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Abstract 

As the reconstruction of Genome-Scale Metabolic Models becomes standard practice in systems 

biology, the number of organisms having at least one metabolic model at the genome-scale is 

peaking at an unprecedented scale. The automation of several laborious tasks, such as gap-finding 

and gap-filling, allowed to develop GSMMs for poorly described organisms. However, such 

models’ quality can be compromised by the automation of several steps, which may lead to 

erroneous phenotype simulations. 

The Biological networks constraint-based In Silico Optimization (BioISO) is a computational tool 

aimed at accelerating the reconstruction of Genome-Scale Metabolic Models. This tool facilitates 

the manual curation steps by reducing the large search spaces often met when debugging in silico 

biological models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis to 

evaluate and guide debugging of in silico phenotype simulations. The potential of BioISO to guide 

the debugging of model reconstructions was showcased using GSMMs available in literature and 
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compared with the results of two other state-of-the-art gap-filling tools (Meneco and fastGapFill). 

Furthermore, BioISO was used as Meneco’s gap-finding algorithm to reduce the number of 

proposed solutions (reaction sets) for filling the gaps. 

BioISO was implemented as a webserver available at https://bioiso.bio.di.uminho.pt; and 

integrated into merlin as a plugin. BioISO’s implementation as a Python™ package can also be 

retrieved from https://github.com/BioSystemsUM/BioISO. 
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Background 

The reconstruction of Genome-Scale Metabolic Models (GSMMs) is becoming a standard practice 

in systems biology. GSMMs can be used to simulate the organism’s phenotype under different 

environmental and genetic conditions [1–3]. Flux Balance Analysis (FBA) [4], or related 

constraint-based methods, are used for solving linear programming problems outlined by 

constraints imposed over the stoichiometric model. 

Nevertheless, reconstructing GSMMs is still challenging [1], as model validation and manual 

curation can be laborious tasks [3]. Most bottlenecks derive from accumulated errors, which 

require complex and unique solutions. For instance, when a metabolic network is converted into a 

stoichiometric model, FBA often mispredicts the organism’s experimental growth rate due to 

errors like missing or blocked reactions and dead-end metabolites (gaps), among others.  

The reconstruction of GSMMs can follow two diverse paradigms: bottom-up [1] and top-down 

[5]. The widely-adapted bottom-up paradigm consists of four main steps: draft reconstruction 

based on genome functional annotation; refinement and curation of the draft reconstruction; 

conversion to stoichiometric model; model validation [1]. The last steps of a bottom-up 

reconstruction usually include several time-consuming and repetitive tasks aimed at fixing errors 

that emerged during the draft reconstruction, so that the discrepancy between the predicted 

phenotype and experimental results can be solved. While on one hand errors can be solved using 

manual curation, there are several gap-find and gap-fill tools to accelerate the debugging process. 

Most state-of-the-art tools for debugging draft reconstructions comprehend both automated gap-

finding and gap-filling procedures [6–9]. Nevertheless, there are other tools developed for only 

one of these procedures [10–12]. Besides, gap-find and gap-fill tools can also be separated 

according to the gap-finding and gap-filling methodology. Whereas gap-find algorithms aim to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434259doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434259


find either missing or blocked reactions and dead-end metabolites in a draft reconstruction, gap-

fill tools are responsible for finding potential solutions to the errors mentioned above. 

Regarding gap-finding methodologies, biomassPrecursorCheck [10], and Meneco [6] are based 

on guided-search algorithms to identify gaps or errors directly associated with a given 

objective/reaction. Both tools check the metabolic network topological features to assert gaps. That 

is, these tools assert the existence of predecessors and successors of a given metabolite. The 

COBRA Toolbox’s tool BiomassPrecursorCheck searches for predecessors immediately 

downstream of the biomass reaction of a given model, whereas Meneco accelerates the gap-search 

according to a set of seed and target metabolites provided as input. However, the search depth of 

the latter algorithm may encompass the whole metabolic network.  

gapFind/gapFill [7], fastGapFill [8], and Gauge [9] are based on exhaustive searches. Thus, these 

methodologies identify gaps all over the metabolic network, regardless of a given objective. 

gapFind/gapFill and fastGapfill highlight gaps using a stoichiometry-like approach. These 

methods search the stoichiometric matrix for no-production and no-consumption metabolites. 

Alternatively, Gauge combines Flux Coupling Analysis and gene expression data to propose gaps 

in a draft GSMM. 

To the best of our knowledge, all gap-gill tools require a dataset of metabolic reactions, usually 

retrieved from a biochemical database (e.g. KEGG [13], BiGG [14] or MetaCyc [15]), to fulfil 

metabolic gaps [6–9, 11, 12]. Besides a database of metabolic reactions, both Gauge [9] and 

Mirage [12] require gene expression data. Smiley [11] relies on additional growth phenotype data 

to identify minimal environmental conditions for which the model mispredicted growth and non-

growth phenotypes. Meneco, gapFind/gapFill, fastGapFill, Gauge and Smiley consider the 

minimal reaction set of the whole dataset to fulfil each single gap. Alternatively, Mirage considers 
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a pan-metabolic network that assures flux through all metabolites but then applying a pruning step 

to reduce the large set of solutions. Thus, the solution set is often the result of two very different 

gap-filling approaches, namely the parsimonious and pruning approaches. 

Most state-of-the-art tools for debugging draft reconstructions rely on proprietary software, such 

as MATLAB (Mathworks®) or GAMS. Meneco is the only tool freely available to the community, 

as it is available as a Python package. It is worth noticing though that all tools require coding skills 

to be used. More importantly, the main output of these tools consists of excessively verbose outputs 

such as large arrays of missing metabolites and even greater sets of potential solutions.  

Most gap-fill tools warn that gaps might result from missing mappings between the metabolites’ 

abbreviations and the reference database identifiers. Besides the mapping’s limitations, several 

tools require different format-files for the metabolic data, such as SBML (e.g., Meneco), KEGG 

reaction database lst format file (e.g., fastGapFill), customised text files (e.g., gapFind/gapFill) or 

data structures (e.g., Gauge). On the other hand, other tools lack information on how a different 

source of solutions can be used (e.g., Mirage and Smiley). 

Besides the lack of easy-to-use computational tools, most tools often require long runtimes and 

return highly verbose, complex, and extensive outputs. The examination of these results can be 

challenging for wet-lab scientists who do not have coding skills nor data analysis expertise.  

Several gap-find and gap-fill state-of-the-art tools have been described with further detail in the 

Supplementary Files S1-2.  

Unlike the bottom-up paradigm, the fast and automated top-down paradigm does not resort to gap-

filling procedures. This alternative approach consists of reconstructing an universal GSMM that 

has been curated previously for most common errors [5]. This universal simulation-ready model 
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is then converted to an organism-specific model by carving reactions and metabolites for which 

evidence is missing. Thus, the top-down paradigm can be extremely useful to create microbial 

community models by merging the automated single-species models into community-scale 

networks [5]. Nevertheless, it is still not clear whether single-species models' phenotype 

simulations are unreasonably biased by the universal GSMM. 

The introduction of artefacts in metabolic networks can hinder GSMM’s applications, such as 

metabolic engineering and drug targeting tasks. These issues may be extremely relevant for 

organisms that have evolved due to a combination of extensive loss-of-function events and 

acquisition of key genes, via horizontal gene transfer during co-evolution with well-defined and 

constant ecological niches [16–18]. Moreover, although loss-of-function genetic variants are 

frequently associated with severe clinical phenotypes, several events are also present in healthy 

individuals’ genomes, making it essential to assess their impact [19]. 

Hence, automated approaches, and especially gap-fill tools, must be used very carefully according 

to the constraints raised herein. Otherwise, the offered automation can be a counterproductive 

solution for the manual curation steps performed during high-quality reconstructions. Furthermore, 

the usability of gap-fill approaches can be vastly improved. 

To the best of our knowledge, the reconstruction of high-quality GSMMs is often based on a 

parsimonious bottom-up approach, involving manual curation and human intervention. In our view 

of a parsimonious bottom-up reconstruction, the metabolic network can be divided into smaller, 

yet insightful, modules based on the phenotype being studied. Then, recursive relations can be 

used to accomplish the division of metabolic networks into the smaller modules directly associated 

with the objective phenotype. FBA simulations applied over surrogate reactions designed 
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explicitly for each module can unveil the minor manual curation tasks that often increment the 

quality of the reconstruction and resolve the metabolic gaps for such module.  

With this methodology in mind, BioISO has been designed to automatize the search for reactions 

and metabolites associated with a given objective, narrowing the search space. These reactions and 

metabolites are properly evaluated by BioISO that uses FBA over surrogate reactions. Then, the 

results are presented into a user-friendly manner, so that the debugging process can be easy to 

follow and repeat. 

 

Implementation 

 

BioISO´s algorithm 

BioISO requires a constraint-based model and the reaction to be evaluated, which defines the 

objective function of the linear programming problem to be solved. A recursive relation-like 

algorithm is then used to build a hierarchical structure according to the metabolites and reactions 

associated with this objective. 

BioISO is herein showcased through the analysis of a small-scale metabolic network represented 

in Figure 1, and having 12 intracellular and two extracellular metabolites, 12 reactions, and two 

compartments (extracellular and intracellular). In this metabolic network, the reaction identified 

by R8 is considered missing, blocked, or incorrectly formulated, while identifier R11 refers to the 

reaction to be evaluated. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434259doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434259


 

Figure 1. Small-scale metabolic network. Metabolites and reactions are represented in the 

metabolic network as white nodes and black directed arrows. The extracellular boundary is 

represented as a dashed line. The reactions are listed alongside the metabolic network. In this 
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metabolic network, the reaction identified by R8 is considered missing, blocked, or incorrectly 

formulated. 

 

BioISO starts by finding the set of metabolites associated with the reaction submitted for 

evaluation, namely the reaction R11. The tool will find metabolites J, L, I and M as next nodes since 

these metabolites are involved in R11 (Figure 2). A set of reactions is then created for each node 

and populated with the reactions associated with each metabolite. Thus, BioISO will retrieve four 

sets of reactions, one for each metabolite (Figure 2). 

 

Figure 2. Evaluation of reaction R11 with BioISO. BioISO finds the set of metabolites associated 

with reaction R11, which in this case corresponds to metabolites J, L, I, and M. For the next call, 

BioISO finds metabolites G, H, J, L, F, I, M, and Mext in the reactions R8, R9, R10 and R12 and so 

forth. 
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Meanwhile, BioISO assembles a hierarchical tree-based structure, depicted in Figure 3. The tool 

identifies as precursors (reactants) or successors (products) the metabolites associated with the 

submitted reaction (R11). Thus, J, L, and I (reactants) and M (product) involved in rection R11 were 

separated into two different branches: precursors and successors, respectively. 

In the next recursive call, BioISO retrieves metabolites G, H, F, M, J, L, I, and Mext from reactions 

R8, R9, R10, and R12 (Figure 2), while adding the precursors G, H, F, and M, and the successors J, 

L, I, and Mext to the tree-based structure (Figure 3). These reactions are either consuming or 

producing the metabolites identified in the previous step (J, L, I and M). 

 

Figure 3. The hierarchical tree-based structure, imposed by the recursive relation-like 

computational method implemented in BioISO, is outlined. BioISO finds the set of precursors and 
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successors in the first level, which in this case correspond to metabolites J, L, I, and M, 

respectively. For the next level, BioISO finds the precursors G, H, F for the previous precursors J, 

L, I, which are also successors of themselves. On the other branches, M is its own precursor, while 

Mext is the successor. BioISO has implemented a cache memory system of all simulations 

performed during the recursion. Thus, nodes coloured in blue are only evaluated once, as they were 

already evaluated in those specific conditions. 

 

The stopping condition, namely BioISO’s depth, represents the number of recursive calls 

performed during the analysis of the metabolic network. For instance, varying BioISO’s depth 

from 1 to 3 allows running the tool for shallow, guided or nearly exhaustive searches, depending 

on the metabolic network’s size and arborescence. 

The methodology for finding and assessing metabolites and reactions is detailed in algorithms 

S3.1-4 of the Supplementary File S3. The first algorithm labelled BioISO (algorithm S3.1) is the 

core logic supporting the methodology proposed in this work. BioISO uses algorithm S3.2 to find 

and evaluate (using FBA) reactions associated to nodes. More importantly, BioISO uses a more 

comprehensive approach to evaluate reactants (precursors) and products (successors), as 

demonstrated in algorithms S3.3 (testReactant) and S3.4 (testProduct), respectively.  

In detail, a precursor (reactant) is considered as a positive assessment if the metabolic model can 

produce it (connected metabolite). Thus, a reactant is a product elsewhere in the metabolic 

network; otherwise, it would not be available for the objective reaction. Hence, BioISO evaluates 

an unbalanced reaction explicitly designed to allow the metabolite accumulation in the metabolic 
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model. The evaluation is successful if the model can attain a positive flux in the FBA solution for 

this surrogate reaction. 

For example, when evaluating reaction R11, BioISO will evaluate the precursor I by adding an 

unbalanced reaction R13, which takes I as a reactant, and whose lower and upper bounds are set to 

zero and plus-infinity, respectively. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 →  𝑣13 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 →  𝑆 ∗ 𝑣 = 0 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 →  𝛼𝑗 ≤ 𝑣𝑗 ≤ 𝛽𝑗 , 𝑗 = 1, … , 𝑁 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 →  0 ≤ 𝑣13 ≤  +∞ 

Where: 

• v13 is the linear objective function for maximisation of reaction R13; 

• v is the flux vector; 

• S is the stoichiometric matrix (columns represent reaction fluxes and rows the metabolites 

mass balances); 

• α and β are the lower and upper bounds, respectively. 

Furthermore, a similar reaction is included in the model for each reactant, to prevent the seldom 

cases in which all reactants are forcibly produced by reactions that produce/synthesise the assessed 

metabolite. 

Likewise, BioISO creates unbalanced reactions that allow the uptake of all products associated 

with the evaluated reaction. These reactions are included in the model to cover up for the unlikely 
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scenario that the model forcibly needs to consume/metabolise such products to synthesise the 

precursor. 

On the other hand, a successor (product) is considered as a positive assessment if the metabolic 

model can consume it (connected metabolite). Thus, a product is a reactant elsewhere in the 

metabolic network. As described in the testing of precursor I, BioISO also creates an unbalanced 

reaction for the successor. However, this reaction is now explicitly designed to allow the 

metabolite uptake in the metabolic model. Thus, the minimisation of this uptake reaction is now 

the objective function of the FBA simulation. In other words, the model should now 

metabolise/consume the precursor metabolite, obtaining an optimal non-zero flux solution through 

the unbalanced reaction.  

A detailed description of BioISO workflow to search and assert gaps is provided in the 

Supplementary File S3. 

In short, the procedure to split the objective into two sub-problems and evaluate both metabolites 

and reactions follows the workflow below: 

1. collect the reactions associated with each metabolite to be evaluated; 

2. maximise/minimise the reactions and assess the outcome of the FBA solution; 

3. from such reactions, find the precursor (reactants) and successor (products) metabolites; 

4. create unbalanced reactions allowing accumulation or uptake of the metabolites; 

5. maximise/minimize the unbalanced reactions and assess the outcome of the FBA 

solutions. 
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An analysis of BioISO’s relation-like algorithm’s complexity, together with the recursion tree 

method visualisation, is also provided in Supplementary File S3. 

 

BioISO’s applications 

BioISO is a package developed in Python™ 3 using the FBA framework implemented in 

COBRApy [20]. BioISO relies on COBRApy to read GSMMs written in the System Biology 

Markup Language (SBML) [21]. The IBM CPLEX solver (v. 1210) is used by default to solve 

multiple linear programming problems formulated with the FBA framework, although any solver 

supported by COBRApy can be used. BioISO’s source code, validation procedures and examples 

can be obtained from our group’s GitHub at https://github.com/BioSystemsUM/BioISO. 

A Dockerised Flask application has been implemented to make BioISO available to all scientific 

community at https://bioiso.bio.di.uminho.pt. This webservice allows one to submit a GSMM in 

the SBML format-file to be evaluated for a specific reaction available in the model. Then, BioISO’s 

webservice will return a user-friendly webpage highlighting the metabolic network’s blocked 

reactions and dead-end metabolites according to the submitted reaction. Finally, the user is 

encouraged to navigate through the set of dead-end metabolites in an intuitive manner. 

Besides the webservice application, BioISO is also available as a plugin for merlin [22]. This 

plugin allows using BioISO to supply an equally user-friendly view of the errors associated with a 

given model being reconstructed within merlin. 

Finally, Supplementary File S4 provides instructions to run BioISO in the available applications 

and to interpret the expected results. 
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Results 

BioISO is aimed at identifying errors that emerge during the bottom-up reconstruction of high-

quality GSMMs. Errors such as missing or blocked reactions and dead-end metabolites are often 

met during model debugging and refinement. Thus, BioISO is based on a recursive-like algorithm 

to guide the search for metabolic gaps associated with a given objective. Throughout BioISO’s 

objective oriented search, multiple FBA simulations are used to assert real metabolic gaps. Hence, 

we purpose a tool capable of reducing large search spaces and asserting real metabolic gaps to 

accelerate time-consuming and laborious manual curation tasks.  

Most state-of-the-art tools for debugging draft reconstructions aim to find and solve a wide range 

of problems. These tools are commonly used in automatic gap-find and gap-filling routines. For 

instance, Meneco, gapFind/gapFill, fastGapFill, Gauge, Smiley and Mirage are gap-fill tools 

aimed at finding and solving errors accumulated during the draft reconstruction.  

gapFind/gapFill, fastGapFill and Gauge exhaustive-search tools attempt to assert gaps throughout 

the whole metabolic network. Then, these tools enumerate minimal solutions (set of reactions) to 

solve the highlighted gaps. Alternatively, Mirage and Smiley add new reactions to the model 

without an initial gap-scan, forcing model predictions to match the experimental data. 

On the other hand, Meneco guide-search algorithm searches for gaps according to a set of seed 

and target metabolites. Then, this tool enumerates a minimal set of reactions that can restore the 

flux to all dead-end metabolites identified during the topological search. 

Likewise, BioISO seeks dead-end metabolites downstream and upstream of a user-defined 

objective. Additionally, BioISO performs multiple FBA’ simulations of custom unbalanced 
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reactions during the topological search to evaluate whether a given metabolite is actually being 

consumed or produced. 

More importantly, BioISO is the only tool available to all scientists. That is, BioISO is the only 

user-friendly gap-finding tool, providing a graphical user interface embedded in both a webserver 

and merlin. Thus, our tool allows users to analyse gaps and errors without requiring coding skills 

or additional metabolic data such as growth phenotype data or biochemical databases. Moreover, 

BioISO is a ready-to-use and relatively fast method, allowing users to run this tool iteratively 

during model reconstruction.  

A summary of all features used to compare BioISO with several gap-find and gap-filling tools is 

available in Supplementary Files S1-2. 

Furthermore, BioISO’s validation includes three assessments: BioISO’s algorithm depth analysis; 

Exhaustive-search versus guided-search; BioMeneco – embedding BioISO in Meneco [6]. The first 

analysis was aimed at assessing BioISO’s shallow, guided, or nearly exhaustive searches for 

metabolic gaps in five state-of-the-art models. The second analysis allowed to assess the relevance 

of guided- and exhaustive-searches for gap-finding. In this assessment, we have compared BioISO 

and Meneco guide-searches against fastGapFill exhaustive-search. Finally, the last analysis 

showcases the outcome of setting BioISO as Meneco’s gap-finding algorithm. 

 

BioISO’s algorithm depth analysis 

BioISO was used to analyse several published GSMMs for two objective functions: growth and 

compound production maximisation. The sets of dead-end metabolites and blocked reactions were 

determined as described in the Implementation section. The workflow and methodology used to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434259doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434259


assess BioISO’s algorithm robustness is described in further detail in the Materials and Methods 

section together with Supplementary Files S5-6. 

BioISO’s analysis included different settings, namely varying the algorithm’s depth from 1 to 3 

allowing to set BioISO for shallow, guided or nearly exhaustive searches. 

BioISO’s depth level of 1 assesses the nearest neighbours (successors and precursors metabolites) 

and their associated reactions. According to Figure 4, BioISO analyses less than 50% of all 

reactions for growth maximisation. The number of blocked reactions is significantly reduced at 

depth level 1 (less than 12%), except for the iJO1366 [23] and iBsu1103 [24] models (Figure 4 

and Supplementary Files S6.1-2). Likewise, BioISO only covers less than 10% of all metabolites 

for growth maximisation (Figure 4). As a result, the number of dead-end metabolites found by 

BioISO at a depth level of 1 is less than 3 for all models (Figure 4 and Supplementary Files S6.1-

2). The level of insight provided by BioISO for shallow searches is significantly reduced and 

similar to the biomassPrecursorsCheck tool from COBRA Toolbox [10] or Meneco [6]. 

Increasing the depth level to 2 allows evaluating more reactions. As demonstrated in Figure 4, 

50% or more of the reactions are assessed in all models. Whereas BioISO analyses nearly a quarter 

of all metabolites in the iOD907 [24] and iTO977 [25] models, this coverage increases up to 60% 

in the iJO1366 [25] and iBsu1103 [24] models. In contrast, only 15% of all metabolites have been 

covered by BioISO in the iDS372 [26] model. BioISO also detects more blocked reactions and 

dead-end metabolites for guided searches. The percentage of blocked reactions varies between 

20% to 40%, and the percentage of dead-end metabolites between 2% to 12% (Figure 4 and 

Supplementary Files S6.1-2). 
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At a depth level of 3, a nearly exhaustive search is performed as BioISO analyses more than 70% 

of both metabolites and reactions (Figure 4 and Supplementary Files S6.1-2). Likewise, the 

percentage of detected blocked reactions and dead-end metabolites increases up to 65% and 30%, 

respectively. 

As detailed in the Supplementary Files S6.3-4, similar results were obtained for the maximisation 

of compound production. However, the number of metabolites covered in the iTO977 model is 

considerably lower than the remaining models at depth levels of 2 and 3 (Supplementary File S6.4). 

Figure 4 also presents BioISO’s computation time for each model during growth maximisation, as 

a function of the depth level. BioISO was considerably faster for shallow searches (depth level of 

1) in all models for both growth (Figure 4 and Supplementary Files S6.1-2) and compound 

production (Supplementary Files S6.3-4) maximisation. According to Figure 4, BioISO required 

computation time for a depth level of 2 varies between 2 to 144 seconds during growth 

maximisation. Whereas, during the compound production maximisation, BioISO takes between 4 

to 74 seconds (Supplementary Files S6.3-4). The computation time of BioISO increases 

significantly at the depth level of 3. At this depth, BioISO’s computation time can attain around 

600 and 405 seconds when maximising growth (Figure 4 and Supplementary Files S6.1-2) and 

compound production (Supplementary Files S6.3-4), respectively. 

Hence, BioISO’s computation time is significantly dependent on the size of the covered search 

space. In turn, the covered search space increases with the depth of search and the model’s size. 

Although navigating the network throughout the new metabolites and reactions might not be time-

consuming, evaluating numerous metabolites and reactions using the FBA framework requires 

time. 
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Figure 4. Summary of the reactions (left panel) and metabolites (right panel) analysed by BioISO 

for published Genome-Scale Metabolic Models. BioISO was used to analyse 5 state-of-the-art 
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models (iBsu1103, iDS372, iJO1366, iOD907 and iTO977) with added gaps. BioISO’s analysis 

included different algorithm settings, namely varying the depth from 1 to 3 for each objective 

function, which will control the number of recursive calls for precursors and successors. This 

allowed to run BioISO’s algorithm for shallow, guided or nearly exhaustive searches, depending 

on the size and arborescence of the metabolic network. BioISO’s computation time was recorded 

in seconds (s) together with missing (non-covered by BioISO) reactions and metabolites, non- and 

dead-end metabolites, non- and blocked reactions. 

 

The dead-end metabolites and blocked reactions ratios were calculated as denoted in equations 1), 

2), 3) and 4) of the Materials and Methods section. Figure 5 highlights the ratios of dead-end 

metabolites obtained for both growth and compound production analysis in all models. Both dead-

end metabolites and blocked reactions ratios are also available at the Supplementary Files S6.1-4. 

At a depth level of 1, the ratio of blocked reactions for the objective-oriented search (broos) varies 

between 0.3 and 0.9, whereas the homologous ratio for the whole-space search (brwss) varies 

between 0.02 and 0.25 (Supplementary Files S6.1-4). 

Regarding the ratios of dead-end metabolites, BioISO attains markedly small ratios for the whole-

space search (demwss) at a depth level of 1, namely obtaining ratios smaller than 0.1 in all models 

for both objective functions (Figure 5 and Supplementary Files S6.1-4). However, the ratio of 

dead-end metabolites for the objective-oriented search (demoos) can peak up to 0.35 (Figure 5 and 

Supplementary Files S6.1-2) and 0.85 (Figure 5 and Supplementary Files S6.6-4) in the growth 

and compound production analysis, respectively.  
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The brwss ratios increase significantly when raising the depth to level 2 (BioISO guided search), 

whereas broos ones remain roughly the same as in the previous level. The brwss ratio can vary from 

0.23 to 0.43 (Supplementary Files S6.1-2) and from 0.23 to 0.36 (Supplementary Files S6.3-4) for 

the growth and compound production analysis, respectively. 

The demoos ratio tends to increase as a response to BioISO’s guided search (depth level of 2) in the 

iBsu1103, iJO1366, and iTO977 models during the growth maximisation analysis (Figure 5). In 

contrast to the previous trend, the demoos ratio tends to decrease in the iDS372 and iOD907 models. 

Regarding the maximisation of compound production, BioISO also attains higher demoos ratios in 

both iJO1366 and iTO977 models at a depth level of 2 (guided search). Nevertheless, the demoos 

ratio obtained in the iBsu1103 model is smaller in comparison to the value obtained for the shallow 

search (depth level of 1).  

In general, the demwss ratio tends to increase as a response to BioISO’s guided search (depth level 

of 2) in all models for both objective functions, though not exceeding 0.221. As shown in Figure 

5 and Supplementary Files S6.1-2, the demwss ratio ranges between 0.01 (iOD907 model) and 0.13 

(iBsu1103 model) for the growth maximisation analysis. During the compound production 

maximisation analysis, the demwss ratio is less than 0.1 in all models except for the iDS372 model 

where it peaks 0.221 (Figure 5 and Supplementary File S6.3-4). 

Using BioISO for nearly exhaustive searches (depth level of 3) returns broos ratios between 0.41 

and 0.81, whereas the brwss ratio varies between 0.35 and 0.66 for both objective functions 

(Supplementary File S6.1-4). As for detecting dead-end metabolites during the growth 

maximisation analysis, BioISO nearly exhaustive search attains the highest demoos and demwss 

ratios of 0.455 and 0.327 in the iDS372 model (Figure 5), respectively. Regarding the compound 
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production maximisation, BioISO peaked for a depth level of 3 demooss and demwss ratios of 0.737 

and 0.602 in the iDS372 model (Figure 5), respectively. 

 

Figure 5. Calculated ratios of dead-end metabolites for the maximisation of growth (upper panel) 

and compound production (bottom panel). BioISO was used to analyse 5 state-of-the-art models 

(iBsu1103, iDS372, iJO1366, iOD907 and iTO977) with added gaps. BioISO’s analysis included 

different algorithm settings, namely varying the depth from 1 to 3 for each objective function, 

which will control the number of recursive calls for precursors and successors. This allowed to 

run BioISO’s algorithm for shallow, guided or nearly exhaustive searches, depending on the size 
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and arborescence of the metabolic network. demooss and demwss stand for the ratios of dead-end 

metabolites for the objective-oriented search and whole search spaces. 

 

Although the broos ratio oscillates when rising depth, the brwss tends to increase steadily. Similarly, 

the demwss also tends to increase with depth for both objective functions, whereas the demoos ratio 

mimics the oscillatory behaviour of the broos ratio. The oscillatory behaviour of the broos and demoos 

ratios is heavily pronounced between depth 1 and 2, which can be associated with the reduced 

level of detail that BioISO can provide for shallow searches. 

The high brwss ratios obtained for all levels are likely associated with the fact that BioISO does not 

prevent circular dependencies nor by-products accumulation when testing reactions. The 

interactive output of BioISO in both webserver and merlin guides the user through the dead-end 

metabolites (precursors and successors having an unsuccessful evaluation) while providing the 

evaluation of the reactions for guidance and further insight. 

When testing metabolites, BioISO’s strategy to prevent circular dependencies and by-product 

accumulation as well as the isolated evaluation of precursors and successors seems to have a 

greater impact on reducing the set of dead-end metabolites. The demwss ratio is significantly smaller 

for shallow and guided searchers across all models for both objective functions. 

Furthermore, although BioISO has attained demwss ratios higher than 0.4 for two models during the 

compound production maximisation analysis with a depth level of 3, this ratio remains below 0.33 

in all models during the growth maximisation analysis. The demwss ratios higher than 0.4 obtained 

with nearly exhaustive searches of BioISO may be associated with the factual metabolic gaps that 

do not need to be corrected or might not be associated with the desired phenotype. 
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For example, BioISO has systematically attained higher ratios, for all metrics, when assessing the 

iDS372 incomplete models for both objective functions. These higher scores may be associated 

with poor connectivity of most metabolites involved in the metabolic pathways analysed by 

BioISO, as parasitic organisms evolve in rich media, thus developing auxotrophies [16, 26, 27]. 

Hence, it is worth noticing that the identified dead-end metabolites might be associated with real 

metabolic gaps that should not be gap-filled. 

In short, BioISO scores most of the smaller demwss ratios at the depth level of 2 (guided search). 

Moreover, the gap between demwss and demoos ratios also starts to narrow for BioISO’s guided 

search. The small difference between both metrics suggests that most dead-end metabolites 

suggested by BioISO are a direct outcome of the actual network gaps introduced during the 

validation. Hence, BioISO can suggest a higher number of dead-end metabolites associated with 

the objective, while maintaining the curation efforts at a minimum. 

Therefore, a depth level of 2 was selected as the default level for running BioISO, after analysing 

all demwss. Using this depth value, BioISO can guide the search to identify errors in a given 

metabolic network, without evaluating only the direct precursors and successors, such as 

biomassPrecursorsCheck [10] and Meneco [6], or the burden of evaluating the whole network, 

such as fastGapFill [8] and gapFind/gapFill [7]. 

Furthermore, a significant part of the metabolic network associated with a given objective is 

analysed by the tool for a guided search (depth level of 2), while the required computation time is 

significantly lower. 

Exhaustive-search versus guided-search 
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The exhaustive-search versus guided-search assessment was designed to compare the results of 

two guided-search tools, namely BioISO (guided search – depth level of 2) and Meneco [6], with 

fastGapFill [8] exhaustive-search application. For that, the iJO1366 and iDS372 models obtained 

for the growth maximisation analysis were used in this assessment. The workflow and 

methodology used to compare exhaustive-searches against guided-searches is described in further 

detail in the Materials and Methods section together with Supplementary Files S5-6. Figure 6 

exhibits a summary of dead-end metabolites and blocked reactions ratios calculated for each tool. 

According to Figure 6 and Supplementary Files S6.5-9, Meneco performed the poorest in 

identifying metabolic gaps. Besides the poor performance regarding the assessment of dead-end 

metabolites, Meneco does not provide insights on blocked reactions.  

The number of covered metabolites when using Meneco is the same as the number of metabolites 

selected for target metabolites, as this tool only evaluates target metabolites. No information is 

provided about other metabolites in the metabolic network.  

Hence, although Meneco obtained the lowest demwss ratios in both models (Figure 6), the tool 

suggests the absence of biosynthetic pathways to synthesise all metabolites in the covered search 

space, thus obtaining the highest demoos ratios in both models (Figure 6). In short, most metabolites 

analysed by this tool were evaluated as dead-end metabolites in the incomplete models. 

fastGapFill provides, on the other hand, a level of insight much larger than Meneco, analysing all 

reactions and metabolites in all models (Figure 6 and Supplementary Files S6.5-9). However, the 

exhaustive-search tool is associated with two significant drawbacks. Firstly, fastGapFill is the 

slowest tool (Supplementary Files S6.5-9). Secondly, this gap-filling tool highlights numerous 

blocked reactions and dead-end metabolites according to Figure 6, which might hinder a fast and 
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precise identification of a de facto error in the network, such as the ones introduced in this 

validation procedure. 

For example, fastGapFill has attained higher demwss ratios (Figure 6) for the model of the less 

described and smaller genome’s organism (Streptococcus pneumoniae), which has probably 

evolved through a combination of extensive loss-of-function events during the co-evolution with 

well-defined and constant ecological niches [16, 26, 27]. 

Although Meneco has obtained smaller demwss scores than BioISO, the level of insight provided 

by the gap-filling tool for both metabolic networks is significantly lower than the detail provided 

by our tool. When comparing the demoos ratios, it is clear the lack of insight provided by Meneco, 

as most of the metabolites covered by Meneco are highlighted as dead-end metabolites. On the 

other hand, BioISO can be more effective and precise by suggesting fewer dead-ends out of the 

examined metabolites pool (Figure 6 and Supplementary Files S6.5-9).  

According to Figure 6, BioISO attained lower brwss and demwss ratios than fastGapFill in both 

models. Hence, such smaller brwss and demwss ratios suggest that BioISO is more capable of 

reducing the whole-space search to fewer dead-end metabolites than the gap-filling tool. 
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Figure 6.  Assessment of the relevance of guided (BioISO and Meneco) versus exhaustive searches 

(fastGapFill) for gap-finding. BioISO, Meneco and fastGapFill were used to highlight gaps in two 

state-of-the-art models (iDS372 and iJO1366), with added gaps. The ratios of dead-end 

metabolites (demooss and demwss) and blocked reactions (brooss and brwss) for both objective-oriented 

search (ooss) and whole search (wss) spaces were then calculated for each tool. 

 

When debugging and validating the model for specific objective functions, such as growth 

maximisation, BioISO seems better suited for reducing the search space for errors and gaps in 

metabolic networks, than the other tools analysed in this assessment. This advantage allows 

spending less time debugging unrealistic errors or gaps. Furthermore, as BioISO reduces the search 

space for errors, it also favours parsimonious alterations to the draft metabolic network. As a result, 
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BioISO can be of paramount importance for the high-quality bottom-up reconstruction of GSMMs 

during the manual curation stage. 

However, it should be noticed that Meneco and fastGapFill have been designed to be essentially 

gap-fill tools. Thus, these tools use different approaches than BioISO to find errors. 

 

BioMeneco – embedding BioISO in Meneco 

BioMeneco, BioISO’s integration with Meneco [6], was developed to determine whether the 

former can improve the latter results by narrowing the search space for the gap-filling task. For 

that, reactions “R04568_C3_cytop” and “SO4tex”, were removed from the iDS372 and iJO1366 

models, respectively. Meneco was then used to generate potential solutions for restoring models’ 

prediction of a growth phenotype based on BioISO suggestions for the set of targets (primary input 

for Meneco). 

All metabolites identified as not being produced or consumed by BioISO in the iDS372 model are 

reported in Table 1. These metabolites have been selected for the set of target metabolites after a 

brief analysis of the BioISO’s output. 

In the iDS372 model, BioISO indicated that reaction “R04568_C3_cytop” might be associated 

with the synthesis of a precursor of the lipidic and lipoteichoic acid pathways. Most dead-end 

metabolites identified by BioISO were associated with metabolites “C01356_cytop” and 

“C06042_cytop”, which are biomass precursors representing the lipid and lipoteichoic acid 

cellular biomass fractions, respectively. These suggestions are in agreement with the metabolites 

being synthesised by the reaction removed from the model. Reaction “R04568_C3_cytop” is 

associated with the synthesis of “trans-Tetradec-2-enoyl-[acp]” (“C05760_cytop”), which in turn 
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is a precursor of the compound “Tetradecanoyl-[acp]” (“C05761_cytop”) involved in the fatty acid 

biosynthesis pathway. 

Besides the dead-end metabolites shown in Table 1, BioISO suggested an unsuccessful evaluation 

of all remaining biomass precursors and successors. Nevertheless, only the lipid and lipoteichoic 

acid compounds were identified as dead-end metabolites. The remaining biomass precursors and 

successors refer to the special cases reported in Supplementary File S4. Briefly, these metabolites 

were unsuccessfully evaluated due to a missing or impaired reaction downstream, namely the 

biomass reaction. 

The corresponding precursors and successors of all neighbour metabolites were classified as non-

dead-end metabolites, except for several precursors and successors of the lipid and lipoteichoic 

acid compounds. 

 

Table 1. Metabolites identified by BioISO as not being produced or consumed (dead-end 

metabolites) by the iDS372 model missing R04568_C3_cytop reaction. 

Dead-end metabolite Connected dead-end metabolites 

C01356_cytop (Lipid) C05980_cytop; C06040_cytop; C04046_cytop; 

C00344_cytop 

C06042_cytop (Lipoteichoic 

acid) 

C00116_cytop; C00162_cytop 
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All metabolites identified as not being produced or consumed by BioISO in the incomplete 

iJO1366 model, reported in Table 2, were selected for the set of target metabolites. 

BioISO has indicated that the missing “SO4tex” reaction might be associated with the synthesis of 

a precursor for the sulphur metabolism. Most dead-end metabolites identified by BioISO were 

linked to the iron-sulphur clusters, biotin, bis-molybdopterin guanine dinucleotide, and sulphate 

biomass precursors, which are all associated with the sulphur requirements of E. coli. These results 

are in line with the transport of sulphate to the periplasm, by the removed reaction. The “SO4tex” 

reaction is responsible for transporting sulphate from the extracellular medium to the periplasm, 

which is then transported to the cytoplasm. 

BioISO suggested more dead-end metabolites than the precursors described in Table 2, which are 

absent from the set of “target” metabolites for the iJO1366 model. BioISO negatively evaluated 

the biomass precursors “mobd_c”, “sheme_c”, “cl_c”, and “2ohph_c”. Nevertheless, these 

metabolites have been ignored as dead-end metabolites, as they refer to the special cases reported 

in Supplementary File S4. In fact, the precursors of these metabolites are being produced and the 

successors being consumed, except for the biomass. Thus, BioISO highlighted these metabolites 

because the biomass reaction is, actually, the only consumption site available. These metabolites 

are an example of unsuccessful evaluations that should be easily detected in the user-friendly 

output returned by the webserver and merlin. Moreover, the automatic tools would deal with such 

cases as perhaps regular gaps and try to incorrectly resolve them. 

 

Table 2. Metabolites identified by BioISO as not being produced or consumed (dead-end 

metabolites) by the iJO1366 model missing SO4tex reaction.  
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Dead-end metabolite Connected dead-end metabolites 

2fe2s_c ([2Fe-2S] iron-sulphur 

cluster) 

4fe4s_c; lipopb_c; iscu_DASH_2fe2s_c; iscu_c; 

sufbcd_DASH_2fe2s_c; sufbcd_c 

4fe4s_c ([4Fe-4S] iron-sulphur 

cluster) 

iscu_DASH_4fe4s_c; sufbcd_DASH_4fe4s_c; 3fe4s_c 

bmocogdp_c (bis-molybdopterin 

guanine dinucleotide) 

bmoco1gdp_c 

btn_c (Biotin) btn_p; btnso_c; 2fe1s_c 

so4_c (Sulphate) so4_p 

 

The gap-filling solutions suggested by Meneco for the incomplete iDS372 model are satisfactory, 

as the proposed solutions could restore flux through the biomass reaction, and thus through all set 

of targets initially proposed. Meneco suggests adding reaction “R04568” (which was previously 

removed for this test) to restore the metabolic model. 

Nevertheless, other solutions may add artefacts in the iDS372 model. Reactions “R11633”, 

“R09085”, “R11636”, “R11634”, “R11671” and “R00183” are equally recommended to restore 

flux throughout the set of targets. However, these reactions are not involved in the synthesis or 

consumption of missing biomass precursors or successors. Most reactions are involved in the 

synthesis of biomass precursors not affected by the removed reaction, such as the “R11636” 

(“dCTP” synthesis), “R09085” (carbon metabolism), “R11634” (“dATP “synthesis), and 

“R11633” (“dGTP” synthesis). Other reactions are involved in the synthesis of metabolites not 
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required for S. pneumoniae’s growth. Note that, only reactions suggested in the pool named “One 

minimal completion” were considered. Nevertheless, Meneco provides a complete enumeration of 

all combinations of minimal completions. 

BioMeneco recommended, on the other hand, a reduced pool of gap-filling solutions. In this case, 

BioMeneco suggested reaction “R04568”, but now only three reactions (“R11671”, “R00182”, and 

“R09085”) have been equally proposed. As neither RNA nor DNA were included in the set of 

target metabolites, all reactions previously suggested to restore the synthesis of purines and 

pyrimidines have been discarded. 

Meneco restored the test iJO1366 model for six biomass precursors while indicating 35 

“unreconstructable targets”. Meneco identified the “so4_c” metabolite, which is one of the 

biomass precursors affected by the removal of the “SO4tex” reaction, as “reconstructable”. 

Nevertheless, the remaining metabolites for which Meneco could restore flux were not affected by 

the removed reaction. 

More importantly, Meneco’s output does not comprise the “SO4tex” reaction in the set of gap-

filling solutions to restore flux through all biomass precursors. More surprisingly, the “SO4tex” 

reaction was not included in any combination of minimal completions obtained through the 

complete enumeration of solutions. Furthermore, other potential solutions can lead to the 

introduction of artefacts in the iJO1366 model. For example, all reactions included in the “One 

minimal completion” set of solutions are transport reactions for biomass precursors not affected 

when reducing the iJO1366 model. 

Interestingly, only the reaction “SO4tex” has been suggested by BioMeneco to restore flux through 

all missing biomass precursors and successors in the test iJO1366 model. As this time none of the 
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other biomass precursors was included in the set of target metabolites, all reactions involved in the 

transport of co-factors, ions, and amino acids were discarded from the “One minimal completion” 

pool. 

Therefore, BioISO can be used to decrease large search spaces associated with model debugging 

procedures. Besides proposing a user-friendly application to guide the search for dead-end 

metabolites, we have showcased that BioISO can also facilitate high-quality bottom-up 

reconstructions by adjusting the guided-search gap-filling tool Meneco. For that, we suggest 

BioMeneco as an iterative process comprising two separate tasks: 

1. running BioISO to identify the set of metabolites not being produced or consumed (dead-

end metabolites). 

2. running Meneco using the set of metabolites highlighted earlier as target metabolites, to 

obtain parsimonious solutions to complete draft metabolic networks. 

 

Conclusions 

 

BioISO is a user-friendly tool, capable of performing guided searches of gaps in metabolic 

networks. This tool aims to assist the reconstruction of high-quality genome-scale metabolic 

models by scientists without coding skills, leveraging bottom-up reconstructions that require 

manual curation and human intervention.  

Several state-of-the-art gap-find and gap-fill tools have been surveyed with BioISO, which 

emerged as the only open-source tool ready to be used by everyone in the scientific community. 

Moreover, BioISO is not associated with the significant drawbacks of using a gap-filling method, 
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such as poor usability, requirement for additional data, and recommending biological artefacts due 

to the lack of evidence for the solutions. 

BioISO has been validated with GSMMs available in the literature [23, 24, 26, 28, 29]. BioISO’s 

validation comprehended three assessments: algorithm depth analysis – assessment of shallow, 

guided or nearly exhaustive searches with BioISO; exhaustive-search (fastGapFill [8]) versus 

guided-search (BioISO and Meneco [6]); embedding BioISO in Meneco [6] -  the outcome of 

setting BioISO as Meneco’s gap-finding algorithm. 

The ratio of dead-end metabolites in the whole-space search increases with the depth of search. 

Nevertheless, BioISO attains lower ratios for shallow (depth level of 1) and guided searches (depth 

level of 2). Moreover, a significant part of the metabolic network associated with a given objective 

is analysed by the tool at a depth level of 2, which provides the best trade-off. 

Although BioISO has attained lower dead-end metabolites ratios in the whole-space search than 

fastGapFill, Meneco has scored even smaller ratios. Nevertheless, the level of detail provided by 

Meneco is significantly lower, as most of the metabolites covered by Meneco are highlighted as 

dead-end metabolites. On the other hand, BioISO can be more effective and precise by suggesting 

fewer dead-ends from the examined metabolites pool. 

When debugging and validating the model for specific objective functions, such as growth 

maximisation, BioISO seems better suited for reducing the search space for errors and gaps in 

metabolic networks, than the other tools analysed in this assessment. 

When using BioISO to pre-process Meneco’s set of targets, the latter suggested the correct minimal 

completions. BioISO can improve Meneco’s gap-finding algorithm, facilitating Meneco’s 

integration with a high-quality bottom-up reconstruction workflow by following an iterative 
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process comprising two separate tasks: running BioISO to identify dead-end metabolites; running 

Meneco using the set of metabolites highlighted as target metabolites, to obtain parsimonious 

solutions. 

 

Materials and Methods 

BioISO’s algorithm depth analysis 

The analysis of BioISO’s algorithm depth was performed in parallel for both objective functions, 

namely growth and compound production maximisation. This assessment allowed setting shallow, 

guided or nearly exhaustive searches with BioISO to assess the algorithm’s robustness. BioISO’s 

algorithm depth analysis was performed in five state-of-the-art GSMMs: iDS372 (Streptococcus 

pneumoniae) [26]; iJO1366 (Escherichia coli) [23]; iBsu1103 (Bacillus subtilis) [24]; iTO977 

(Saccharomyces cerevisiae) [29]; iOD907 (Kluyveromyces lactis) [28]. 

For instance, five incomplete models were created for the growth maximisation analysis by 

removing the following reactions from the E. coli iJO1366 model [23], one at a time: SDPTA; 

IMPC; MEPCT; NNDPR; SERAT. The incomplete models were evaluated by setting BioISO’s 

algorithm depth level at 1, and growth maximisation as the objective function 

(Ec_biomass_iJO1366_core_53p95M). This procedure was repeated for the remaining models and 

the depth levels of 2 and 3. Similarly, this procedure was repeated for the compound production 

maximisation analysis.  

Then, two metrics were proposed to evaluate the gap-finding performance, namely the ratio of 

dead-end metabolites and the ratio of blocked reactions. These metrics were used to quantify the 

search space associated with model debugging of gaps and errors. As shown in equation 1), the 

ratio of dead-end metabolites for the objective-oriented search space (demooss) is a function of the 
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number of metabolites that a guided-search tool evaluates as unsuccessful (dead-end metabolite) 

divided by the size of the objective-oriented search space (ooss). The ratio of dead-end metabolites 

for the whole search space (demwss) is a function of the number of found dead-end metabolites 

divided by the wss, as described in equation 2). Equations 3) and 4) describe a similar approach to 

calculate the ratio of blocked reactions for the objective-oriented search (brooss) and the whole 

search (brwss) spaces, respectively. 

 

∑ 𝐷𝑒𝑎𝑑𝐸𝑛𝑑𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠 

∑ 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑒𝑠
  1) 

 

𝑑𝑒𝑚𝑤𝑠𝑠 =  
∑ 𝐷𝑒𝑎𝑑𝐸𝑛𝑑𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠 

∑ 𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑒𝑠
  2) 

 

𝑏𝑟𝑜𝑜𝑠𝑠 =  
∑ 𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

∑ 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠
  3) 

 

𝑏𝑟𝑤𝑠𝑠 =  
∑ 𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

∑ 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠
  4) 

 

Objective functions, settings, evaluation metrics and methodologies used to introduce gaps in 

state-of-the-art GSMMs used during the algorithm depth analysis can also be consulted in detail 

at Supplementary Files S5-6. 
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Exhaustive-search versus guided-search 

The exhaustive-search versus guided-search analysis was performed for both iDS372 [26] and 

iJO1366 [23] models to assess the relevance of guided (BioISO and Meneco [6]) and exhaustive 

searches (fastGapFill [8]) for gap-finding.  

BioISO was used as described in the previous section for a depth level of 2. 

All metabolites available in the extracellular compartment of the iDS372 or iJO1366 models were 

used as seed metabolites to run Meneco gap-finding methodology. Likewise, the set of target 

metabolites was comprised of precursors and successors of the evaluated reactions. The set of 

dead-end metabolites was determined through Meneco’s ‘get_unproducible’ method. Note that, 

Meneco cannot assert blocked reactions. Thus, the set of blocked reactions could not be 

determined. 

fastGapFill was used to assess the whole search space by accounting for errors and gaps. 

fastGapFills’ ‘gapFind’ and ‘findBlockedReaction’ methods were used to determine dead-end 

metabolites and blocked reactions, respectively, in the incomplete models. 

The metrics described in the previous section were then used to assess the tools’ performance, 

namely the ratio of dead-end metabolites and the ratio of blocked reactions. Supplementary Files 

S5-6 present all details about the assessment of BioISO with Meneco and fastGapFill. 

 

BioMeneco – embedding BioISO in Meneco 

The BioMeneco analysis was performed for the iDS372 [26] and iJO1366 [23] models to assess 

the integration of BioISO as Meneco’s gap-finding algorithm. 
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Meneco’s topological search finds dead-end metabolites, so the gaps associated with them can be 

filled with reactions from a universal database. The novelty of Meneco is that it allows selecting 

which gaps should be filled by tweaking the set of target metabolites. Hence, BioMeneco, BioISO’s 

integration with Meneco, was performed to assess whether BioISO can suggest the right set of 

targets to be used as input in Meneco. 

Reactions “R04568_C3_cytop” and “SO4tex”, were removed from the iDS372 and iJO1366 

models respectively, to perform this assessment for growth validation. Meneco was then used to 

generate potential solutions for both models using two sets of “target” metabolites in parallel: 

• The set of “target” metabolites comprised precursors and successors of the evaluated 

reaction in each model. 

• The set of “target” metabolites was formulated based on the identification of dead-end 

metabolites by BioISO. 

BiGG [14] universal database was used as the source of metabolic reactions for the test iJO1366 

model, while KEGG [13] was used to solve gaps in the test iDS372 model. 

 

Availability and requirements 

 

Project name: BioISO 

Project home page:  https://bioiso.bio.di.uminho.pt 

Operating system(s): Platform independent 

Programming language: Python 

Other requirements: None 
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License: GNU GPL v3.0 

Any restrictions to use by non-academics: None 

The data generated or analysed during this study are included in this published article and its 

supplementary information files. 

 

List of abbreviations 

 

BioISO: Biological networks constraint-based In Silico Optimization 

GSMM: Genome-Scale Metabolic Model 

FBA: Flux Balance Analysis 

SBML: System Biology Markup Language 

wss: total size of the whole search space 

ooss: objective-oriented search space 

demooss: ratio of dead-end metabolites for the objective-oriented search space 

demwss: ratio of dead-end metabolites for the whole-space search space 

brooss: ratio of blocked reactions for the objective-oriented search space 

brwss: ratio of blocked reactions for the whole-space search space 
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