, whereas its expression remained high in SOX1+ AN progenitors (Fig. 
1Cb). Moreover, the level of SOX1 was higher in PN cells, whereas SOX2 was higher in AN (Fig. 1Cb). 
We reasoned that SOX2 and SOX1 levels might be sufficient for classification of AN and PN progenitors in 
the absence of OTX2 measurement. This was subsequently confirmed experimentally (see below). In 
addition, we confirmed that exposure to WNT signalling induced the CE markers T/BRA and CDX2 in many 
cells at D3/D3.5 (Fig. S1C). Continued exposure to WNT signalling resulted in the loss of both T/BRA and 
SOX2 expression from differentiating CE progenitors at D4 and a high proportion of cells expressed TBX6+, 
characteristic of EM identity (Fig. S1C), which itself began to decrease at D5 as cells acquired FOXC2+ LM 
identity (Fig. 1Ca). As SOX2 expression is extinguished as cells commit to paraxial mesoderm identity 
((Takemoto et al., 2011);  Fig. S1B) we reasoned that either the presence of TBX6 and absence of SOX2 
expression, or the absence of both TBX6 and SOX2 was sufficient to classify M progenitors.  

 

Clustering flow cytometry data identifies landscape attractors 

In order to quantify the differentiation process, we hypothesized that each cell state represented an attractor 
of a dynamical landscape and we set out to develop a principled procedure to allocate cells to an identity. 
To this end, we used an algorithm based on fitting a Gaussian mixture model (GMM) to the multi-
dimensional flow cytometry data (McLachlan et al., 2003) (fitgmdist in MATLAB). The GMM consists of 
a set of weighted multivariate normal distributions. We regarded each of these distributions as defining a 
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cluster. A cell belonged to a cluster if its probability for the corresponding distribution was greater than a 
predefined threshold. Close to an attractor, the state variables (levels of gene expression in this case) are 
expected to have an approximately multivariate normal distribution since the dynamics near attractors are 
expected to be approximately linear (Kurtz, 1981). 

To mitigate batch effects, we included a reference set consisting of the three signalling regimes comprising 
No CHIR, CHIR 2-3 and CHIR 2-5 (as described in Fig. 1A) in each experimental series (Initial, Test, and 
Prediction; see Supp. Table T1), and used the corresponding pooled data from these three conditions to fit 
and define the GMM probability distributions at each timepoint (Fig. 2A, SI Sect. 2). To choose the number 
of distributions in the GMM, m, we increased it sequentially from 1 until the scalar distributions for each 
cluster were clearly unimodal in each of the dimensions (Fig. 2B). Cells from all other samples within the 
experimental series were then classified by assigning them to the clusters defined by the GMM model using 
a threshold probability of p=0.65. Otherwise, cells were considered to be in transition between clusters 
(Unclassified Transitioning, UT). The process was insensitive to the choice of threshold probability p (SI 
Sect. 2). 

Once cells had been allocated to clusters, we analysed marker proteins and assigned cell identity accordingly 
(Fig. 2B and 2D). There was a good correspondence between the clusters found by the algorithm and the 
cell-type specific marker expression known to be present at each day of the three reference signalling regimes 
(Fig. 1A). The number of clusters needed to obtain unimodal distributions was larger for D3-D4.5, where 
there is more than one cluster corresponding to the same cell identity (Fig. 2C). For example, at D3 and D3.5 
there are two clusters corresponding to CE cells: one defined by BRA+ and CDX2+ cells (so called 
neuromesodermal progenitors; (Wymeersch et al., 2021) and one with only CDX2+ cells (Fig. 2B-C and 
Fig. SI4).  

The clustering algorithm identified the expected cell states in each of the datasets. Moreover, in line with 
our preliminary analysis, we were able to assign FOXC2+ late paraxial mesoderm identity on the basis of a 
SOX2-/TBX6- marker profile (Fig. S1B and S2C). Moreover, the clustering algorithm distinguished 
between OTX2+ AN and OTX2- PN progenitors based on their distinct levels of SOX1 and SOX2, as we 
had observed previously (Fig. S2B). However, as neither OTX2 nor SOX1/SOX2 expression levels were 
able to distinguish between anterior and posterior neural progenitors at D4.5 and D5 we extrapolated the 
proportions obtained at D4 to quantify their proportions in this case.  

At D2.5 under FGF + CHIR signalling conditions, an additional population of cells with intermediate levels 
of SOX2 and low expression of BRA, CDX2, SOX1 and TBX6 was detected by the clustering (Fig. S2A). 
As these cells had begun to downregulate SOX2 this indicated that they were transitioning from EPI to CE, 
but had yet to acquire CDX2+ posterior identity (Blassberg et al., 2020). We considered them as a separate 
group and labelled them Transitioning (Tr). Thus, we were able to define clusters, corresponding to the 
attractors in the landscape, representing epiblast (EPI), anterior neural (AN), caudal epiblast (CE), posterior 
neural (PN) and mesoderm (M), and an additional transitioning population (Tr) using a minimal set of 5 
marker genes (BRA, CDX2, SOX1, SOX2, TBX6) (Fig. 2D). 

To test the validity of our cluster assignments, we examined the correlation of gene expression within a 
cluster. Principal component analysis of individual clusters identified distinct associations of genes with 
principal components for each cluster (Fig. 2E). Each principal component was associated with one or two 
genes. To test the hypothesis of multivariate normality we calculated local gene-gene correlations within 
each cluster and found smoothly varying patterns (Fig. 2F) in the correlation for each cluster. Correlations 
between gene expression reflect regulatory interactions between the components of the underlying gene 
regulatory network. Hence, consistency of the correlation structure across each cluster and differences in the 
structure in different clusters is evidence that the clusters correspond to distinct biological states. Moreover, 
the boundaries between adjacent clusters were characterised by abrupt changes in this correlation structure 
(Fig. 2F, SI Sect. 2). This is consistent with the idea that cell states represent high-dimensional attractors in 
gene expression space that are separated by saddle points.  
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Two distinct binary decision landscapes 

The data indicate that, in the absence of CHIR, EPI cells transition to AN after removal of FGF on D3, 
suggesting that FGF withdrawal causes a loss of the EPI attractor in such a way that cells escape towards the 
AN attractor (Fig. 3Ca No CHIR). On the other hand, if CHIR is added on D2 a substantial proportion of 
cells transition to CE by D3 (Fig. 3Ca CHIR 2-3). This suggests that, on addition of CHIR, the disappearance 
of the EPI attractor allows cells to escape towards the CE attractor. The distinct fate outcomes associated 
with these decisions suggests that each is caused by the bifurcation of the EPI attractor but with escape routes 
in different directions. In both cases, all cells escape in the same direction towards the same attractor. 

There are three possible generic 3-attractor landscapes (SI Sect. 3) and others are combinations of them. 
These can each be modelled by simple two-dimensional dynamical systems (Rand et al., 2021). Only one of 
these is compatible with the above observations. This is related to Thom's butterfly catastrophe (Thom, 
1972): the three attractors, AN, EPI and CE, are separated by two saddle points (Fig. 4A) with one of them 
in the middle, EPI. We call this the binary choice landscape. Changing levels of signal cause bifurcations: 
cells in the central attractor EPI can transition to either CE or AN (Fig. 4Aa and Ac) but those in states CE 
and AN are only able to transition to EPI (Fig. 4Ab). This models an one-or-other/all-or-nothing decision 
where a population of cells in EPI chooses between the fates CE or AN. If cells commence the transition 
from EPI to CE and signals change pushing them towards AN, they need to return to EPI first before 
transitioning to AN.  

Following the transition to CE, the data suggest a second decision associated with cells leaving the CE 
attractor adopting a mixture of M and PN fates. The ratio M:PN cells increases with the length of CHIR 
exposure and is not an all-or-nothing response as in the previous decision (Fig. 3Cb). Moreover, the way in 
which cells leave the CE state appears markedly different from the way that they leave the EPI state (Fig. 
3Cb CHIR 2-5). Cells appear to leave the CE state at an approximately constant rate in CHIR induction 
conditions. This raises the possibility that transitions are caused not by bifurcation but by fluctuation driven 
escape from the CE attractor basin.  

These data are compatible with a different generic three-attractor landscape (Fig. 4B). We call this the binary 
flip landscape because it allows signals to flip the escape route of cells leaving the CE state, tipping them 
into either state M or PN (Fig. 4Ba and Bc). When combined with stochastic noise, this allows cells leaving 
CE to be distributed with different ratios between M and PN (Fig. 4Bb).  

Finally, we connect the two landscapes using the common CE attractor (Fig. 4C). This is done using a 
transition function to allow the cell’s trajectory to transition smoothly from one landscape to the other (SI 
Sect. 3). 

To construct models, we took advantage of the normal forms of these two landscapes provided by 
catastrophe and dynamical systems theory (Arnold, V.I., Afrajmovich, V.S., Ilyashenko, Y.S., Shilnikov, 
L.P., 1994; Zeeman, 1976) as these minimise the number of parameters and state variables needed to capture 
the changing geometries. In addition, we postulated a linear relationship between the signals and model 
parameters and later validated this using the data (Fig. 4D). All cells in a sample were assumed to be affected 
by the same landscape, determined by independent effects of each signal (CHIR, FGF). To fit the data, we 
found it necessary to add a memory effect to this relationship (Fig. 4E). The data showed that removing 
CHIR at D3 or D3.5 gave different PN:M balances, while the PN:M balance remained near invariant if CHIR 
was removed at D4 or kept until D5 (Fig. 3Cb CHIR 2-4 and CHIR 2-5). This indicated that the effect of 
CHIR persisted for some time after its removal. To account for this memory effect, we maintained a CHIR 
signal in the model for a period of time proportional to the time CHIR had been in the system longer than a 
time threshold which was estimated in the fitting (Video CHIR 2-3.5). For FGF, since FGF signalling has 
been shown to generate a positive feedback and induce expression of FGF ligands (Amin et al., 2016; 
Blassberg et al., 2020), we maintained a level of 90% FGF when exogenous FGF was withdrawn, unless the 
inhibitor PD0325901 was added, in which case FGF signalling was set to 0.  
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The resulting system depends on 20 parameters: 3×6 for the relationship from the 3 signal changes (no 
signalling (no CHIR + PD), addition of CHIR and addition of FGF: the parameters w in Fig. 4D) to the six 
landscape model parameters, a memory threshold and a noise level (SI Sect. 3). In order to fit these, we used 
a training dataset of 7 treatment regimes (see Fig. 3A and 6) measured at 7 time points that distinguish 7 
populations: EPI, Tr, AN, CE, PN, M, UT (a total of 343 measurements of cell fate proportions). We kept 
separate, for validation, a dataset of 4 experimental conditions with a total of 196 measurements (see Fig. 
3A and 7). We took advantage of the approximate Bayesian computation (ABC) framework (Camacho-
Aguilar et al., 2021; Toni et al., 2009) to generate posterior distributions of the parameters (see SI Sect. 4).  

 
Fitted landscape captures cell fate decisions 

By extensive sampling from the resulting posterior parameter distribution for each signal combination we 
obtained simulation time series for cells in the landscape using the flow defined by the stochastic dynamical 
system (Fig. S3B).  We computed the proportion of cells around each attractor and compared these with the 
corresponding experimental proportions (see SI Sect. 5 for details). For each timepoint and signal 
combination this produced a distribution of cell states and resulted in a 2×3 table of landscapes (Fig. S3A 
and Fig. 8A) corresponding to the different signal combinations used in the training experiments: CHIR 
on/off and FGF on/off or inhibited by PD. 

Even though the parameters come from a distribution, the distribution of cell states was relatively tight about 
their mean with an average coefficient of variation of 7%. The larger size of some coefficients of variation 
was due to misidentification of clusters for a small number of experimental conditions. To compare 
simulated and experimental proportions we therefore used the mean simulated proportion. Comparison with 
the training datasets showed excellent overall agreement (Fig. 5; see SI for a detailed analysis). The largest 
differences tended to be associated with situations with a significant number of unclassified cells in the 
experimental data (UT), which we reasoned were cells transitioning between states. Importantly, the 
simulations reproduced subtle features of the data such as the constant rate at which cells leave the CE state 
in response to CHIR. 

We next examined simulations using signal combinations from the validation datasets computed with the 
model parameter obtained from the fitting to the training data. Again, there was good overall agreement (Fig 
6). Strikingly, the simulations showed that the cells transitioning at D2.5 were "recaptured” by the EPI 
attractor after removal of CHIR (Video CHIR 2-2.5), as observed in the experimental data, where a 
proportion of cells transitioning to CE at D2.5 return to an epiblast state at D3. Since the data used to fit the 
model did not contain any conditions in which the EPI attractor was repopulated after cells had left it, these 
simulations provide a non-trivial validation of the geometry of the landscape and its parameterisation.  

Closer inspection, however, revealed some differences between simulations and experimental data. Most 
notably, there was an underestimation of the CE population in some CHIR conditions (CHIR 2-2.5, CHIR 
2-3, CHIR 2-3.5), together with an underestimation of M and overestimation of PN. Taking the results 
together, there was good agreement between the simulations and experimental data with the model 
accurately replicating the key decision processes in the differentiation pathway, this included the recapturing 
of cells by the EPI attractor after short CHIR exposure and the leakage of CE cell into M. Nevertheless, 
discrepancies in the exact proportions of cells between simulations and experiment prompted us to 
investigate further refinement to the model fit.  

 

Refined model accurately recapitulates experimental data. 

To test the model and determine the value of refining the fit, we took advantage of the model to design 
experiments. Simulations testing the effect of alternating periods of CHIR induction with periods of no CHIR 
suggested that the informative results were obtained when cells were induced into the transition state by 
exposure to CHIR for 12h at D2 and then subjected to either 1 or 2 pulses comprising 3h with no CHIR 
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followed by 3h CHIR. After the pulses, cells were kept in continuous CHIR (Fig. 7A). Simulations of the 
single pulse predicted a mixture of anterior and posterior fates at D5 (Fig. 7B Initial Sim). By contrast, 
simulations of the double pulse predicted approximately 50% of the cells would adopt an AN identity and 
almost no cells would remain CE at D5 (Fig. 7B Initial Sim). That is, the model predicted that 3h of no CHIR 
and no FGF would be sufficient for cells to become AN and that two 3h pulses of no CHIR conditions would 
be sufficient for CE cells to become PN. Moreover, the model predicted that the transitioning population 
(Tr) would be present at day 3 under both pulsing conditions. 

We performed these two experiments (Fig. 7B Test Exp) as part of the Test experimental series. As expected, 
we observed the transitioning population was present at D3 in both conditions. At later days the experimental 
data differed from our predictions. First, few cells adopted an AN identity and second, a substantial CE 
population remained throughout D3.5 to D5. The continued presence of CE cells at D5 was consistent with 
the idea that CE represents an attractor in the dynamical landscape and it pointed to the initial fitting 
underestimating its stability. The discrepancy between simulations and experiments prompted us to refine 
the model fit.  

To this end, we included the data from the pulsing conditions together with the reference set of conditions 
to retrain the model (see SI Sect. 6 for details). Adjusting these parameters markedly improved the 
performance of the model (Fig. 7B,D Refined Sim). The AN population under the two pulse conditions was 
almost non-existent and the CE population was increased, matching the experimental data. Data from CHIR 
2-2.5 condition which was not used in the training was used as a validation and showed a good agreement 
with the experimental data. Comparison of the refined landscape (Fig. 8) with the initially fitted landscape 
(Supp. Fig. 3) revealed that the CE attractor did not bifurcate under No CHIR + FGF conditions and was 
very close to bifurcation under No CHIR + No FGF conditions allowing cells to remain in that area for 
longer. Moreover, the saddle point separating the AN attractor from the rest of the landscape had moved 
closer to the AN attractor, increasing the amount of time necessary for cells to commit to the AN fate under 
No CHIR + No FGF conditions.   

We conclude that in all conditions the CE attractor is close to its bifurcation point. As a result, when it is a 
genuine attractor its basin is shallow, hence it is easy for noise driven fluctuations to allow a cell’s trajectory 
to escape and proceed downhill to the PN or M attractors (Video CHIR 2-3.5). Thus, we see a gradual loss 
of CE cells at a roughly constant rate per unit time.  

The fitted parameterised landscape provides insight into the capacity for cells to revert to a previous state: 
in developmental biology terminology the commitment of cells (Waddington, 1957). The model parameters 
determined by the fit mean that combinations of FGF and WNT signalling produce a constrained set of 
landscapes. This applies not just to the signal combinations used in the experiments but other reasonably 
conceivable combinations. This constraint means that certain transitions are not possible. For example, once 
cells have transitioned to the AN state this is irreversible as this attractor is deep and no bifurcation is allowed 
that destroys this state, thus cells are committed to AN and can no longer become CE in response to WNT 
signalling (Video CHIR 4-5)(Metzis et al., 2018). Similarly, the bifurcation of the EPI attractor in response 
to CHIR provides insight into the inability of CHIR + FGF inhibition with PD to revert epiblast cells to the 
ESC state (Video CHIR 2-5 FGF 0-3) (Guo et al., 2009; Ying et al., 2008).  

Moreover, the model predicted a landscape for no CHIR with PD (Fig. 8A top-right), a condition not used 
in the experiments (Fig. 10). The table can also be used to predict the effect of different timings of signal 
changes (Fig. 7) and extrapolated to different concentrations of signals (Fig. 9). 

 

Identification of the dose-response curve for CHIR concentration. 

To investigate how the balance between M and PN was controlled in the second decision, we performed 
dose response experiments with CHIR after D3. We first simulated the model assuming a linear relationship 
between the effective CHIR signal level and CHIR concentrations (Fig. 9). Experimental results suggested 
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a good correspondence for the low concentration (0.1mM), but larger differences were evident for higher 
concentrations (0.5mM) with a difference of 40% in PN, overestimating the CE and M proportions.  

These results suggested that the model needed to be further refined to account for the dose-response effects 
of CHIR concentration. We tested whether the addition of a sigmoidal dose-response curve improved the 
model performance. For the fitting of the dose-response effect, we kept the distribution of all other 
parameters the same and fit the parameters of the sigmoidal curve. This substantially improved model 
performance. Although the half-response parameter did not produce a clear distribution, suggesting that 
additional concentrations would be necessary for a precise estimation of the dose-response curve, the 
estimation of cell fates in response to both 0.3mM and 0.5mM were close to the empirical data.  

 

Testing the geometry of the landscape 

Having fit, refined and validated the landscape we set out to test its accuracy and investigate its implications 
by identifying predictions for which we had not previously analysed experimental data.  

First, we noted that, in contrast to the EPI attractor that bifurcates with the saddle connected to the CE 
attractor in response to FGF + CHIR, the AN attractor was not destroyed by the addition of FGF + CHIR – 
a saddle remains separating AN and CE (Fig. 8A). This predicted that once cells had committed to AN 
identity, they would remain anterior and not adopt a CE identity after the addition of CHIR (Fig. 10Ba). We 
tested this hypothesis by adding FGF + CHIR at D4 to cells that had adopted an AN identity. In the standard 
AN condition (No CHIR + FGF D0-3), cells remained anterior in response to addition of FGF + CHIR at 
D4 as indicated by the high levels of expression of the marker OTX2 at D5 (Fig. 10Bb). These results were 
consistent with the constructed landscape, confirming that the saddle separating AN from CE does not 
bifurcate away in response to FGF + CHIR, and indicated that once EPI cells are committed, they remain 
anterior.  
Second, because the landscapes define a family parametrised by two signals (CHIR and FGF) they include 
a hypothesised landscape for No CHIR + PD conditions, even though none of the datasets used to construct 
the model corresponded to this condition (Fig. 8A top-right). In this case the model predicts that, in the 
absence of WNT, the inhibition of FGF signalling results in a further destabilisation of the CE attractor and 
an expansion of the PN attractor (Fig. 10F). We tested this by removing CHIR and adding the FGF inhibitor, 
PD, to cells that had adopted a CE identity in response to different durations of CHIR exposure. The 
prediction was that cells in the CE attractor at the time of CHIR removal would transition to PN, while cells 
that had already adopted an M identity would remain in this state. Consistent with these predictions, the 
removal of CHIR and inhibition of FGF signalling after 24h (CHIR 2-3 + PD 3-4) resulted in a moderate 
increase in the PN population compared to control conditions. Maintaining the CHIR for 36h (CHIR 2-3.5 
+ PD 3.5-4.5) resulted in a marked increase in PN population at the expense of CE identity compared with 
control conditions (Fig. 10D), whereas the M population was less affected. This observation supports the 
idea that the CE represents a relatively shallow attractor that is maintained by CHIR signalling and 
destabilised by the removal or inhibition of FGF.  

In the embryo, retinoic acid (RA) emanating from the somites, is proposed to inhibit FGF signalling in 
differentiating CE cells to promote neural differentiation (del Corral et al., 2003). We therefore compared 
the effect of RA addition to the effect of FGF inhibition.  The addition of RA after 24h of CHIR (CHIR 2-3 
+ RA 3-4) or 36h (CHIR 2-3.5 + RA 3.5-4.5) resulted in almost identical proportions of cell types as obtained 
for the equivalent experiments with PD (Fig. SI64). Moreover, we also predicted that if cells were exposed 
to CHIR from D2-4, the memory effect of CHIR would result in the maintenance of a CE population at D5 
even after the addition of PD or RA. Indeed, exposure of cells to RA after 48h of CHIR induction (CHIR 2-
4 + RA 4-5) agreed with model predictions, with a large number of cells adopting M identity by D5. 
Importantly, in these experiments a substantial proportion of cells remains CE at 24h after removal of CHIR 
and addition of RA, consistent with the memory effect of CHIR hypothesised for the construction of the 
model.  
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Taken together, the results provide a quantitative model for the differentiation of neural and mesodermal 
cells from pluripotent progenitors that accurately predicts the effect of signals on the proportions of cell 
types generated. Moreover, the quantified landscape offers an intuitive visualisation of the differentiation 
process that highlights the distinctions between two types of decisions (binary choice and binary flip) that 
would be obscured in more complex gene-centric models.  
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Discussion 

It is increasingly easy to control cell fate and to generate quantitative data, raising the prospect of predictive 
engineering of organs and tissues (Kim et al., 2020; Shi et al., 2017). To support this endeavour, quantitative 
models that assimilate data and represent the successive steps in development are needed. Models are 
commonly constructed around genes and their interactions, typically defined with mass action kinetics, but 
their complexity and the large number of parameters involved can limit the scope of such models and obscure 
the underlying decision mechanisms. The Waddington landscape metaphor is an appealing simplification 
(Waddington, 1957), yet until recently it lacked both a mathematical foundation and meaningful engagement 
with data. We demonstrate an approach to construct, parameterise and analyse dynamical landscapes. We 
show that it makes specific and testable predictions as well as providing a visualisation of the developmental 
process that offers insight into the underlying mechanisms. This revealed two distinct strategies by which 
cells decide between one of two fates. We propose that they represent archetypes for developmental 
decisions that play a general role in developmental dynamics. 

Developmental transitions are represented by low-dimensional dynamics 

Gene network models and real cellular systems develop by successive transitions among a small panel of 
fates, so the mathematics of dynamical systems and catastrophe theory can be applied (Arnold, V.I., 
Afrajmovich, V.S., Ilyashenko, Y.S., Shilnikov, L.P., 1994; Guckenheimer et al., 2013; Thom, 1969, 1972). 
Moreover, there is formal mathematical theory for such systems that reflects, extends and clarifies 
Waddington’s picture (Rand et al., 2021). This theory indicates that even when the state space (gene 
expression) is high dimensional, developmental transitions comprise the simplest saddles (those with 1-
dimensional unstable manifolds) and their attractors. Consequently, the topology and behaviour of such 
models can be represented in two dimensions, so that it is conceptually meaningful to work in the low 
dimensional space and assert that relevant biology takes place on a two-dimensional manifold (Corson and 
Siggia, 2017). The final crucial step is to make the model quantitative by fitting a rich set of its summary 
statistics to those of the data. This links the powerful qualitative theories to quantitative models and provides 
an intuitive but rigorous means to analyse developmental dynamics.  

We applied these ideas to the differentiation of embryonic stem cells in response to two signals, WNT and 
FGF, that together direct differentiation into precursors of neural and mesodermal tissues via intermediates 
that have received prior study (Blassberg et al., 2020; Gouti et al., 2014; Tsakiridis et al., 2014; Wymeersch 
et al., 2021). This system has the virtue that cell identity is controlled by external signals, hence can be 
modelled without the complexity of cell interactions. Landscape models describe the cells as they transition 
between valleys in the Waddington metaphor and the most informative data is obtained during transitions. 
We show that quantitative data using just five molecular markers and a carefully designed array of conditions 
and times was sufficient to define the cellular states and obtain informative summary statistics: the 
proportions of cells of a given type at each time point. This information was sufficient to identify the 
underlying geometrical model. The fixed points of the model were abstract and acquired meaning when gene 
expression patterns were related to in-vivo experiments. The morphogens control the basins of attraction of 
the fixed points and ultimately the saddle node bifurcations or flips that define cellular decisions. Strikingly, 
all the relevant cellular decisions could be captured in two dimensions. This strategy for constructing models 
of cellular differentiation contrasts with single-cell transcriptome analyses of tissue development that 
simultaneously profile 1000’s of genes (Schiebinger et al., 2019; Tanay and Regev, 2017) but often lack the 
resolution and diversity of conditions necessary to discern relevant cell fate transitions and the underlying 
structure of the developmental process.  

Quantitative descriptions of experimental embryology 

The results support the notion that cell states correspond to attractors of a dynamical system. For the EPI, 
AN, PN and M states their assignment as attractors was unambiguous and the differentiation of cells between 
states involved bifurcations of attractors. For CE the results were more subtle and revealing. For some 
morphogen combinations the CE state appeared as an attractor, albeit a shallow one with a relatively small 
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basin of attraction close to bifurcation, while for other morphogen combinations the CE state had bifurcated 
away. The consequence of the shallowness of the attractor is a gradual leakage of cells from the CE state 
and this, in contrast to the bifurcation of an attractor, explains the transitory nature of the CE state. Cells 
leave the CE attractor by jumping over a saddle into the basin of a different attractor. This observation not 
only illustrates the subtlety of the method, but also provides an explanation for the progressive elaboration 
of the anterior-posterior axis of vertebrate embryos (Henrique et al., 2015; Wymeersch et al., 2021). This 
process involves the production of trunk mesoderm and spinal cord over an extended period of 
developmental time from bipotential progenitors (CE) located at the tail end of the elongating body. Ensuring 
the CE state is poised close to bifurcation allows the constant differentiation of a fraction of cells to neural 
and mesodermal tissue while retaining an uncommitted progenitor population.  

The model we constructed terminates in one of three fates: mesoderm, anterior neural, or posterior neural. 
Cells in these states are committed, they cannot leave these attractors and remerge on our fate plane, but they 
are not endpoints as cells continue to differentiate. We envision that longer differentiation trajectories could 
be constructed, branch by branch, with the modular and hierarchical property of the models facilitating the 
gradual elaboration of the full differentiation tree. By fitting and refining the saddles and attractors as they 
move in response to extrinsic signals, such models generate quantitative predictions and suggest complex 
temporal stimuli that might stabilize or disrupt populations of cells in the dynamical landscape. In this way, 
landscape models delineate phenomenological features of experimental embryology in quantitative form. 

Two archetypal decision mechanisms 

The landscape that resulted from our analysis comprises two sub-landscapes. These are generic in the sense 
that they occur naturally in dynamical systems without any special conditions and when they occur, they are 
structurally stable and robust to misspecification or perturbation of the dynamical system. Each encodes a 
fundamentally different type of binary decision. For the AN-EPI-CE decision, the data support the notion 
that the EPI state is destabilised by collision of a saddle point between it and either the CE or AN attractor. 
Importantly, after either bifurcation, the saddle separating the EPI attractor from the alternative fate remains 
intact. The result is an all-or-nothing choice that commits cells to a fate. This agrees with previous 
experimental observations that epiblast cells commit to an anterior or posterior identity prior to acquiring a 
neural fate (Metzis et al., 2018). Since the overall effect of this landscape is that signalling results in all cells 
in the EPI state choosing and committing to either the CE or AN state, we call this landscape the binary 
choice landscape. 

The decision for the differentiation of CE to either PN or M is different. The landscape indicates that the 
proportion of PN and M cells generated in response to different amounts of WNT signalling is a consequence 
of the location of the unstable manifold of the saddle that separates the CE attractor from PN and M. For 
prolonged and high CHIR conditions, the escape route connects to the M attractor, whereas in the absence 
of WNT signalling it flips to PN. For intermediate conditions stochasticity produces a mixed outcome with 
a progressive increase in the ratio of M to PN as WNT signalling increases. Because the flip in the unstable 
manifold is the essential dynamical phenomena controlling the allocation of cells, we call this the binary flip 
landscape. Previously, a pitchfork bifurcation had been postulated for this transition (Steventon and 
Martinez Arias, 2017). However, in contrast to our landscapes, this is not generic but only occurs with an 
additional constraint equivalent to symmetry between M and PN and it is reversible such that cell states are 
only maintained if signalling is maintained.  

The results help clarify the idea of cell commitment (Barresi and Glibert, Scott F., 2020; Waddington, 1957), 
by explaining when cells that have escaped a basin of a bifurcated attractor can or cannot be recaptured by 
reversing the signal and reintroducing the attractor. For the EPI to CE transition, recapture is possible for a 
limited time after which they are committed to the transition. For the EPI to AN transition, once cells have 
entered the AN state they cannot escape because the AN attractor never bifurcates away. In this view, 
therefore, commitment becomes a dynamical property of the landscape. 
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Crucially, theoretical considerations (Rand et al., 2021) indicate that there are relatively few generic three-
attractor landscapes. Thus, the binary choice and binary flip landscapes are likely to be encountered 
repeatedly in developmental decisions. Moreover, as we show here, these landscapes can be linked together 
to provide an ordered hierarchy that accounts for a differentiation pathway comprising multiple decisions. 
Together this leads us to suggest that the binary choice and binary flip landscapes represent design archetypes 
that underpin cellular decisions throughout embryonic development.  

Outlook 

In our approach, we did not fit flow cytometry data directly to the dynamical variables, but instead relied on 
the assignment of cells to discrete fates. We sampled the population frequently in time to capture the 
transitions among the fates in the topological model and thus obtained quantitative predictions about what 
matters most, the discrete cell states. A future goal will be to develop tools that directly link gene expression 
measurements and detailed gene centred models to landscape models. The minimal spatial organisation in 
the differentiating stem cell colonies, meant only the response of individual cells to exogenous signals 
needed to be considered. To apply these models to cells of an intact embryo, we would surmise that the cell 
intrinsic landscape remains the same, but the spatial-temporal behaviour of the morphogens would need to 
be measured or inferred. To probe such models, it will be necessary to perturb signalling pathways with 
sufficient temporal resolution to catch cell fate transitions, experimental manipulations that do not control 
time are manifestly less useful. Thus one can hope to reconstruct development in space-time analogous to 
the reconstruction of differentiation from single cell expression data (e.g. (Karaiskos et al., 2017; Nitzan et 
al., 2019) but in a way that provides quantitative predictions and insight into the underlying mechanisms.  
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Materials and Methods 
Cell lines 

The XY mouse ES HM1 TetON line (Serafimidis et al., 2008) was used for all experiments. ES cells were 

maintained at 37oC with 5% carbon dioxide (CO2) and routinely tested for mycoplasma.  
 
ES cell culture and differentiation 

All mouse ESCs were propagated on mitotically inactivated mouse embryonic fibroblasts (feeders) in 
DMEM knockout medium supplemented with 1000U/ml LIF (Chemicon), 10% cell-culture validated fetal 
bovine serum, penicillin/streptomycin, 2mM L-glutamine (GIBCO). To obtain EpiLCs and CEpiLCs, ESCs 
were differentiated as previously described (Gouti et al., 2014) with the addition of the porcupine inhibitor 
LGK974 (Cayman) in all culture medium. Briefly, ESCs were dissociated with 0.05% trypsin, and plated on 
tissue-culture treated plates for two sequential 20-minute periods in ESC medium to separate them from 
their feeder layer cells which adhere to the plastic. To start the differentiation, cells remaining in the 
supernatant were pelleted by centrifugation, counted, and resuspended in N2B27 medium containing 
10ng/ml bFGF (Peprotech) + 5µM LGK974, and 50,000 cells per 35mm gelatin-coated CELLBIND dish 
(Corning) were plated. N2B27 medium contained at 1:1 ratio of DMEM/F12:Neurobasal medium (GIBCO) 
supplemented with 1xN2 (GIBCO), 1xB27 (GIBCO), 2mM L-glutamine (GIBCO), 40mg/ml BSA (Sigma), 
penicillin/streptomycin and 0.1mM 2-mercaptoethanol. To generate epiblast (Epi) cells, the cells were grown 
for 72 hrs in N2B27 + 10ng/ml bFGF + 5µM LGK974. To generate caudal epiblast (CE), cells were cultured 
with N2B27 + 10ng/ml bFGF + 5µM LGK974 for 48 hrs, then N2B27 + 10ng/ml bFGF + 5µM LGK974 + 
5mM CHIR99021 (Axon) (FLC-medium) for a further 24hrs. CE were differentiated to posterior neural 
progenitors (NP) by removal of bFGF and CHIR from culture medium at 72hrs, and to paraxial mesoderm 
(M) by removal of bFGF and maintenance of 5mM CHIR from 72hrs onwards. When investigating the role 
of endogenous FGF producton either the MEK inhibitor PD0325901 (500nM) was employed to inhibit 
downstream FGF signalling or retinoic acid (10nM) was added to inhibit expression of FGF. For all 
experiments described, cells were cultured for 48hrs before changing medium. Medium changes were then 
made every 12 hours. 
 
Immunofluorescence 

Cells were washed in PBS and fixed in 4% paraformaldehyde in PBS for 15min at 4°C, followed by two 
washes in PBS and one wash in PBST (0.1% Triton X-100 diluted in PBS). Primary antibodies were applied 

overnight at 4°C diluted in filter-sterilized blocking solution (1% BSA diluted in PBST). Cells were washed 
3x in PBST and incubated with secondary antibodies at room temperature, for 1hr. Cells were washed 3x in 
PBST, incubated with DAPI for 5 min in PBS and washed twice before mounting with Prolong Gold 
(Invitrogen). Cells were imaged on a Zeiss Imager.Z2 microscope using the ApoTome.2 structured 
illumination platform. Z stacks were acquired and represented as maximum intensity projections using 
ImageJ software. The same settings were applied to all images. Immunofluorescence was performed on a 
minimum of 2 biological replicates, from independent experiments. Primary antibodies used: SOX2 (Mouse, 
Santa Cruz sc-365823), OTX2 (Goat, R&D AF1979), CDX2 (Rabbit, Abcam ab76541), TBX6 (Goat, R&D 
AF4744), FOXC2 (Goat, R&D AF6989). Secondary antibodies raised in donkey coupled to AlexaFluor- 
488, 568, or 647 fluorophores (Molecular Probes) were used at 1:1000 dilution throughout. SOX1 was 
labelled with AlexaFluor-647 conjugated antibody (Mouse, BD 562224). 
 
Intracellular flow cytometry 
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Cells were washed in PBS and dissociated with minimal accutase (GIBCO). Once detached cells were 
collected into 1.5mL Eppendorf tubes by dissociating in N2B27 and pelleted. Cells were resuspended in 
PBS, pelleted and resuspended in 4% paraformaldehyde in PBS. Following 15min incubation at 4 C, cells 

were centrifuged, resuspended in PBS, and stored at 4°C for future analysis. On the day of flow cytometry, 
cells were counted and equal cell numbers were transferred for staining in v-bottom 96 well plates. Samples 
were pelleted and resuspended in 50µL FACS block (PBS + 0.2% Triton + 3% BSA). After 10min incubation 

at room temperature antibodies were added to the sample and incubated overnight at 4°C. Cells were pelleted 
at 700rcf for 5min and resuspended in 50µL FACS block. One additional wash was performed before 
acquisition on a Fortessa flow cytometer (BD) equipped with a high-throughput sampler using FACSDiva 
software. Commercially available conjugated antibodies used were SOX2-V450 (Mouse, BD-561610), 
SOX1-PerCP-Cy.5 (Mouse, BD 561549), CDX2-PE (Mouse, BD 563428), BRA-APC (Goat, R&D 
IC2085A). Anti TBX6 (Goat, R&D AF4744) was conjugated to AlexaFluor-488, and anti FOXC2 (Goat, 
R&D AF6989) was conjugated to AlexaFluor-647 using Molecular Probes Antibody Labelling Kit 
(Invitrogen/ ThermoFisher). When labelling OTX2, samples were incubated with unconjugated OTX2 
antibody (Goat, R&D AF1979) for 1 hour at room temperature in FACS block. Following 2 washes with 
FACS block AlexaFluor-488 anti-goat antibody (1:1000) was included in overnight incubations with 
fluorescently conjugated mouse antibodies. 
  
Flow cytometry data pre-processing 

FCS files were imported into the R programming environment using the ‘flowCore’ package (Hahne et al., 
2009). Individual cells were gated using a standard two-step gating strategy with an additional gate to remove 
outlier events with especially low fluorescence values as shown in (Figure S4). A custom R script was used 
to remove outlier events with fluorescent values exceeding a 3-sigma threshold from the mean of the average 
calculated across all samples of a given experiment. Raw fluorescence-intensity values were used in all 
downstream analysis and graphical representations of the data.  
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Figure Legends 
 

 
Figure 1: Single cell resolution analysis of the directed differentiation of ES cells to neural and 
mesodermal identities.  

A. Schematic of mESC differentiation. Embryonic stem cells differentiated in defined FGF and WNT 
signalling regimes adopt either Anterior Neural (AN), Posterior Neural (PN) or Paraxial Mesoderm (M) 
progenitor identities. Coloured bars show the times at which cells were exposed to CHIR and/or FGF. The 
expected dominant cells type at Day 5 and associated marker gene expression is given on the right. CHIR, 
CHIRON99021; D, Day. 

B. Representative immunofluorescence images of markers used to identify the different cell types. 
Progenitors differentiated for 2 days in FGF co-express the early epiblast markers SOX2 and OTX2 (Ba), 
and adopt SOX1+ OTX2+ AN identity by day 4 (D4) following withdrawal of FGF (Bb). Activation of 
WNT signalling at D2 with CHIR results in the upregulation of the posterior marker CDX2 (Bc) and the 
downregulation of OTX2 (Bd) by D3. Subsequent removal of CHIR at D3 leads to differentiation of 
SOX1+/CDX2+/OTX2- PN progenitors (Be), while sustained WNT signalling results in differentiation to 
TBX6+ early and FOXC2+ late paraxial mesoderm progenitors.  

C. Flow cytometry data. Flow cytometry analysis of individual progenitors shows that the progression from 
TBX6+ early paraxial mesoderm identity at D4 to FOXC2+ late paraxial mesoderm identity at D5 (Ca) 
under the sustained WNT signalling regime. At D4 OTX2 and SOX2 remain expressed at high levels in AN 
progenitors differentiated in the absence of CHIR, and are both reduced in PN progenitors induced by 
transient CHIR, whereas SOX1 expression is highest in PN progenitors (Cb).  
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Figure 2: Clustering using Gaussian Mixture Models defines cell identities 

A. Overview of the clustering method. Flow cytometry data from the three reference conditions (No CHIR, 
CHIR 2-3 and CHIR 2-5) for a specific timepoint were pooled and used to define a Gaussian Mixture Model 
such that each component corresponds to a cell identity. The model was used to cluster cells in samples from 
the same timepoint and experimental series. The number of cells assigned to each cluster was used to 
quantify the population proportions. Axes correspond to flow cytometry measurements (Units are in the 
order of ten thousand).  
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B. Two dimensional joint distributions of flow cytometry data from the initial reference datasets illustrating 
the clusters identified in the pooled data. Colours correspond to the label assigned to the cluster as in (C). If 
the same label is assigned to several clusters different shades are used. Contours indicate cell density in each 
cluster. Axes correspond to flow cytometry measurements (Units are in the order of ten thousand). At day 
5, from the total volume of the 5-dimensional cube that encompasses gene expression space, only 0.02% is 
occupied by the GMM that represents 90% of the cells.  

C. Number of cell types identified on each day of differentiation. Colours correspond to the assigned labels 
(D). If the same label is assigned to several clusters different shades are used. 

D. Table of cell type labels assigned to each cluster using marker protein expression: ++ denotes high levels 
of the markers, + denotes moderate levels of the markers, (+) denotes marker expression is optional, due to 
transitioning populations. The populations are Epiblast (EPI), Transition from EPI to posterior identity (Tr), 
Anterior Neural (AN), Caudal Epiblast (CE), Posterior Neural (PN), Early Paraxial Mesoderm (EM) and 
Late Paraxial Mesoderm (LM). The core set of markers used are indicated in bold. The extra information on 
additional markers is included in the right most columns. 

E. Principal component (PC) analysis of clusters at day 5 with variance explained by each of the first three 
PCs (Var) indicated. The highest weighted proteins in each PC (HWP) are shown. The PCs comprise mainly 
one or two proteins only. When more than one weight is relevant, we order them by magnitude. The relevant 
proteins in each cluster are different for different cells identities.  

F. Analysis of the local correlation structure in and between CE, LM and EM clusters at day 5. The data is 
rotated so that the first dimension extends across the two clusters. We show an illustrative projection of the 
rotated data on the two top panels.  A smoothing spline is fit through the data (top-left). The data is binned 
along the spline into 30 bins (top-right) and gene-gene correlations in each bin computed (bottom). 
Correlations are maintained in bins within a cluster but change abruptly in bins around the cluster boundaries. 
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Figure 3: Initial experimental series.  

A. Schematic of the 11 experimental conditions used to acquire the initial dataset. Experimental conditions 
marked in bold comprise the training sets; the datasets for the conditions in italics formed the validation 
dataset and were not used for model fitting. The conditions marked with a symbol form the reference set. 
Coloured bars show the times at which cells were exposed to each of three signals. CHIR, CHIRON99021 
(purple); FGF (red); PD, PD0325901 (green). 

B. Summary of the different cell types and transitions identified in the system. These define five attractors 
(with contour line) in the landscape together with a well-defined intermediate transition from Epiblast to 
Caudal Epiblast (no contour line).  Thick arrows indicate the differentiation routes between cell types and 
the signals that drive them.   

C. The subset of fate proportions from the initial experimental series data that inform the geometry of the 
landscape: (a) informs the first decision from EPI to AN and CE; (b) informs the second decision from CE 
to PN and M. Colours correspond to cell identities (B). Cells with a low probability of belonging to any cell 
type were considered transitioning cells (UT) and labelled in light yellow. 
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Figure 4: Two archetypal landscapes for binary cell fate decisions 

A and B: Contour maps for three parameter sets (a,b and c) of two distinct three attractor potentials. The 
black lines denote contour curves passing through saddles, coloured dots are attractors, purple curves 
indicate the separatrices of the basins of attraction (stable manifolds of the saddles with the downhill 
direction indicated) and red curves are skeleton trajectories (unstable manifolds of the saddles with the 
downhill direction indicated).  

A. Binary choice landscape. Attractor EPI remains the central attractor for all three parameter sets (A abc). 
The curve defined by the unstable manifolds can be both smooth or cusp-like, as in the figure. Changes in 
parameters can result in a bifurcation either between attractor EPI and the saddle point separating AN and 
EPI (Aa) or between attractor EPI and the saddle point separating EPI and CE (Ac). These bifurcations leave 
the remaining saddle point intact. Hence this landscape models an all-or-nothing decision.  

B. Binary flip landscape. In this landscape a saddle point separates attractor CE from a basin that contains 
both attractors M and PN. The escape route (unstable manifold) emanating from the saddle associated with 
attractor CE can lead to either attractor M or PN. Varying parameters results in a swap (flip) in the attractor 
favoured by the escape route (Ba and Bc). This landscape models a decision in which cells differentiating 
from state CE can be flexibly distributed to either M or PN. 
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C. The model was constructed from two binary decision landscapes smoothly connected through the 
common CE attractor. The first landscape is indicated in grey, the second in ochre. The two landscapes are 
different in character and allow different types of transitions. The model produces a gradient dynamical 
system with each part of the landscape defined by a parametrised height function that, with the addition of 
noise, determines the flow of the cells in the landscape. The two parts of the model each depend on 3 
parameters (1 for velocity of cells and 2 for the shape of the landscape) for a total of 6 parameters. These 
parameters are functions of the signals in the medium as indicated in (D).  

D. Schematic of the effect of signals on model parameters. The effect of the signal concentration on the 
landscape is linear. A memory effect was incorporated for the effect of CHIR. Exposure to CHIR for longer 
than a Threshold (Thr) activates a memory term that triggers the persistence of the CHIR effect after its 
removal for a time proportional to the period of CHIR exposure (Memory = CHIRTime-Thr). The w’s are 
the weights of these effects and are 6 dimensional (w! determines the landscape if there is no CHIR and 
PD). Noise amplitude is also a model parameter, in total the model comprises 20 parameters, these were 
estimated using ABC SMC with the training data. 

E. Example of the memory effect for different CHIR durations. If the duration of CHIR exposure is greater 
than the threshold (18h), the landscape will take CHIRTime-Thr to change after removal of CHIR. Thus, the 
total time CHIR affects the landscape is 2⋅CHIRTime-Thr. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.03.11.434982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434982
http://creativecommons.org/licenses/by/4.0/


 25 

 

 
Figure 5: Comparison of model simulations to experimental data. 

A. For each condition at each time point the proportions of cells assigned to each cell identity by the 
clustering method (Experiment) were compared with the proportion predicted by the model (Simulations). 
For the simulated data the proportions of each cell type were obtained by averaging the proportions of cell 
types obtained by simulating the model using all 10000 parameter sets found by the fitting algorithm. 
Colours correspond to cell identities (B). Cells with a low probability of belonging to any cell type were 
considered transitioning cells (UT) and labelled in light yellow. 

B. Qualitative form of the global landscape model used in the fitting. Cell identities correspond to attractors 
in the landscape. Different signalling regimes change the particular form of the landscape. 
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Figure 6. Comparison of model simulations to validation data.  

Experimental conditions not used in the fitting were compared with model simulations. For each validation 
condition at each time point the proportions of cells assigned to each cell identity by the clustering method 
(Experiment) were compared with the proportion predicted by the model (Simulations). For the simulated 
data the proportions of each cell type were obtained by averaging the proportions of cell types obtained by 
simulating the model using all the parameter sets found by the fitting algorithm. Colours correspond to cell 
identities as detailed. Overall, the model performed well at predicting the experimental results. We note that 
when CHIR is removed after 12h (CHIR 2-2.5) many cells that were in transition (Tr; orange) at D2.5 were 
recaptured by the EPI attractor both in the experiments and the simulations at D3. However, the simulations 
underestimated the CE the proportion of cells that remained CE at D3. 
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Figure 7: A refined model improves the accuracy of predictions.  

A. Details for the 2 experimental conditions designed to refine the model. Coloured bars show the times at 
which the CHIR (purple) or FGF (red) were added and removed from the medium.  

B. Comparison between the mean proportions of cell types predicted by simulations of the initial model 
(Initial Sim) and the refined model (Refined Sim), and the proportions of cell types obtained experimentally 
(Test Exp) for the conditions in (A). Colours correspond to cell identities as detailed. For the pulsing 
experiments, substantial differences were observed between the predictions of the initially fitted model and 
the experimental data. After using these experimental data together with the reference set to refine the model, 
the agreement between simulation results and experimental data was improved. 

C. Details for the 3 experimental conditions used to compare the accuracy between the initial model and the 
refined model. Coloured bars show the times at which the CHIR (purple) or FGF (red) were added and 
removed from the medium.  

D. Comparison of simulations from the initial model and refined model. The refined model performed better 
at predicting the outcome of short CHIR duration experiments (C). 
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Figure 8: Landscape geometry and the effect of signalling. 

A. The landscapes produced by different combinations of signals are portrayed in the table. The changes in 
the landscape that result from different signal combinations arise by bifurcations of attractors and flips in 
dynamical trajectories (unstable manifolds) of the parameterised landscape family. Note that the landscape 
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corresponding to No CHIR+PD (top right) is an extrapolation of the fitting and not based directly on data, it 
therefore represents an untested prediction of the model (see Fig. 10). Colours correspond to cell identities 
as detailed. 

B. Example of a simulation time series of the model for the signalling regime CHIR 2-3.5. Red points 
represent the location of cells in the landscape at the specified time points. Cells are initialised in the EPI 
attractor at D2. Their location evolves as given by the stochastic dynamical system defined by the landscape 
in Fig. 4C, which precise geometry is determined by the signalling regime. Three changes in the landscape 
are apparent. The addition of CHIR at D2 results in the bifurcation of the EPI attractor and cells follow the 
unstable manifold towards the location of the newly available CE attractor. At D2.5 many cells are still 
transitioning between EPI and CE. At later time points noise causes cells to abandon the CE attractor and 
follow the corresponding unstable manifold towards the M attractor. At D3 the removal of FGF has small 
effect in the landscape. At D3.5 CHIR is removed but the memory effect causes the landscape to remain the 
same. The termination of the CHIR memory effect (dotted purple line) results in the bifurcation of the CE 
attractor and the flip of the unstable manifold so that cells from the CE attractor transition into the PN 
attractor. To compare simulations to experimental data, simulated cells were clustered and compared with 
the experimental data at corresponding timepoints. 
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Figure 9: Incorporating the dose-response to WNT signalling. 

A. Three experimental conditions were designed to assess how the balance between PN and M fates are 
affected by CHIR concentration. Coloured bars indicate the times at which cells were exposed to CHIR 
(purple) and FGF (red). The intensity of shading indicates the concentration of CHIR, high (0.5mM), 
medium (0.3mM) or low (0.1mM) used between Day (D)3-D5.   

B and C. Comparison between the mean proportions of cell types predicted by simulations of the unrefined 
model (Sim (Line DR)) and the model refitted to the CHIR dose-response data (Sim (Fit DR), with the 
proportions of cell types obtained experimentally (Experiment). Colours correspond to cell identities as 
detailed. 

D. Landscapes for different CHIR concentrations. The stability of the CE attractor increases with CHIR 
concentration and the unstable manifold from the CE saddle flips from PN to M at ~0.3mM CHIR. 

E. Fitted sigmoidal dose-response curve compared with the linear effect used before refinement. 
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Figure 10: Quantitative predictions test the accuracy of the landscape. 

A. Details of the experimental condition used to assess the bifurcation of the AN attractor. WNT and FGF 
are introduced at later time points to challenge the commitment to AN.  

B. a. Mean proportions of cell types predicted by simulations for the condition indicated in (A). Colours 
correspond to cell identities as detailed. The model predicts that cells that have reached AN identity remain 
in this state if subsequently exposed to CHIR and FGF. b. Experimental data supports the prediction as AN 
cells retain high levels of OTX2 after CHIR induction ((Bb) and Fig. SI63). Colours correspond to cell 
identities (Fig. 3B). Cells with a low probability of belonging to any cell type were considered transitioning 
cells (UT) and labelled in yellow. 

C. Part of the landscape being tested in (A) and (B). 

D. Details of three experimental conditions used to assess the destabilisation of CE by the effect of PD with 
no CHIR. 

E. Comparison between the mean proportions of cell types predicted by the model (Simulation) and the 
experimentally observed proportions of cell types (Experiment). The data confirm the destabilisation of the 
CE attractor in PD conditions compared to control conditions and supports the memory effect of CHIR 
showing more CE cells for longer CHIR induction durations. Moreover, the effect of retinoic acid (RA; 
CHIR2-4 RA4-5) is also accurately recapitulated by simulating the inhibition of FGF signalling in the model. 

F. Part of the landscape being tested in (D) and (E). 
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Figure S1 

(A) Immunofluorescence assays indicate that CDX2 expressing CE progenitors at D4 adopt either SOX1 
expressing posterior neural identity under the transient WNT signalling regime (Aa), or TBX6+ paraxial 
mesoderm identity under the sustained CHIR signalling regime (Ab). The expression of both TBX6 (Ac) 
and SOX1 (Ad) is initially not spatially organized. (B) Flow cytometry analysis of individual progenitors 
indicates that SOX2 levels are inversely correlated with both TBX6 (Ba) and FOXC2 (Bb) over the period 
of paraxial mesoderm differentiation. (C) Flow cytometry analysis indicates that the increase in the 
proportion of TBX6+ paraxial mesoderm progenitors over time is correlated with the loss of BRA+ paraxial 
mesoderm precursors. 
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Figure S2 

(A) Flow cytometry analysis of individual progenitors exposed to CHIR from D2 indicates SOX2 expression 
is reduced to intermediate levels by D2.5, whereas OTX2 remains expressed. SOX2 is further downregulated 
by D4 under the sustained CHIR by which point OTX2 expression is also repressed. 

(B) Clustering of the reference set of D4 samples with markers CDX2, OTX2, SOX1, SOX2. The clustering 
method identifies OTX2+ AN and OTX2 - PN clusters which express distinct levels of SOX1 and SOX2 
with distributions that are almost identical to those obtained by the clusters defined with the minimal set of 
5 markers used for model-fitting (Fig. 2B). 

(C) Clustering of D4.5 and D5 samples exposed to continuous CHIR induction assayed with CDX2, FOXC2, 
SOX1, SOX2, TBX6. The clustering identifies a late mesodermal population expressing high levels of 
FOXC2 and very low levels of SOX2.  
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Figure S3 

Landscape geometry and the effect of signalling after initial fitting. 

A. The landscapes produced by different combinations of signals are portrayed in the table. The parameters 
obtained by the initial fitting are used for the plot. The changes in the landscape that result from different 
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signal combinations arise by bifurcations of attractors and flips in dynamical trajectories (unstable 
manifolds) of the parameterised landscape family. Note that the landscape corresponding to No CHIR+PD 
(top right) is an extrapolation of the fitting and not based directly on data, it therefore represents an untested 
prediction of the model (see Fig. 10). Colours correspond to cell identities as detailed. 

B. Example of a simulation time series of the model for the signalling regime CHIR 2-3.5. Red points 
represent the location of cells in the landscape at the specified time points. Cells are initialised in the EPI 
attractor at D2. Their location evolves as given by the stochastic dynamical system defined by the landscape 
in Fig. 4C, which precise geometry is determined by the signalling regime. Three changes in the landscape 
are apparent.  

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.03.11.434982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434982
http://creativecommons.org/licenses/by/4.0/


 36 

 

 

Figure S4 

(A) ‘FlowCore’ gating series applied to flow-cytometry data to identify single-cells for analysis. Removing 
events with extremely low values in the 586/15 channel improved subsequent clustering. 

(B) Fluorescence measurements from samples individually stained with each of the 5 markers were acquired 
in all analysis channels and compensation was applied to account for the spectral overlap between 
fluorochromes. Appropriate compensation is demonstrated by the absence of spurious correlations between 
marker signals. 
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