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Abstract 16 

Background 17 

Formalin fixation and paraffin embedding (FFPE) of patient material remains standard practice in 18 

clinical pathology labs around the world. Clinical archives of patient material near-exclusively consist 19 

of FFPE blocks. The ability to perform high quality genome sequencing on FFPE-derived DNA would 20 

accelerate a broad spectrum of medical research. However, formalin is a recognised mutagen and 21 

sequencing of DNA derived from FFPE material is known to be riddled with artefactual mutations. 22 

Results  23 

Here we derive genome-wide mutational signatures caused by formalin fixation, and provide a 24 

computational method to correct mutational profiles for these formalin-induced artefacts. We show that 25 

the FFPE-signature is dominated by C>T transitions caused by cytosine deamination, and has very high 26 

similarity to COSMIC signature SBS30 (base excision repair deficiency due to inactivation mutations 27 

in NTHL1). Further, we demonstrate that chemical repair of formalin-induced DNA lesions, a process 28 

that is routinely performed as part of sequencing library preparation, leads to a signature highly similar 29 

to COSMIC signature SBS1 (spontaneous deamination of methylated cytosine). Next, we design 30 

FFPEsig, a computational method to remove the formalin-induced artefacts from mutational counts. 31 

We prove the efficacy of this method by generating synthetic FFPE samples using 2,780 cancer 32 

genomes from the Pan-Cancer Analysis of Whole Genome (PCAWG) project, and via analysis of FFPE-33 

derived genome sequencing data from colorectal cancers. 34 

Conclusions 35 

Formalin fixation leaves a predictable mutational footprint across the genome. The application of our 36 

FFPEsig software corrects the mutational profile for the influence of formalin, enabling robust 37 

mutational signature analysis in FFPE-derived patient material. 38 

 39 
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 43 

Background 44 

Patient samples are routinely processed with formalin fixation and paraffin embedding (FFPE) by 45 

pathology laboratories around the world. FFPE preserves tissue morphology and enables 46 

immunohistochemical analysis for clinical diagnosis [1,2]. However, genomic analysis of DNA 47 

extracted from FFPE blocks is problematic, as formalin fixation negatively impacts DNA quantity and 48 

quality compared to fresh frozen (FF) material [3,4]. The pathology archive of any large hospital is 49 

likely to contain tens of thousands of FFPE blocks. Enabling accurate genomic analysis of FFPE 50 

material would unlock the tremendous translational research potential of these vast collections of 51 

archival material. 52 

 53 

During fixation step of FFPE preservation, buffered formalin (4% formaldehyde) penetrates the 54 

biospecimen and generates cross-links between intracellular macromolecules (DNA-DNA, DNA-RNA 55 

and DNA-protein). These crosslinks stall DNA polymerases during library amplification [5–7]. As a 56 

consequence, the diversity and the number of templates that can be amplified by PCR from FFPE DNA 57 

is significantly depleted [4,8]. Furthermore, formalin causes hydrolytic deamination of cytosine bases 58 

to uracil [1,5], resulting in U:G mismatches where DNA polymerase incorporates adenine opposite to 59 

uracil in amplicon-based protocols, generating artefactual C:G>T:A substitutions in sequencing data 60 

[5,9,10].  61 

 62 

To mitigate deamination artefacts, some FFPE sequencing library preparations include “repair 63 

treatment” whereby uracil DNA glycosylase (UDG) is added to remove uracil bases prior to 64 

amplification [9–11]. However, for 5-methylcytosine (5mC) in CpG dinucleotides, deamination by 65 
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formalin would be converted directly to thymine instead of uracil [3,8]. This second class of formalin 66 

artefact is not corrected by the repair treatment therefore, downstream bioinformatics approaches are 67 

necessary to attempt their removal [5]. 68 

 69 

Mutational signatures derived from whole genome sequencing (WGS) data characterise the mutational 70 

processes that have acted upon the DNA within a sample [12,13], and they hold tremendous potential 71 

for diagnosis and therapeutic guidance [14–18]. Single base substitution (SBS) signatures are derived 72 

by considering the type of specific base pair change (e.g. C>T or C>A, etc.) together with the flanking 73 

base pair context (e.g. ACA>ATA, or ACA>AAA, etc.) [12,13]. The recently updated mutational 74 

signature catalogue provides a comprehensive source of mutational processes active in human cancers 75 

that is derived from an unprecedentedly large number of samples [19]. As the artefactual mutations 76 

from FFPE preservation will bias mutational profiles, they have to be taken into account when 77 

unravelling mutational processes from FFPE samples. 78 

 79 

Here, we use the statistical machinery of mutational signature analysis to derive mutational footprint 80 

caused by formalin exposure during FFPE biospecimen processing. First, we identify the “formalin 81 

artefact” mutational signatures in both unrepaired and repaired FFPE samples, using paired FFPE and 82 

FF sequencing data from the same samples. We next design and validate a decomposition algorithm, 83 

FFPEsig, to subtract FFPE artefacts and thereby infer mutational profiles of biological origin in genome 84 

sequencing data from an FFPE specimen. Our method enables robust mutational profile correction of 85 

FFPE samples for research and potential clinical implementation. 86 
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Results 87 

Mutational signatures of formalin fixation 88 

Formalin fixation artefacts are predominantly C>T mutations 89 

To identify artefacts signatures, we used publicly available targeted panel sequencing data from two 90 

previous studies [8,11], in which triplicate samples (FFPE-repaired, FFPE-unrepaired and FF) were 91 

available. The study by Prentice et al. (hereafter study 1) comprised colorectal cancers (n=3), and each 92 

cancer included nine samples: one FF sample, four unrepaired and four repaired FFPE samples that 93 

were sequenced after a fixation time of 2, 15, 24 and 48 hours respectively. In addition, study 1 included 94 

patients (n=29) for whom repaired and unrepaired FFPEs were available. In the study by Bhagwate et 95 

al. (hereafter study 2), triplicate samples from benign breast tissue (n=4) were available. In total, we 96 

obtained 110 FFPE samples, of which 32 (29%) had matched FF (see Methods & Materials). 97 

 98 
We first focused on samples with matched FF available, and examined the set of mutations detected in 99 

FFPE samples but not detected in matched FF samples (termed FFPE-only or discordant mutations). 100 

Within the study 1 sample set, we discovered that C>T discordant mutations were common (45.8% and 101 

21.1% in unrepaired and repaired samples, respectively). T>C mutations were also common (53.5% 102 

and 76.3% in unrepaired and repaired FFPEs, respectively; Supplemental Fig 1). Discordant FFPE-only 103 

mutations from study 2 also tended to be C>T mutations (98.9% in unrepaired and 76.6% in repaired 104 

FFPEs), but very few T>C mutations were detected in this second study (0.55% in unrepaired and 105 

11.6% in repaired FFPEs; Supplemental Fig 2). 106 

 107 

To examine whether T>C mutations were true artefacts of FFPE, we counted the proportion of C>T 108 

and T>C mutations present in two or more of the set of samples from a patient (‘concordant mutations’). 109 

On average, about 30% C>T mutations were shared by at least two samples, in contrast to 88% for T>C 110 

mutations (Supplemental Fig 3a). We next compared frequencies of concordant mutations between all 111 

sample-pairs across three patients: 12% of C>T mutations and 59% of T>C mutations were shared by 112 
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one sample-pair on average (Supplemental Fig 3b). Furthermore, C>T discordant mutation loads 113 

increased with formalin fixation time in both repaired (slope=0.80, intercept=89.68) and unrepaired 114 

FFPE samples (slope=7.48, intercept=164.81) (Fig 1a). However, the T>C discordant mutation loads 115 

decreased with fixation time in unrepaired FFPE (slope=-0.63, intercept=350.85), but increased in 116 

repaired FFPEs (slope=1.02, intercept=364.62) (Supplemental Fig1). Taken together, our results 117 

suggested that C>T mutations are the predominant true formalin induced artefacts, and that T>C 118 

mutations are likely caused by other sources of mutational noise rather than formalin fixation. 119 

Unrepaired formalin signature is highly similar to SBS30; repaired formalin 120 

signature is highly similar to SBS1 121 

We next used all FFPE-only mutations (T>C excluded) to learn FFPE signatures. Analysis was 122 

performed on all FFPE samples (n=110). The samples in the respective studies were sequenced using 123 

different cancer gene panels, thus the ‘mutational opportunities’, determined by the frequency of each 124 

trinucleotide context in the panel, differed between studies (Supplemental Fig 4). Therefore, we applied 125 

the study-specific normalisation on the mutation counts to enable direct comparison between the studies 126 

(see Methods & Materials). The cluster of normalised mutational profiles from the entire combined set 127 

of n=110 FFPE samples was represented using t-distributed stochastic neighbour embedding (t-SNE) 128 

[20] (Fig 1b). Samples from the two studies showed no batch effect and clearly separated into two 129 

clusters of unrepaired and repaired samples. A single repaired sample from study 1 clustered with 130 

unrepaired FFPEs, which we suspect is due to poor response to UDG treatment [21]. In addition, we 131 

clustered T>C mutational profiles after normalisation, but discovered a clear batch effect and found no 132 

consistent error patterns (Supplemental Fig 3c). 133 

 134 

To exclude possible outliers, we used t-SNE clustering to select representative samples. We performed 135 

an iterative process where each iteration was defined by the random seed inputted to the t-SNE 136 

algorithm. For each t-SNE embedding, we calculated the spatial density of the clustered data measured 137 

by a gaussian kernel, and selected samples in regions of high density (density>0.018) as our 138 

representative sample subset (Supplemental Fig 5a). The averaged values of all mutation channels from 139 
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this representative subset generated one set of FFPE signature candidates. Our final FFPE signatures 140 

were derived from the mean of 100 candidates collected from 100 t-SNE embeddings (Supplemental 141 

Fig 5b and 5c; Supplemental Table 1). 142 

 143 

We then compared the derived FFPE artefact profiles to the latest COSMIC SBS signatures (V3 - May 144 

2019) [19] (Fig 1c), and found that unrepaired and repaired FFPE signatures are highly similar to SBS30 145 

and SBS1 respectively (cosine similarity 0.90 for both; Fig 1d and 1e). SBS30 has been validated as a 146 

mutational footprint of NTHL1 mutations that disrupt base excision repair (BER) [22,23]. SBS1 is well-147 

known as a ‘clock-like’ signature that positively correlates with patient age, as a consequence of 148 

spontaneous deamination of methylcytosine [24]. We note that the unrepaired FFPE signature shared 149 

even greater similarity with COSMIC V2 (March 2015) signature 1 (0.95), which was inferred from a 150 

smaller cohort compared to SBS1 of V3. 151 

 152 

Despite the high similarity, there were certain mutation channels that differed between FFPE signatures 153 

and the two known mutational processes. We marked the mutation channels if the fold-change was over 154 

2 (Fig 1d and 1e). Unrepaired FFPE signature differs in NCT context. The repaired FFPE signature 155 

mostly differs in non-CpG mutation channels which are absent in SBS1(V3) but present in sig 1 (V2). 156 

Those small proportions of mutations in non-CpG channels of repaired FFPE signature are likely due 157 

to the artefactual mutations escaped from the UDG repairing process.  158 

Development and validation of FFPE artefacts correction algorithm 159 

using synthesised data 160 

We designed and implemented an algorithm we called “FFPEsig'' to correct artefacts from FFPE 161 

mutational profiles (see Methods & Materials). The algorithm decomposes the observed aggregate 162 

mutational catalogue of one given FFPE sample as the combination of FFPE-artefacts and the true 163 

biological mutations. To test the performance of the method, we added FFPE-artefacts to all PCAWG 164 

samples in silico, and then attempted to remove these artefacts using FFPEsig [19,25]. Fig 2a shows the 165 
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true, simulated and corrected profiles for one colorectal cancer (CRC) sample. In this case, FFPEsig 166 

successfully inferred the biological mutation catalogue with ~0.99 accuracy, measured by cosine 167 

similarity on C>T channels. The correction accuracy was slightly higher when we used the full 96-168 

channel (Supplemental Fig 6), but the predominance of formalin associated mutations in the C>T 169 

channels meant the gain was minimal. Therefore, hereafter we evaluated our correction accuracy 170 

focusing only on C>T mutation channels. 171 

 172 

Overall, FFPEsig achieved 0.89 mean correction accuracy for both unrepaired (95% CI: 0.885, 0.893) 173 

and repaired FFPEs (95% CI: 0.887, 0.894) (Fig 2b and 2c). To examine the possible factors which 174 

could influence the artefact correction, we evaluated 1) biological mutation count; 2) the similarities 175 

between the artefact signature (the ‘noise’) and the true biological mutation catalogue (the ‘signal’). 176 

Poorly corrected cases were due to low mutation load and/or high similarity of patterns shared between 177 

the noise and signal (Fig 2b). We noticed that samples with low biological mutation load were difficult 178 

to correct regardless of how different the mutation patterns are from the FFPE signatures (purple dots 179 

in Fig 2b). We further separated these two factors and confirmed that higher biological mutation burden 180 

led to more accurate correction (Fig 2d), as well as high dissimilarity between the signal and the noise 181 

(Fig 2e; cases with low mutation load excluded). 182 

 183 

We continued our in silico evaluation by examining correction performance across cancer types for 184 

simulated unrepaired and repaired FFPEs within each cancer type (Fig 2c). The efficacy of correction 185 

varied significantly across 26 cancer types. FFPEsig was most accurate in skin melanoma (mean: 0.98) 186 

due to its high mutation load (96,361 SBSs) and low similarity to the noise signatures (0.55) for both 187 

FFPE samples, followed by bladder transitional cell carcinoma (Bladder-TCC, 0.97) and lung squamous 188 

cell carcinoma (Lung-SCC, 0.96). In contrast, FFPEsig performed poorly for pilocytic astrocytoma 189 

(CNS-PiloAstro, 0.61), thyroid adenocarcinoma (Thy-AdenoCA, 0.80) and medulloblastoma (CNS-190 

Medullo, 0.82), because of the low averaged mutation loads (from 112 to 602) and relatively higher 191 

similarity to the noise signatures (0.69-0.74) in these cancer types. 192 

 193 
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We also noticed that the algorithm had different performance between unrepaired and repaired FFPEs 194 

within certain cancer types. There were 17 out of 26 cancer types with detectable difference in 195 

correction efficacy (p-value < 0.05) and 12 of 17 with a highly significant difference (p-value < 0.001). 196 

For instance, the correction worked much better in unrepaired FFPEs for colorectal (ColoRect-197 

AdenoCA) and pancreatic adenocarcinoma (Panc-AdenoCA), with 98% and 92% of well-corrected 198 

samples for unrepaired FFPEs respectively, in contrast to only 71% and 51% respectively for repaired 199 

ones. Since the mutation burdens were the same for two types of FFPEs within a cancer type, the 200 

significant difference is caused by true mutations being more dissimilar to the FFPE-artefact profile in 201 

unrepaired FFPEs (cosine similarity 0.49 for CRCs and 0.59 for pancreatic cancers), whereas the 202 

repaired-FFPE mutational signature was very similar to the true mutational profile (cosine similarity 203 

0.89 and 0.90 colorectal and pancreatic cancer respectively). By contrast, FFPEsig worked successfully 204 

in repaired-FFPEs for Lung-SCC and liver hepatocellular carcinoma (Liver-HCC), with 100% and 96% 205 

well-corrected samples for the opposite reason. 206 

 207 

Finally, we explored how the accuracy of FFPE-artefact removal changes with increasing noise of FFPE 208 

artefacts (Fig 2f). We selected four cancer types with 80% or more well-corrected samples in both 209 

repaired and unrepaired FFPEs, including 219 tumour samples from CNS-GBM, Skin-Melanoma, 210 

Bladder-TCC and Lung-SCC (Fig 2c). As expected, as the burden of artefactual mutations was 211 

increased, the correction accuracy dropped from 0.97 to 0.86 in unrepaired FFPEs, and from 0.98 to 212 

0.84 in repaired FFPEs. Overall, FFPEsig performed equally well in both types of FFPE with up to 105 213 

noise (mean accuracy > 0.94), but its performance dropped dramatically for samples with 106 noise 214 

(0.84-0.86). Thus, our method works for samples that hold reasonable signal-to-noise ratio, but not for 215 

the extreme cases, e.g. samples with 106 noise in this experiment with signal-to-noise ratio around 216 

0.0088. 217 
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A case study of correcting FFPE artefacts in WGS FFPE CRC blocks 218 

shows consistent results with simulated data 219 

Next, we performed whole genome sequencing on two tumour FFPE samples (unrepaired versus 220 

repaired), and on the normal tissue DNA as matched normal from the same CRC patient (see Methods 221 

& Materials; FF material was not available). The mean coverages of the sequencing data were 46X 222 

(unrepaired FFPE), 43X (repaired FFPE) and 43X (normal sample), with 98.81% or more of reads 223 

mapped to the genome (Supplemental Table 2). Following filtering (see Methods & Materials), we 224 

detected 13,208 and 6,107 somatic single base substitutions in unrepaired and repaired FFPE, 225 

respectively (Supplemental Fig 7a and 7b). In particular, the two types of dominant mutations in our 226 

FFPE samples were C>T and T>C, and together they contributed 64.7%-66.6% to the total mutations 227 

(Supplemental Fig 7b). For C>T mutations, we expected them to be a mixture of FFPE artefacts and 228 

real biological mutations, because of the relative preponderance (~35%) of C>T mutations in PCAWG 229 

CRCs. T>C mutations accounted for 41.2% and 39.8% in our unrepaired and repaired FFPEs, but only 230 

~16% in PCAWG CRCs (Supplemental Fig 7c). Similarly, large proportions of T>C mutations were 231 

also detected in FFPE samples in study 1 (Supplemental Fig 1). As noted above, these presumably 232 

artefactual T>C mutations did not show consistent patterns (Supplemental Fig 3c). Therefore, we 233 

excluded T>C mutations from further study. 234 

 235 

Since matched FF was not available to provide the ground truth mutational signature, we were inspired 236 

by results found in study 2 [8], where both repaired and unrepaired FFPE samples contained the majority 237 

of the variants found in the matched FF sample. Thus, we used concordant mutations with more strict 238 

filtering (variant supporting reads ≥ 5 in both FFPEs) as an approximation for the true biological 239 

mutation profile of the tumour: this yielded a total of 1040 filtered concordant mutations (Supplemental 240 

Fig 7a and 7b), and 656 of them remained after excluding T>C mutations (top panel of Fig 3a). 241 

 242 

To obtain more general knowledge about the biological mutation profiles of CRCs, we performed 243 

hierarchical clustering on the 60 PCAWG CRC samples and discovered the samples share highly 244 
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homologous mutational profiles within each subtype, namely MSS, MSI and POLE (Supplemental Fig 245 

8a). The averaged sample-pair cosine similarity is 0.90 for MSS-CRCs, 0.92 for MSI-CRCs and 0.96 246 

for POLE-CRC, but profiles between subtypes are significantly different (Supplemental Fig 9a). To 247 

identify the most “conserved” mutation patterns within each subtype, we performed a similar analysis 248 

on six mutation types separately, which showed C>A and C>T mutations have the strongest power in 249 

classifying CRC subtypes (Supplemental Fig 8b and 9b). Therefore, we compared the concordant C>A 250 

mutations observed in our case to the PCAWG CRCs and identified that our sample was a MSS-CRC 251 

(Fig 3b). 252 

 253 

We next applied FFPEsig on the observed mutation counts from the two FFPE samples and valuated 254 

the corrected profiles (Fig 3a and Supplemental Fig 10) by comparing them to concordant mutation 255 

catalogue as well as all PCAWG MSS-CRC samples, under the assumption that after removing artefacts 256 

the mutational profile of our samples should show higher similarity to both ‘positive controls’. For 257 

unrepaired FFPE CRC, the accuracy improved from 0.906 before correction to 0.945 after correction 258 

to concordant mutations (Fig 3c). When compared to MSS-CRCs, the correction led to a significant 259 

increase in cosine similarity from 0.841 to 0.918 (Fig 3d). However, correction on repaired FFPE CRC 260 

generated the opposite results (Fig 3c and 3d). We validated our observations using simulated FFPE 261 

MSS-CRCs and confirmed that the correction was only beneficial for unrepaired not repaired FFPEs 262 

(Fig 3e). This was because the biological MSS-CRC profiles are highly similar to the repaired FFPE 263 

signature (0.98 on C>T channels) and so our correction method could not distinguish true mutations 264 

from artefacts.  265 

 266 

We further investigated how our corrected profile from unrepaired FFPE could contribute to CRC 267 

subtyping. Application of MSIsensor [26] detected 8.3% of microsatellite sites with somatic changes in 268 

the unrepaired FFPE sample, but only 0.23% from the repaired FFPE. 8.3% exceeds the 3.5% threshold 269 

to call MSI [26], and so application of MSIsensor to an unrepaired FFPE sample could lead to miscalling 270 

of MSI status. We therefore attempted to classify the sample using the ‘conserved’ mutation patterns 271 

within CRC subtypes (described above). The unrepaired FFPE sample was equally similar to both using 272 
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observed C>A and C>T trinucleotide mutational counts together or only C>T mutations (Supplemental 273 

Fig 11a and 11b). However, following correction using FFPEsig, we could clearly distinguish that the 274 

sample was MSS. In addition, we found that the C>A mutation pattern itself could also classify our 275 

sample (Supplemental Fig 11c). As FFPEsig mostly in C>T channels, C>A patterns were almost the 276 

same with or without correction (0.99). 277 

Potential of using 80-channel signatures for refitting analysis in FFPE 278 

samples 279 

T>C were common in some but not all FFPE samples in our dataset, and perhaps resulted in differences 280 

in sequencing library preparation methodology between studies. To attempt to control for this 281 

unexplained variation, here we examined the impact of removing all T>C variants during signature 282 

refitting analysis. We compared the attributed mutation count (or activity) of each signature by 283 

supplying our refitting model with 80-channel (80c; T>C removed) and 96-channel (96c) signatures on 284 

PCAWG mutational catalogues (see Methods & Materials; Supplemental Fig 12). The log10 signature 285 

activity ratio of 80c to 96c was used to estimate how consistent both results were, and we termed this 286 

value as an inconsistency rate. The bigger the absolute inconsistency rate is, the more different the 287 

attributions are. 288 

 289 

We refitted 10,312 mutational signature activities for 29 active signatures from 2,726 PCAWG genomes 290 

(Fig 4a), and an additional 54 genomes were excluded from original PCAWG dataset due to either low 291 

reconstruction accuracy (<0.85; n=35) by 96c signatures or too small of a sample size (<10 cases per 292 

signature per cancer type; n=19). The mean inconsistency rate among 10312 refits was 0.013 (95% CI: 293 

0.0076, 0.1783) (middle panel of Fig 4a). We considered signatures with inconsistency rate between -294 

0.30 to 0.18, equivalent to actual activity ratio from 0.5 to 1.5, as having well-refitted results. Of the 295 

originally inferred 10312 signature activities that used 96c data, 8938 (86.7%) were well-refitted when 296 

only 80c data was used.  24 of 29 signatures were considered well-refitted.  297 

 298 
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For the five signatures that were poorly refitted using 80c, four of them had high T>C mutation rates, 299 

namely SBS7d, 12, 16 and 17a (left panel of Fig 4a). The inconsistency rate was significantly correlated 300 

with T>C mutation rate of signatures (Spearman's rho=0.54, p<e-10). We grouped the refitted data 301 

based on cancer types (right panel of Fig 4a) and discovered the majority of the above five signatures 302 

with inconsistent refits were each only reported in one cancer type, except for SBS17a which was 303 

present in four cancer types. SBS6 also had a high inconsistency rate and was mostly detected in non-304 

Hodgkin lymphoma (lymph-BNHL), likely due to the higher similarity shared with SBS1 (0.77). Taken 305 

together, removing T>C mutations had a very minor impact on refitting analysis for the majority of the 306 

cases (86.7%), apart from the minority of cases with a high T>C mutation rate. 307 

  308 

In addition, SBS5 and SBS40 showed noticeable differences between 96c and 80c fits in several cancer 309 

types. With the knowledge of these two ‘flat’ signatures are highly similar (0.83 using 96c; 0.86 using 310 

80c), the model could have problems distinguishing them using either 80c or 96c. Thus, we suspected 311 

that the inferred signature activity of SBS5 or SBS40 could vary individually within a sample, but the 312 

sum of the activity of the two signatures would be fairly constant. We tested our hypothesis on samples 313 

with both signatures active (Fig4b). As expected, the sum of activities converged well with the mean 314 

inconsistency rate of 0.02 (95% CI:  0.019, 0.023), but individual attribution for SBS5 was higher by 315 

80c (mean inconsistent rate of 0.15; 95%CI: 0.14, 0.16) and lower for SBS40 (mean inconsistency rate 316 

of -0.19; 95%CI: -0.21, -0.16), and the two individual attributions were negatively correlated 317 

(Spearman's rho=-0.69, p=6.22e-164). 318 

 319 

Finally, we examined signatures where removal of the T>C mutations was most likely to be detrimental 320 

for signature identification. We compared all possible signature pairs among 65 COSMIC V3 SBS 321 

signatures (Supplemental Fig 13). As expected, the overall similarities between any two signatures 322 

tended to increase, especially for the originally dissimilar (<0.2) signatures pairs (Supplemental Fig 13a 323 

and 13b). Five signature-pairs became highly similar (>0.8) using 80c. Three out of them are reported 324 

to be biological/non-artificial mutation processes, namely SBS3-SBS5, SBS40-SBS12 and SBS40-325 

SBS16 (Supplemental Fig 13c). However, two signature-pairs became even more distinguishable using 326 
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80c (Supplemental Fig 13c). Therefore, we concluded that reducing to 80 channel signatures by removal 327 

of T>C channels tended to have a minor effect on signature identification. 328 

Discussion 329 

In this study, we derived genome-wide mutational signatures that result from formalin exposure in FFPE 330 

biospecimens and designed an algorithm, FFPEsig, to detect and remove artefactual-FFPE mutations 331 

from measured mutational profiles. The accuracy of FFPEsig was demonstrated on synthetic FFPE 332 

samples. Accuracy was generally very high. We note poorer performance occurred when (a) biological 333 

mutation loads were low and (b) for samples where the true mutational profile closely resembled the 334 

FFPE-artefact signature - we note these circumstances are straightforward to identify in practice and so 335 

it is clear when FFPEsig can be safely applied. We note that the statistical machinery within FFPEsig 336 

is generalisable, and could be repurposed to correct for “mutational noise” from any source. 337 

 338 

The repaired FFPE signature discovered in this study is highly similar to the aging signature SBS1 (Fig 339 

1e). Both formalin-mutagenesis and the process leading to biological SBS1 are caused by deamination 340 

of 5-methylcytosine (5mC) (SBS1 is due to spontaneous deamination in vivo whereas the FFPE 341 

signature is caused by chemical deamination in vitro [5,24]). Unfortunately, this high similarity 342 

precludes the study of the activity of the aging signature in repaired FFPEs, which is active in all tumour 343 

genomes [24]. Similarly, the signature associated with unrepaired FFPE samples is highly similar to 344 

SBS30 and therefore would also distort the study of SBS30 in FFPE samples (Fig 1d). However, 345 

biological SBS30 occurs more rarely: it is caused by loss-of-function in glycosylases in BER due to 346 

biallelic inactivation mutations in NTHL1, and patients carrying this variant are diagnosed as NTHL1 347 

tumour syndrome with an increased lifetime risk for CRC, breast cancer, and colorectal polyposis 348 

[22,23,27]. More generally, our results show that there is not necessarily a direct 1-to-1 mapping 349 

relationship from mutational process to a unique signature profile (as also questioned in [28]) as distinct 350 

mutational sources can cause similar profiles. Nevertheless, our findings speak to the utility of 351 

constructing a common carcinogen signature database [28,29]. 352 
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 353 

The accumulation speed of C>T artefacts in unrepaired FFPEs suggests that UDG “repair treatment” 354 

rectified DNA deamination damages to a large extent (Fig 1a). Therefore, fixation time is an important 355 

pre-analytical factor of determining the burden of FFPE-artefact mutations, which could influence the 356 

downstream signature analysis. Further, large numbers of putatively artefactual T>C mutations can be 357 

present in FFPE samples and biological interpretation of these must be performed with extreme care. 358 

Indeed, Marchetti et al. identified 22 out of 24 (92%) previously reported ‘novel’ mutations in EGFR 359 

to be FFPE artefacts, and those 22 mutations were either C>T or T>C [30]. So far, we have not found 360 

evidence showing which chemical agent in formalin could cause deamination of adenine, as this would 361 

result in hypoxanthine residues and further preferentially pair with cytosine to generate A:T>G:C 362 

artefacts [31]. However, regardless of the unclear mutagenic mechanism, once the wrong residuals were 363 

generated on the DNA, multiple PCR amplifications of very small amounts of DNA from paraffin-364 

embedded tissues would make the artefacts easily observed from the data [30]. 365 

Conclusion 366 

In conclusion, here we identified two mutational signatures, linked to repaired and unrepaired FFPE, 367 

which are highly similar to COSMIC signatures SBS1 and SBS30, respectively. We further developed 368 

FFPEsig software to accurately remove FFPE-induced mutational artefacts and demonstrated efficacy 369 

in silico and in new samples. Careful application of our approach will enable the robust study of 370 

mutational signatures in the enormous FFPE archives that exist around the world. 371 

Methods & Materials 372 

Targeted sequencing data 373 

We used targeted sequencing data from two previous publications [8,11]. Prentice et al. has collected 374 

three groups of samples from CRC patients, namely fixation, baseline and blockage, to examine the 375 

impact of three factors on somatic mutation detection in clinical FFPE samples [11]. The three factors 376 
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were formalin fixation time (fixation; n=3), DNA extraction kits (baseline; n=20) and storage time 377 

(blockage; n=9). Samples collected in the fixation group were fixed in formalin for 2, 15, 24 and 48 378 

hours for both repaired and unrepaired FFPEs, and paired FF samples were also available. To validate 379 

if true somatic mutations are detectable in FFPE samples, Prentice et al. applied several filters on the 380 

mutation calling results, which could have filtered FFPE artefacts out. Thus, for our purpose of learning 381 

FFPE noise signatures, we have included all data but those passed the somatic filters.  382 

 383 

To study possible batch effects, we also included targeted panel sequencing data from study 2 in our 384 

analysis [8]. There were four normal breast tissues collected in the study. For each of them, triplicate 385 

samples were collected, fresh frozen, repaired and unrepaired FFPE. We summarised the general sample 386 

information here and more details can be found in original studies.  387 

Mutational opportunities for targeted sequencing data 388 

The FASTA sequences for targeted regions for study1 were downloaded 389 

from  https://www.ncbi.nlm.nih.gov/sites/batchentrez and for study2 were from 390 

https://m.ensembl.org/info/website/tutorials/grch37.html. To obtain mutational opportunities, we 391 

calculated 96-channel mutation context frequency from the second to the last second nucleotide within 392 

each sequence. We assumed one genomic location was the mutated loci and added 1 count to all mutable 393 

channels with the sequence contexts of this loci. We applied this calculation over all sequences and 394 

normalised the 96-trinucleotide counts to sum up to 1 as the mutational opportunity vector for the given 395 

targeted regions (Supplemental Fig 4a and 4b). The whole genome mutation opportunity was taken 396 

from [32] (Supplemental Fig 4c). 397 

Discovery of FFPE signatures 398 

To derive FFPE signatures, we pre-processed the whole mutations list to exclude non-FFPE artefacts 399 

as much as possible. In both studies, mutations were excluded if they met any of the following criteria, 400 

1) being detected in a matched FF sample; 2) being detected in matched normal samples; 3) with >0.9 401 

posterior probability of being somatic mutations. The remaining mutations were used to generate 96-402 
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channel mutation counts by SigProfilerMatrixGenerator [33]. We normalised mutation counts from the 403 

two studies separately using their corresponding mutational opportunities. Specifically, the original 404 

mutation counts were divided by the mutational opportunity of the targeted regions and multiplied by 405 

mutational opportunity of whole genome context. The final normalised mutational probabilities were 406 

merged from two studies and non-T>C channels were further taken to derive FFPE signatures (Fig 1b), 407 

whereas T>C channels were analysed separately (Supplemental Fig3c). 408 

 409 

To derive FFPE signatures, we first applied t-distributed Stochastic Neighbour Embedding (t-SNE) for 410 

dimensionality reduction for the cosine distance matrix of the merged 80-channel mutational 411 

probabilities. Based on the two principal components provided by t-SNE, we defined well representative 412 

samples for two repaired and unrepaired FFPE clusters using data point density estimated by gaussian 413 

kernel (from scipy.stats) (Supplemental Fig 5a). The high-density samples (>0.018) were used to 414 

generate one set of FFPE signature candidates. With repeating the above procedure for 100 times, we 415 

took the averaged values of each channel as the final FFPE signatures (Supplemental Fig 5b and 5c). 416 

Algorithm/FFPEsig for FFPE artefacts correction 417 

We denote the observed mutation counts from the FFPE sample by 𝑉, which was considered as a linear 418 

combination of artefact signature 𝑊# and biological mutation frequency 𝑊$ with their corresponding 419 

attributions/activities 𝐻# and 𝐻$. Thus, we have: 420 

𝑽 ≈	 ) 𝑾𝒊 	∗ 𝐻- 		
𝒊	∈(𝟏,𝟐)

		 421 

In this model, 𝑉 and 𝑊# were known and the task was to infer 𝐻 = [𝐻#, 𝐻$]7and 𝑊$. Here, we utilised 422 

generalized Kullback-Leibler (KL) divergence between reconstructed 𝑉8 = ∑ 𝑾𝒊 	∗ 	𝐻-𝒊	∈(𝟏,𝟐) 	and the  423 

observed profile 𝑉 as the cost function and applied Lee and Seung’s multiplicative update rules [34] to 424 

minimize the cost function.  425 

 426 
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The whole process of one iteration started with randomly generated initial values for 𝑊$. We then 427 

updated 𝐻 using the multiplicative rules [34] followed by 𝑊, in which only 𝑊$ was updated. From the 428 

updated 𝑊 and 𝐻, we got 𝑉8 . The generalised KL divergence, between 𝑉 and 𝑉8  was computed and 429 

saved. This update process iterated over 200 steps by default until it met our termination criteria defined 430 

here. We calculated the convergence ratio using the average KL divergence from the last batch of 20 431 

iterations divided by the second last batch of 20 iterations. The algorithm would terminate if the 432 

convergence ratio reaches 0.95. The maximum iteration by default was up to 3000. The above one 433 

whole process provided inferred 𝑊$ and 𝐻	as one candidate solution. We collected 100 candidate 434 

solutions using different random seeds and averaged them as our final solution for all samples analysed 435 

for FFPE noise correction in this study. 436 

Simulation of FFPE samples 437 

To simulated FFPE samples for algorithm performance validation, we added different amounts of FFPE 438 

artificial mutations with Poisson noise to biological mutation catalogues of 2,780 canner genomes 439 

provided in Pan-Cancer Analysis of Whole Genomes (PCAWG) project by International Cancer 440 

Genome Consortium (ICGC) [19,25]. The data is available to download from 441 

https://www.synapse.org/#!Synapse:syn11801889. Additionally, subtype labels of PCAWG CRC 442 

samples used in the case study were also downloaded from the same site. 443 

DNA extraction and genome sequence of FFPE CRCs 444 

The male patient with ulcerative colitis was diagnosed with cancer in the transverse colon at age 48 in 445 

St. Mark’s Hospital, London, United Kingdom. Formalin-fixed paraffin-embedded (FFPE) sections of 446 

10µm thickness were deparaffinized, rehydrated and lightly stained with methyl green. The annotated 447 

H&E was used as a guide for epithelial enrichment through targeted needle scraping of slides (for 448 

estimated epithelial cellularity >50%). To collect matched normal tissue, targeted scraping of serosal 449 

tissue from FFPE blocks was taken from a small intestinal segment distal to the cancer. DNA was 450 

extracted using a modified protocol of the High Pure FFPE DNA Isolation Kit (Roche Life Science, 451 
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Penzburg, Germany). The normal tissue DNA sample and one tumour DNA sample were repaired using 452 

the NEBNext FFPE DNA Repair Mix (New England Biolabs, Inc) following the manufacturer’s 453 

recommendations. The remaining tumour DNA was left unrepaired. DNA libraries were prepared using 454 

the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, 455 

Massachusetts, USA), followed by equimolar pooling strategy. Finally, all DNA libraries were 456 

sequenced on NovaSeq S2 for 50bp paired end reads. 457 

Somatic variants calling in WGS FFPE CRCs 458 

The paired-end reads underwent initial quality control with FastQC [35] followed by default adaptor 459 

trimming with Skewer [36] and were subsequently aligned to GRCh38 reference genome with BWA-460 

MEM [37] . Aligned reads were sorted by genome coordinate (SortSam, Picard) and duplicate reads 461 

were flagged with GATK’s MarkDuplicates [38]. The two FFPE tumour samples were called against 462 

the matched normal separately using the Mutect2 somatic variant caller from GATK [38]. Variants were 463 

marked with filters by FilterMutectCalls. Variants were kept if they were PASS by Mutect2, aligned to 464 

a canonical chromosome, had a total allelic depth of greater or equal to 10 in both the tumour and normal 465 

sample and had 3 or more reads supporting the alternative allele in the tumour sample. The filtered 466 

variants from two FFPE tumour samples were merged into a single VCF file using VCFtools [39].  467 

 468 

We used Platypus on the merged VCF file as the candidate somatic variant list and integrated local 469 

alignment with multi-sample variant calling to assess the evidence for these variants across all samples 470 

[40]. The resulting VCF file was further filtered to only contain variants 1) if the FILTER flag was 471 

PASS or other acceptable filters (alleleBias, Q20, QD, SC, HapScore); 2) the variant was not a known 472 

germline variant; 3) a genotype was called for all samples; the genotype phred score was 10 or more in 473 

all samples; 4) the normal sample had no reads containing the variant and at least 3 or more reads 474 

supported the variant in a tumour sample. Variants present in two FFPE samples with 5 or more 475 

supporting reads were classified as concordant mutations. 476 
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Signature refitting analysis 477 

To validate if signature refitting analysis could use 80-channel spectra without T>C, we dropped T>C 478 

mutation channels of COSMIC SBS signatures and renormalised them to sum up to 1. The original 479 

activities inferred using 96-channel signatures for PCAWG cohorts were obtained from 480 

https://dcc.icgc.org/releases/PCAWG/mutational_signatures/ [19,25]. The active signatures for each 481 

sample were selected if the original activities >0. We next refitted 80c and 96c active signatures to the 482 

mutational catalogues with and without T>C mutations accordingly using our locally implemented 483 

refitting algorithm to exclude possible bias introduced by different tools. The refitting algorithm used 484 

the same multiplicative update rules and termination criteria from FFPEsig, but was different in two 485 

aspects, 1) the number of signatures was flexible which depended on the active signatures in each 486 

sample; 2) only 𝐻	was updated in each iteration. The inferred activities for 80c-signatures were then 487 

rescaled by dividing total mutation frequencies of non-T>C mutation channels of 96c spectra. The 488 

rescaled 80c attributions were used to compare to those inferred from 96c signatures. 489 

Data and code access 490 

Submission of BAM files of sequenced data to EGA is in progress. The VCF files generated in our 491 

study are available from the corresponding authors, upon reasonable request. FFPEsig is implemented 492 

in python which is available to download from https://github.com/QingliGuo/FFPEsig , as well as 493 

analysis code and data used in this study. 494 

Abbreviations 495 

FFPE: Formalin fixation and paraffin embedding 496 

FF: fresh frozen 497 

UDG: uracil DNA glycosylase 498 

PCAWG: Pan-Cancer Analysis of Whole Genomes 499 
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SBS: single base substitutions 501 
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PCR: polymerase chain reaction 507 

BAM: Binary Alignment Map file 508 
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Fig1. FFPE artefact signatures. (a) C>T mutation count in FFPE samples increases with
formalin fixation time. We used FFPE-only C>T mutations, referring to C>T mutations that are
only discovered in FFPE samples not in matched FF. The error bar shows standard deviation for
measurements made on three individuals. (b) Cluster of n=110 normalised FFPE mutational
profiles from two different studies [11,8]. The cluster is represented by t-SNE on cosine metric of
normalised 80-channel (without T>C) FFPE-only mutational profiles (see Methods & Materials).
Each FFPE sample is classified as unrepaired (with UDG treatment; pink dots) or repaired
(without UDG; green dots). The two studies are marked using circle or cross shape. (c)
Comparison of FFPE signatures to COSMIC V3 SBS signatures. (d) Unrepaired FFPE signature
is highly similar to SBS30. C>T mutation channels with fold change over 2 are marked with
asterisk. (e) Repaired FFPE signature is highly similar to SBS1.
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Fig2. Correction of FFPE artefacts in synthetic FFPE samples. We added FFPE noise signatures to
biological mutational profiles in PCAWG dataset [20] to simulate FFPE mutational profiles. (a) Artefacts
correction result of one colorectal cancer (SP21528). From top to bottom, the three panels are
original/biological mutational profile, simulated FFPE mutational profile (unrepaired) and the corrected
somatic mutation catalogue. (b) Correction accuracy for all simulated data. The left panel shows results
for unpaired FFPEs and the right panel is for repaired FFPEs. The x-axis shows cosine similarities
between original profiles (‘signal’) and the FFPE signatures (‘noise’). We also group the data into three
categories according to the biological mutation load, namely high (top 10%, orange dots), low (bottom
10%, purple dots) and middle (the remaining ones, green dots). (c) Correction accuracy for different
cancer types. Cancer types with at least 20 samples are used here. The difference between unrepaired and
repaired FFPE correction accuracy is shown above each box-pair using two-sided Mann-Whitney U test.
P value <= 0.001 (***); 0.001 < p value <= 0.01 (**); 0.01 < p value < =0.05 (*); p value > 0.05 (none).
The percentages of well-corrected samples (accuracy > 0.9) are annotated in the top colour bars. (d)
Correction accuracy positively correlates with biological mutation load. (e) Correction accuracy
negatively correlates with with similarities between ‘signal’ and ‘noise’. The three categories are use
high (top 10%), low (bottom 10%) and middle (the remaining ones). (f) Correction accuracy drops with
increasing FFPE artefacts in both types of FFPEs. We selected cancer types with at least 80% well-
corrected samples in both unrepaired and repaired FFPEs from (c). The results are collected from
simulated samples added with five different noise levels from 103, 104, 5x104, 105 to 106. The 95%
confidence interval of each mean correction accuracy is marked using error bar here.
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Fig3. A case study of applying FFPE artefact correction method on two WGS CRC FFPE
samples. The two FFPE samples are from the same CRC patient. One of FFPEs is unrepaired
and the other one is repaired. (a) Correction result for the unrepaired FFPE sample. The three
panels are concordant mutation catalogues (top), unrepaired FFPE CRC profiles before
correction (middle) and after correction (bottom). Concordant mutations refer to variants are
shared between repaired and unrepaired FFPEs with at least 5 reads supporting the variant, and
their profile is taken as an approximation of true mutational catalogue of the tumour. We
removed T>C mutations to show clear pattern of other mutation channels due to their large
numbers. (b) Concordant C>A mutation profile is highly similar to MSS-CRC C>A mutation
patterns. PCAWG CRCs are grouped based on their known labels, namely POLE, MSI and MSS.
The sample-pair cosine similarities of C>A mutation patterns within and between subgroups are
shown in orange and grey box plot, respectively. The p-values of differences for each subgroup
are shown above each box-pair using two-sided Mann-Whitney U test. The error bar shows
standard deviation.(c) Comparing correction results of two FFPE samples to concordant
mutations. As the correction acts on C>T mutation channels, we compared the cosine similarity
changes of original profile (pink colour) and corrected profile (red colour) on C>T channels. (d)
Comparing correction results of two FFPE samples to MSS-CRCs. (e) Comparing correction
results of simulated MSS-CRC FFPE profiles. We compared each simulated MSS-CRC FFPE
sample to all other MSS-CRC profiles but their real biological profile to treat them the same way
as our WGS FFPE samples, for which the FF sample is not available.
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Fig4. Comparison of signature activities inferred by signatures with and without T>C
mutations.We inferred signature activities using 96-channel (96c) and 80-channel (80c; without
T>C) signatures on PCAWG mutational profiles. Here we use inconsistency rate as a
measurement for how well the inferred activities agree with each other. Inconsistency rate is
calculated as log10(activity_80c/activity_96c). (a) Activities inferred by 96c and 80c signatures
are consistent for majority of signatures. Left panel: sum of mutational probabilities in T>C
channels for each signature. Middle panel: violin plot of absolute inconsistency rate for all
signatures. Right panel: heatmap of mean inconsistency rate for all signatures in different cancer
types. Orange rectangle marks the average activity ratio (activity_80c/activity_96c) above 1.5
(~0.18 on log10 scale), which means 80c activity is bigger than 1.5 times of 96c activity. The
purple rectangle marks the averaged activity ratio below 0.5 (~ -0.30 on log10 scale), which
means 80c activity is smaller than 50% of 96c activity. The radius of each circle represents the
sample size (in log scale). (b) Activity flows between two similar signatures (SBS5 and SBS40).
The inconsistency rates for SBS5 in all samples are in golden dots, and those for SBS40 are in
blue dots. The inconsistency rate for the sum activity of SBS5 and SBS40 is shown in red dots.
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Supplemental Figures
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Supplemental Fig1. FFPE-only mutations with increasing formalin fixation time. FFPE-
only mutations here refer to those are not present in matched FF sample and the data is from
fixation group in study 1 [11] (see Methods & Materials). (a) Mutation count for six mutation
types in unrepaired FFPE samples (without UDG treatment). For each mutation type, we
show the mutation counts detected in four FFPE samples being fixed in formalin for 2, 15, 24
and 48 hours respectively. All data is collected from three patients. The error bar shows
standard deviation for measurements made on three individuals. (b) Mutation count in
repaired FFPE samples (with UDG treatment).
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Supplemental Fig2. FFPE-only mutations in six basic mutation types in study 2. FFPE-only 
mutations here refer to those are not present in matched FF sample. The data is collected from 
four patients in study 2 [8] (see Methods & Materials). (a) for unrepaired FFPEs. (b) for repaired 
FFPEs. The error bar shows standard deviation for measurements made on four individuals.
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Supplemental Fig3. T>C mutations are highly repeated among samples with no specific
error profile. We use all mutation data of fixation group (n=27) from study 1 for (a) and (b) as
T>C are only over-represented in study 1. We used FFPE-only T>C mutations of all FFPEs
(n=110 ) from study 1 and 2 in (c). (a) Normalised histogram of concordant mutation count per
patient. We take all T>C and C>T mutations from the whole mutation list and counted the
occurrences for the unique set of all mutations among all samples from each patient (n=9; 4
repaired FFPE + 4 unrepaired FFPE + 1 FF). (b) Pair-wise comparison of concordant mutation
ratios for all samples from three patients (n=27). Concordant mutation ratio is calculated using
concordant mutation numbers of a sample–pair divided by unique mutation count in the sample
pair. (c) Clusters of T>C mutation profiles over 110 FFPE samples. It is the same plot as Fig 1b
but using 16-channel of T>C mutation data whereas Fig 1b using 80-channel without T>C
mutations. The cluster is represented by t-SNE on cosine metric of 16-channel T>C mutational
profiles which are normalized using targeted-region mutational opportunities and whole genome
mutational contexts (see Methods & Materials).
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Supplemental Fig4. Mutational opportunities (a) of study 1 targeted regions (b) of study 2
targeted regions (c) of whole genome sequence context
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Supplemental Fig5. Deriving FFPE signatures from well-representative samples from t-SNE
clustering result. (a) Scatter plot of spatial density of t-SNE clustered samples measured using
gaussian kernel. The t-SNE cluster is the same as Fig 1b but with spatial density instead. Samples
with density value over 0.018 are classified as well-representative samples, and one FFPE signature
candidate are generated by averaging the mutational channels. (b) Final version of unrepaired FFPE
signature. We repeated (a) for 100 times using different random seeds, thus we have 100
unrepaired FFPE signature candidates. The final version of unrepaired FFPE signature takes the
averaged values of all 100 candidates. (c) Final version of repaired FFPE signature. It is derived
from the same method as used in (b).
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Supplemental Fig6. Comparison of correction accuracy measured using all mutations
(96-channel) versus using C>T mutations.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.434918doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434918


a

b c

Supplemental Fig7. Mutations from two WGS FFPE CRC samples. (a) Allele frequency versus
total reads number of detected variants. The four panels from left to right show mutations detected
from unrepaired FFPE, repaired FFPE and concordant mutations in unrepaired and concordant
mutations in repaired FFPEs, respectively. Concordant mutations refer to variants are detected in both
repaired and unrepaired FFPEs with at least 5 supporting reads. (b) Total count of SBS variants in
unrepaired, repaired and concordant mutations. (c) T>C mutation frequencies of PCAWG CRC
samples. Three dash lines indicate T>C mutation frequencies of unrepaired, repaired and concordant
mutations from our sequenced FFPE samples.
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Supplemental Fig8. Clustering PCAWG CRC mutational catalogues. (a) using 96-
channel profiles. (b) using C>A and C>T mutation profiles.
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Supplemental Fig9. Comparison of sample-pair similarities within and between subgroups
of PCAWG CRCs. PCAWG CRC are grouped based on their known labels, namely POLE,
MSI and MSS. (a) Comparison made using full 96 channel mutational profiles. The sample-pair
cosine similarities of mutation patterns within and between groups are shown in orange and grey
box plot, respectively. The difference for each subgroup is measured by two-sided Mann-
Whitney U test. (b) C>A and C>T mutation patterns are highly conserved/similar within each
subtype. The same comparison in (a) is made but using six basic mutation types separately. We
use the sum of -log10 (p-value) to sort the six mutation types, shown in the right panel. We also
use black and purple dash lines to mark sum of -log10 (p-value) value by using 96-channel and
by using C>A and C>T (32-channel).
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Supplemental Fig10. FFPE noise correction results of repaired FFPE CRC sample. The
top panel shows mutational profile before correction. And the lower panel shows the
corrected profile.
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Supplemental Fig11. Correction on unrepaired FFPE CRC sample contributes to classify
MSS subtype from MSI. The difference for each subgroup is measured by two-sided Mann-
Whitney U test. (a) Correction makes significant improvement for the classification by using
C>A and C>T mutations. (b) Correction on C>T mutations also improves the classification. (c)
C>A mutation profiles in unrepaired FFPE sample can also be used as classifier. As our
correction acts on C>T channels mostly, so the C>A mutation pattern are almost the same
before and after correction (cosine similarity: ~1).
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Supplemental Fig 12. Comparison of refitted activity counts using 80-channel and 96-channel
signatures for PCAWG data.
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Supplemental Fig 13. Comparison of signature similarities using 96-channel and 80-channel
(no T>C) spectra. (a) Histogram of cosine similarities for signature pairs using 96-channel (96c;
blue) and 80-channel (80c; pink). (b) Scatter plot of pair-wise cosine similarities using 96c and 80c
signatures. Highly similar (>0.8) signature pairs are highlighted in the plot: 1) purple area shows
signature pairs that are highly similar in both signature settings (96c and 80c); 2) blue area contains
signature pairs are highly similar by using 96c profiles, but not highly similar by using 80c; and 3)
pink area shows pairs with high similarity by using 80c not 96c. (c) Highly similar signature pairs
using 96c and/or 80c. The upper and lower triangle show the signature pairs calculated using 80c
and 96c, respectively. The signature pair with ‘+’ symbol represents it only exists by using 80c or
by using 96c. The pairs with ‘+’ symbol in upper triangle are the dots from pink area in (b), and
those in lower triangle are from blue area in (b).
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