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SUMMARY: 

Sleep is a ubiquitous behavior in animal species. Yet, brain circuits controlling sleep remain 

poorly understood. Previous studies have identified several brain structures that promote sleep, but 

whether these structures are involved in sleep initiation or sleep maintenance remains largely 

unknown. Here we identified a population of glutamatergic neurons in the medulla that project to 

the preoptic area (POA), a prominent sleep-promoting region. Chemogenetic silencing of POA-

projecting medulla neurons disrupts the transitions from wakefulness to Non-Rapid Eye 

Movement (NREM) sleep, whereas chemogenetic activation of these neurons promotes NREM 

sleep. Moreover, we show that optogenetic activation of medulla glutamatergic neurons or their 

projections in the POA reliably initiates long-lasting NREM sleep in awake mice. Together, our 

findings uncover a novel excitatory brainstem-hypothalamic circuit that controls the wake-sleep 

transitions. 
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INTRODUCTION 

Sleep and wakefulness are actively controlled by dedicated neural circuits in the brain 

(Scammell et al., 2017; Weber and Dan, 2016). Centered on the mutual inhibition between sleep-

promoting and wakefulness-promoting circuits, a flip-flop model has been proposed to explain the 

mechanisms underlying sleep-wake switching (Saper et al., 2001; Saper et al., 2010). The 

discovery of the ascending reticular activating system (Moruzzi and Magoun, 1949), the orexin 

neurons (de Lecea et al., 1998; Sakurai et al., 1998), and further studies of neuromodulatory 

systems have greatly advanced our understanding of the neural circuits supporting wakefulness 

(Brown et al., 2012; Lee and Dan, 2012; Scammell et al., 2017). In contrast, the neural circuits 

controlling sleep processes are largely elusive. Several sleep-promoting regions have been 

identified, including the preoptic area (POA, particularly the ventrolateral preoptic area and 

median preoptic nucleus, or VLPO and MPO) (Alam et al., 2014; John and Kumar, 1998; Kroeger 

et al., 2018; Lu et al., 2000; Sherin et al., 1996), the parafacial zone (PZ) (Anaclet et al., 2014; 

Anaclet et al., 2012), and the basal forebrain (BF) (Xu et al., 2015). GABAergic neurons in these 

brain regions are sleep-active, and activation of these neurons promotes NREM sleep(Scammell 

et al., 2017). For instance, Chung et. al. demonstrated that TMN-projecting GABAergic neurons 

in the POA were both sleep active and sleep promoting (Chung et al., 2017). Sleep-active neurons 

are also found in a subset of GABAergic cortical interneurons that produce neuronal nitric oxide 

synthase (nNOS) (Gerashchenko et al., 2008; Morairty et al., 2013). In addition to the role of 

GABAergic neurons in sleep control, a recent study identified an excitatory circuit in the 

perioculomotor (PIII) region of the midbrain that promotes NREM sleep (Zhang et al., 2019). They 

found that CALCA-expressing glutamatergic PIII neurons project to the POA and the medulla, 

and optogenetic activation of these projections can promote NREM sleep. 

The POA is the most intensively studied sleep-active and sleep-promoting region. 

Immunohistochemistry studies in rats showed the existence of sleep-active GABAergic neurons 

in the VLPO and a correlation between the number of c-Fos positive cells and the amount of 

NREM sleep (Lu et al., 2002; Sherin et al., 1996). Consistently, electrophysiological recordings 

demonstrated that the firing rate of VLPO sleep-active neurons correlates with the depth of NREM 

sleep (indicated by EEG delta power) (Alam et al., 2014; Szymusiak et al., 1998). Notably, VLPO 

neurons displayed lower activity in the wake-sleep transition period than in the subsequent sleep 

episode (discharge rates further increased significantly from light to deep NREM sleep) 
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(Szymusiak et al., 1998). These findings suggest that VLPO neurons might be involved in sleep 

maintenance whereas other neurons may be responsible for sleep initiation.  

Early transection studies suggest the existence of sleep-promoting neurons in the medullary 

brainstem (Villablanca, 2004). Indeed, recent studies identified a population of GABAergic 

neurons in the parafacial zone (PZ) as a medullary NREM sleep promoting center (Anaclet et al., 

2014; Anaclet et al., 2012). In this study, we sought to identify novel medullary neurons that might 

contribute to the regulation of sleep behavior. We reasoned that neurons projecting to the POA 

could be involved in sleep initiation. In particular, we hypothesized that presynaptic excitatory 

neurons activate postsynaptic POA GABAergic neurons to initiate sleep states. 

 

RESULTS 

 

Medulla glutamatergic neurons project to the preoptic area 

To help identify sleep-promoting neurons in the brainstem, we performed retrograde tracing 

by injecting retrograde virus carrying Cre-recombinase (AAVrg-Cre) in the POA in a reporter 

transgenic line (Ai9, Figure 1A). Four weeks after viral injection, we perfused and examined the 

whole brains by CUBIC clearing and rapid 3D imaging with light-sheet fluorescent microscopy 

(Susaki et al., 2015). The whole-brain retrograde tracing uncovered multiple brain regions that 

project to the POA, with the majority in the forebrain (Figure 1B). Among tdTomato-labeled cells, 

we identified a population of neurons in the ventrolateral medulla (VLM) (Figure 1B-C). The 

labeled cells were largely clustered in areas overlapping C1 adrenergic and A1 noradrenergic 

fields, lateral and dorsal to the lateral paragigantocellular nucleus (LPGi) (Chou et al., 2002). A 

few cells were distributed inside the LPGi. To examine the identity of POA-projecting VLM 

neurons, we used retrograde AAVrg-FLEX-syn-H2B-Ruby3-H2B-Clover3 to express two 

nucleus-localized fluorescent proteins: Clover3 in all retrograde transduced cells and Ruby3 in 

Cre-expressing subset cells (Figure 1D). To test our hypothesis of excitatory connections, we 

performed retrograde tracing by injecting AAVrg-FLEX-syn-H2B-Ruby3-H2B-Clover3 into the 

POA of Vglut2-Cre mice. Indeed, the majority (~60%) of Clover-labeled cells were co-labeled by 

Ruby in the medulla (Figure 1E-F). In contrast, we observed Clover-labeled cells but not Ruby-

labeled cells in the medulla when we repeated retrograde tracing experiments in GAD2-Cre mice 
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(Figure 1E-F). Together, these results indicated that medullary glutamatergic neurons, but not 

GABAergic neurons project to the POA. 

 

Figure 1. Medulla glutamatergic neurons project to the preoptic area. A, Schematic illustrating retrograde 

labelling experiments in Ai9 reporter mice injected with AAVrg-hSyn.Cre.WPRE.hGH in the preoptic area (POA). 

VLM, ventrolateral medulla. B, Left, maximum-intensity z stack of POA-projecting neurons in the whole mouse 

brain, cleared with CUBIC and imaged with light-sheet fluorescent microscopy. The dashed-line box illustrating the 

anterior and posterior boundaries used for reconstruction of coronal and horizontal views on the right. Right top, 

Maximum-intensity z stack of POA-projecting neurons in the optically sliced coronal sections of the brainstem. 

Right bottom, Maximum-intensity z stack of POA-projecting neurons in the optically sliced horizontal sections of 
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the brainstem. Scale bars, 1 mm. C, Three-dimensional reconstruction of POA-projecting medulla neurons in the 

perspective view, the front view, and the ventral view, respectively. A, anterior; D, dorsal; L, lateral. NST, nucleus 

of the solitary tract; XII, hypoglossal nucleus; AMB, nucleus ambiguus; IO, inferior olivary complex. Scale bars, 1 

mm. D, Schematic of retrograde tracing in Vglut2-Cre mice injected with AAVrg-H2B-Clover3-FLEX-H2B-Ruby3 

in the POA. Bottom, coronal section (Bregma -6.84 mm) showing the VLM. E, Representative image of Cre-

expressing cells (Ruby) and all POA-projecting cells (Clover) in the VLM (blue box in schematic) in Vglut2-Cre 

(upper) and Gad2-Cre (lower) animals. Scale bars, 100 μm. F, Quantitation of percentage of Cre-expressing cells 

among all POA-projecting cell (n = 3 animals for Vglut2-Cre, n = 3 animals for Gad2-Cre). 

 

The POA contains different cell types of neurons. For instance, about 85% of the neurons in 

the VLPO contain the inhibitory neurotransmitters galanin and GABA (Sherin et al., 1998; Sherin 

et al., 1996), which are sleep-active and sleep-promoting (Alam et al., 2014; John and Kumar, 1998; 

Kroeger et al., 2018; Lu et al., 2000; Sherin et al., 1996). To examine whether medulla neurons directly 

synapse with POA GABAergic neurons, we used a Cre-dependent monosynaptic retrograde viral 

reporter to study their connections (Callaway and Luo, 2015; Reardon et al., 2016). In GAD2-Cre 

mice, we injected AAV-FLEX-G(N2C)-mKate (Reardon et al., 2016) and AAV-FLEX-TVA-

mCherry into the POA. Two weeks after AAV injection, we injected RABV-DG -GFP-EnvA 

(Reardon et al., 2016) into the same POA region. Seven to ten days after rabies injection, mice 

were perfused to examine GFP expression in the brain. As expected, we identified GFP labeled 

neurons in the VLM (Figure 2), which indicated that VLM neurons are directly synapse with 

GABAergic neurons in the POA.  

Figure 2. Monosynaptic retrograde tracing 

from the POA to VLM. A, Schematic of 

experimental design. GAD2-Cre animals were 

infected with AAV-FLEX-G(N2C)-mKate and 

AAV-FLEX-TVA-mCherry, followed by 

infection with Enva-RABC-DG-GFP in the 

POA. B, Starter cells in the POA labeled by 

mKate/mCherry (red). Blue, DAPI. Scale bar, 1 

mm. C, Rabies-labeled cells in the VLM 

indicated by GFP expression (green). Scale bar, 

0.5 mm. D, Enlarged view. Green, GFP; Blue, 

DAPI. Scale bar, 50 μm. 

POA-projecting medulla neurons are required for wake-sleep transitions 
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Figure 3. Silencing medulla glutamatergic neurons disrupts the transitions from wakefulness to sleep. A, 

Schematic of chemogenetic silencing of POA-projecting medulla neurons. AAVrg-Cre was bilaterally injected in 

the POA and AAV9-hSyn-DIO-hM4D(Gi)-mCherry was bilaterally injected in the VLM. Right, Fluorescence 

images of coronal sections in the VLM (blue boxes above) showing bilateral expression of inhibitory DREADDs. 

Red, mCherry, Blue, DAPI.  Scale bars, 100 μm. B, Schematic of drug administration and sleep recording. C, 

Quantitation of the total wake, NREM sleep, and REM sleep time following CNO (1 mg/kg, i.p. red circles) and 

saline (black circles) treatment (n = 8 mice, paired t-test). D, Quantitation of bout numbers and bout durations of 

NREM sleep within 3 hours after CNO and saline treatment (n = 8 animals, paired t-test). E, Quantitation of bout 

numbers and bout durations of REM sleep within 3 hours after CNO and saline treatment (n = 8 animals, paired t-

test, n.s. no significance, * P<0.05, ** p<0.01). 
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Next, we conducted both loss-of-function and gain-of-function experiments to determine the 

role of the VLM-POA circuitry in sleep behavior. To test the necessity, we chemogenetically 

silenced POA-projecting VLM neurons and then examine its effects on wake-sleep transitions. To 

selectively target POA-projecting glutamatergic neurons in the VLM, we bilaterally injected 

retrograde AAV expressing Cre recombinase (AAVrg-Cre) into the POA, and bilaterally injected 

AAV carrying Cre-dependent inhibitory DREADDs (AAV9-DIO-hM4D(Gi)) into the VLM 

(Figure 3A). As shown in Figure 1, retrograde AAV injected to the POA predominately labels 

glutamatergic neurons in the VLM. After two weeks of recovery, we treated animals with 

clozapine-N-oxide (CNO, 1 mg/kg) or saline and examined their effects on sleep behavior (Figure 

3B). We reasoned that if POA-projecting VLM neurons are required for the transitions from 

wakefulness to sleep, we expect to observe less NREM sleep and more wake time after CNO 

treatment. Since NREM sleep is often followed by REM sleep, we also reasoned that less NREM 

sleep could lead to less REM sleep. Indeed, silencing VLM neurons significantly promoted 

wakefulness and suppress both NREM sleep and REM sleep (Figure 3C). Further analysis 

demonstrated that decreased NREM and REM sleep were caused by decreased bout numbers of 

NREM and REM sleep, while the bout durations of NREM and REM sleep remain unchanged 

(Figure 3D-E). In control experiments, CNO treatment (1 mg/kg) has no significant effect on sleep 

behavior in the wild type mice without DREADDs expression (data not shown). Together, these 

results indicate that POA-projecting VLM neurons are required for the transitions from 

wakefulness to NREM sleep.  

 

POA-projecting medulla neurons are sufficient to promote NREM sleep 

We then examined the sufficiency of POA-projecting VLM neurons in wake-sleep transitions 

by conducting gain-of-function experiments. Using a similar dual viral injection strategy, we 

chemogenetically activated POA-projecting VLM neurons with and examined its effect on sleep 

behavior. We bilaterally injected AAVrg-Cre into the POA, and unilaterally injected AAV 

carrying Cre-dependent excitatory DREADDs (AAV8-DIO-hM3D(Gq)) into the VLM (Figure 

4A). After two weeks of recovery, we treated animals with CNO (1 mg/kg) and saline while 

recording sleep behavior (Figure 4B). We found that chemogenetic activation of POA-projecting 

VLM neurons significantly increased the amount of time animals spent in NREM sleep, 
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accompanied with the decrease of wake time, (Figure 4). We observed no significant change of 

the total REM sleep time after CNO treatment (Figure 4C). Further analysis showed that the 

increase of NREM sleep time was largely due to the increase of NREM sleep bouts, but not the 

bout durations of NREM sleep (Figure 4D). These results indicate that chemogenetic activation of 

POA-projecting neurons in the VLM is sufficient to promote NREM sleep. 

 

Figure 4. Chemogenetic activation of medulla glutamatergic neurons promotes NREM sleep. A, Schematic of 

chemogenetic activation of POA-projecting medulla neurons. AAVrg-Cre was bilaterally injected in the POA, AAV8-

hSyn-DIO-hM3D(Gq)-mCherry was unilaterally injected in the VLM. Right, Fluorescence image of a coronal section 

in the VLM (blue box above) showing expression of excitatory DREADDs. Red, mCherry, Blue, DAPI.  Scale bar 

100 μm. B, Schematic of drug administration and sleep recording. C, Quantitation of the total wake, NREM sleep, 

and REM sleep time after CNO (1 mg/kg, i.p.) and saline treatment (n = 9 animals, paired t-test). D, Quantitation of 

bout numbers and bout durations of NREM sleep within 3 hours after CNO and saline treatment (n = 9 animals, paired 

t-test). E, Quantitation of bout numbers and bout durations of REM sleep within 3 hours after CNO and saline 

treatment (n=9 animals, paired t-test, n.s. no significance, * P<0.05, ** p<0.01). 
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Medulla glutamatergic neurons control wake-sleep transitions 

The transitions from wakefulness to NREM sleep occur in the time scale of seconds. Due to 

the slow process of drug administration, chemogenetic manipulation lacks temporal resolutions to 

track each wake-sleep transition. To address this problem, we then used optogenetics to activate 

the VLM neurons and examine behavioral output. To directly target VLM glutamatergic neurons, 

we stereotaxically injected AAV1-DIO-ChR2-eYFP into the VLM in Vglut2-Cre mice and 

implanted an optic fiber above the injection site (Figure 5A). Upon the offset of light stimulation 

(20 Hz, 2 min), we observed rapid transitions from wakefulness to NREM sleep (Figure 5B).  

 

Figure 5. Optogenetic activation of medulla glutamatergic neurons initiates NREM sleep in awake animals. 

A, Schematic of optogenetic experiment. Middle, mouse brain coronal section (Bregma -6.84 mm). Bottom, 

fluorescence image of VLM (blue box above) in a Vglut2-Cre mouse injected with AAV expressing ChR2-eYFP 

(green). Dashed box indicates the placement of an optic fiber. Amb, nucleus ambiguus; IO, inferior olivary complex. 

Scale bar 100 μm. B, Representative EEG spectrogram and EMG trace in a 2-h session showing the induction of 

NREM sleep after photostimulation (20 Hz, 2 min, blue shade) of medulla glutamatergic neurons. Brain states: 

orange, NREM sleep; purple, REM sleep; gray, wake. C, Brain states before, during and after laser stimulation 

(white dash lines, 20 Hz, 2 min) in awake animals (n = 14). Bottom, probability of wake (black), NREM sleep 

(orange), and REM sleep (purple). Shading, 95% bootstrap confidence intervals. D, Scatter plots and distributions of 

bout durations and relative delta power in optogenetic-induced and natural NREM sleep (n = 14 animals). E, 

Quantification of transition probability from wakefulness to NREM sleep induced by optogenetic activation (n = 14 

for Vglut2-Cre with light, n = 10 for Vglut2-Cre without light, n = 5 for Vglut2-Cre/YFP, n = 6 for Gad2-Cre, 

Mann-Whitney U-test, *** P<0.001).  
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To quantitatively examine the probability of optogenetically induced transitions from 

wakefulness to sleep, we applied video-based closed-loop optogenetic stimulation in awake 

animals. An IR-camera was used to real-time track animal’s movement and laser stimulation was 

automatically triggered by wakefulness. We found that optogenetic activation of VLM 

glutamatergic neurons reliably initiated NREM sleep in awake mice with a transition probability 

of ~80% (Figure 5C, E). Notably, optogenetic-induced NREM sleep episodes lasted a few minutes, 

with a distribution of bout durations similar to that in natural sleep (Figure 5D). Moreover, sleep 

depth indicated by the delta power showed no significant difference between optogenetic-induced 

and natural NREM sleep episodes (Figure 5D). To our knowledge, this is the first study that 

optogenetic stimulation can initiate natural-like NREM sleep. In Vglut2-Cre mice, we performed 

two control experiments: 1) no light stimulation in ChR2-expressing mice, 2) light stimulation in 

YFP-expressing mice (AAV1-DIO-eYFP). As expected, we observed low spontaneous but not 

significant wake-sleep transitions following photostimulation (Figure 5E). As another control, we 

performed similar optogenetic experiments in GAD2-Cre mice. No significant transitions from 

wakefulness to NREM sleep were observed upon activation of VLM GABAergic neurons in awake 

animals (Figure 5E). Together, these results indicate that optogenetic activation of VLM 

glutamatergic neurons can reliably initiate the transition from wakefulness to NREM sleep. 

A notable phenomenon in this study was that NREM sleep occurred following the offset of 

laser stimulation rather than the onset. There are two possibilities: 1) it takes a few minutes of light 

stimulation to induce wake-sleep transitions, and the timing effect is a coincidence due to the 

stimulation protocol we used; 2) nonspecific activation prevents animals falling asleep during the 

stimulation period. To test the first possibility, we activated the VLM glutamatergic neurons with 

different durations of laser stimulation (30 s and 1 min). We found that wake-sleep transitions 

similarly occurred following the offset of laser stimulation (Figure 6A-B). Furthermore, shorter 

durations of stimulation triggered less wake-sleep transitions indicated by slightly lower 

probabilities (Figure 6C). These results excluded the first possibility and suggested that 

nonspecific activation might be the reason, either caused by viral spread to the adjunct regions (see 

below) or the heterogeneity of glutamatergic neurons in the VLM.    
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Figure 6. Optogenetic stimulation with different durations. A, Brain states (upper) and probability (bottom) of 

wake (gray), NREM sleep (orange), and REM sleep (purple) in trials with wakefulness before laser stimulation (30 

s, 20 Hz) from 5 animals. Shading, 95% bootstrap confidence intervals. B, Brain states (upper) and probability 

(bottom) of wake, NREM sleep, and REM sleep in trials with wakefulness before laser stimulation (60 s, 20 Hz). C, 

Quantitation of wake-sleep transition probability with different durations of stimulation (n = 5 Vglut2-Cre mice). 

 

Next, we examined the effect of optogenetic stimulation in sleeping mice by using a fixed-

interval (45 min) light stimulation. In trials with sleep (both NREM sleep and REM sleep) before 

laser stimulation, we found that activation of VLM glutamatergic neurons strongly interrupted 

animal’s sleep and triggered immediate locomotor activity (Figure 7). Interestingly, in the majority 

of these trials, animals were able to switch back to NREM sleep when the light was off. We also 

noticed optogenetic-induced locomotor activity in some awake animals. We speculated that the 

locomotion behavior might be caused by viral spread and non-specific stimulation in a motor area 

in the lateral paragigantocellular nucleus (LPGi), which is adjacent to the target brain region. 

Capelli et. al. showed that optogenetic activation of glutamatergic neurons in the LPGi elicits full 

body locomotion (Capelli et al., 2017). This optogenetic-induced nonspecific locomotion might 

awaken animals from sleep. In addition, this locomotion effect might also cause disturbances and 

prevent animals from falling asleep during the photostimulation period, which could be the reason 

why optogenetic-induced wake-sleep transitions happen following the offset of laser stimulation.  
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Figure 7. Optogenetic activation of VLM glutamatergic neurons in sleeping mice. A, schematic of experimental 

design. B, Optogenetic activation of VLM glutamatergic neurons interrupted sleep in sleeping animals (n = 14 

animals). Left, brain states (upper) and probability (bottom) before, during, and after light stimulation (20 Hz, 

2min), Shading of traces, 95% bootstrap confidence intervals. Right, relative delta power in each trial. Shading of 

trace, s.e.m. 

 

To avoid nonspecific activation, and more importantly to specifically activate the VLM-POA 

pathway, we performed terminal stimulation in Vglut2-Cre animals. To identify the projection 

patterns of VLM glutamatergic neurons in the POA, we first performed anterograde tracing by 

unilaterally injecting AAV-FLEX-tdTomato into the VLM of Vglut2-Cre animals (Figure 8A). we 

found that TdTomato-labelled neurons projected to several regions in the POA with particularly 

dense innervation into the VLPO (Figure 8B). Then, we injected AAV1-DIO-ChR2-eYFP into the 

VLM and implanted an optic fiber above the VLPO (Figure 8C). We found that optogenetic 

activation of VLM glutamatergic terminals in the POA initiated NREM sleep in awake animals 

following the onset of laser stimulation (Figure 8D). Further analysis demonstrated that the bout 

durations were shorter in optogenetic-induced NREM sleep, compared to that in natural NREM 

sleep, whereas the delta power was not significantly different between groups (Figure 8E). 

Furthermore, the wake-sleep transition probability in terminal stimulation was lower than that in 

VLM soma stimulation (Figure 8D). In addition, we did not observe significant locomotor activity 

and sleep interruption upon terminal stimulation in sleeping mice (Data not shown). Together, 

these results indicated that optogenetic activation of the VLM-POA circuitry can initiate the 

transitions from wakefulness to NREM sleep. 
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Figure 8, Optogenetic activation of VLM glutamatergic terminals in the POA promotes the transition from 

wakefulness to NREM sleep. A, Schematic of anterograde tracing experiment. AAV1-CAG-FLEX-tdTomato (red) 

was unilaterally injected in the VLM (bottom) of Vglut2-Cre mice. Blue DAPI. Scale bar, 0.2 mm. B, fluorescence 

image of a coronal section (Bregma 0) illustrating axonal terminals (red) in the POA (enlarged in the middle). Blue 

DAPI. Scale bar, 1 mm. Right, diagram of the POA from the Allen brain atlas.  C, Schematic of optogenetic experiment. 

D, Brain states (upper) and probability (bottom) before, during, and after laser stimulation of VLM glutamatergic 

terminals in the POA of awake animals (n = 7). E, Bout durations (upper) and relative delta power (bottom) in 

optogenetic-induced and natural NREM sleep (n = 7 animals, ** p<0.01, paired t-test). 

 

DISCUSSION 

In this study, we identified a population of glutamatergic neurons in the medulla that project 

to the POA, a prominent sleep-promoting center. Using chemogenetic manipulation, we 

demonstrated that these POA-projecting medulla neurons are both necessary and sufficient for the 

transitions from wakefulness to sleep. Furthermore, optogenetic activation of medulla 

glutamatergic neurons or their axonal terminals in the POA robustly initiates NREM sleep in 
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awake animals. Together, our results uncovered a novel excitatory brainstem-hypothalamic circuit 

that control the transitions from wakefulness to NREM sleep (i.e., sleep initiation). Notably, our 

finding of sleep-promoting excitatory glutamatergic cells in the medulla differs from the sleep-

promoting GABAergic neurons previously reported in the POA (Alam et al., 2014; John and 

Kumar, 1998; Lu et al., 2000; Sherin et al., 1996), BF (Xu et al., 2015), PZ (Anaclet et al., 2014; 

Anaclet et al., 2012), and nNOS+ cortical neurons (Gerashchenko et al., 2008; Morairty et al., 

2013).  

REM sleep-controlling GABAergic neurons have been identified in the ventral medulla(Weber 

et al., 2015), which is adjunct to the glutamatergic neurons in this study. In our optogenetic 

experiments, we did observe that activation of VLM GABAergic neurons in some sleeping animals 

promoted REM sleep (data not shown), possibly due to the viral spread into the adjunct region. 

Previous studies also show that glutamatergic neurons in the ventromedial medulla regulate REM 

sleep and motor atonia (Chen et al., 2017; Vetrivelan et al., 2009). In both chemogenetic and 

optogenetic experiments, we did not observe significant changes of REM sleep following the 

activation of VLM glutamatergic neurons. Our retrograde tracing data demonstrated the POA-

projecting glutamatergic neurons are located more laterally (Figure 1), compared to the neurons 

involved in REM sleep atonia (i.e., in a restricted region within the ventromedial medulla, termed 

supraolivary medulla). Intriguingly, the co-existence of REM sleep-promoting and NREM sleep-

promoting neurons in the medulla implies the possible interaction among these neurons and 

highlights the importance of the medulla in sleep regulation. 

Interestingly, NREM sleep initiated by optogenetic activation of VLM neurons usually lasted 

several minutes and showed similar bout durations to that in natural sleep. This sleep phenomenon 

is novel and different from other optogenetic studies in the POA (Chung et al., 2017), and the PIII 

(Zhang et al., 2019), where the effect of optogenetic activation quickly disappears when light 

stimulation is off. It suggests that sustained stimulation is required for the POA or PIII neurons to 

promote and more importantly to maintain NREM sleep, whereas it is not necessary to maintain 

NREM sleep in our case. Our data suggest the VLM glutamatergic neurons may function as an 

initiator to trigger the wake-sleep transition process, and subsequently their activity may not be 

required for sleep maintenance. Compared to soma stimulation in the VLM, we noticed that 

terminal stimulation in the POA was less effective to initiate NREM sleep, considering both lower 

wake-sleep transition probability and shorter bout durations (Figure 8). These results imply that 
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VLM neurons may project to other brain areas to orchestrate the sleep initiation process. Further 

studies on inputs and outputs of VLM neurons will shed light on mechanistic understanding of this 

process.  
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METHODS 

Animals 

All procedures were carried out in accordance with the US National Institute of Health (NIH) 

guidelines for the care and use of laboratory animals, and approved by the Animal Care and Use 

Committees of Columbia University. Both male and female adult mice which are older than 8 

weeks of age were used for all experiments. The following mouse lines were used in the current 

study: C57BL/6J (JAX 000664), VGlut2-IRES-Cre (JAX 028863), Gad2-IRES-Cre (JAX 

0101802), Ai9 (JAX 007909). Mice were housed in 12-hour light-dark cycles (lights on at 07:00 

am and off at 07:00 pm) with free access to food and water. 

 

Viral constructs 
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AAV1-EF1a-double floxed-hChR2(H134R)-EYFP-WPRE-HGHpA, AAV1-Ef1a-DIO EYFP, 

AAV8-hSyn-DIO-hM3D(Gq)-mCherry, AAV9-hSyn-DIO-hM4D(Gi)-mCherry, AAVrg-hSyn-

Cre-WPRE-hGH, AAV1-CAG-FLEX-tdTomato were obtained from Addgene. AAV1-EF1a-

FLEX-TVA-mCherry from UNC vector core, AAV1-FLEX-2A-G(N2C)-mKate and RABV-DG -

GFP-EnvA, a gift from Charles Zuker. AAVrg-H2B-Clover3-FLEX-H2B-Ruby3, a gift from 

Xiaoke Chen at Stanford University. 

 

Stereotaxic surgery 

Mice were anaesthetized with a mixture of ketamine and Xylazine (100 mg kg-1 and 10 mg kg-1, 

intraperitoneally), then placed on a stereotaxic frame with a closed-loop heating system to maintain 

body temperature. After asepsis, the skin was incised to expose the skull and a small craniotomy 

(~0.5 mm in diameter) was made on the skull above the regions of interest. A solution containing 

100-200 nl viral construct was loaded into a pulled glass capillary and injected into the target 

region using a Nanoinjector (WPI). Optic fibers (0.2 mm diameter, 0.39 NA, Thorlabs) were 

implanted into the target region with the tip 0.4 mm above the virus injection site for optogenetic 

manipulation. For EEG and EMG recordings, a reference screw was inserted into the skull on top 

of the cerebellum. EEG recordings were made from two screws on top of the cortex 1 mm from 

midline, 1.5 mm anterior to the bregma and 1.5 mm posterior to the bregma, respectively. Two 

EMG electrodes were bilaterally inserted into the neck musculature. EEG screws and EMG 

electrodes were connected to a PCB board which was soldered with a 5-position pin connector. 

All the implants were secured onto the skull with dental cement (Lang Dental Manufacturing). 

After surgery, the animals were returned to home-cage to recover for at least two weeks before 

any experiment. 

 

For retrograde tracing, 150-200 nl AAVrg-hSyn.Cre.WPRE.hGH was unilaterally or bilaterally 

injected into the ventrolateral preoptic area (VLPO, Bregma 0.1 mm, lateral 0.9 mm, ventral 5.4 

mm) of Ai9 mice, or 150-200 nl AAVrg-H2B-Clover3-FLEX-H2B-Ruby3 was unilaterally or 

bilaterally injected into the VLPO of Vglut2-Cre or Gad2-Cre mice. For rabies tracing, 200 nl mix 

of AAV-FLEX-G(N2C)-mKate and AAV-FLEX-TVA-mCherry (1:1) was unilaterally injected 

into the VLPO of Gad2-Cre mice. Two weeks after AAV injection, 200 nl Enva-RABC-DG-GFP 

was unilaterally injected into the same VLPO. For anterograde tracing, 50 nl AAV1-CAG-FLEX-
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tdTomato was unilaterally injected into the ventrolateral medulla (VLM, Bregma -6.9 mm, lateral 

1.1 mm, ventral 5.6 mm) of Vglut2-Cre mice. For optogenetic activation experiments, 200 nl 

AAV1-EF1a-double floxed-hChR2(H134R)-EYFP-WPRE-HGHpA was unilaterally injected 

into the VLM with optic fiber 0.4 mm on top of the viral injection site in Vglut2-cre mice. For 

terminal stimulation, 200 nl AAV1-EF1a-double floxed-hChR2(H134R)-EYFP-WPRE-HGHpA 

was unilaterally injected into the VLM of Vglut2-Cre mice, and an optic fiber was implanted in 

the POA.  For chemogenetic inhibition, 200 nl AAV9-hSyn-DIO-hM4D(Gi)-mCherry was 

bilaterally injected in VLM, 200 nl AAVrg-hSyn.Cre.WPRE.hGH was bilaterally injected into the 

VLPO of C57BL/6J mice. For chemogenetic activation, 200 nl AAV8-hSyn-DIO-hM3D(Gq)-

mCherry was unilaterally injected into the VLM, 200 nl AAVrg-hSyn.Cre.WPRE.hGH was 

bilaterally injected into the VLPO of C57BL/6J mice. The ventral coordinates listed above are 

relative to the pial surface. 

 

Sleep recording 

Mouse sleep behavior was monitored using EEG and EMG recording along with an infrared video 

camera at 30 frames per second. Recordings were performed for 24-48 hours (light on at 7:00 am 

and off at 7:00 pm) in a behavioral chamber inside a sound attenuating cubicle (Med Associated 

Inc.). Animals were habituated in the chamber for at least 4 hours before recording. EEG and EMG 

signals were recorded, bandpass filtered at 0.5-500 Hz, and digitized at 1017 Hz with 32-channel 

amplifiers (TDT, PZ5 and RZ5D or Neuralynx Digital Lynx 4S). Spectral analysis was carried out 

using fast Fourier transform (FFT) over a 5 s sliding window, sequentially shifted by 2 s increments 

(bins). Brain states were semi-automatically classified into wake, NREM sleep, and REM sleep 

states using a custom-written Matlab program (wake: desynchronized EEG and high EMG 

activity; NREM: synchronized EEG with high-amplitude, delta frequency (0.5–4 Hz) activity and 

low EMG activity; REM: high power at theta frequencies (6–9 Hz) and low EMG activity). Semi-

auto classification was validated manually by trained experimenters. Relative delta power was 

calculated by dividing the delta power in the 2-s bins by the total EEG power averaged across the 

recording session.   

 

Optogenetic manipulation 
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All optogenetic stimulation were conducted unilaterally. Mice were habituated in the behavioral 

chamber for at least 4 hours before the experiment. Light pulses (20 Hz, 10 ms) with different 

durations (30 s, 1 min, 2 min) from a 473 nm laser diode (Shanghai laser & Optics Century Co., 

Ltd.) were controlled by a microcontroller board (Arduino Mega 2560, Arduino). Laser power is 

set to 4-6 mW for somatic stimulation in the VLM and 10-15 mW for terminal stimulation in the 

VLPO. We used two methods to trigger laser stimulation: 1) wake-trigger stimulation: An IR-

camera (30 fps) was placed on the ceiling to videotape animal behavior. A custom Matlab program 

was used to real-time process video frames to detect animal’s location by subtracting each frame 

from the pre-acquired background image (without the mouse). Laser stimulation was automatically 

triggered when animal movement continued for a period (5 min). A minimal interval of 30 min 

was set between trials. In no-light control experiments, the same trigger method was applied except 

the laser power was off. 2) fixed interval stimulation: inter-stimulation interval for optogenetic 

stimulation is fixed to 45 min.  

 

Chemogenetic manipulation  

After habituation for 12 h in the testing chamber, C57BL/6J mice expressing hM4Di or hM3Dq in 

the VLM were injected with saline (day 1) and CNO (day 2, 1 mg/kg body weight) 

intraperitoneally (i.p.) at the same time of the days. Injections were performed in light cycles 

(10:00 AM) for chemogenetic inhibition and in dark cycles (9:30 - 10:00 PM) for chemogenetic 

activation. In control experiments, wild type mice without viral injection were treated with CNO 

and saline either in light cycles or dark cycles. Sleep recording started at least 1 h before saline 

injection and lasted 24 h after CNO injection. EEG and EMG in the time window (0.5 – 6.5 h after 

CNO or saline injection) were used for data analysis.  

 

Whole brain clearing and imaging 

To identify neurons projecting to the POA, we unilaterally injected ~200 nl AAVrg-

hSyn.Cre.WPRE.hGH in the VLPO of Ai9 reporter mice. Six weeks after viral injection, mice 

were perfused with phospho-buffered saline (PBS) containing 10 U/ml heparin, followed by 4% 

paraformaldehyde. Brains were then harvested and post-fixed in 4% paraformaldehyde for 3 h at 

room temperature. The whole brains were cleared by the CUBIC method as previously 

described(Susaki et al., 2014; Wang et al., 2018). Briefly, mouse brains were washed 3 times in 
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PBS before immersion in CUBIC reagent-1 (diluted 1:2 in water) overnight, incubated in reagent-

1 for 7-10 days. Then, brains were washed with PBS, degassed in PBS overnight, and immersed 

in reagent-2 (diluted 1:2 in PBS) for 6-24 h before incubated in reagent-2 containing TO-PRO-3 

(1:5,000, Thermo Fisher Scientific) for additional 7-10 days. Reagent 1 contained 25 wt% urea 

(Sigma- Aldrich), 25 wt% N,N,N′,N′-tetrakis (2-hydroxypropyl) ethylenediamine (Sigma- 

Aldrich) and 15 wt% Triton X-100 (Nacalai Tesque). Reagent 2 contained 50 wt% sucrose (Sigma-

Aldrich), 25 wt% urea, 10 wt% triethanolamine (Sigma-Aldrich) and 0.1% (v/v) Triton X-100. All 

clearing procedures were performed at room temperature with gentle shake to prevent sample 

deformation caused by temperature fluctuation and fluorescence loss. Reagent 1 and Reagent 2 

were refreshed every 3 days. Samples were imaged in an oil mix (mineral oil and silicone oil 1:1) 

horizontally from ventral to dorsal by Light-sheet fluorescence microscopy (UltraMicroscope, 

LaVision BioTec) as previously described(Wang et al., 2018). The images were acquired with a 

z-step size of 5 μm. Exposure time was 50 ms per channel per z step. Data was processed in ImageJ 

(Fiji distribution). The gamma value of the images was set to 0.5 for display purposes. The whole-

brain data was registered to a reference atlas (Allen Brain Institute, 25-um resolution volumetric 

data with annotation map, http://www.brain-map.org) using elastix (version 5.0) (Klein et al., 

2010; Shamonin et al., 2013).  The voxel size of both sample data and reference template were 

scaled to 6.5 μm. The 3D reconstruction, cell tracing, and structure labelling were performed in 

Imaris (version 9.6, Bitplane). 

 

Statistics 

No statistical methods were used to predetermine sample size, and investigators were not blinded 

to group allocation. No method of randomization was used to determine how animals were 

allocated to experimental groups. Mice in which post hoc histological examination showed viral 

targeting or fiber implantation was in the wrong location were excluded from analysis. Paired t 

test and Mann-Whitney U-test were used and are indicated in the respective figure legends. All 

analyses were performed in MATLAB. Data are presented as mean ± s.e.m. 

 

Code availability 

Custom scripts for EEG/EMG and behavioral analysis are available from the corresponding author 

upon reasonable request. 
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Data availability 

All data supporting the findings of this study are available from the corresponding author upon 

reasonable request. 
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