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Abstract:  
Spatial gene-expression is a crucial determinant of cell fate and 
behavior. Recent imaging and sequencing-technology advancements have 
enabled scientists to develop new tools that use spatial information to 
measure gene-expression at close to single-cell levels. Yet, while 
Fluorescence In-situ Hybridization (FISH) can quantify transcript numbers 
at single-cell resolution, it is limited to a small number of genes. Similarly, 
slide-seq was designed to measure spatial-expression profiles at the single-
cell level but has a relatively low gene-capture rate.  And although single-cell 
RNA-seq enables deep cellular gene-expression profiling, it loses spatial 
information during sample-collection. These major limitations have stymied 
these methods’ broader application in the field. To overcome spatio-omics 
technology’s limitations and better understand spatial patterns at single-cell 
resolution, we designed a computation algorithm that uses glmSMA to 
predict cell locations by integrating scRNA-seq data with a spatial-
omics reference atlas. We treated cell-mapping as a convex optimization 
problem by minimizing the differences between cellular-expression profiles 
and location-expression profiles with a L1 regularization and graph 
Laplacian based L2 regularization to ensure a sparse and smooth 
mapping. We validated the mapping results by reconstructing spatial- 
expression patterns of well-known marker genes in complex tissues, like the 
mouse cerebellum and hippocampus. We used the biological literature to 
verify that the reconstructed patterns can recapitulate cell-type and anatomy 
structures.  Our work thus far shows that, together, we can use glmSMA to 
accurately assign single cells to their original reference-atlas locations.  
  
Precise gene-expression spatial regulation at the individual cell level is critical to normal 
development and disease pathogenesis. For example, asynchronous cell-proliferation in 
Drosophilia depends upon Hippo-signaling-pathway spatial expression during early 
embryogenesis3. Single-cell RNA sequencing (scRNA-seq) allows us to measure many 
genes for each individual cell. But spatial information is often lost after tissue-digestion 
and cell-dispersion. We therefore propose a new algorithm—glmSMA—which, by 
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integrating the reference atlas per the Slide-seq or FISH-based method, can accurately 
map individual cells back to their original locations in complex tissues.  
  
Current spatial-omics techniques include the next-genome-sequencing (NGS)-based 
method and imaging-based method. Both methods have significant limitations. On the 
NGS side, slide-seq’s genome-wide measurement allows us to obtain spatially resolved 
gene-expression data at the single-cell level but has a low gene-capture rate and produces 
relatively small barcoded beads and, therefore, a limited measurable area6. Similarly, 
spatial transcriptomics like 10x Visium provide high-quality mRNA transcripts in a larger 
area, but the resolution is much lower than with Slide-seq12. On the image-based side, 
FISH-like methods can provide tissue mRNA levels with high resolution but can only 
measure a limited number of genes. We tested glmSMA in several tissues based on 
different spatial-omics techniques including both NGS and imaging-based method, and 
the cell assignments were still accurate.  
  
Several algorithms have been proposed to spatially identify gene-expression in tissues-of-
interest at a single-cell level1,2,4,9,10,19. However, no one has yet tested whether spatial 
transcriptomics data or Slide-seq data is a good reference for spatial-location-prediction 
at a single-cell level. For example, Dist-map used FISH images from the BDTNP fly-
embryo database but can only retrieve tens of genes to build a reference atlas2. Likewise, 
NovoSparc cannot integrate information from spatial references1; rather, it relies purely 
on marker-gene-expression while assuming expression-local similarity. It was also 
mainly tested in the simulated data set. Also, most spatial-mapping algorithms locate one 
cell-group instead of sorting individual cells into regions. When MIA9 was tested in 
pancreatic tumors using spatial transcriptomics data, for example, it assigned 3 or 4 
predefined cell types from ~1,000 cells into several large domains. HMRF10 
used smFISH mouse-brain images as a reference atlas but mapped fewer than ten cell-
types back to their original regions. While both of these methods used scRNA-seq data 
and the reference atlas, they didn't directly assign individual cells back to their locations; 
instead, they simplified the problems by first grouping the cells and then assigning cell-
groups to larger areas.  There had been no evidence that integrating Slide-seq and scRNA-
seq data can map individual cells back to their original locations. Our GlmSMA, however, 
combined the two platforms to accurately predict cell-assignments.     
 
Fig. 1: Overview of glmSMA. 
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a, The input are the gene expression matrix by scRNA-seq from dissociated cells and the location 
expression matrix of reference atlas by Slide-seq, FISH, or other spatial-omics technologies. The 
output is the predicted locations of single cells in the reference atlas. By using the mapped cells 
and scRNA-seq profiles, we can impute or correct the original patterns which are not captured by 
the original spatial-omics technologies. 
 
GlmSMA accurately reconstructs intestinal villus in vivo  
To determine whether individual cells in the intestinal villus can be correctly assigned to 
their original locations, we performed glmSMA on 1,148 cells derived from 6 distinct 
intestine zones. We found a monotonical relationship between the cell-to-cell physical 
distance and cell-to-cell expression correlation (Extended Data Fig. 2). Using the top 100 
variable genes, we were able to correctly map ˃99% of the cells to within one layer of their 
original layer (Extended Data Fig. 1). These results indicate that our algorithm accurately 
assigns cells into one-dimensional tissues.      
  
GlmSMA successfully assigns single cells back to their original locations in 
both in silico and in vivo Drosophila embryos  
We next tested our algorithm on more complicated, two-dimensional tissue from the 
Drosophila embryo.  We first established the reference profile using an expression atlas 
of 84 marker genes in developmental stage 5 that we retrieved from the Berkeley 
Drosophila Transcription Network Project (BDTNP)5. BDTNP-database embryos are 
collected at developmental stage 5 and fluorescently stained to label marker-genes’ nuclei 
and expression patterns (Extended Data Fig. 5). 
  
To evaluate glmSMA’s performance in complex tissues, we simulated scRNA-seq data on 
1,000 individual cells from a randomly selected patches in BDTNP reference atlas using 
a strategy similar to Nitzan et al’s1. We then tested whether glmSMA could map 
these 1,000 simulated scRNAseq profiles back to the 2D embryo’s surface. As with the 
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intestinal villus dataset, we found a monotonically increasing relationship between cell-
to-cell physical distance and cell-to-cell expression distance (Fig. 2a). Using 60 marker 
genes, we correctly mapped ˃99% of the cells back to their original positions. (Fig. 
2b) We also tested whether the L1 and generalized L2 regularization induced a sparse 
solution. Without regularization, our model yielded multiple optimal locations for each 
cell. With regularization, a sparse model induced far fewer predicted locations resulting 
in fewer false positives (Fig. 2c). Our results were still robust after we resampled the 
original images into 1,500 and 500 patches. To evaluate the predicted cell 
assignments’ accuracy, we compared the reconstructed spatial-expression 
patterns on marker genes (e.g., ftz, tsh and gt) to these genes’ experimental patterns from 
virtual FISH (Fig. 2d). We observed that the patterns are highly similar.   
 
 
 
 
 
 
 
Fig. 2: GlmSMA successfully reconstructs the Drosophila embryo on the 
simulated dataset based on the BDTNP database.   
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a, Cell-to-cell physical distance increased monotonically with the cell-to-cell expression 
distance. b, Mapping results of selected cells in the Drosophila embryo. Over 99% of the 
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selected cells were correctly assigned to their original locations. c, Regularization path in the cell 
assignments. Without regularization, cells are assigned to multiple locations. With L1 and 
generalized L2 regularization, individual cells are more likely to be assigned to one unique 
position or a very small patch. d, Reconstructed spatial expression patterns of marker genes 
from the mapping results. The reconstructed patterns were consistent with the Virualfly 
database.  

 
Next, we used a real scRNA-seq dataset to assess glmSMA’s mapping accuracy. We 
extracted a 1,297-cell drosophila scRNA-seq dataset with approximately 800 genes at 
developmental stage 5.  In the t-SNE plot, the original scRNA-seq study reported four 
clusters (Fig. 3a).  By mapping single cells into a virtual embryo surface, we observed that 
these four groups actually have distinct spatial locations.  Specifically, the black cluster 
represents cells located in the anterior and posterior. The Blue cluster consists mostly of 
ventrally located cells while the red and green spots show cells spanning from ventral to 
dorsal (Fig. 3a).    Due to the lack of marker genes and redundancy in the expression 
patterns, on average, 5 cells were mapped to the same location.  We found that these 
locations are not identifiable because their expression profiles are so similar to those of 
the 84 marker genes (Extended Data Fig. 15).   
  
To further investigate whether glmSMA accurately predicts spatial gene-expression, we 
compared the reconstructed important developmental-marker genes’ patterns 
with virtual FISH patterns. These developmental-marker genes often exhibit special 
spatial expression patterns (Fig. 3b & Extended Data Fig. 6). For example, snail 
expression at stage 5 has a ventral-to-dorsal gradient (Fig. 3c). We also investigated 
dorsal- and gap-genes’ spatial-expression patterns (e.g., twi, gsb and wg), and all 
the reconstructed spatial- expression patterns were consistent with the literature14. Most 
ventral cells were spatially distributed in the ventral area, where sna and twi were highly 
expressed, while gsb and wg were spatially expressed as segmentation stripes (Fig. 
3c). We then tested whether L1 and generalized L2 regularization induced a better 
solution for the cell assignments. With L1 and generalized L2 regularization, cells were 
assigned into small patches instead of multiple scattered locations (Extended Data Fig. 
18). Together, these verification results demonstrate that the mapped cells went to 
plausible positions.   
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: GlmSMA accurately reconstructed the Drosophila embryo from a 
scRNA-seq dataset. 
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a, 1,297 cells were clustered into four clusters. Cells were assigned back to the embryo using 
glmSMA. Blue cells are mainly clustered in the ventral part; red and green cells are mostly 
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located in the middle part of the embryo; the black cells occupy the anterior and posterior 
regions. Cells with the same color have closer physical distance. b, Example of original and 
predicted expression patterns for the segment marker genes. GlmSMA successfully 
reconstructed the partial expression patterns compared to the original one. c, Examples of 
reconstructed spatial expression patterns for the well-known marker genes in the embryo 
development. Twi and sna were ventral genes that were highly expressed in the ventral regions. 
Gsb and wg were segment genes and their reconstructed patterns were consistent with 
literature. 

 
GlmSMA successfully locates single cells in the mouse cerebellum both in 
silico and in vivo   
To further demonstrate that glmSMA can be applied in more complex tissues, we 
assessed its performance in the mouse cerebellum. We first used a recently developed 
spatial-omics technology—Slide-seq—to establish the mouse-cerebellum reference atlas 
(Extended Data Fig. 7,8,9). One sagittal section of the mouse cerebellum in the Slide-seq 
dataset contained 46,376 locations, and one location had 1-1.5 individual cells with 19,782 
genes. We next simulated the scRNA-seq data by using a pipeline similar to Nitzan et al’s 
to bin neighboring reference-atlas locations and coarse-grain the cerebellum1. After 
simulation, we tested whether glmSMA can map the simulated 7,724 cells back into their 
original 46,376 locations using the top 100 variable genes. We found that the pairwise 
physical distance between cells increased monotonically with the pairwise-expression 
distance between cells (Fig. 4a).   
  
As expected, glmSMA correctly assigned ˃99% of the simulated cells to their original 
locations (Fig. 4b). As we decreased the number of marker genes to 40, glmSMA’s 
performance dropped slightly, but still assigned ˃97% of cells to the correct locations 
(Extended Data Fig. 19). When we further tested whether L1 and generalized L2 
regularization can generate a better solution for cell assignments, we found that, after 
regularization, cells can be assigned into either one or a small number of locations instead 
of multiple scattered ones, resulting in fewer false-positive assignments (Fig. 4c & 
Extended Data Fig. 14). To further validate the cell assignments, we reconstructed specific 
marker-genes’ spatial-expression patterns. We demonstrated that the majority of gene 
patterns recapitulated the original images from the Slide-seq (Fig.4d).  
 
 
 
 
 
 
 
 
 
 
 
 Fig. 4: GlmSMA accurately reconstructed the spatial expression patterns in 
the mouse cerebellum. 
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a, Montonocal relationship between cell-to-cell physical distance and cell-to-cell expression 
distance. b, Mapping results of simulated single cells from Slide-seq compared with the ground 
truth. Over 99% of the cells can be accurately assigned to their original locations. c, Regularization 
path for the cell assignments. By setting lambda1 = 0.51 and lambda2 = 0.32, glmSMA can achieve 
good performance with L1 and generalized L2 regularization. Cells can be assigned to small 
patches or unique positions. d, Examples of reconstructed spatial expression patterns of well-
known marker genes.  

 
We next used a real biological dataset to assess glmSMA’s ability to locate cells in complex 
tissues. We retrieved the scRNA-seq data from the online database DropViz16 and 
clustered single cells into 11 cell-types using predefined marker genes, in which most of 
the cells were classified as granule and purkinje cells by DropViz (Fig. 5b). We randomly 
selected 1,000 cells and 7,724 positions were available for mapping. Due to the cell 
locations’ lack of ground truth, we validated the mapping results in two ways. First, we 
examined the spatial cell-types in the assigned locations on the mouse-cerebellum 
anatomical map. As expected, most of the granule cells were correctly assigned to the 
cerebellar cortex, where they were surrounded by the Purkinje cells, and one clear spatial 
boundary existed between the two cell-types (Fig. 5a). Second, we reconstructed spatial 
expression patterns of well-known marker genes that were highly expressed in specific 
cell-types (Extended Data Fig. 20). For example, prior research shows that tulp4 was 
highly expressed in the Purkinje cells16; our reconstructed patterns were consistent with 
this (Fig. 5b). 
  
To pinpoint how well glmSMA can work with large numbers of cells in complex tissues, 
we selected 5,138 mouse-cerebellum cells (4,103 granule, 310 Purkinje) from Drop-Viz. 
As expected, most of the granule and Purkinje cells were assigned to the correct 
anatomical structures (Fig. 5a). Per the biological literature, zic1 and tulp4 were highly 
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expressed in the granule cells16 (Fig.  5b). Our reconstructed patterns were consistent with 
the results, where the two marker genes were both highly expressed in the granule regions 
and scarcely expressed in the Purkinje regions. Thus, our mapping results were still 
robust when we increased the cell number to 5,138.  
 
Fig. 5: GlmSMA reconstructed the mouse cerebellum accurately. 

 
a, Mapping results of 5,138 cells from Drop-viz. Reference atlas was established using the Slide-
seq data. Most of the granule cells were set to the cerebellar cortex, surrounded by the Purkinje 
cells. b, Reconstructed spatial expression patterns of marker genes. Zic1 was highly expressed in 
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the granule cells and tulp4 was highly expressed in the Purkinje cells based on the t-sne plot of 
the scRNA-seq data. Our reconstructed patterns were consistent with the results from Drop-viz 
database.  

 
GlmSMA accurately reconstructs the mouse hippocampus in silico and in 
vivo  
We selected mouse-hippocampus tissue to assess glmSMA’s performance in complex 
tissues with fewer marker genes. Div-seq provided transcripts of 1,188 individual cells 
with 783 marker genes, and we were able to classify single cells into four cell-types using 
the pipeline established by Habib et al.17 because most were Dente Gyrus (DG) or 
Cornu Ammonis (CA) cells.  We then established the mouse-hippocampus reference atlas 
from Slide-seq data. One of the mouse-hippocampus’s coronal sections in Slide-seq 
contained 25,393 locations with 18,896 genes. After selecting the common genes in these 
two datasets and filtering them by expression levels, 79 marker genes were used for 
mapping (Extended Data Fig. 10,11,12).  
  
To validate our mapping results, we first investigated the spatial cell types. Most of the 
DG cells could be correctly assigned in the DG regions. But due to the lack of CA1-specific 
marker genes that overlap between the two platforms, we falsely mapped several CA1 cells 
to the DG regions (Fig. 6a). We might solve this problem by adding more CA1-specific 
genes in the future (Fig. 6c). To further establish that DG cells are region-specific, we 
combined the hippocampus and cerebellum sections. None of the DG cells were mapped 
to the cerebellum region. We could not assign previously simulated cerebellum cells to 
the DG region either. We also investigated well-known DG-specific genes’ reconstructed 
spatial-expression patterns and found, for example, that tox3 and pdzd2 were highly 
expressed in the DG regions. We showed that the reconstructed patterns were consistent 
with the Hipposeq data13 (Extended Data Fig. 16). Taken together, this demonstrates that 
cell assignments can be verified by marker genes’ spatial cell-types and reconstructed 
patterns.  
  
We realized that, by combining scRNA-seq and slide-seq, we can impute specific genes’ 
missing expression profiles into the Slide-seq data and filled the assigned locations 
with scRNA-seq data from div-seq17. Prox1 and kcnc4 are well-known marker genes that 
are only highly expressed in the DG region (Extended Data Fig. 17). The original slide-seq 
technique cannot capture these two genes’ spatial patterns. By setting the assigned cells 
with scRNA-seq profiles, the imputed patterns were consistent with the marker genes’ t-
SNE plot and Hipposeq (Fig. 6b). Therefore, we can use mapping results and scRNA 
profiles to successfully impute spatial-expression patterns that the Slide-seq did not 
capture.  
  
To compare existing algorithms’ cell-assignment prediction accuracy, we used a manually 
selected marker-gene set to perform glmSMA, novoSparc, and Dist-map in a mouse 
hippocampus. Fifty marker genes remained after normalization and filtering. We used 
thresholding to binarize slide-seq and scRNA-seq data expression-profiles as the input 
for the Dist-map algorithm2. Instead of locating cells into limited locations, Dist-map 
mapped the cells back to large domains. NovoSparc can locate cells into small patches, 
but assigned many cells to false regions1; for example, many DG cells were falsely assigned 
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to the CA1 domain. Compared with previous algorithms, our algorithm can correctly 
locate most DG cells into small patches in the DG domain, although all three 
algorithms failed to locate most of the CA1 cells to CA1 regions due to the limited number 
of CA1-specific genes (Fig. 6d). Thus, our algorithm achieved better performance in 
mapping cells back to their original locations in the mouse hippocampus.   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: GlmSMA reconstructed the mouse hippocampus. 
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a, Mapping results of 1,188 single cells from div-seq. Reference atlas was established by the Slide-
seq data. 1,188 cells can be classified as four clusters using predefined marker genes.  Most DG 
cells can be correctly assigned to the DG regions by glmSMA. Some of the CA1 cells were assigned 
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to the DG regions due to the lack the marker genes in the Slide-seq data. The other CA1 cells can 
be correctly located in the CA1 regions. b, Imputed patterns using the mapping results and 
scRNA-seq profiles. The original Slide-seq cannot capture the genetic patterns of prox1 and kcnc4. 
GlmSMA imputed the patterns based on the cell locations and their corresponding profiles. The 
imputed patterns were consistent with the scRNA-seq data. c, Informative genes can increase the 
mapping accuracy. d, Comparison between glmSMA, Dist-Map algorithm and novoSparc. Instead 
of mapping one cell into one location or small patches, Dist-Map assigned one cell into a larger 
region with close probability. GlmSMA can correctly map one cell into small patches.  

 
Discussion  
Here, we proposed a new method to map individual cells back to their original locations 
that combines reference-atlas and scRNA-seq data. Using both techniques helps us to 
most accurately measure gene-expression levels in different tissues. ScRNA-seq can 
provide comprehensive expression profiles for a large number of individual cells, but not 
location information because of experimental procedure. FISH-based technology, on the 
other hand, can capture expression profiles at the cellular level but only for a limited 
number of genes.  And although we can use Slide-seq to measure the whole genome in 
desired tissue simultaneously, only spare genes remain for downstream analysis 
after normalization and filtering.   
  
Existing single-cell assignment methods have significant limitations. For 
example, novoSparc only focuses on one type of data. And de novo novoSparc tested their 
algorithm almost exclusively using the simulated dataset1. Other methods, like Dist-map, 
oversimplify mapping by binarizing the expression profiles in both scRNA-seq data and 
the reference atlas. While it can work in relatively simple tissues, its performance 
plummets when applied to more complex tissues like the mouse hippocampus2. Our 
method takes full advantage of the relationship between cell-expressions and locations. 
With sufficient marker genes, we can locate most cells into correct small patches. 
Although we cannot locate each individual cell into one unique location in some complex 
tissues, we can still accurately assign them to relatively small regions.  
  
Other established methods for mapping single-cell data into specific locations are limited 
to low resolution. For example, MIA and HMRF both focus on locating cell types into 
regions9,10. So, instead of mapping thousands of cells back to several positions, they only 
map tens of cell-types into large domains. And it is impossible to capture information on 
individual cells post-mapping because MIA and HMRF merged the expression profiles in 
the same cell-type. While neither of these methods can locate cells back to small patches, 
our algorithm assign cells into domains as demonstrated in the intestinal-villus dataset, 
in which we successfully mapped cells back to 6 large domains with high accuracy. Our 
algorithm, therefore, provided accurate and high-resolution scRNA-seq data mapping 
compared with other low-resolution methods.  
  
Our method of mapping individual cells back to their original locations also has 
limitations. First, our algorithm’s performance relied heavily on marker-gene-set 
selection. Because building using FISH-like technology to build a reference atlas is so 
expensive, obtaining enough gene candidates may be difficult28. We could overcome this, 
however, by preprocessing the scRNA-seq or bulk-RNA seq data, which would help to 
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shrink the number of marker gene candidates. Second, current reference-atlas-generating 
technology, like Slide-Seq, still has significant limitations6,7, including poor data-quality 
needed that prevented us from capturing well-known marker-gene lots’ expression 
profiles. Despite these challenges, our method still integrated the scRNA-seq data and 
reference atlas very well, and allowed us to correctly map most of the individual cells to 
several unique locations.     
  
When combined with the strengths from both scRNA-seq and Spatial-omics techniques, 
our spatial-expression-pattern analysis and reconstruction identified specific cell 
organizations in physical space based on the assumption that cells in closer physical 
proximity are more likely to have similar expression-profiles. ISH images from Allen 
Brain Atlas and Hipposeq have confirmed reconstructed specific-marker-gene spatial 
patterns in the mouse hippocampus. Our mapped results also provided an alternative way 
to impute low-quality data into Slide-seq.  
  
  
Method overview:  
Suppose that the reference atlas has n positions with p genes, and that the scRNA-seq 
dataset has m cells with the same number of p genes (usually n > m). We aimed to use 
linear regression to assign the m cells into n positions with L1 and generalized L2 norms 
via graph Laplacian. First, we created the position-to-gene-expression matrix. Then, 
based on the matrix, we created one position-to-position graph. If the Euclidean distance 
between two positions was under a specific threshold, the two positions were connected 
in the position-to-position graph. We then created a random-walk-normalized-graph 
Laplacian matrix, which encourage smoothness on coefficients that are connected in the 
graph.  
  
Our model uses a linear method to measure the differences in gene-expression levels 
when assigning cells to locations. The optimal solution minimizes the differences between 
individual cell’s and locations’ gene-expression levels. For each individual cell, we want 
to minimize the following objective function,  

   
where 𝑠 ∈ 𝑅!×# is the single-cell-expression matrix; 𝑇 ∈ 𝑅$×#  is the reference atlas’s 
marker-gene-expression matrix; L is the normalized graph-laplacian computed from the 
location-distance graph. The L1 norm-penalization encourages coefficient sparsity, which 
guarantees that one cell can only be assigned into a few locations. The generalized L2 
norm encourages coefficient smoothness, which encourages that cells with similar gene-
expression levels are more likely to be assigned into closer locations and that one-cell 
assignment is more likely to form a patch that scattered distribution. Overall, our method 
takes full advantage of the relationship between cell-to-cell physical distance and cell-to-
location expression distance.   
  
  
Data preprocessing  
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Drosophila embryo reference atlas   
The embryo consisted of ~6,000 cells and 84 marker genes. Due to the small number of 
markers genes, we merged 6,000 cells into 3,000 cells by binning them similar to the 
strategy Karaiskos et al. used with this dataset. We aimed to assign 1,297 cells into 3,039 
locations. 1,297 cells can be classified into four cell-types using 84 marker genes.     
  
Slide-Seq data normalization  
We normalized the data in log-space following the previous pipeline Nitzan et 
al.  Let 𝑑%&be the raw count for gene i in cell j; we normalized it as  

	

𝑑`%& =	 𝑙𝑜𝑔'(10( ×
𝑑%&

∑ 𝑑)&)
+ 1) 

 
  
Finding highly variable genes in Slide-seq Data and building the reference atlas  
For the mouse-hippocampus data, we manually went through all the spatial-expression 
patterns in the mouse hippocampus to select 79 marker genes and checked the patterns 
with the Allen Brain Atlas. For the mouse cerebellum data, we manually selected 284 
marker genes. We based our reference-atlas construction for different tissues on the 
marker genes.    
  
Down-sampling in Slide-Seq datasets  
In the Slide-seq datasets, we rounded the physical location coordinates to the next integer 
multiple of 50 and filtered out low-quality locations where positions with fewer than 50 
genes expressed were discarded, resulting in 7,724 cells in the mouse-cerebellum section 
and 7,790 cells in the mouse-hippocampus section. We then used neighboring locations’ 
transcriptome sums as the new expression-profiles in the rounded locations.   
  
Finding highly variable genes in scRNA-seq data  
We first normalized and scaled the raw counts in each cell by the median raw-count 
number across all cells. For each cell, we added a pseudocount of 1 before log 
transformation. We selected highly variable genes selected based on the Fano factor, 
defined as *

!

$+
where 𝜎'  is the gene-expression variance and 𝑚5  is the expression mean 

across all cells. We chose a certain mean threshold for the Fano factor.   
  
Graph Laplacian construction  
In physical space, we first constructed an undirected graph G = (V, E), where V is a set of 
nodes consisting of reference-atlas locations and E is a set of edges consisting of the 
Euclidean distance between locations. Two locations are connected if the Euclidean 
distance between them is less than the selected threshold. The random-walk normalized 
Laplacian matrix on physical locations is defined as,  

	
𝐿 = 𝐼 − 𝐷,-𝐴 

 
where D is the degree matrix and A is the adjacency matrix in graph G.  
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The elements of L are shown as,  
	

𝐿%,& = ;

1												𝑖𝑓	𝑖 = 𝑗	𝑎𝑛𝑑	deg	(𝑣%) ≠ 0

−
1

deg(𝑣%)
														𝑖𝑓	𝑖	 ≠ 𝑗	𝑎𝑛𝑑		𝑣% 	𝑖𝑠	𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡	𝑡𝑜	𝑣& 				

0																																											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
  
In expression space, we constructed the graph Laplacian similarly. Nodes are cells and 
edges are the Euclidean distance of expression profiles between two sets of selected 
marker genes in the new graph G`.  
  
Spatial mapping algorithm  
To reconstruct spatial expression patterns, our algorithm performs the following steps:  

1. Read the gene-expression matrix from scRNA-seq and location-matrix from the 
reference atlas.  
2. Construct two Laplacian matrices.  
3. Use CVX to solve for convex function with L1 norm and generalized L2 norm.  
4. Assign cells into targeting locations based on the distribution of 𝛽 in the objective 
function.  
5. Reconstruct the spatial patterns based on the expression-profiles in the scRNA-seq 
data and cell-locations from the mapped results.  
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