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SUMMARY 

Patterns of trial-averaged post-stimulus neural activity, e.g. event related potentials (ERPs) 

are traditionally interpreted as the correlates of cognitive operations. However, single-trial 

trajectories of neural responses approach these ERP components only in a loose and 

stochastic manner, questioning legitimacy of these components’ proposed roles.  

Deconstructing the conventional ERP analyses, here we studied patterns of event related 

variability (ERV) in 2-6 month-old infants and adults using electroencephalography. Our 

analyses reveal that the ERP components are analogous to the biasing forces on the ongoing 

dynamics, which instrument the variability quenching and boosting events along neural 

trajectories. Moreover, the observed ERV possesses a rich temporal structure, modulated by 

both age and task, rivaling in complexity with that of the classical ERPs. Our findings 

suggest that since the early infancy, neural trajectories are actively controlled. This is 

compliant with the hypothesis that neural variability is a resource for cognitive processing, 

rather than unwanted noise. 
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INTRODUCTION 

Since Wundt (1832-1920), the purpose of experimental and later of cognitive psychology 

has been to decompose complex brain functions into simpler processes, or mental operations, 

that could be studied in relative isolation thanks to the careful manipulation of experimental 

parameters(Posner and DiGirolamo, 2000). Following this ambition, thousands of studies 

have been published each year in which the peaks and troughs of average, stimulus-locked 

neural time-series (e.g. ERPs (Event-Related Potentials), as measured with 

electroencephalography (EEG)) have been explained as neural correlates of cognitive 

operations. It is indeed quite remarkable that averaging neural signals across multiple 

presentations of the same stimulus recovers robust and reproducible responses across 

participants. The ERP literature has progressively identified specific neural components 

whose latency and scalp-topography signifies particular cognitive operations from sensory 

processes (e.g. recognition of faces (N170), to high-level processes (e.g. detecting lexicon 

incongruencies (N400), or monitoring our own behavioral errors (ERN: error related 

negativity))(Luck, 2012).  

In this framework, the ongoing/background activity is considered as an unwanted noise 

discarded through the averaging process(Jasper, 1937). While some measurement errors and 

artefacts are indeed unwanted(Verleger, Gasser and Möcks, 1982), the trial-by-trial variation 

of the recorded signal could also be a genuine property of the participant’s brain(Wu et al., 

2014). Furthermore, since complete cognitive processes take place within each individual 

trial, and “mental operations” can vary from one trial to the next (e.g. stimulus visibility at 

threshold, confidence variation, change of strategy, etc), the signature of these operations 

should be detectable within individual trials-- without averaging. This methodological tour-

de-force is sometimes accomplished by powerful time-series preprocessing or machine 

learning algorithms(Jung et al., 2001; Vahid et al., 2020). However, all these methods 
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implicitly assume that the pertinent ERP is a weak signal sunk in uncorrelated noise. Is this 

tenet itself as straightforward as it seems?  

An increasing number of studies suggest that background activity fluctuations in sensory 

areas can bias perceptual report and in attention network affect stimulus detection, thus 

participating in the cognitive process itself and conveying important task-relevant 

information, crucial for efficient cognitive function(Hesselmann et al., 2008; Sadaghiani, 

Hesselmann and Kleinschmidt, 2009). Furthermore, post-stimulus activity and ongoing 

fluctuations do not simply add up but nonlinearly interact(He, 2013) explaining the resulting 

perception and behavior(VanRullen et al., 2011). Finally, spontaneous and stimulus-related 

activity share similarities(Kenet et al., 2003) that increase along development, possibly 

reflecting priors about the structure of the environment which is progressively internally 

encoded(Berkes et al., 2011).  

In such alternative framework, brain activity is thought to unfold along erratic trajectories 

in the high-dimensional space of possible configurations of a dynamical system, shaped by 

the exploration of a complex landscape of dynamic attractors(Mazor and Laurent, 2005; 

Chaudhuri et al., 2019). This activity can then be modulated by task demands, arousal, 

vigilance, etc. at the moment of stimulus presentation(Huk, Bonnen and He, 2018). 

Compatible with this scenario, it was indeed observed that inter-trial variability is not 

constant but is characteristically reduced in the post-stimulus period with respect to baseline 

at rest. This “variability quenching” after stimulus presentation is a cortex-wide phenomenon 

robustly observed at many spatiotemporal scales and across many different tasks(Churchland 

et al., 2010; Arazi, Censor and Dinstein, 2017). It is interpreted as neural trajectories being 

actively constrained by the task to be more reproducible. In human adults, this quenching is 

further increased by endogenous biases, such as active attention(Broday-Dvir et al., 2018) or 

conscious awareness(Schurger et al., 2015).  
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Most observed quenching phenomena immediately follows stimulus presentation, and 

several computational models could explain such mechanistic variability reduction as a 

byproduct of the stimulus presentation itself(Rajan, Abbott and Sompolinsky, 2010; Litwin-

Kumar and Doiron, 2012; Hennequin et al., 2018). The hypothesis that variability 

modulations are not an epiphenomenon but play active role in information processing and 

reflect cognitive processing stages needs new evidence, dismissing the possibility of “trivial” 

quenching.  

One of the appealing aspects of classical ERP analyses is the succession of discrete 

components -- retrievable at various latencies in the time-course of the average stimulus-

induced response that can be attached to different cognitive operations. The identification of 

an analogously rich temporal structure in the dynamics of response variability would both 

dismiss “trivial” quenching and potentially suggest that variability modulation might also be 

a usable marker of cognitive steps, similarly to monitoring the spreading of birds in a flock (– 

a metaphor for different trial trajectories in an ensemble of trials–); which may signal a food 

source, a predator or the wind direction. Furthermore, the modulation of neural variability 

might not be limited to quenching. Increased variability might point to a broader repertoire 

and flexibility of brain states instrumental for task-dependent cognitive processing(McIntosh, 

Kovacevic and Itier, 2008; Naik et al., 2017). 

Hence we searched here for a richly structured dynamics of response variability by 

reanalyzing high-density EEG data obtained in 5 to 24-week-old human infants(Adibpour, 

Dubois and Dehaene-Lambertz, 2018) as well as in adults when they were presented with 

human faces. We chose to study this question in human infants for two reasons: Firstly, 

because maturation; notably in the visual domain, is intense during the first semester of 

life(Braddick and Atkinson, 2011). We hypothesized that these changes would have an 

intricate neural effect on the functional dynamics at this rapidly changing period than during 
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the stable adult stage. The second reason is the observation that human infants are 

exceptional learners(Dehaene-Lambertz and Spelke, 2015). If variability modulation is an 

intrinsic part of the building and manipulation of internals models(Berkes et al., 2011), the 

fast learning pace of infanthood might reveal more complex dynamical changes of stimulus 

relevant variability than the adults who possess relatively stable internal models. 

Furthermore, it is a common belief that unwanted ongoing activity compromises the 

robustness and reproducibility of infant ERPs. Given this belief, a better understanding of the 

potential structure of the variability modulation in single-trial responses might lead to better 

models of cerebral development and learning and tools to gauge infant cognition. 

We considered three indicators to capture the main characteristics of trial-variability (see 

cartoon representations in Fig. 1E): First we characterized ERP flybys: given the mere 

existence of ERP components (corresponding to recognizable group-level scalp topographies 

at expected time-windows following a stimulus), we sought to quantify how the trajectory of 

each individual trial approached these topographies. We evaluated in each subject, the 

distributions of the closest single-trial-distances to the template but also the distributions of 

the latencies of the closest distance. Secondly, we examined between trial variability to 

quantify how close (or far) individual trials trajectories were to each other as they evolved in 

time. It corresponds to the variability quenching described earlier; thirdly we introduced a 

suitable metric of the instantaneous rate of brain state reconfiguration –within-trial 

variability or within-trial speed- to track modulations of trajectory variability along 

individual trials. 

To get a visual sense of these indicators, consider a flock of birds again. Each bird can fly 

on its own trajectory with its own speed. If some interesting landmark exists (e.g. a utility 

pole), each bird will eventually “fly by” that location. However, not all birds will approach 

this landmark exactly at the same time or at the same distance, creating a distribution of 
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latencies of individual bird’s fly-bys to this landmark but also a distribution of fly-by 

distances from the landmark. Note that birds can come closer to each other at any given 

moment, regardless of the reference landmark and also be close to the landmark without 

being close to each other. Hence, one can measure the “spread of the flock” to understand 

how far or close these birds remain regardless of where they are with respect to the important 

landmarks. This is equivalent to measuring between-trial variability at any given time. 

Moreover, one could measure the instantaneous motion speed of individual birds in the 

vicinity of the landmark, in an attempt to uncover the detailed kinematics of approaching the 

utility pole and then leaving away. Some birds may accelerate getting close to the pole but 

slowdown in its immediate proximity in order to avoid collision. In the same vein, we 

quantify with our third indicator the instantaneous rate of fluctuation in single-trial 

topography evolution, to assess the speed of their reconfiguration and the speed profiles 

characteristically associated to ERP components flybys. 

Indeed, despite the simplicity of the tasks, we observed in our young participants, a 

surprisingly complex temporal organization of response variability-- induced by the central or 

lateral face stimuli. This organization gradually emerged through early infancy, and by the 

second trimester of life, reached to a spatiotemporal structure remarkably similar to the one 

confirmed in adults.  Moreover, these characteristic sequences of variability modulations 

were dependent on the task at hand. We propose the term Event-Related Variability (ERV), to 

collectively describe this remarkable sequential and task-specific organization of flybys, 

variability quenching and boosting events, both between and within trials, which rivals in 

complexity with classic descriptions of the modulations of average response (ERP). Such 

ERV dynamics was nontrivial and highly organized in both adults and infants, revealing an 

immediate richness of structured states in infants comparable to later ages. It suggests that 

ERV could serve as a computing resource in infants.  
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RESULTS 

1) Event-Related Potentials (ERP) evoked by face presentation in infants and adults 

Both infants (N=39, 5-24 weeks) and young adults (N=13, 21-27 years) followed rapid 

presentation of unfamiliar faces (alternatively between the lateral hemi-fields) and for a 

subset of infants (N=22, 5-22 weeks), also in the central visual field (Fig 1A(Adibpour, 

Dubois and Dehaene-Lambertz, 2018)). Classical ERP analyses revealed two prominent ERP 

components: an early “P1” and a late “P400”. These components are commonly identified in 

infants in response to visual image, have different neural basis  and correspond to different 

cognitive stages(De Haan, Johnson and Halit, 2003). They were clearly visible at the grand 

average level and had clear equivalent topographies in adults (cf. Fig 1B for infants and Fig 

S1A for adults). For adults, latencies were faster, voltage topographies qualitatively similar 

and overall ERP signal amplitude weaker as compared to infants. For lateral faces: the P1 

response was evident as the first positivity on the contra-lateral posterior electrodes ~250-300 

ms following face onset in infants (Fig 1B) and ~100 ms in adults (Fig S1 A). The P400 

response was a large bilateral positivity on occipitotemporal clusters following P1 response 

around 500-600 ms (~400 ms in adults). For central faces, latencies were faster relative to 

lateralized faces, around 150 ms for the P1 visible on medial posterior electrodes and around 

450-550 ms for the P400 on occipitotemporal channels (Fig 1 B bottom row). The overall 

signal amplitude was larger for central than for the lateral faces. These results are in 

agreement with previous literature on ERP dynamics following face presentation in adults 

and infants(De Haan, Johnson and Halit, 2003; Conte et al., 2020).  Infant N290 topography 

was not prominent and adult N170 topography did not find clear equivalence in infants, 

hence we avoided these “intermediate” components. 
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2) Ongoing Variability Dominates ERP 

While characteristic ERPs existed, single-trial responses were noisy and hardly resembled 

grand averaged responses (Fig 1C; Fig S1B), typically remaining one- or two- order of 

magnitude larger than ERP amplitudes in both adults and infants, with extremely variable 

topographies and no clear peaks or valleys corresponding to the ERP. To illustrate the 

relationship between ongoing and evoked activity, we show in Fig. 1D a 12 s-long-segment 

of continuous EEG data for a representative infant (age=15.4 weeks). At every time point, 

brain topography is represented by a 3-dimensional vector (of activity amplitudes after 

applying Principle Component Analysis, see methods). If stimulus presentation always 

evoked a similar single-trial trajectory, the EEG trajectory time points recorded immediately 

following the presentation of a face stimulus should cluster together within our low-

dimensional projection. Contrarily, post-stimulus trajectory snippets (highlighted in red in 

Fig. 1D) were distributed nearly uniformly through the sampled space. This dispersion 

suggests that post-stimulus temporal fluctuations of neural trajectory were predominantly 

determined by the ongoing activity. In particular, individual stimulus presentation events did 

not lead to a radical reset of the activation topographies and did not constrain them to 

strongly resemble the average reference topographies. 

 With the hypothesis that this tremendous response variability and moment-to-moment 

fluctuations might carry important information regarding the underlying neural and cognitive 

processes, we considered three indicators to quantify the signal variability (see cartoon 

representations in Fig. 1E): ERP component flybys, between trial variability and within-trial 

variability (or trial Speed). We used multivariate pattern dissimilarity with correlation 

distance (i.e. 1 – Pearson Correlation Coefficient) as a metric of dispersion (see Methods). 

Results from all the three approaches are summarized in the following sections. 
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3)  Single-trial flybys to classic ERP components are modulated by age and hemisphere 

Despite erratic trajectories, grand average ERP topographies are reproducible across 

studies suggesting they capture stimulus-relevant information. Hence we analyzed how 

individual trials approach (fly-by) these “landmark events” (i.e., in our bird flock metaphor, 

how close and when individual birds in the flock approach the pole). We defined the grand 

averaged P1 and P400 topographies (separately for infants and adults) as “ERP-templates” 

and examined the distributions of the latencies and distances of the single-trial flybys to these 

templates (Fig 2 and S3, see Methods). 

For all task-conditions, trials remained quite far from the ERP-templates most of the time 

(flyby distance ~0.8- 1; Pearson correlation: 0-0.2, Fig2A, FigS3A, B). However, individual 

trial trajectories slightly and significantly reduced their distance to the ERP-templates around 

specific latencies (Distance drops in Fig. 2A and S3A respectively for right and left faces, 

emphasized by red vertical lines). For lateral faces, trials approached the P1-template around 

[150, 350] ms; and the P400-template about [400,600] ms post-stimulus onset. For the central 

faces, closest approach to P1- and P400-templates occurred about [-150, 150] ms and [350, 

550] ms respectively (Fig S3 B). 

To quantify age-dependency of flyby latencies and latency jitters around the ERP 

components, we estimated distribution of closest single-trial flybys for each infant and adult, 

and studied whether their medians and standard deviations were correlated with age.  

     Fly-by latencies: The median of the flyby latencies to both the P1- and P400-templates 

significantly decreased with infant’s age for the faces presented on the right hemi-field (P1: 

r= -0.39, p<0.006 from ~280 ms at 5 weeks to ~200 ms at 24 weeks; P400: r= -0.38, p<0.009 

from ~600 ms to ~500 ms, Fig. 2A) but not for left or central hemi-field (Fig S3 C,D top 

panels). This initial delay in fly-by latencies for the right faces (processed by the left-

hemisphere) in the youngest infants, congruent with several results showing a slower 
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maturation of the left hemisphere compared to right(Chiron et al., 1997) suggest a catch-up 

relatively to the more mature right hemisphere during this period. Median fly-by latencies for 

adults were much faster than that of infants, continuing thus the decreasing latency trend 

already observed over the first two semesters of life (inset box-plots in Fig. 2B and Fig S3 C 

top panel; P1 median latencies across adults: 96 ± 13 ms for right faces and 83 ± 6 ms for 

left faces; P400 median latencies: 312 ± 20 ms for right faces and 308 ± 18 ms for left faces).  

 Spread of fly-by latencies: Did age modulate the temporal precision of the fly-bys, i.e. 

did all the trials approach the ERP-templates precisely at the median time for all babies or did 

they fluidly pass close to these templates at different times? The standard deviation of the 

closest flyby latencies varied ~40-60 ms from their respective medians in each infant. 

Surprisingly, even though infants on an average became faster to approach the ERP-

templates, the “spread” of the P1-flyby latencies significantly increased with age (Fig 2B left 

bottom panel, r = 0.45, p<0.002), suggesting that the infants became less temporally precise 

or more flexible in approaching P1-template (loose formation of the flock around this pole). 

By contrast, the spread of P400-flybys showed a moderate negative trend (Fig 2B, right 

bottom panel, r = -0.26, p<0.055), suggesting that infants became more temporally precise in 

approaching the P400-like state (tighter flock formation around this pole). Again, this effect 

was significant only for the right faces but not left or central faces (Fig S3 C, D bottom 

panels), another indication that the left hemisphere was catching up with the right hemisphere 

in terms of maturation or perhaps indicating the ongoing maturation of corpus-

callosum(Adibpour, Dubois and Dehaene-Lambertz, 2018). Interestingly, adults also showed 

a ~40-60 ms jitter across trials as compared to their median P1 and P400-flyby latencies 
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(Figure 2 B box plots: P1-latency jitters: 54 ± 4ms for right  and 50 ± 5ms for left faces; 

P400 latency jitters: 57 ± 3 ms and  56 ± 2 ms for right and left faces respectively).  

Mean and dispersion of flyby distances: Similar age-effect analyses can be performed 

on the mean and dispersion of the flyby distance amplitude distributions (Fig 2C, Supp. Fig 

S3 E,F). The means of P400 but not P1-flyby distances reduced with age for left, right and 

central faces, suggesting that on an average, trials in older infants passed closer to P400-

template than those in young infants. (r = -0.37, p<0.02, r=-0.52, p<0.006, r = -0.26, p <0.06 

for left, right and central faces respectively). While the mean distances reduced with age, the 

trial variability (S.D.) of distance to P400 (but not to P1) template increased with age -- for 

all conditions (left faces: r = 0.42, p<0.003; right faces: r = 0.34, p<0.02 and central faces: r = 

0.53, p<0.007)). This suggests that even though trials on an average passed closer to P400 

template, they remained more flexible in how far or close they could fly from their respective 

baseline close to this template. For P400-flybys, these trends continued well into the 

adulthood, i.e., trials passed on average much closer to the template but trial variability 

remained higher for adults than for all infants (Fig 2 C, right box insets and Fig S3 E, F box-

plots and table 1). These results suggest a common mechanism for the maturation of flyby-

distances around P400, not affected by differential maturation of hemispheres.      

To summarize, single-trial event-related dynamics significantly changes with age: it 

becomes in general more fluid (faster and relatively more variable in timing or distance of 

approach), is specifically affected by the event it approaches (P1 or P400) and in case of 

infants, by the hemisphere probed by the lateralized stimulus, thus probably by its 

maturational stage.       

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434162doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434162


4) Between-trial variability quenching (VQ) after stimulus presentation 

Irrespective of their approach to the templates, trials can remain far or close to each other 

at any point. Hence, as the second approach at characterizing ERV, we investigated between-

trial variability (i.e., how tight or loose is the flight formation of the bird flock, see Methods).  

We observed a significant post-stimulus decrease in the between trial variability for all task-

conditions and for both infants and adults (Blue plots in Fig 3A-B, sup Fig S4). For infants, 

between-trial variability significantly remained 1-2 standard deviations lower than the 

average baseline variability ~200-700 ms post-stimulus (p < 0.001 for left, right faces and 

p<0.003 for the central faces), while in adults, significant VQ occurred ~150-500 ms 

(p<0.005), similar to the duration previously reported for variability quenching in 

aduts(Schurger et al., 2015). 

Between-trials variability quenching is not automatically induced by ERP component 

flybys: The latency of the largest post-stimulus quenching (lowest variability) significantly 

differed across age-groups and task conditions. Strikingly, for lateralized faces, the latency of 

the significant VQ coincided with the latency of the closest P1-flyby in the youngest infants 

(First trimester: 5-12 week-olds, N=14) whereas in the older infants (Second Trimester: 16-

24 weeks, N=13), the moments of VQ co-occurred with the P400-flyby (Fig 3 A). In other 

words, in younger infants, the trials “flight formation” remained on an average more compact 

when flying by the P1-template (significant VQ times: 204-352 ms, window of closest P1-

flyby: 175-400 ms). By contrast, in older infants, trials remained the closest to each other 

when passing near the P400-template (significant VQ: 432 – 616 ms, closest P400-flyby: 

432-620 ms). 

Importantly, the absence of between-trial VQ did not imply absence of a flyby. Indeed, in 

first-trimester infants, trials still had a marked P400-flyby even when there was no between-

trial VQ at the corresponding latency. Analogously, there was still a P1-flyby for second-
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trimester infants despite the lack of a P1 VQ. These effects were consistent for both left and 

right face presentation (Fig S4A-B). Thus, flying by an ERP component appears to be a 

necessary but not a sufficient condition for between-trial VQ.  In adults too, a single window 

of VQ coincided with the P400-flyby, similar to the second-trimester infants’ pattern (Fig 3C, 

Fig S4 C, and D). However, the VQ was much larger in adults than in infants, trials 

remaining significantly close to each other during the entire duration of the P400-flyby 

(significant VQ: 140 – 460 ms, P400-Flyby: 120-528 ms). Moreover, variability around P1-

flyby was significantly higher in adults than in young and old infants. By contrast, the 

variability around P400-flyby was significantly higher in young infants than in both older 

infants and adults (box plots in Fig 3D, stats: table 2).  

Between-trials variability quenching depends on both stimulus configuration and 

age: The temporal shift of the between-trials VQ, from P1 to P400 gives the first proof of a 

change in the ongoing dynamics occurring over the first semester of life. However, such a 

shift may also be due to the structural changes in the peripheral visual pathway and V1 which 

are known to reach a milestone at this precise age (Braddick and Atkinson, 2011; Adibpour, 

Dubois and Dehaene-Lambertz, 2018). To investigate the possible origin of such a shift, we 

repeated the same analysis in the subset of infants who were also presented with central faces 

(Fig 3B). We found that the VQ at P1 but not P400-flyby significantly differed within the 

same infants for the two different face stimuli configurations (Wilcoxon signed rank (z)=58, 

p<0.025 for P1,  z=123,p>0.92 for P400). Interestingly, when presenting central face stimuli, 

the VQ co-occurred with the P400-flyby even for 5-12 weeks infants, similarly to the 

response to lateral faces observed in 16-24 weeks infants. Fig 3C summarizes the time-ranges 

of between-trials variability quenching and P1/P400-flybys across all age groups and 

experimental conditions (p<0.05, all analyses were corrected for multiple comparison and 

temporal independence using one-sided cluster-based permutation t-test).  
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Nevertheless, age quantitatively affected the strength of inter-trial variability quenching 

events. As expected from the observed inter-group differences, we found a linear increase of 

the strength of between-trials variability quenching with age at the P400-flyby latency mainly 

for lateral faces but not for central faces (Fig 3D bottom panel, r = -0.43, p <0.003 for left 

faces; r = -0.30, p <0.03 for right faces; r = -0.13, p <0.3 for central faces), further confirming 

the qualitative differences observed in quenching dynamics for different stimuli 

configurations. Table 2 compares infants with adults.   

In summary, these results collectively prove the existence of a rich temporal structure in 

the dynamics of between-trials variability, qualitatively and quantitatively maturating over 

the first semester post-term birth. Such dynamics follows a different maturation trajectory 

than ERPs and in the same infants its temporal structure can be modulated depending on the 

task at hand. Moreover we observe that such quenching was spatially global phenomena 

(suppl. Text, Fig S5). 

5) Age-related increase and structure of within-trial variability 

Our third and last strategy was the analysis of within-trial variability (i.e., how and when 

individual birds within the flock modify their speed of flight). For this, we quantified how the 

topography of activations evolved from one time-point to the next – i.e. the distance traveled 

in the space of possible activity topographies –over a unit time, hence reinterpreted as a 

measure of the within-trial speed in the topographic activity space (see Methods). Thus, 

topographies of activations which are stable over time and fluctuate very little from one 

moment to the next yield instantaneous within-trial variability close to zero. Conversely, 

abrupt changes of topographies occurring at specific instants –as e.g. eventual switching 

between microstates(Michel and Koenig, 2018) – would map to sudden increases of the 

instantaneous within-trial speed.  
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Absolute within-trial variability increases with age: We observed a significant positive 

age-effect on the average absolute within-trial speed across all epochs irrespective of the task 

condition (Fig 4 A for lateral faces: r= 0.38, p<0.01; Fig S6 A for central faces: r=0.56, 

p<0.009). The relationship between age and within-trial speed extended further to adults as 

well; i.e. within-trial speed of adults was significantly higher compared to infants (box plot in 

Fig 4A, H= 24.33, p<10^-5, Kruskal-Wallis test, Absolute within-trial speed (correlation 

distance a.u.*10^-3) for 5-12 wo: 7.65 ± 1.63 and for 16-24 wo: 11.17 ± 3.49 and for adults: 

15.82 ± 2.87) and for an individual adult, strikingly similar across task conditions (p>0.1 for 

all individual condition-wise differences, Wilcoxon-ranksum test). These results suggest that 

large-scale fluctuations of brain-states become globally more variable with age irrespective of 

task (i.e., birds within the flock move more swiftly).  Interestingly, we also observed that 

distributions of instantaneous within-trial speed were heavy-tailed for both infants and adults 

(Supplementary Text, Fig S6 A, and S6D). 

   The structure of speed profiles around ERP flybys is modulated by age:  Instead of 

looking at within-trial speed during entire duration of trials, it is interesting to understand 

how it is specifically modulated during the approach to known evoked ERP components (e.g., 

what are the speeds of individual birds flying close to the poles). We performed flyby-

triggered averages of within trial speeds by pulling together all individual events of closest 

flyby to templates(sometimes multiple events per trial) and averaging within-trial speed in 

800-ms window around these events (peri-fly-by speed profiles, Fig 4B, see Methods).  Fig 4 

C, D shows average within-trial speed in the vicinity of respectively P1 and P400-flybys for 

lateral faces (Fig S6 B for central faces). In these profiles, peaks and troughs of within-trial 

speed are clearly visible, distributed symmetrically around the flyby time, and tend to get 

more marked with age. Irrespective of their absolute within-trial speed, on an average, trials 

transiently slowed down around both P1 and P400-flybys, but for all conditions and age-
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groups with a larger slowing down around P400-flyby than for P1 (condition wise signed 

rank test: H=30, p<0.001, H=55,p<10^-5 and H =1.0,p<0.0005 for infant central, lateral and 

adults lateral faces respectively). Given that the overall within-trial speeds increased with 

maturation, it was remarkable that, in the vicinity of P400-flybys, trial speed decreased ~2 

S.D. below the average speed for both young and old infants (e.g., individual birds fly overall 

faster, but noticeably slowing down around the specific poles).  Adults looking at lateralized 

faces showed a similar qualitative speed profile, but within-trial slowing down around P1-

flybys was no longer significant, while the slowing down around P400-flyby was even more 

pronounced than in second trimester infants (Fig 4C,D dashed green lines).  

These characteristic speed profiles are reminiscent of the accelerations and decelerations 

that a physical ball would experience when rolling on a surface with different potential 

energy landscape (accelerating while descending into the valley and decelerating while 

ascending out of the valley due to gravity, Fig. 4 E & F). It is thus tempting to interpret these 

speed profiles as reflecting the influence of a “force field” getting more intense with 

increasing age, a set of control influences on system’s trajectory manifested while 

approaching critical points. 

To quantify age-effect, we extracted for each infant the peak and trough of the relative 

within-trial speed in the ~100 ms windows centered and aligned to flybys. Despite transient 

slowing down at P1, it was the amount of peri-flyby speed increase after P1 flyby (the peaks 

in the speed profile) that positively correlated with age for lateral but not central faces (r= 

0.41, p<0.005, Fig 4G, Fig S6 D, E for left and right faces respectively). In contrast, for P400 

flybys, for both central and lateral faces, it is the depth of the speed trough that augmented 

with age, associated to a more marked slowed down (r = -0.43, p<0.003, Fig 4H; see Fig S6 

C,D for the left and right faces separated). Table 3 summarizes the significant time-clusters of 

group-level fly-by triggered speed differences. 
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To conclude, we observed a characteristic slowing down and speeding up of single-trials 

at the time of their closest flybys to the known ERP templates that differed with age and task 

conditions. While overall within-trial state fluctuations increased with age, we saw age-

dependent decrease of within-trial variability around P400 flyby where between-trial 

variability found its minima. We show that these modulations of between and within-trial 

variability were independent of the overall signal-to-noise ratio as measured by L2-norm (Fig 

S7, supplementary text). 

 

DISCUSSION 

In this study, we demonstrate the existence of a rich temporal organization of response 

variability in adults and infants, apart from the already known temporal structure of the 

response means (i.e. Event Related Potentials (ERPs)). We thus propose the concept of 

Event-Related Variability (ERV), generalizing the ERPs, to refer to the temporally structured 

dynamics of response fluctuations. To characterize ERV, we focused on the complementary 

aspects of: single-trial (dis-)similarity to known ERP components (ERP flyby analyses, Fig. 

2); reproducibility of response trajectories across different trials (between-trials variability 

analyses, Fig. 3); and, changing rate of reconfiguration of the induced activity topographies 

along individual trials (within-trial speed analyses, Fig. 4). Our results confirm that for both 

infants and adults, the trial variability remains very large (absolute correlation distances of 

order ~0.95, hence Pearson coefficient ~ 0.05) and yet this variability is significantly 

modulated by the face presentation. In all conditions, an epoch of enhanced trajectory 

reproducibility (decreased variability) is detected after stimulus presentation, confirming 

many previous reports in adults(Churchland et al., 2010; Schurger et al., 2015).  Beyond 

these previous studies, we observe that the latency of between-trial variability quenching 

evolves through age and that, at a given age, is strongly modified by the task at hand. 
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Furthermore, we observe that enhancements of trial reproducibility always occur in time 

ranges in which trials tend to fly at a closer-than-average distance from an ERP template. The 

opposite however is not true, establishing ERP flybys and between-trials variability 

quenching as partly independent phenomena. The fact that some flybys co-occur with a 

between-trials variability quenching and some others not suggest that there are different ways 

to approach an ERP component. When there is no simultaneous between-trials variability 

quenching, trials get close to a specific activity configuration (reminiscent of the target ERP 

component template) but do it every time in a rather unconstrained fashion (e.g. one bird may 

fly by the same pole coming from a nearby roof and some other from a tree far away). On the 

contrary, when there is a simultaneous quenching, a specific path of approach is followed 

more faithfully (e.g. birds that would approach the pole always flying southward along the 

power line).  

Does variability quenching denote top-down processes? 

Various elements suggest that quenching events are not a mere automatic consequence of 

stimulus presentation, but may be the signature of a more efficient control exerted on the 

system’s trajectory, possibly implementing a form of top-down regulation: First, quenching 

can occur even late, after the stimulus onset e.g. in older infants, for whom quenching 

occurs during the P400 time-window. Second, age does not simply extend the time-window 

of quenching but shifts its target from P1 to P400 and third, even at a given age, the 

quenching dynamics can be qualitatively modified by even small changes in the stimulation. 

First-trimester infants show P1-component flybys when presented with both central and 

lateral faces; however variability quenching at this flyby occurs only for the latter. These 

observations suggest that the presence or absence of quenching might reflect the difficulty of 

the task. Indeed, lateral faces are more difficult to perceive for infants, because of the 

competition of the lateral face with the central attractor in our experimental paradigm, but 
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also due to slower maturation of parafovea compared to fovea(ALLEN, TYLER and 

NORCIA, 1996). Thus, a quenching event where the system’s dynamics is channeled along a 

specific track might reflect a requirement for a more intensive information processing than 

what is possible when just realizing a “hit and run” visit to a P1-component.  Such an 

improved control on trajectories could be achieved via top-down regulatory mechanisms, 

whose existence in infants has been confirmed experimentally(Emberson, Richards and 

Aslin, 2015; Kouider et al., 2015; Kabdebon and Dehaene-Lambertz, 2019). 

The shift of focus for variability quenching, from P1 to P400 at ~12 weeks (for lateral 

faces) corresponds to an age when vision improves considerably. The end of the first 

trimester represents a first landmark in visual development when several peripheral structures 

reach maturity (e.g. lens, fovea) and myelination of the optical fibers and maturation of V1 

reach a plateau after a period of rapid change. The latency for visual P1 for central faces 

converges to adult values already at 12 weeks(Dubois et al., 2008), while peripheral vision 

matures more slowly(ALLEN, TYLER and NORCIA, 1996). Feed-back connectivity is also 

progressively restructured, passing from disperse growth to selective pruning (Kennedy et al., 

2007) which may allow for more effective attention control or predictive influences. Thus, to 

disentangle between bottom-up and top-down contributions to this phenomena, future studies 

will have to analyze ERV dynamics and its remodeling in tasks in which difficulty and 

information processing load can be parametrically adjusted.    

  Our developmental dataset allowed determining that already at the end of the first 

trimester of life; the flyby dynamics and between-trials variability in infants have reached a 

temporal organization qualitatively analogous to that of the adult subjects. Such an early 

emergence of an adult-like ERV, suggests that ERV structure is a feature of cognitive 

architectures conferring fundamental advantages. Acquiring the capacity to actively modulate 

the level of the internal state fluctuations might be instrumental in efficient perception and 
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behavior. The role of higher-level representations have been recently emphasized challenging 

the classical purely bottom-up view of learning(Tenenbaum et al., 2011). In this perspective, 

functional architectures should involve specific computations at different levels of a 

processing hierarchy but also allow the upper-level to constrain lower-level learning. Note 

that overall fluctuations are not suppressed by development, but actually boosted (cf. Fig. 

4A), as we found in agreement with other reports(McIntosh, Kovacevic and Itier, 2008) . 

Such enhanced variability could stem from the learning of richer models of a complex 

environment, encoded in the statistical structure of intrinsic activity fluctuations, or from a 

better sampling of these internal models(Ma et al., 2006; Berkes et al., 2011). At the same 

time, if the specific computations are more difficult or longer to perform, they may require 

the transient stabilization of specific dynamical modes –which are not necessarily point 

attractors(La Camera, Fontanini and Mazzucato, 2019)– enabling suitable modes of 

information routing or processing(Palmigiano et al., 2017; Clawson et al., 2019). To 

efficiently perform task-related processing, the system should thus be able to switch between 

large variability epochs –facilitating inference and exploration– and consistently reproducible 

metastable states, as possibly indicated by variability quenching events at more computation-

intensive task stages. 

Within-Trial Variability Modulation  

         Response variability modulation events also take place within individual trials in both 

infants and adults confirming and extending previous results on adults(Schurger et al., 2015). 

If a between-trial variability quenching event denotes that system’s trajectories follow a 

specific “flux tube” to reach and leave an ERP component ,the phenomenon of within-trial 

slowing-down suggests that the flow of each of the individual trajectories within this tube 

characteristically decelerates when the system approaches certain landmarks (ERP 

component flyby). This is important, because perception and cognition happen in real time 
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(one cannot rely on averaging multiple stimulus presentations before perceiving a face). 

Therefore, modulations of response variability can be instrumental only if they occur within 

individual trials. Eventually, the slight slowing-down of individual trials near the time of P1 

and, in a particularly marked way P400 flybys, correspond to the system trajectories lingering 

around the corresponding ERP template for a short time. During this time, the trajectories are 

thus bounded and this transient reduction in the fluctuations could be detected, e.g., by an 

integrator neuron –serving as a tempotron readout(Gütig and Sompolinsky, 2006)– to signal 

that a given stage in cognitive processing has been reached and thus initiate the next 

processing step in a sequence(Zylberberg et al., 2011). 

However, even when between-trial variability is at its minima, within-trial fluctuations are 

not completely suppressed. In other words, flyby and quenching events do not correspond to 

moments of freezing but trajectories rather keep their rich dynamics. This is reminiscent of 

reservoir computing paradigms(Maass, Natschläger and Markram, 2002) in which the chaotic 

spontaneous fluctuations are only transiently reduced by the applied inputs and are actually 

needed to boost learning capabilities. The evolution of the system seems thus always far from 

being at a stable attractor. Three possible mechanisms have been suggested previously for 

variability reduction: post-stimulus transient strengthening of one of the many possible 

attractors(Litwin-Kumar and Doiron, 2012), chaos suppression(Rajan, Abbott and 

Sompolinsky, 2010) or  “supra-linear stabilization”(Hennequin et al., 2018) of mostly 

unstable system, where amplitude fluctuations due to recurrent excitation are damped at 

certain post-stimulus moments due to increased inhibitory feedback.  The last two theoretical 

arguments seem to be better compliant with our current observations. Additional 

computational investigation will be needed to disambiguate which of the possible scenarios is 

leading to the observed quenching. Indeed, different models may predict different statistical 

distributions of secondary features –such as e.g. the jitter in latencies to flybys– to compare 
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with the empirically measured ones. Furthermore, parameters such as the local 

excitation/inhibition balance within cortical populations evolve with age(Hensch and 

Fagiolini, 2005) and the maturation of these parameters may predict different ERV 

developmental trajectories depending on the actual dynamic mechanism. 

Besides reductions, we also observe transient increases of within-trial variability. The 

system approaching a flyby event initially accelerates and then sharply decelerates before 

accelerating to reach the mean speed again. If these variations of speed had to be explained as 

due to motion in a force field, the free energy minimum of this landscape would be located at 

the first maximum of speed, preceding the ERP component flyby ~50-100 ms; depending on 

the component and condition. On the contrary the ERP template is more closely reproduced 

at the within-trial speed minima. In our energy landscape metaphor, decelerations would 

signify leaving an attractor valley, while the system crosses the high energy barrier and 

accelerates to enter another valley. In this view, the manifestation of an ERP component 

would signal the moment of crossing from one critical point to the next. Such conjecture may 

be potentially validated by estimating the morphology of an effective free energy landscape 

surrounding the ERP templates(Ezaki et al., 2017). Another possibility is that system’s 

evolution is “itinerant”, i.e.  Approaching a critical point along a stable low-dimensional 

manifold (e.g. a flow line), slowing down as the critical point is approached, but then repelled 

again away along a different unstable manifold, accelerating toward a different critical 

point(Tsuda, 2009). These observations are compliant with the framework of statistical 

physics of complex systems(Skarda and Freeman, 1987; Pillai and Jirsa, 2017). In which, 

changes of ERV dynamics through development and learning would be accounted for by the 

growth of more marked barriers and sinks in an effective energy landscape or bifurcations 

causing the birth, fusion or death of different attractors or saddle points in the system’s high 

dimensional phase space.  
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Our approach has methodological limitations that could be overcome by future 

developments. For instance, the extraction of ERP templates in our case depended on a 

manual inspection, but more sophisticated algorithms for the temporal clustering of single-

trial ERP topographies(Vahid et al., 2020) could be used and combined with our variability 

analyses schemes. The occurrence of large within-trial variations also need to be put in 

correspondence with microstate transitions or other approaches to describe ongoing dynamics 

of intrinsic functional connectivity(Lombardo et al., 2020) which also reveal power-law 

distributed statistics of fluctuations. Finally, linking activity to network state dynamics may 

allow assessing whether exchange of information is dominated by bottom-up or top-down 

flows at different ages or ERP stages(Bastos et al., 2015). 

In conclusion, ERPs have been an attractive description of the post-stimulus brain activity, 

described as successive steps defined by their reproducible latency and brain sources, and 

thus made possible to obtain neural algorithms underlying cognition. However, this 

description was somewhat misleading, ignoring the ongoing activity. The framework 

proposed here encompasses both aspects. We recovered that ERP components are “special 

dynamical points” for the on-going activity, confirming that ERPs are indeed capturing 

neural consequences of a stimulus presentation. At the same time, we also showed that they 

are far from capturing the entire activity patterns following a stimulus. We proposed the term 

ERV, as a better concept to describe the neural consequences of a stimulus. This proposal is 

not purely semantic, since it allows describing in integrated manner ERP maturation on one 

hand and the enhancement and structured variability of the background EEG on the other, 

speculating that the gradual change of ongoing activity might reflect the increasing 

knowledge of the environment over development.  

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434162doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434162


ACKNOWLEDGMENTS 

This research was supported by grants from the Fondation NrJ, from the European 

Research Council (ERC) under the European Union’s Horizon 2020 research and innovation 

program (grant agreement No. 695710), and from the Fondation de France (call 

Neurodevelopment and Autism 2012). This work, carried out in part within the Institut 

Convergence ILCB (ANR-16-CONV-0002), has benefited from support from the French 

government, managed by the French National Agency for Research (ANR) and the 

Excellence Initiative of Aix-Marseille University (A*MIDEX). 

 

AUTHOR CONTRIBUTIONS 

SN performed all computational analyses, PA, JD and GDL designed the initial ERP 

study, collected EEG recordings and preprocessed the signals, SN, GDL and DB designed the 

actual study, and wrote the initial manuscript, and all authors reviewed the manuscript. 

 

DECLARATION OF INTERESTS 

The authors declare no competing interests. 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434162doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434162


MAIN FIGURE TITLES AND LEGENDS 

Fig 1 Task Paradigm and Variability in Event Related Potentials. A) Infants (and adults) 

were presented with unfamiliar faces consecutively in the left and right hemi-field. A subset 

of infants was also presented with faces in center. B) Grand Average voltage topographies for 

the three conditions for infants. Early (P1) and late (P400) ERP components (marked with 

orange and green horizontal bars respectively) are visible for each condition.  C) Example 

voltage time-courses averaged across right occipital electrodes for one representative infant 

(age =12.1 weeks) for faces presented in the left hemi-field. Amplitude and latency of single-

trial responses (blue lines) are highly variable in comparison with average ERP response (red 

lines).   Single-trial voltage topographies in the P1 and P400 response range are notably 

different from the grand average ERP topography.  D) Trajectory of continuous time-

segment ( ~ 12 s) reduced to 3-dimensional PC space from 128-channel EEG sensor space for 

one example infant.  Each point corresponds to a single instantaneous topographic pattern of 

the raw data. Time-points falling in 450-500 ms post-stimulus time range are marked in red. 

E) Schematic summary of the methods used to gauge single-trial variability: Fly-by to ERP 

template, Between-trial variability and Within-trial speed. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434162doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434162


Fig 2 Maturation of single-trial Fly-by statistics for faces presented on the right hemi-

field. A)  Average flyby distances to P1 (left) and P400 (right) ERP templates (as shown on 

top) for each infant. Each row represents a single infant, sorted in ascending order according 

to their age (from youngest = 5.6 weeks to oldest=23.1 weeks). Red vertical lines emphasize 

the reduction in average flyby distance from ~150-350 ms for P1 and ~400-600ms for P400 

templates.  The slopes of red lines suggest that latency of closest distance reduces with age. 

B) Median flyby latency significantly decreased with age for both P1 (top left) and P400-

flyby (top right panel). At the same time, S.D. of single-trial flyby latencies significantly 

increased with age for P1 (bottom left panel) and showed a negative trend with age for P400 

template (bottom right panel). Inset box-plots represent the same statistics for adults. C) 

Average flyby distances to P1 template showed non-significant increase with age (top left 

panel), while the same for P400 template decreased with age (top right panel).  At the same 

time, S.D. in single-trial flyby distance distribution for both P1 (bottom left panel) and P400 

templates (bottom right panel) increased with age. Box-plots show the distributions for 

adults. Adults followed the same trend on P400 template flyby distance statistics. Shaded 

areas indicate 95% confidence interval for the slope of the least square fitting line, all r-

values corrected for multiple comparisons with 1-tailed permutation t-test).  
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Fig 3 Maturation of Between-trial variability and its relation to Fly-by distances.   

A) Group average between-trial correlation distance (blue curves, Z-scored) for 5-12 weeks 

(N= 14, top panel) and 16-24 weeks (N= 13, bottom panel) old infants plotted together with 

grand-average flyby distances (Z-scored) to P1 (red line) and P400 templates (orange line), 

for the lateral faces.  Significant reduction in between-trial variability coincides with the 

closest-flyby to P1-template for young infants (top panel), and with the P400-template for old 

infants (bottom panel).  B)  For central faces, significant between-trial variability (blue line) 

reduction coincides with P400-flyby (orange line) for both groups.  Shaded areas indicate 

standard error to the mean.  C) Significant clusters of variability and flyby distance 

reductions for all conditions and groups (Horizontal bars indicate timepoints of significant 

reductions from mean; p<0.05, all corrected for temporal non-independence using cluster-

based permutation t-test). Boxes highlight the correspondence between clusters of between-

trial variability and P1/P400 flyby distance reductions in the different conditions. 16-24 

weeks infants qualitatively look similar to adults. 5-12 weeks infants when presented with 

central faces also quench variability at P400.  D) Between-trial variability during P1-flyby 

increases with age (top) while the same during P400-flyby decreases with age for lateral but 

not central faces. (All r-values corrected for multiple comparison with one-tailed permutation 

test). Shaded area indicates 95 % confidence interval for the slope estimation of the least 

square fitting.  Box-plots show between-trial variability distributions for adults. 
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Fig 4 Maturation of Within-trial Speed for lateral faces.  

A) Instantaneous within-trial speed or moment-to-moment fluctuations (averaged across all 

trials and timepoints per subject for lateral faces) significantly increased with age. Each dot 

represents one infant; box-plot represents average speed distribution for adults. Shaded 

regions indicate 95 % c.i. for slope estimates.  B) Trial speed around flyby to P1 and P400-

like templates for each subject was extracted by considering within-trial speed (i.e. 

correlation distance between topographies from one time-point and next) in 800 ms time-

window around the closest 5 % flyby distances to the respective template. C) Group averaged 

trial speed profiles around P1 and D) P400 flybys for different age-groups. Instantaneous 

speed transiently reduced while approaching P1 and P400 like states. Significant speed 

difference existed between 5-12 weeks and 16-24 weeks old infants as indicated by black 

horizontal bars, cluster based permutation t-test, p<0.05)  (E & F)  Energy landscapes that 

might underlie the speed profiles for P1 and P400 templates respectively (metaphorically 

resembling to a ball crossing a hill). Peaks and troughs around the flyby templates become 

more marked for 16-24 weeks old infants (dotted lines) as compared to 5-12 weeks old 

infants (solid lines). (G) Peak trial speed in 100 ms time-window around P1-flyby and (H) 

Lowest trial speed in 100 ms time-window around P400-flyby for lateral faces.  Box-plots 

represent the same speed distribution for adults.  Instantaneous trial speed around P1-flyby 

significantly increased with age while the same around P400-flyby significantly reduced with 

age with older infants already showing profile similar to adults. 
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MAIN TABLES AND LEGENDS 

 

Table 1  Average closest flyby distances across age-groups (5-12 week old: first trimester 

infants, 16-24 weeks old trimester infants and adults) were compared using separate Kruskal-

Wallis tests for different ERP templates (P1, P400 responses) and for faces presented in the 

left and right hemi-field. The main effects are reported before post-hoc Mann-Whitney U-test 

for pair-wise comparisons. P values are corrected for multiple comparisons using Bonferroni 

correction. 

  

Table 1 Comparison of P1 and P400 Flyby Mean Amplitude Across Age-Groups  

Left Faces Right Faces 

P1 H = 11.48,   p=0.003 H = 9.76,  p=0.007 

    5-12wo vs 16-24 wo:  n.s.     5-12 wo vs 16-24 wo: n.s. 

    16-24 wo vs adults: p= 0.015     16-24 wo vs adults: 0.072 n.s. 

    5-12 wo vs adults: p= 0.009     5-12 wo vs adults: p=0.014 

P400 H = 13.29  p = 0.0013 H=13.47,p=0.001 

    5-12wo vs 16-24 wo:  p = 0.18 n.s.     5-12 wo vs 16-24 wo:  p=  0.4 n.s. 

    16-24 wo vs adults: p = 0.25 n.s.     16-24 wo vs adults: p =0.028 

    5-12 wo vs adults: p = 0.001     5-12 wo vs adults: p= 0.003 
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Table 2 Between-trial variability (z-scores) were compared the three age-groups (5-12 week 

old: first trimester infants, 16-24 weeks old trimester infants and adults) in their respective 

moments of P1 and P400 closest flybys using separate Kruskal-Wallis tests for different ERP 

templates (P1, P400 ) and for faces presented in the left and right hemi-field. The main 

effects are reported before post-hoc Mann-Whitney U-test for pair-wise comparisons. P-

values are corrected for multiple comparisons using Bonferroni correction. 

  

Table 2 Age Difference in Between-trial Variability around Flybys (z-scores) 

Left Faces Right Faces 

P1 H = 11.72,p<0.003 H = 12.95,  p=0.001 

    5-12 wo vs 16-24 wo: p=0.25 n.s.     5-12 wo vs 16-24 wo: p=0.5 n.s. 

    16-24 wo vs adults: p = 0.229 n.s.     16-24 wo vs adults: p = 0.05 

    5-12 wo vs adults: p =0.003     5-12 wo vs adults: p =0.002 

P400 H = 16.68 p=0.0002 H=14.10 ,p= 0.0009 

    5-12wo vs 16-24 wo:  p =0.001     5-12 wo vs 16-24 wo:  p=  0.08 n.s. 

    16-24 wo vs adults: p>0.8 n.s.     16-24 wo vs adults: p = 0.1  n.s. 

    5-12 wo vs adults: p = 0.001     5-12 wo vs adults: p=0.002 
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Table 3 Fly-by triggered within-trial speed profile time-series (z-scores) across the three age-

groups were compared using cluster-based permutation F-tests separately for each ERP 

template and for each hemi-field to find the significant time clusters (p<0.05). During post-

hoc analyses, average within-trial speed in these significant time-windows was compared 

using Kruskal-Wallis test. Pair-wise comparisons were tested using Mann-Whitney U-test. P-

values are corrected for Bonferroni correction. 

 

MATERIALS AND METHODS 

Subjects 

Reported results included data from two cohorts. The first group of healthy full-term 

infants (N = 39, Mean age: 14.15 ± 4.79 weeks, age range: 5.6 to 23.6 weeks,  11 girls) was 

studied elsewhere to investigate the functional maturation of visual Event Related Potentials 

(ERP) to lateralized faces(Adibpour, Dubois and Dehaene-Lambertz, 2018). A subset of these 

infants (N = 22, Mean age: 14 ± 4.96 weeks, age range: 5.6-22 weeks, 7 girls) was also tested 

Table 3: Age-differences in Within-Trial Variability  Around Flybys 

Left Faces Right Faces 

P1 S.C.:  None 

  

  

  

S.C.: [8 80] ms,  H=6.07, p=0.048 

5-12 wo vs 16-24 wo: p = 0.08  

16-24 wo vs adults: p = n.s. 

5-12 wo vs adults: p =0.17  

P400 S.C.:  [-384 -308] ms: H = 14.87, p= 0.0006 S.C.[-400 -268]ms,  H=14.42, p=0.0007, 

5-12wo vs 16-24 wo:  p = n.s 5-12wo vs 16-24 wo:  p =  n.s 

16-24 wo vs adults: p= 0.0008 16-24 wo vs adults: p= 0.0005  

5-12 wo vs adults: p= 0.008 5-12 wo vs adults: p= 0.015 

S.C = Significant Clusters (p<0.05, cluster 
based permutation tests) 

S.C.[-72 -12]ms,  H= 16.266, p=0.0003 

5-12wo vs 16-24 wo:  p = n.s. 

16-24 wo vs adults: p= 0.03 

5-12 wo vs adults: p= 0.0003 
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to study ERP responses to central faces. To compare the results obtained for infants with 

adults, we additionally included the second group of young adults (N= 13, Mean age: 23.39 ± 

2.32 years, age range: 21 to 27.1 years, 6 females) who were presented with the lateralized 

faces following the same paradigm as infants. The study was approved by the ethical 

committee for biomedical research. All adult subjects and parents of infants gave written 

informed consents before participating in the study. 

Task Paradigm and Protocol 

Lateralized Faces.  Each trial started by a rotating colored bull’s-eye that remained at the 

centre of the screen during the whole experiment to attract infants’ attention to the center of 

the screen. Streams of face images (male or female face out of 6 neutral, unfamiliar front 

faces) appeared consecutively on the left and right side of the bull’s eye for 250 ms followed 

by a variable delay between images (550 to 950 ms post-offset of the image with a 50-ms 

step). The asynchronous presentation ensured minimal anticipatory gaze to the left or right 

side. To investigate the inter-hemispheric transfer of information in infants, each stream 

included three types of images: a side-assigned face image (standard), a novel face (new-

deviant), or the face commonly assigned to the other side (known-deviant), with the 

expectations that an efficient inter-hemispheric transfer ensures ERP response to known-

deviant faces to be similar to standard faces.  Each block included ~80 % standard, ~10 % 

new-deviant and ~10 % known-deviant faces. For the current analyses however we 

considered all faces presented on either left or right side; irrespective of this distinction.  

Central Faces. One female and one male face, not used during the lateralized paradigm, 

were presented at the centre of the screen for 250 ms, spaced by a random interval of 550-950 

ms during which the colored bull’s eye was presented. 
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EEG Protocol and Pre-Processing.  EEG recordings were acquired with EGI net 

comprising 128 electrodes for infants and GSN net comprising 256 electrodes for adults and 

digitized in real-time at a sampling rate of 250ms. EEG data was further pre-processed in 

EEGLAB software. Recordings were band-pass filtered between 0.5 and 20 Hz, the signal 

was segmented into epochs of 1.7 s (−0.2 to 1.5s relative to the onset of face presentation). 

Channels and trials contaminated by motion or eye-blink artifacts were rejected. For infants, 

additional trials were rejected when the eye-gaze moved away from the screen; by manual 

inspection of video-recordings.  Epochs were re-referenced by reference averaging but no 

baseline correction was applied to allow unbiased analyses of post-stimulus variability as 

compared to pre-stimulus variability.  Finally, EEG topographies were normalized by 

dividing the activity of each sensor by the global field power (GFP, i.e. standard deviation 

across sensors) at each time-point. For the current analysis, further temporal smoothing was 

applied by averaging the activity at each sensor in a 100-ms overlapping sliding window 

centered at a given time point in each trial. Additional information about data acquisition, 

pre-processing and task paradigm not pertaining to the current study is detailed 

elsewhere(Adibpour, Dubois and Dehaene-Lambertz, 2018) For infants, final dataset 

considered for further analyses included ~110 ± 60 trials (min= 38 , max = 246 trials) each 

for left and right faces, and ~ 32 ± 17 trials (min= 3, max=74 trials) for central faces 

condition.  For adults, the final dataset included ~353  ± 33 (min= 255, max=363 trials)  trials 

each for the left and right faces.  

Trajectory in Principle Component (PC) Space. 

For one example subject, 12s long segment of clean continuous EEG data containing 10 

consecutive (left and right faces) trials were low-pass filtered using 100 ms overlapping 

sliding window. This segment of EEG data was normalized by dividing the activity at each 
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sensor by the instantaneous global field power. This standardized 128-dimensional time x 

channel matrix was transformed into three orthogonal components that explain a maximum 

amount of the variance (82% of total temporal variance was explained by first 3 components) 

using  PCA decomposition from scikit-learn toolbox in python and the resulting PC 

coefficients were used to visualize 3-dimensional trajectory shown in Fig 1D.  

Extracting ERP Templates.  

For each condition (left, right and central) and for each cohort (infants and adults), we 

derived grand average ERP topography by averaging subject-specific ERP activity separately 

for each sensor across subjects (Fig 1B for infants, Fig S1A for adults).  For infants, we 

identified ‘P1 template’ as grand-average topography in the range of ~225-275 ms post-

stimulus for lateralized faces and in the range of ~125-175 ms post-stimulus for central 

faces.  Similarly, ‘P400-template’ was derived as the average topography in the range of 

~525-575 ms post-stimulus for both lateral and central faces (Fig S2 A).  For adults, we 

identified ‘P1 template’ as the grand average topography in ~75-125 ms post-stimulus while 

‘P400 template’ was identified as ~375-425 ms post-stimulus (Fig S2 B). These time-ranges 

were chosen by selecting a 50ms long time-window around the peak ERP response 

topography as inspected manually.  

Measures of Trial-Variability 

Measures of trial-variability (i.e. Flyby to known ERP Templates, Between-trial Variability 

and Within-trial Speed) were calculated as topographic dissimilarity using spatial correlation 

distance (1- Pearson correlation coefficient) as dispersion metric. Hence, absolute distances 

varied from 0 (absolute correlation) to 2 (no correlation). Correlation distance decouples the 

topographic patterns from their magnitudes; allowing us to focus on the relative spatial 
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patterns rather than their absolute magnitudes. Note that for our study, Correlation distance 

was mathematically equivalent to previously used Cosine dissimilarity measure since our 

data was reference averaged at each time-point (hence, mean across sensors equals to zero). 

‘Fly-by’ to ERP Templates. 

For each subject and for each condition, flyby distance from trial  to a certain ERP 

template  at time  was calculated as correlation distance,   

∆(, ) = 1 −   (,(, ))  

Where,  is Pearson’s correlation coefficient and (, )represents topography at trial  

and time. These single-trial distance time-series were further averaged across trials for each 

ERP template to obtain a single time-series per subject for P1 and P400 templates and for 

each condition (Fig 2 A).   

‘Fly-by’ Latency and Distance.  In the predefined time range for each ERP template, 

moments of closest ‘flybys’ to these templates were identified as the time-points when the 

distance  fell into the lowest 5 percentile of the overall distance distribution. Latency of 

these moments were used for the analyses of median and jitter in flyby latencies for each 

infant (Fig 2B, Fig S3C,D).  The time-range to derive flybys was restricted to 150-350 ms for 

P1 template and 400-600 ms for P400 template in case of lateral faces. For central faces, 0-

150 ms for P1 template and 350-550 ms for P400 template. For adults, the analysis was 

restricted to 0-150 ms for P1 and 150-500 ms for P400 template. These time-ranges were 

chosen based on the lowest flyby distance in the grand-average curves. Mean and S.D. of all 

single-trial flyby distances in these time-ranges were calculated for the comparison across 

subjects.  (Fig 2C, Fig S3 E-H). 
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Between-Trial Variability 

For each subject and for each condition, between-trial variability at time  was calculated 

as the average of all pair-wise spatial correlation distances between all trial-pairs i and j; 

 =  
ଵ

൫೙
మ൯

 ∑  (1 −  ( 𝑖, ),𝑗, ௜௝ 

Where, 𝑛 = number of trials, ൫௡
ଶ

൯ suggests all pair-wise combinations of trials,     is Pearson 

correlation coefficient and 𝑗,  represents sensor topography at trial 𝑗 and time-point . 

One such absolute single-subject between-trial variability time-courses were derived per 

condition and further z-scored across time, to obtain relative between-trial variability. These 

z-scored time-series were further averaged in the previously defined time-range for P1 and 

P400-flybys to obtain relative between-trial variability around flybys (Fig 3, Fig S5). 

Topography of Between-trial Variability Quenching.  

If sensor  has  neighboring channels, Between-trial variability is calculated for this 

sensor at time as follows: 

,  =  
1

൫௡
ଶ

൯
 ෍  (1 −  ( 𝑖, ),𝑗, 

௜௝

 

Where,  is Pearson correlation coefficient;  (𝑖, )  is  + 1 dimensional activity 

vector at time  and trial𝑖, where each dimension represent neighbours of sensor   

(including itself).  Neighbors of each channel were inferred from the channel-connectivity 

matrix estimated using find_ch_connectivity function of MNE-python.  For each subject, 

instead of single global between-trial variability time-series, now we obtained one time-series 
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each for each sensor. This absolute sensor-level between-trial variability was further Z-scored 

across time to obtain relative variability for each sensor. These channel x time matrices for 

each subject were further averaged to obtain group-level between-trial variability 

topography.  (Fig S4). 

 

Within-Trial Speed 

For each trial k, within-trial speed at time t was calculated as spatial correlation distance 

between topography at that time-point and the same at the consecutive time-point. 

∆(, ) = 1 −   ((, ),(,  + 1))  

Where,   is Pearson correlation coefficient and (, )  represents sensor topography at 

trial  and time-point.  Overall absolute within-trial speed for each subject was obtained by 

first averaging speed time-courses across trials and then averaging the mean speed time-

courses across time (Fig 4A).  

Fly-by Triggered Speed Profiles.  For each subject, moments of ‘fly-by’ to known ERP 

templates were identified as described above (trial-to-template distance falling in the lowest 

5th percentile). Trial-speed segments at each occurrence of ‘fly-by’ were extracted as speed 

time-course from 400-ms before to 400-ms after ‘fly-by’.  Each of these 800-ms long speed 

time-courses were averaged to obtain a single speed profile per template (Fig 4B).  These 

subject-specific absolute speed profiles were z-scored along the time dimension to obtain 

relative speed profiles around fly-by and further averaged to obtain group-average speed-

profiles (Fig 4C , D; Fig S6A).  To compare flyby triggered instantaneous speed across 

infants, peak speed (for P1 template) and lowest speed (for P400 template) were identified in 

the 100 ms time-window centered at ‘flyby’ moment (Fig 4 E-F, Fig S6 B-D). 
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Trial Speed Distribution. To obtain trial-speed distribution for each age-group per 

condition, all single-trial speed time-courses were concatenated along time and along subjects 

in that age-group to obtain one single speed distribution. Probability density was obtained by 

normalizing area under each bin to 1. Normalized bin-counts (density) were plotted on a log-

log scale (Fig S6A, right). 

Fitting power-law to the Trial Speed Distributions.  We first temporally concatenated 

all the trials for each subject per each condition and age-group cohorts. This allowed us to 

reliably estimate the parameters for heavy-tailed distributions. We transformed the 

distribution of trial-speed into the standard normal distribution and finally fitted a least square 

regression line to the section of log-log plot achieved from the standard normal-distribution. 

We further repeated the procedure for each subject and obtained slopes and biases of the best-

fit lines per subject and compared across the age-groups. 

Statistics. 

Potential linear age-trends were tested using one-tailed permutation test on Pearson 

Correlation Coefficient (number of permutation=1000).  Significant reductions in variability 

time-courses were tested using one-sample t-test and correction for multiple comparison and 

temporal non-independence was applied using cluster based permutation test as implemented 

in MNE-python(Gramfort et al., 2013). Group-level differences between paired groups of 

variables (variability in lateral vs central faces) were tested using nonparametric two-tailed 

Wilcoxon signed-rank tests (from Sci-py package). Group differences between 5-12 week old 

(first trimester) infants, 16-24 week old (second trimester) infants and adults were tested 

using non-parametric Kruskal-wallis test (Sci-py implementation), followed by post-hoc pair-

wise comparisons using Mann-Whitney U test with Bonferroni correction (using scikit-

posthocs package).  
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Figures for the manuscript

“Structured Modulations of Ongoing Variability by Task and Development”

Note: All faces presented as stimuli are replaced by gray squares in adherence to the Biorxiv privacy policy. The 

squares are representative of the relative position where originally the face stimuli appeared.
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