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Abstract 

Noncoding regulatory elements control gene expression and govern all biological processes. 

Epigenomic profiling assays have identified millions of putative regulatory elements, but systematically 

determining the function of each of those regulatory elements remains a substantial challenge. Here we 

adapt CRISPR-dCas9-based epigenomic regulatory element screening (CERES) technology to screen all 

>100,000 putative non-coding regulatory elements defined by open chromatin sites in human K562 

leukemia cells for their role in regulating essential cellular processes. In an initial screen containing more 

than 1 million gRNAs, we discovered approximately 12,000 regulatory elements with evidence of impact 

on cell fitness. We validated many of the screen hits in K562 cells, evaluated cell-type specificity in a 

second cancer cell line, and identified target genes of regulatory elements using CERES perturbations 

combined with single cell RNA-seq. This comprehensive and quantitative genome-wide map of essential 

regulatory elements represents a framework for extensive characterization of noncoding regulatory 

elements that drive complex cell phenotypes and for prioritizing non-coding genetic variants that likely 

contribute to common traits and disease risk. 

 

Introduction 

Human gene regulatory elements control gene expression and orchestrate many biological 

processes including cell differentiation (1), proliferation (2), and environmental responses (3). Genetic and 

epigenetic variation that alters gene regulatory element function is a primary contributor to human traits 

and susceptibility to common disease (4). Studies of chromatin state and transcription factor occupancy 

have identified millions of putative human gene regulatory elements (5). The biological importance and 

large number of putative human gene regulatory elements have motivated the development of high-

throughput technologies to measure regulatory element activity genome-wide. Examples include genome-

wide assays that measure putative regulatory element activity on reporter gene expression (6), and targeted 
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CRISPR-based methods to measure the effects of genetic or epigenetic perturbation of up to thousands of 

regulatory elements in their native chromosomal context (7).  

A key measure of gene or regulatory element function is its contribution to overall cell fitness, 

comprising the balance of cell survival and proliferation. Genome-wide technologies, such as RNAi and 

CRISPR-based screens, have identified genes involved in diverse cellular processes (8–14). CRISPR-based 

genetic or epigenetic perturbation of noncoding regulatory elements within specific genomic loci have 

identified target genes and downstream effects on cell phenotypes (15–20). However, these perturbation 

screens of distal regulatory elements have generally been limited to small regions of the genome or loci 

encoding oncogenes (21). Consequently, functional understanding of the millions of predicted human gene 

regulatory elements remains sparse, making it difficult to routinely establish gene regulatory contributions 

to human traits and disease.  

Here, we identify thousands of human gene regulatory elements that functionally contribute to cell 

fitness. To do so, we used a genome-wide CRISPR-based epigenome editing screen that individually 

targeted each of the >100,000 putative gene regulatory elements in human K562 leukemia cells. We further 

characterize the properties, distribution, cell-type specificity, and target genes of the identified regulatory 

elements. The identified regulatory elements and target genes confirm and complement results from gene-

based screens, and suggest new pathways and molecular processes that contribute to cell fitness. 

Comprehensive annotations of regulatory element function, such as the study presented here, are critical 

for creating new reference datasets to prioritize regulatory elements and noncoding variants that most likely 

contribute to human traits and diseases. 
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Results 

Genome-wide screen of all regulatory elements in K562 cells 

We used whole-genome CERES (wgCERES) to measure the effect of epigenetically silencing 

111,756 putative regulatory elements, defined by DNase-I hypersensitive sites (DHS), on cell fitness in 

K562 cells (Fig. 1, A and B, fig. S1) (22). We assayed K562 cells because they are one of the most 

extensively characterized cell models in terms of chromatin accessibility, histone marks, transcription factor 

binding, and gene expression (23). Our library contained 1,092,706 unique gRNAs averaging ~10 gRNAs 

per DHS (tables S1 to S4), and we transduced this library into a clonal K562 cell line stably expressing the 

dCas9KRAB transcriptional repressor (24, 25). After ~14 population doublings, we identified a significant 

depletion of gRNAs for 7,696 DHSs, indicating that repressing those DHSs impaired cell viability or 

proliferation (Fig. 1, C and D, fig. S2A). We also found 4,566 DHSs with gRNAs or combinations of 

gRNAs that were significantly enriched, indicating that repressing these elements increased cell fitness 

(Fig. 1D, fig. S2B, table S5). A relatively small number of DHS hits (n=228) contained both enriched and 

depleted gRNAs (Fig. 1D, fig. S2C). 

 

Attributes of gRNAs that impact cell fitness 

Effect sizes for gRNAs that reduced cell fitness were overall greater (average log2(fold-change) = 

-0.91) than those that increased cell fitness (average log2(fold-change) = 0.48, Fig. 1E). That result is 

consistent with a model that it is easier to reduce fitness than increase fitness of the rapidly growing K562 

cell line. 

 To better understand the characteristics that distinguish the significantly enriched or depleted 

gRNAs, we annotated each gRNA in the library with a selection of features (fig. S3).  The gRNAs with 

significantly changed abundance were enriched for GC content in the protospacer, G4 quadruplex motifs 
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(26, 27), nearby genes that were more highly expressed, higher accessibility, higher H3K27ac marks, and 

higher Hi-C contact frequency (fig. S3).  Additionally, genes nearest to significant gRNAs were enriched 

for genes previously identified as essential (11, 12) (fig. S3). These features have been used previously to 

predict enhancer-gene interactions (17, 28), and support the power of this genome-wide screen to identify 

active regulatory elements associated with our selection criteria.  

 

Attributes of significant DHS hits 

While significant DHS hits are called at a continuum of distances from the nearest gene, the 

strongest observed signals centered on DHSs that overlapped with transcriptional start sites (TSSs, Fig. 

1F). This is consistent with previous studies showing that repressing promoters with dCas9KRAB has a larger 

effect on gene expression than repressing distal regulatory elements (19, 25). Although overall scores 

decrease away from TSSs, some distal DHSs have particularly strong signals, similar to TSS DHS hits. For 

example, several DHS hits 10 kb - 1 Mb upstream of their putative target genes scored similarly to gRNAs 

that target the promoter of the same gene (Fig. 1G, fig. S4). Some of the distal elements were previously 

validated in mice to control genes such as the oncogene Lmo2 in erythroid cell lineages (29). Together, this 

indicates that wgCERES can identify regulatory elements distal from target genes, and quantify the relative 

impact of those regulatory elements on cell proliferation. 

To identify epigenetic characteristics of DHS that control cell fitness, we used dimensionality 

reduction analysis and compared DHS hits to K562 ChIP-seq data for several histone modifications and 

epigenome-modifying proteins from the ENCODE project (fig. S5) (23). We then used ChromHMM 

genome annotations (30) to identify classes of regulatory elements that were overrepresented in the enriched 

or depleted DHS hits (Fig. 1H). We observed hits in almost every class of annotation, including regions 

classified as polycomb-repressed (fig. S6). Relative to all DHS sites, depleted DHS hits were 

overrepresented at active promoters and underrepresented at enhancers and CTCF sites (Fig. 1I). In 

contrast, enriched DHS hits have similar genomic location characteristics as all DHS (Fig. 1I). Together, 
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these results indicate that promoters, enhancers, insulators, and polycomb-repressed regions can all 

contribute to cell fitness. 

 

Clustering of Significant DHS Hits   

Clusters of individual regulatory elements can function together as larger ensembles to coordinate 

gene expression, as seen with the β-globin locus control region (31, 32). To determine if DHS hits from 

this screen cluster together, we compared the distances between adjacent DHS hits. We separately measured 

distances for proximal DHS hits (TSSs, fig. S7A) and distal DHS hits (>3 kb away from TSS, fig. S7B). 

We observed that DHS hits are significantly closer to each other than expected by chance using permutation 

analysis (fig. S7, A and B). Dividing the data into deciles (fig. S7, C and D), DHS hits were significantly 

closer to each other in all but the most distant decile (t-test, p < 0.0001). Some clusters included up to 7 

significant DHS hits, such as around the HDAC7/VDR locus that is known to be involved in cancer cell 

proliferation (33, 34) (fig. S7E). Together, these results indicate that regulatory elements that influence cell 

fitness tend to cluster. That may be due to coordinated effects on key cell fitness genes and/or the presence 

of clustered genes that contribute to cell fitness. 

 

Validation of distal regulatory DHS hits using a secondary screen 

We validated primary screen hits using both comparisons to previously identified essential genes 

and a secondary screen targeted to positive hits. For promoter hits, we compared our results to other studies 

of promoter inactivation (35) or gene disruption (9, 12) in K562 cells. The observed promoter hits positively 

correlated (Pearson ⍴ = 0.62, Spearman ⍴ = 0.18) with the promoter CRISPRi screen (35) (fig. S8A, table 

S5). Overall, ~400 genes were hits in all four studies (fig. S8B). That was the most common configuration 
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for overlapping hits, indicating substantial concordance between gene- and promoter-based screens for 

effects on cell fitness. 

Our screen was distinct from previous efforts in that most of our gRNAs targeted putative distal 

regulatory elements. To validate and characterize the effects of individual gRNA and DHS hits, we 

completed a validation screen of 234,593 gRNAs that collectively target 8,850 DHSs, of which 7,188 were 

hits called at a FDR < 0.1 in the initial discovery screen (fig. S1, tables S5 to 13). Individual gRNA effects 

in the validation screen had a similar distribution as the original screen, both in terms of effects sizes and 

that most hits corresponded to a decrease in cell fitness (Fig. 2A, table S5).  

To evaluate performance for single gRNAs, we characterized 50,021 individual gRNAs assayed in 

both the discovery screen and the validation screen. Of those, 4,087 gRNAs were individually significant 

hits in the discovery screen at an FDR < 0.1, and 1,829 were also significant in the validation screen at an 

FDR < 0.1 (Fig. 2B, fig. S9). The remaining 45,934 gRNAs were included because they were in DHSs that 

had a significant effect but the individual gRNA did not. Of the 45,934 gRNAs that were negative in the 

discovery screen, 43,131 gRNAs were also negative in the validation screen. Together, the validation screen 

indicated gRNA-level sensitivity of 40% with 45% precision and 95% specificity. We also evaluated 

performance of the DHS-level analysis. Of the 8,850 DHS targeted, 7,188 had significant effects at FDR < 

0.1 in the discovery screen, and 3,532 (49%) positively validated at a more stringent FDR < 0.05 in the 

validation screen. 

 The validation screen had more significant gRNA hits per DHS (Fig. 2, C and D), suggesting that 

increasing the density of gRNAs tested per DHS from 10 to 26 improved detection of regulatory elements 
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that impact cell fitness. That improved detection may be in part due to variation in the effects of gRNAs 

targeting the same DHS (25).  

 

Functional validations of target genes for DHS hits by expression and competition 

assays.    

To test the effects of distal regulatory elements on target gene expression, we measured the effects 

of individually targeting dCas9KRAB via 23 gRNAs on the expression of 22 predicted target genes using 

qRT-PCR (Fig. 3A, fig. S10, and tables S14 and S15). Predicted DHS-gene links were obtained using the 

Activity-by-Contact (ABC) model (28). There were significant changes in predicted target gene expression 

for 15 of the 23 gRNAs targeting 7 of 13 DHSs. The genes altered by targeting these DHSs include LMO2, 

GATA1, and GMPR. Previous studies have shown LMO2 and GATA1 are essential for K562 cell growth (9, 

36–38).    

To measure transcriptome-wide effects of a subset of the above-described perturbations, we used 

RNA-seq. Our analyses revealed that epigenetic perturbations of individual DHS resulted in many 

differentially expressed genes, and sometimes the predicted target gene was most affected (Fig. 3B, fig. 

S11). As one example, we evaluated the effect of perturbing four different distal DHS hits around the 

SLC4A1 gene, which is a gene involved in differentiation (39) and when mutated causes hereditary 

spherocytosis and erythrocyte fragility (40). After perturbing each of these regions, expression of the 

SLC4A1 gene was the most significantly reduced, and there was also a  high correspondence of gene 

ontology similarities for other significant differentially expressed genes (fig. S11). There were also 

instances that the ABC predicted target gene was not the most differentially expressed gene (Fig. 3, C and 

D, figs. S12 and S13). For example, targeting two DHS hits in an intron of the GMPR gene did not impact 

GMPR expression, but did impact sets of histone genes 8 Mb away, and overall displayed similar gene 
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ontologies (fig. S12). Indeed, that result may explain why repressing those DHS impacted cell fitness even 

though GMPR has not been shown to be essential previously. 

 To further functionally characterize the targeted group of DHS hits, we used a cell growth 

competition assay to validate whether silencing each distal regulatory element reduces cellular fitness (Fig. 

4A). Seven of 10 gRNAs that were depleted in the secondary screen also reduced cell fitness in the 

competition assay (Fig. 4B). Similarly, all 10 gRNAs that were enriched in the secondary screen also 

increased cell fitness in the competition assay (Fig. 4C). Therefore the effect of the epigenetic perturbations 

on the selected phenotype was robust and reproducible, even if the target gene of the regulatory element 

was not immediately apparent. 

 

Identification of cell-type specific essential gene regulatory elements 

We used chromatin accessibility data from 53 different cell types 

(https://personal.broadinstitute.org/meuleman/reg2map/) to characterize cell type specificity of DHS hits 

involved in cell fitness in K562 cells. For the significant DHS hits in our screen, most of the regions only 

overlapped open chromatin in K562 cells, while fewer regions overlapped open chromatin shared across 

many cell types (Fig. 5A). This suggests that many of the DHS hits we identified affect fitness in a cell-

type specific manner.  

To functionally assess the generalizability of essential regulatory elements across cell types, we re-

purposed the validation gRNA library used on the chronic myeloid leukemia (CML) K562 cell line (Fig. 

2) to perform an additional screen in the acute myeloid leukemia (AML) cell line OCI-AML2 (tables S10 

to S13). Similar to the results in K562 cells, we also detected depleted gRNAs with larger effect sizes in 

OCI-AML2 cells (Fig. 5B). When comparing individual gRNAs between OCI-AML2 and K562 cells, we 

detected 5,088 gRNAs that are significantly depleted in both cell types, indicating these gRNAs lie in DHSs 

that are essential across different cancer cell lines (Fig. 5C). We also detected 1,855 gRNAs that are 

significantly depleted only in K562 cells and 15,670 gRNAs significantly depleted only in OCI-AML2 
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cells, indicating that OCI-AML2 cells may be more sensitive to regulatory element perturbation. We also 

detected small numbers of non-targeting guides in shared and cell type specific hits, representing around 2-

5% of the pool of significant gRNAs, which supports our estimates of FDR of 5% (tables S6 to S13). A 

number of DHS hits overlap with chromatin accessibility that are shared between cell types (Fig. 5D) or 

are cell type-specific (Fig. 5E), indicating that chromatin accessibility may define essential regulatory 

element activity.  

 

Identification of regulatory element target genes using single cell expression  

To empirically identify the target genes for the distal regulatory elements detected in these screens, 

we adapted a method that combines single cell RNA-seq readout with CRISPR screens (20, 41–44), which 

we refer to as single-cell CERES (scCERES). This allows the capture and quantification of all mRNA and 

gRNA identity on a per-cell basis, enabling the identification of genes that change in response to regulatory 

element perturbations. For this screen, polyclonal K562 cells constitutively expressing dCas9KRAB were 

transduced with a library of 3,201 gRNAs (fig. S1, tables S16 and S17) cloned into the opti-CROP-seq 

plasmid (20, 43) in order to capture gRNA sequence identity on the 10x Genomics platform.  

We transduced cells at an MOI of ~7 to increase overall library coverage, found each cell contained 

an average of 8 gRNAs, and each gRNA was represented by an average of 111 cells (fig. S14, A and B). 

After library preparation and sequencing, differential expression analysis was performed by grouping cells 

that expressed the same gRNA (fig. S14C). To increase statistical power to detect changes in gene 

expression, differential expression tests were limited to genes in a 2 megabase window centered on the 

DHS (Fig. 6A).  

Collectively, we identified 992 genes that were affected by perturbing 815 unique regulatory 

elements. While most genes (N = 932) had only a single link to a regulatory element, 52 genes were linked 

to 2 regulatory elements, and 8 genes were connected to 3 regulatory elements (Fig. 6B). The majority of 

the regulatory elements (N = 638) only affected a single gene. However, perturbation of 177 regulatory 
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elements altered expression of 2 or more genes within the 2 Mb window, including one element that affected 

7 genes (Fig. 6C and D). Interestingly, this multi-gene affector overlaps a CTCF site, suggesting it may 

impact a TAD domain (Fig. 6D). We also found DHS hits in polycomb regions that affect genes outside of 

the polycomb repressed region (fig. S6). 

Several gene-regulatory element links were corroborated by validating changes in gene expression 

by RT-qPCR following delivery of a single gRNA, including the ATF7IP (fig. S10), GMPR (Fig. 3A), and 

LMO2 loci (Fig. 6, E to G). For LMO2, we were able to identify gene-enhancer connections for two 

regulatory elements ~60kb upstream of the LMO2 gene that were among the strongest hits from the initial 

wgCERES screen (Target 1 and 2, Fig. 6E). Repression of either element by dCas9KRAB led to significantly 

reduced expression of the LMO2 gene (Fig. 6, E and F). A third regulatory element (Target 3) in the same 

cluster did not show statistically significant changes in LMO2 expression by scCERES (Fig. 6, E and F),  

but did show comparatively modest repression by RT-qPCR (Fig. 6G). This may represent the need for 

increased sequencing depth to achieve better sensitivity. Regardless, this single cell readout identifies a 

substantial number of regulatory elements that are simultaneously linked to both target genes and cell 

fitness. 

 

Discussion 

Virtually all human phenotypes and disease susceptibilities are linked to the function of gene 

regulatory elements and associated genetic variation in the non-coding genome (4, 45). There is strong 

rationale for cancer susceptibility and progression to be similarly dictated by the non-coding genome, and 

a few discrete examples of this mechanism have recently emerged (46–49). However, cancer genetics and 

the discovery of oncogenic driver mutations has historically been limited to analysis of protein coding 

sequences because (i) whole-genome sequencing of primary tumors is costly, and (ii) our functional 

understanding of noncoding genetic variation is still in its infancy. The first limitation is being addressed 

by lower costs of whole genome sequencing and growing databases of thousands of whole genomes from 
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tumor and healthy control tissue (50, 51). However, these advances also emphasize the urgency in 

addressing the second limitation, which has recently become a tractable challenge due to the advent of 

CRISPR-based screens of non-coding regulatory elements in their endogenous chromosomal context (13–

15, 17–19, 25, 52). Knowing the location of regulatory elements that affects cell growth is a critical first 

step for cancer geneticists to find additional noncoding cancer driver mutations (50, 53).  

This study is a significant step towards addressing these limitations and realizing the potential of 

whole genome sequencing for cancer biology. We describe a systematic genome-wide screen of all putative 

regulatory elements in a commonly used cancer cell line and describe their role in cell fitness. We identified 

>12,000 regulatory elements that have negative or positive impacts on cellular viability and/or proliferation, 

and report ~1,000 element-gene links that drive this phenotype. These data provide a rich resource of 

regulatory element function and connection to target genes that will be broadly useful for understanding 

gene network regulation and the mechanisms of non-coding element control on gene expression. We expect 

these characterizations that relate the non-coding genome to cell fitness will identify functional noncoding 

sequence variants that contribute to cancer phenotypes. These functional annotations also complement the 

growing body of chromatin conformation maps that provide structural relationships between regulatory 

elements and genes (54). Moreover, this work provides a blueprint for executing similar studies in other 

cell types, genetic backgrounds, environmental conditions, or pharmacologic treatments. In the future, we 

hope that this approach will facilitate the development of methods to predict element-gene relationships 

and inform efforts to learn the quantitative rules of gene regulation (17, 55).  

A challenge to implementing genome-wide screens of the non-coding genome is the sheer scale of 

the experiment, which is dictated by the number of putative elements in any cell type and the required 

numbers of gRNAs per element and cells per gRNA. As the field of CRISPR-based screens is still in its 

relative infancy, an important area of future focus is the design of more efficient and sensitive screening 

methods. For example, this dataset may be used to define the properties for effective gRNA design in distal 

regulatory elements, similar to what has been done for designing optimal gRNA libraries for genes and 

promoters (35, 52, 56). This work depended on extensive characterization of gRNA libraries targeting these 
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classes of elements. In contrast, relatively little is known about which key gRNA attributes contribute to 

effective perturbation of distal regulatory elements. We expect that the knowledge gained from thousands 

of gRNAs that impact cellular growth from distal regulatory elements will facilitate the design of more 

compact and robust libraries, and enable similar genome-wide screens in cell lines or primary cells that are 

more difficult to culture at scale. 

Many epigenetic modifying drugs used as potential cancer treatments cause widespread changes 

throughout the genome (57, 58). However, it is currently unclear what subset of gene regulatory elements 

drive drug response. Using maps of essential regulatory elements in conjunction with the epigenetic profiles 

of cells after drug treatment could help identify modifications to specific gene regulatory elements 

necessary and sufficient for drug response. This may ultimately inform the development of safer and more 

specific cancer therapies. 

Interestingly, one of the loci with the strongest effect on cellular proliferation was the LMO2 locus. 

This locus is also the location of retroviral insertions in gene therapy patients which lead to increased 

expression of LMO2 via viral enhancer elements and ultimately led to leukemia (59). Better understanding 

the regulatory landscape of these and other types of regions will help elucidate mechanisms of aberrant 

gene expression and tumorigenesis that will ultimately also inform design, safety monitoring, and regulation 

of emerging classes of genetic medicines such as gene therapy and genome editing. Therefore we anticipate 

this approach will be a valuable resource to diverse fields of the biomedical research community. 

 

Materials and methods 

Plasmids 

The lentiviral dCas9-KRAB plasmid (Addgene #83890) was generated by cloning in a P2A-

HygroR (APH) cassette after dCas9-KRAB using Gibson assembly (NEB, E2611L). The lentiviral gRNA 
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expression plasmid was cloned by combining a U6-gRNA cassette containing the gRNA-(F+E)-combined 

scaffold sequence (60) with an EGFP-P2A-PAC or mCherry-P2A-PAC cassette into a lentiviral expression 

backbone (Addgene #83925) using Gibson assembly. Individual gRNAs were ordered as oligonucleotides 

(IDT-DNA), phosphorylated, hybridized, and ligated into the EGFP gRNA plasmid or the mCherry gRNA 

plasmid using BsmBI sites. 

Cell Culture 

K562 and HEK293T (for lentiviral packaging) cells were obtained from the American Tissue 

Collection Center (ATCC) via the Duke University Cancer Center Facilities. OCI-AML2 cells were gifted 

from Anthony Letai at Dana Farber Cancer Institute. K562 and OCIAML2 cells were maintained in RPMI 

1640 media supplemented with 10% FBS and 1% penicillin-streptomycin. HEK293T cells were maintained 

in DMEM High Glucose supplemented with 10% FBS and 1% penicillin-streptomycin. All cell lines were 

cultured at 37 °C and 5% CO2. 

For the genome-wide discovery screen, a clonal K562-dCas9KRAB cell line used, and was generated 

by transduction of dCas9-KRAB-P2A-HygroR lentivirus with polybrene at a concentration of 8 µg/mL. 

Cells were selected 2 days post-transduction with Hygromycin B (600 µg/mL, ThermoFisher, 10687010) 

for 10 days followed by sorting single-cells into 96-well plates with a SH800 sorter (Sony Biotechnology). 

Individual clones were grown and stained for dCas9KRAB with a Cas9 antibody (Mouse mAb IgG1 clone 

7A9-3A3 Alexa Fluor 647 Conjugate, Cell Signaling Technologies, 48796) to assess protein expression. 

Briefly, 1x106 cells were harvested and washed once with 1X FACS buffer (1% BSA in PBS). The cells 

were then fixed and permeabilized for 30 minutes at room temperature with 500 µL of fixation and 

permeabilization buffer (eBioscience Foxp3/TF/nuclear staining kit, ThermoFisher, 00-5523-00). Next, 1 

mL of permeabilization buffer was added and cells were pelleted (600 RCF for 5 min) and washed again in 

1 mL of permeabilization buffer. Cells were pelleted again and resuspended in 50 µL of permeabilization 

buffer with 2% mouse serum (Millipore Sigma, M5905) to block for 10 minutes at room temperature. 

Following blocking, 50 µL of permeabilization buffer with 2% mouse serum and 1 µL of Cas9 antibody 
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was added and allowed to incubate for 30 minutes at room temperature. Following incubation, 1 mL of 

permeabilization buffer was added, cells were pelleted and washed once more with 1 mL of 

permeabilization buffer. Finally, cells were resuspended in 1X FACS buffer for analysis. Each clone was 

analyzed using an Accuri C6 flow cytometer (BD Biosciences). A clone was selected based on high and 

uniform expression of dCas9KRAB and expanded for further use. 

For the secondary sub-library screens, we used polyclonal K562 and OCI-AML2 cell lines that 

express the dCas9KRAB repressor.  Polyclonal lines were used to account for possible hits in the first screen 

that could be specific to the clonal line used.  K562 and OCI-AML2 cells were transduced with dCas9-

KRAB-P2A-HygroR lentivirus with polybrene at a concentration of 8 µg/mL. At two days post-

transduction, cells were selected for 10 d in Hygromycin B (600 µg/mL). Following selection, polyclonal 

cells were stained to detect expression of dCas9KRAB protein as described above. 

gRNA Library Design 

DNase I hypersensitive sites (DHSs) for the K562 cell line were downloaded from 

www.encodeproject.org (ENCFF001UWQ) and used to extract genomic sequences as input for gRNA 

identification. We used the gt-scan algorithm to identify gRNA protospacers within each DHS region and 

identify possible alignments to other regions of the genome (61). The result is a database containing all 

possible gRNAs targeting all targetable DHSs in K562  cells and each gRNA’s possible off-target locations. 

gRNAs were selected based on minimizing the number of off-target alignments. For the initial genome-

wide library, 1,092,706 gRNAs were selected (tables S1 to S4), targeting 111,756 DHSs (269 DHSs 

contained no NGG SpCas9 PAM), limited to a maximum of 10 gRNAs per DHS (mean, 9.77 gRNAs per 

DHS).  

For the second sub-library targeting distal non-promoter hits (>3kb from TSS) identified in the first 

screen, 234,593 gRNAs were selected (tables S6 to S13), targeting 8,850 distal DHSs identified as 

significant (FDR-adjusted p-value < 0.1) from the first screen. For each DHS, gRNAs were chosen to be 

spread evenly across the region by dividing each DHS into bins of 100 bp and selecting up to 7 gRNAs per 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434470doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434470
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

bin. The gRNAs for each bin were selected in order by the fewest number of off-target alignments calculated 

by gt-scan. 15,407 non-targeting gRNAs were designed as previously described (35).  A larger number of 

gRNAs per DHS were designed in the second screen (~24 per DHS) compared to the first screen (10 per 

DHS). 

All libraries were synthesized by Twist Biosciences and the oligo pools were cloned into the 

lentiviral gRNA expression plasmid using Gibson assembly as previously described (21). Briefly, oligo 

pools were amplified across 16 PCRs (100 ng oligo per PCR) with the following primers for 10 cycles 

using Q5 2X master mix and the following primers:  

Fwd: 5’- TAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG 

Rev: 5’- GTTGATAACGGACTAGCCTTATTTAAACTTGCTATGCTGTTTCCAGCATAGCTCTTAAAC 

Pools were gel purified (Qiagen, 28704) and used to assemble plasmid pools with Gibson assembly 

(NEB, E2611L). Pools were assembled across 16 Gibson assembly reactions (~900 ng backbone, 1:3 

backbone to insert) for the first screen, and 4 reactions for the second sub-library screen. 

Lentivirus Production 

The lentivirus encoding gRNA libraries or dCas9KRAB was produced by transfecting 5x106 

HEK293T cells with the lentiviral gRNA expression plasmid pool or dCas9KRAB plasmid (20 µg), psPAX2 

(Addgene, 12260, 15 µg), and pMD2.G (Addgene, 12259, 6 µg) using calcium phosphate precipitation 

(62). After 14-20 hours, the transfection media was exchanged with fresh media. Media containing 

lentivirus was collected 24 and 48 hours later. Lentiviral supernatant was filtered with a 0.45 µm CA filter 

(Corning, 430627). The dCas9KRAB lentivirus was concentrated 20X the initial media volume using Lenti-

X concentrator (Clontech, 631232), following manufacturer’s instructions. The lentivirus encoding gRNA 

libraries was used unconcentrated. 

The titer of the lentivirus containing either the genome-wide library or distal sub-library of gRNAs 

was determined by transducing 5x105 cells with varying dilutions of lentivirus and measuring the 

percentage of GFP-positive cells 4 days later using the Accuri C6 flow cytometer (BD Biosciences). 
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To produce lentivirus for individual gRNA validations, 8x105 cells were transfected with gRNA 

plasmid (2440 ng), psPAX2 (1830 ng), and pMD2.G (730 ng) using Lipofectamine 3000 following the 

manufacturer’s instructions. After 14 to 20 hours, transfection media was exchanged with fresh media. 

Media containing produced lentivirus was harvested 24 and 48 hours later, centrifuged for 10 minutes at 

800xg, and directly used to transduce cells. 

Lentiviral gRNA Screens 

For the first genome-wide screen, 1.7x109 cells were transduced with the gRNA library during 

seeding in 3 L spinner flasks across 4 replicates for controls (K562 cells without dCas9KRAB) and 4 replicates 

for dCas9KRAB-expressing cells. For sub-library screens, 4.17x108 cells were transduced during seeding in 

500 mL spinner flasks across 4 replicates for both controls and dCas9KRAB-expressing cells. Cells were 

transduced at a multiplicity of infection (MOI) of 0.4 to generate a cell population with >80% of cells 

harboring only 1 gRNA and 500-fold coverage of each gRNA library. After 2 days, cells were treated with 

puromycin (Millipore Sigma, P8833) at a concentration of 2 µg/mL. Cells (control and dCas9KRAB-

expressing) were selected for 7 days and allowed to grow for a total of 16 days (including 7 days of 

selection, or ~14 doublings). Cells were passaged to ensure at least 500X fold coverage of the gRNA library 

to maintain representation. After culturing, for the genome-wide screen, 5.5x108 K562 cells were harvested 

for genomic DNA isolation. For the sub-library distal screens in K562 cells or OCI-AML2 cells, 1.5x108 

cells were harvested. Genomic DNA was harvested from cells as described by Chen and Sanjana et al.(63).  

Single-Cell RNA-seq Screen 

For the single-cell RNA-seq screen, cells constitutively expressing dCas9KRAB were transduced 

with a library of gRNAs cloned into the CROP-seq-opti vector (Addgene #106280) in order to capture 

gRNA information on the 10X platform. The library contains 3,201 total gRNAs consisting of the most 

significant gRNA for all 3,051 distal DHS hits identified in the second K562 distal sub-library screen, as 

well as the most significant gRNA for a subset of TSS DHSs as positive controls, and 150 non-targeting 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434470doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434470
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

gRNAs as negative controls (tables S16-S17). Cells were transduced at an MOI of ~7 to achieve multiple 

integrations of gRNAs per cell, as done previously (20). Cells were grown for 5 days after transfection of 

the gRNA library and 56,882 cells were collected and barcoded with the 10X 3’ v3 chemistry. gRNAs were 

amplified from barcoded cDNA as described in previously (20). Total transcriptome libraries were 

sequenced on a NovaSeq S4 flow cell and gRNA-enriched libraries were sequenced on a NextSeq 550 flow 

cell.  

Genomic DNA Sequencing 

To amplify the genome-wide gRNA libraries from each sample, 5.25 mg of genomic DNA (gDNA) 

was used as template across 525 x 100 µL PCR reactions using Q5 2X Master Mix (NEB, M0492L). For 

the distal sub-library screens, 1.2 mg of gDNA was used as template across 120 PCR reactions using Q5 

2X Master Mix. Amplification was carried out following the manufacturer’s instructions using 25 cycles at 

an annealing temperature of 60 °C using the following primers: 

Fwd 5’-AATGATACGGCGACCACCGAGATCTACACAATTTCTTGGGTAGTTTGCAGTT 

Rev 5’-CAAGCAGAAGACGGCATACGAGAT (6 bp index sequence) GACTCGGTGCCACTTTTTCAA 

Amplified libraries were purified using Agencourt AMPure XP beads (Beckman Coulter, A63881) 

using double size selection of 0.65X and then to 1X the original volume. Each sample was quantified after 

purification using the Qubit dsDNA High Sensitivity Assay Kit (ThermoFisher, Q32854). Samples were 

pooled and sequenced on a HiSeq 4000 or NovaSeq 6000 (Illumina) at the Duke GCB sequencing core, 

with 21 bp single read sequencing using the following custom read and index primers: 

Read1 5’-GATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG 

Index 5’-GCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTC 

Data Processing and Differential Expression Analysis of gRNA libraries 

To identify and quantify the effects of regulatory element perturbation on cell fitness, we compared 

gRNA abundance before and after cell growth. Since library size constraints limited the number of gRNAs 
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per DHS and as the effect of any individual gRNA may be subtle, we characterized the effects of perturbing 

each DHS by four levels of gRNA analyses: 1) individual gRNAs, 2) a sliding window across each DHS 

in bins of two gRNAs, 3) a sliding window across each DHS in bins of three gRNAs, and 4) grouping all 

gRNAs in a DHS together (Fig. 1B).   

FASTQ files were aligned to custom indexes (generated from the bowtie2-build function) using 

Bowtie2 (64) (options -p 24 --no-unal --end-to-end --trim3 6 -D 20 -R 3 -N 0 -L 20 -a). Counts for each 

gRNA were extracted and used for further analysis. All gRNA enrichment analysis was performed using 

R. For differential expression analysis, the DESeq2 package was used to compare between dCas9KRAB and 

control (no dCas9KRAB) conditions for each screen.  

To summarize enrichment or depletion across a DHS in the first screen, we generated composite 

scores (wgCERES-top3 score) where the list of gRNAs, bins of 2 gRNAs, or bins of 3 gRNAs for each 

DHS were sorted by adjusted p-value (ascending order, calculated from DESeq2) and the average of the 

top three log2(fold-change) values in each category was calculated. The log2(fold-change) averages (or 

single value for the DHS group) of each analysis category (gRNA/bin2/bin3/DHS) were then summed to 

calculate the wgCERES-top3 score. For the distal screens, the same procedure was performed except 

instead of the top 3 gRNAs/bins, the top 5 were averaged since gRNAs were more densely tiled for each 

DHS (wgCERES-top5 score). 

 

Data Processing and Differential Expression Analysis of Single-Cell RNA-seq Screen 

Sequencing data from transcriptome and gRNA libraries generally used distinct pre-processing 

pipelines, as detailed below. However, for both types of libraries, reads were first demultiplexed using the 

mkfastq command from 10X Genomics Cell Ranger 3.1.0 with the default configuration and BAM files 

with transcript counts were generated using the count command and the hg19 reference dataset included in 

Cell Ranger 3.1.0. At that point, the preprocessing of the transcriptomic data finished.  
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Custom processing of the gRNA library sequencing data 

For the gRNA libraries, we filter out properly aligned reads, since usable reads should not map 

against the hg19 transcriptome. We converted BAM files containing unaligned reads into FASTQ files 

using the bam2fq command in samtools. Next, we used the custom bowtie2 index from the wgCERES 

library described above to align the reads again using bowtie2. We trimmed 23 and 48 bp from the 5` and 

3` ends respectively of the reads to remove scaffolding sequences. The full set of bowtie2 params were --

trim5 23 --trim3 48 --no-unal --end-to-end -D 15 -R 2 -N 1 -L 18 -i S,1,0 --score-min G,0,0 --ignore-quals. 

Because of this extra step, we lost the corrected cell barcodes and UMI tags assigned by the cellranger 

software. We recover those by extracting into FASTQ files the optional fields CB for cell barcodes and UB 

for UMI barcodes, and reassigning these to the BAM files created with the custom bowtie index using the 

AnnotateBamWithUmis function in the fgbio package (v.0.8.1). Finally, a custom script 

(scRNAseq.extract_umi_counts_from_grna_bam.py) was written to extract unique UMI counts per gRNA 

per cell. The resulting sparse matrix was saved in MarketMatrix format, compatible with existing single-

cell RNA-seq software. 

 

 Differential expression analysis of single-cell CERES  

We loaded both the gRNA library and transcriptomic data in R using the Read10X function from 

Seurat v3.1.2 and merged the information in a single Seurat object. We assigned gRNAs to cells by 

requiring gRNAs to have ≥ 5 UMI counts and ≥ 0.5% of the total UMI counts in a cell (library size). Cells 

with >20% of mitochondrial UMI counts or <10,000 transcript UMIs were filtered out. Transcriptomic 

UMI counts were normalized using the NormalizeData function with default parameters. Cells with no 

gRNA assigned were discarded. 

For each target gRNA, we used the FindMarkers function to test genes in the ±1Mb window around 

the gRNA midpoint. MAST was the test used to recover significant differences in the expression of 

transcripts from cells containing the gRNA versus all other cells. The union set of all genes tested at least 

once was used to run the same analysis for non-targeting guides.  
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Finally, for each target gRNA-gene pair, an empirical p-value was calculated by counting the 

number of instances in which the observed p-value was larger than those in the non-targeting gRNA-gene 

pairs.       

Permutation analysis 

To test whether significant DHS hits clustered at distances that were closer than random chance, 

we generated 1000 permutations of non-significant DHS sets.  Each permutation had the same number of 

non-significant DHSs as the significant DHS set. We then measured the distance for each significant DHS 

to any non-significant DHS from each permuted set.  

Individual gRNA Validations using qRT-PCR, RNA-seq and competition assays 

Validation of individual gRNAs in distal (non-promoter) putative regulatory elements were chosen 

from a list of 81 element-gene connections predicted by the ABC model (17, 28) (tables S14 and S15).  

We focused these validations on distal DHS hits that also had a corresponding promoter DHS hit of the 

predicted ABC target gene. From the list of ABC-predicted element-gene connections, we also included 

several gRNAs corresponding to nearby DHSs that were significant in the wgCERES screen but did not 

have a predicted gene by ABC.   

The protospacers from the top enriched gRNAs found in each screen (tables S1 to S13) were 

ordered as oligonucleotides from IDT and cloned into a lentiviral gRNA expression vector as described 

earlier. The same modified cell lines used in the corresponding screen were used for the individual gRNA 

validations. The cells were transduced with individual gRNAs and after 2 days were selected with 

puromycin (2 µg/mL) for 7 days for the four distal gRNAs not connected with an ABC connection or 4 

days for the gRNAs targeting DHSs connected to genes by ABC model predictions.  

For all screen validations by qRT-PCR and RNA-seq, mRNA expression analysis was done in 

triplicate. Total mRNA was harvested from cells and cDNA was generated using the TaqMan Fast 

Advanced Cells-to-CT kit (ThermoFisher, A35377). qRT-PCR was performed using the TaqMan Fast 
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Advanced Cells-to-CT kit with the FX96 Real-Time PCR Detection System (Bio-Rad) with the TaqMan 

probes listed in table S15. The results are expressed as fold-increase mRNA expression of the gene of 

interest normalized to TBP expression by the ∆∆Ct method.   

RNA-seq analysis was performed as follows. Raw reads were trimmed to remove adapters and 

bases with average quality score (Q) (Phred33) of < 20 using a 4bp sliding window 

(SLIDINGWINDOW:4:20) with Trimmomatic v0.32 (65). Trimmed reads were subsequently aligned to 

the primary assembly of the GRCh37 human genome using STAR v2.4.1a (66). Aligned reads were 

assigned to genes in the GENCODE v19 comprehensive gene annotation (67) using the featureCounts 

command in the subread package v1.4.6-p4 with default settings (68). Differential expression analysis was 

performed using DESeq2 v1.22.0 (69) in R (v3.5.1). Briefly, raw counts were imported and filtered to 

remove genes with low or no expression (i.e., keeping genes having ≥2 counts per million (CPMs) in ≥2 

samples). Filtered counts were then normalized using the DESeq function, which internally uses estimated 

size factors accounting for library size, estimated gene and global dispersion. To find significantly 

differentially expressed genes, the nbinomWaldTest was used to test the coefficients in the fitted Negative 

Binomial GLM using the previously calculated size factors and dispersion estimates. Genes having a 

Benjamini-Hochberg false discovery rate (FDR) less than 0.05 were considered significant (unless 

otherwise indicated). Log2 fold-change values were shrunk towards zero using the adaptive shrinkage 

estimator from the ‘ashr’ R package (70). For estimating transcript abundance, transcripts per million 

(TPMs) were computed using the rsem-calculate-expression function in the RSEM v1.2.21 package (71). 

For growth competition assays, 1x106 cells were transduced with lentivirus encoding a single 

gRNA into polyclonal K562 dCas9KRAB cells.  Cells were transduced with either 1) an individual 

targeting gRNA and GFP or 2) a non-targeting gRNA and mCherry.  After 2 days, cells were selected with 

puromycin (2 µg/mL) for 5 days. After selection, for each validation gRNA, 5x104 GFP-positive cells were 

seeded with 5x104 mCherry-positive cells expressing the non-targeting gRNA. The percent of GFP- and 

mCherry-positive cells in each well was assayed 1, 7, and 14 days later using a FACSCanto II flow 

cytometer (BD Biosciences).  
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Fig. 1. wgCERES identifies thousands of regulatory elements essential for K562 proliferation. (A) 
Overall schematic of (i) discovery wgCERES screen, (ii) secondary validation screen of regulatory 
elements, (iii) cell-type specificity, and (iv) single-cell (scCERES) readout to connect cell fitness-
associated regulatory elements to target genes. (B) A schematic of wgCERES approach. gRNAs are 
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designed to all DHSs in the K562 cell line and synthesized as a pool for lentiviral delivery. K562 cells 
either constitutively expressing or not expressing dCas9KRAB are treated with the lentiviral gRNA library 
at a low MOI and cultured for 14 population doublings. Genomic DNA is then harvested and the gRNA 
abundance is quantified by Illumina sequencing. (C) A schematic describing four levels of gRNA 
grouping analyses, including individual gRNA, sliding windows of 2 or 3 gRNAs, and averaging all 
gRNAs within a DHS. (D) Summary of DHS hits identified by significant changes to individual gRNAs 
or grouped gRNAs. (E) Volcano plot of significance of gRNA changes relative to log2(fold-change). (F) 
Distribution of significant gRNAs relative to transcriptional start sites of nearest genes. (G) 
Representative examples of significant distal DHS hits (blue boxes) that also have a significant DHS hit 
at a TSS of the nearest gene. ChromHMM tracks indicate promoters (red), putative enhancers (yellow), 
and polycomb repressed regions (gray). (H) UMAP dimensionality reduction plot showing different 
ChromHMM chromatin state informed classes of significant (FDR < 0.1) DHS hits. Histone 
modifications as well as several epigenetic modifying proteins were included as input for dimensionality 
reduction. (I) Relative abundances of significantly depleted or enriched gRNAs relative to ChromHMM 
classes of genome annotations. 
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Fig. 2. Sub-library screen targeting all distal significant DHSs from the first wgCERES screen. (A) 
Volcano plot showing 9,833 significantly depleted or enriched gRNAs. Depleted gRNAs were more 
abundant and show larger effect size than enriched gRNAs. (B) Comparison of log2(fold-change) between 
the first wgCERES screen and the second sub-library screen. Only gRNAs that overlap both studies are 
represented (N=50,021 common gRNAs). (C) Distribution of number of significant gRNAs per DHS 
between the first wgCERES screen and the second sub-library screen. Inset shows combined counts for 
more than 1 gRNA per DHS. (D) Screenshot examples of DHS hits (blue boxes) that displayed a smaller 
number significant gRNA hits (red lines) in the wgCERES discovery screen, and additional significant 
gRNAs in the more densely tiled distal sub-library validation screen. 
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Fig. 3.  Validation of wgCERES-seq hits with individual gRNAs. (A) Individual gRNAs were tested in 
K562 cells constitutively expressing dCas9KRAB, and mRNA changes were detected through qRT-PCR. 
Red and green bars indicate validation gRNAs that were depleted or enriched, respectively, in the screen. 
Blue bars indicate non-targeting gRNA control. Gray bars indicate cells only expressing dCas9KRAB, 
without gRNA transduction. Significance was determined by one-way analysis of variance followed by 
Dunnett's test (n = 3 biological replicates, mean ± s.e.m.): ****P < 0.0001, ***P < 0.001, **P < 0.01, *P 
< 0.05 versus dCas9KRAB only control. All fold enrichments are relative to the transduction of a control 
gRNA and normalized to TBP. (B) Validation of a gRNA by RNA-seq shows that the largest effect is the 
nearest gene (GALM) and the “ABC linked gene” indicates GALM as the predicted target gene (Fulco et 
al. 2016). (C) Validation of a gRNA by RNA-seq that shows the nearest gene (COMMD8) is not 
differentially expressed, and therefore is not the likely target gene. (D) Validation of a gRNA that has no 
predicted ABC target gene, but displays many differentially expressed genes. Genes with significant 
differences in gene expression are shown in red (padj ≤ 0.05). Gene ontologies show top 10 enriched 
categories for each RNA-seq analysis.  
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Fig. 4. Functional validation of gRNAs in competition growth assay. (A) Individual gRNAs were 
delivered to cells in a GFP expressing vector and co-seeded with equal numbers of cells transduced with a 
non-targeting gRNA in an mCherry expressing vector. Proportion of cells were assayed at day 1 post-
seeding, and day 7 or day 14 post-seeding to determine the fold-change in the proportion of GFP vs 
mCherry positive cells. (B) Individual validations for gRNAs that were depleted in the second sub-library 
screen. (C) Individual validations for gRNAs that were enriched in the sub-library screen (n = 3 biological 
replicates, mean ± s.e.m.).  Gene names represent putative target genes identified for each gRNA hit by 
ABC method (Fulco et al. 2016; Fulco et al. 2019). Statistics indicate significance by two-way ANOVA 
with Dunnett’s multiple comparisons test relative to non-targeting gRNA at day 7 or day 14: *P < 0.05, 
***P < 0.001, ****P < 0.0001.   
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Fig. 5. Essential DHS hits show cell-type specificity. (A) Characterization of promoter and distal DHS 
hits relative to chromatin accessibility from 53 diverse cell types. Specificity index of 1 indicates DHS 
that is unique to K562, while specificity index of 0 represents ubiquitous DHS site across all cell types. 
All DHS sites identified in K562 cells are shown as a comparison. (B) Volcano plot showing 31,193 
significant gRNAs either depleted or enriched following 14 population doublings of OCI-AML2 cells. 
Depleted gRNAs were more abundant and show larger effect size than enriched gRNAs. Red points 
indicate significant gRNAs (FDR < 0.1), blue points indicate non-targeting control gRNAs, and gray 
points indicate non-significant gRNAs. (C) Comparison of the sub-library screen in K562 cells versus 
OCI-AML2 cells. Log2(fold-change) is plotted for every gRNA in each screen. Red points indicate 
gRNAs significant in both cell types. Green points indicate gRNAs significant only in the OCI-AML2 
cells, while orange points indicate gRNAs only significant in K562 cells. Gray points indicate gRNAs not 
significant in either cell type. Legend shows the number of gRNAs that are significant in either direction. 
(D) Representative example of gRNA hits that are significantly depleted in both K562 and OCI-AML2 
cell types. Blue box highlights the region of interest and red gRNAs indicate significant depletion. Note 
this region is marked by open chromatin in both cell types. (E) Representative example of gRNAs that are 
significantly depleted in K562 cells, but not significant (black gRNAs, note Y-axis difference) in OCI-
AML2 cells. Blue boxes highlight regions of interest, and the left region represents a DHS that is 
uniquely accessible in K562 cells.  
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Fig. 6. scCERES to identify the target gene(s) for each perturbed gene regulatory element using 
single cell RNA-seq. (A) Relationship between distance of regulatory element-gene link and significance. 
Perturbations closer to the transcriptional start site of genes tend to be more significant overall. (B) 
Number of regulatory elements per individual gene detected. (C) Number of genes affected by individual 
regulatory elements. (D) DHS hit with seven gene connections listed in panel “C”. Blue box represents 
DHS targeted for silencing, as well as gRNA log2(fold-change) depletion through CERES, and chromatin 
accessibility. The seven target genes are shown as yellow connectors.  Inset shows this DHS hit directly 
overlaps a CTCF binding site (also marked by CTCF ChromHMM chromatin state). (E) Genome browser 
tracks of the LMO2 locus including links of enhancers to genes, and CERES depletion of three 
downstream regions listed at Target 1, 2, and 3. (F) Single cell expression analysis shows significant 
depletion of LMO2 expression in cells containing gRNAs for Target 1 and Target 2, but not Target 3. 
Asterisks indicate empirical p-values < 0.01. (G) LMO2 mRNA fold-change by qRT-PCR in response to 
individual gRNA perturbations for LMO2 Target 1, 2, and 3. ****p-value < 0.0001 versus control, one-
way analysis of variance followed by Dunnett's test (n = 3 biological replicates; mean ± s.e.m.).  
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