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Abstract—A vast majority of epileptic seizure (ictal) detection
on electroencephalogram (EEG) data has been retrospective.
Therefore, even though some may include many patients and
extensive evaluation benchmarking, they all share a heavy re-
liance on labelled data. This is perhaps the most significant
obstacle against the utility of seizure detection systems in clinical
settings. Most retrospectively tested algorithms under-perform
when presented with real-world data with different outcomes
than those obtained during their training. Another critical
challenge is hitting the right balance between sensitivity and false
alarms. It is common to hear about tools developed for automated
seizure labelling with low or extremely low sensitivities and high
or too high false alarm rates. We argue that while achieving the
best sensitivity may not be possible alongside the best false alarm
rate, hitting the right balance is crucial. In this paper, we present
a prospective automatic ictal detection and labelling performed
at the level of a human expert (arbiter) and reduces labelling time
by more than an order of magnitude. Accurate seizure detection
and labelling are still a time-consuming and cumbersome task in
epilepsy monitoring units (EMUs) and epilepsy centres, particu-
larly in countries with limited facilities and insufficiently trained
human resources. This work implements a convolutional long
short-term memory (ConvLSTM) network that is pre-trained
and tested on Temple University Hospital (TUH) EEG corpus.
It is then deployed prospectively at the Comprehensive Epilepsy
Service at the Royal Prince Alfred Hospital (RPAH) in Sydney,
Australia, testing nearly 14, 590 hours of EEG data across nine
years. Our system prospectively labelled RPAH epilepsy ward
data and subsequently reviewed by two neurologists and three
certified EEG specialists. Our clinical result shows the proposed
method achieves a 92.19% detection rate for an average time of
7.62 mins per 24 hrs of recorded 18-channel EEG. A human
expert usually requires about 2 hrs of reviewing and labelling
per any 24 hrs of recorded EEG and is often assisted by a wide
range of auxiliary data such as patient, carer, or nurse inputs. In
this prospective analysis, we consider humans’ role as an expert
arbiter who confirms to reject each alarm raised by our system.
We achieved an average of 56 false alarms per 24 hrs.

I. INTRODUCTION

The lifetime-risk of epilepsy is globally between 3% to 4%
with 1% of people globally living with active epilepsy at any
time [1]. Globally, nearly 80% of epilepsy patients are living
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in low and middle-income countries, and 30% of epilepsy
diagnosis will not respond to medication [2]. A review on The
Economic Burden of Epilepsy in Australia by Deloitte in 2020
estimates that currently, 142, 740 people are living with active
epilepsy in Australia alone, with an annual incidence rate of
14, 603 new cases across all genders, ages, and locations,
which results in a total lifetime cost of $22.2 billion to the
economy [3]. The primary symptom of epilepsy is epileptic
attacks or seizures that are unprovoked, and consequences may
include injuries and even death [4]. The occurrence of seizures,
missing episodes, or mischaracterizing them may result in mis-
diagnosis or delay diagnosis. Electroencephalography (EEG)
is the gold standard for the studying, monitoring and diagnosis
of epilepsy. It plays an integral role in epilepsy units around
the globe. Epilepsy could have a severe impact on patients’
life quality due to many factors such as unemployment, social
exclusion, memory impairment and association with many
psychiatric and psycho-social disorders [5], [6].

In focal epilepsy, seizures arise from a region of the cortex,
”the epileptic focus”, and spreads in a stereotyped, individual-
ized fashion. Since 1950, the gold standard for localizing the
onset of epileptic seizure has been the electroencephalogram
(EEG) signals [7]. Localized abnormal discharges or changes
in EEG frequency indicate the onset of attacks [8], [9]. While
there are many EEG-based seizure detection algorithms in the
literature, only a few are used in the clinical setting- where
the recommendation is to have less than 1 false alarm (FA)
per 24 hours (hrs) and more than 75% sensitivity [10] for non-
patient specific seizure detection. [11]. There is a considerable
performance drop in many studies based on retrospective data
in the real-world [12]. Seizure detection and documentation
have several aspects, and that makes it an exciting and popular
research challenge. It could have direct benefits for patients in
the form of (yet to be realized) automated, accurate and real-
time seizure logging system. It also has clinical benefits such
as reducing the time and cost overhead of the time-consuming
and laborious long EEG review tasks.

A recent study in the US Children’s Hospital of Philadelphia
and University of Pennsylvania concluded that to achieve
89% identification of electrographic seizures in critically ill
children, the decision-maker should be willing to pay more
than $22, 648 per 48 hrs [13]. Additionally, EEG training to
prepare expert labour requires a non-trivial amount of full-time
study and dedication over six months to two years. The need
for clinical care has spurred the emergence of automated non-
patient specific seizure detection algorithms. Among them,
deep learning methods provide more accurate and promising
ideas for this problem [10], [11], [14], [15]. However, exist-
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ing techniques and solutions still cannot meet the minimum
requirements for clinical usage. The major bottleneck is high
false-alarm if the sensitivity reaches an acceptable level, set
by the clinician, who do not want to miss even one seizure or
could relax that requirement a bit. Recent analyses have shown
that ensuring model generalization across patient populations
with different characteristics remains a challenge, necessitating
label curation and model retraining to deploy machine learning
models to different demographics [16], [17]. Practically, it is
unrealistic for patients in the ICU to train a new model for
a specific patient and apply it several days. Besides, creat-
ing a new full labelled dataset requires physician-months or
physician-years of labelling time, making repeated re-labelling
campaigns a substantial diversion of resources. Therefore,
A generalized pre-trained automated seizure detection model
across the different hospital, different gender and age patients
with high sensitivity and a reasonably low false-alarm rate is
an urgent unmet need for most epilepsy clinics [18]–[20].

The significance of non-patient specific prospective studies
is that there will be no pre-information, no bias and no data
seen before the actual evaluation and test, which, if successful,
holds the potential for making a sound argument on its clinical
utility. Unfortunately, implementing automated and real-time
seizure logging systems that are non or minimally invasive
rely on a markedly reduced spatial resolution of electrodes.
There is a long road ahead of research to provide such a
solution. As far as we know, there are a few commercialised
prospective seizure documentation tools such as Persyst [21]
and EpiScan [18], [22]. Our understanding of the two tools, as
well as other research reports [15], suggest EpiScan achieves
a low sensitivity of 72%, which achieves good control of
the false-alarm rate. However, the sensitivity for epilepsy
in adults is critical, as they statistically experience lesser
seizure frequencies. Hence low sensitivity becomes a major
concern. Users and literature also report conflicting reports
about Persyst performance. One consistent complaint is about
its high number of false alarms and its time-consuming process
of automated review. Therefore, it is important to hit the right
balance between sensitivity and alarm rate while remaining
prospective. Some published results like [23], are also not
reported to be reproduced by active researchers.

In this work, we describe an innovative method using a con-
volutional long short-term memory network (ConvLSTM) [24]
to identify seizures on the electroencephalogram prospectively.
We then use a lens method to review those alarms validity fur-
ther (see Fig. 1). We proposed a prospective study framework
for the detection of seizure onset and offset. Human expert
arbiters review our final alarms and a significant improvement
in the time. Hence, the cost of EEG review and labelling
is reported without any drop compared to the performance
achieved by the conventional and laborious method of EEG
seizure annotation and documentation. Extensive experiments
are tested on the Temple University Hospital (TUH) Seizure
Corpus dataset to encourage research reproducibility and the
Royal Prince Alfred Hospital (RPAH) dataset across nine years
and 1,142 sessions of multi-days surface EEG recordings. Our
system is to achieve high accuracy for the seizure detection
task and find the undetected seizures by the clinicians or EEG

TABLE I: Summary of the TUH EEG datasets

Dataset attribute Train Dev

Files 4597 1013
Sessions 1185 238
Patients 592 50
Files with seizures 867 280
Sessions with seizures 343 104
Patients with seizures 202 40
Number of seizures 2370 673
Background duration (hours) 705.6 154.1
Seizure duration (hours) 46.7 16.2
Total duration (hours) 752.3 170.3

specialists after their first review. Besides, clinical test results
show that the proposed system, on average, provides almost
an order of magnitude improvement in the time required
for seizure annotation and documentation compared to the
commonly in use method, shown in Figs. 1(a) and (b).

II. DATASET

There are two datasets used in this work. The Temple
University Hospital (TUH) Seizure Corpus [25] for training
the machine learning model and providing an opportunity for
the results to be reproduced, and Royal Prince Alfred Hospital
(RPAH) datasets of adult epilepsy patients for our prospective
clinical test. The final ground-truth for reference to the seizure
onset and offset information are acquired based on visual
inspection on EEG information by the EEG specialists, as
shown in Fig. 1(c). The TUH dataset is the largest publicly
available epilepsy database in the US that contains EEG data
from 1, 185 sessions with 592 patients (202 patient with
seizures) in the training dataset and 238 sessions with 50
patients (40 patient with seizures) in development dataset
respectively. Using TUH will provide an avenue for research
reproducibility.

To verify the proposed system’s clinical utility, we test the
trained model with an inference-only mode on the RPAH EEG
datasets. There are ethics approved to support our clinical
access to this raw data. RPA Hospital is one of Australia’s
major hospitals, with one of the longest, if not the longest,
EEG recordings in Australia in its Comprehensive Epilepsy
Services. RPA structurally and reliably maintained data of
many adult epilepsy patients across Australia. In this work, we
select nine years (2011-2019) data to test with nearly 14, 590
hours of EEG data, from 212 patients out of 1, 142 sessions
each session, the average recording length is around 24 hours.
The detailed information is showed in Fig. 2 for RPAH dataset.
The total length of datasets we used for the test are 922.6 hours
of TUH data and the entire 14, 591.6 hours data from RPA.

III. METHOD

We trained a machine learning interface using the TUH
dataset and used the trained model to assess patients’ suscep-
tibility to seizure in the RPAH dataset. We use a deterministic
method to refine the AI (Artificial Intelligence) results of
high susceptibility. EEG specialists and clinicians then review
the output through our graphical user interface (GUI). The
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Fig. 1: Limiting the role of human experts to arbiters (seizure or no-seizure) with a prospectively and clinically evaluated
system could significantly reduce the time and hence the cost associated with the time-consuming process of seizure
(Sz) detection and labelling. (a) Represents a commonly used approach in which trained nurses ($/hour), EEG technicians
($/hour), and neurologists ($$$/hour) review and label EEG data. In this method, on average, each 24 hours recording
session requires about 1.5 to 2.0 hours for detailed review. This time is a conservative measure, as some cases may
require more or multiple reviews. (b) In contrast, we suggest a model that is accurate enough, with high sensitivity and
reasonably low false alarm, to provide a series of alarms with potential onsets and offsets of seizure events to arbiters
(human experts). We verified our method using multiple arbiters in the series. Clinicians (human arbiters) only review
the highlighted EEG periods by our graphical user interface (GUI). (c) To validate the entire system performance against
a ground-truth, a team of experts provided their full independent review of data (the ground-truth) with 64 identified
seizure events. Conservatively, we assume an average of 50/hr between all expert staff.

system’s outcome is a combined AI and human ability to detect
the seizure, and the whole procedure is shown in Fig. 1. We
did not use the RPAH dataset during training.

A. Pre-processing

Although raw EEG data information can be directly fed
into a neural network, the lack of frequency information
mixed with artefacts will make it harder for the network
to extract essential features. To address this, we used two
signal processing techniques, independent component analysis
(ICA) [26] and short-time Fourier Transform (STFT) [27].

First, we split EEG signals into 12-s segments and applied
the ICA algorithm to decompose the signal into several sta-
tistically independent components and removed the near-eye
montages components. Then, We perform a window length of
250 (or 1s) and 50% overlapping when doing the STFT and

remove the DC component so that the data shape will become
(n× 23× 125).

B. Machine learning interface

We train our machine learning interface only use the TUH
dataset, using a deep learning network that consisted of three
ConvLSTM blocks [24] combined with three fully connected
layers, and the detailed structure can be found in the Supple-
mentary Methods.

Our model is implemented in Python 3.6 with the use of
Keras 2.0 in the Tensorflow 1.4.0 backend. In order to avoid
overfitting issue, we not only use the dropout [28] layer with
0.5 probability applied into all dense layers but also apply
early-stopping technique considering the both training loss and
valuation loss, which stop training when the combined loss
have not increased for 20 epochs. In addition, model training
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Fig. 2: Summary of the Royal Prince Alfred Hospital (RPAH) dataset. (a) Patients’ age distribution and gender (inset). (b)
The number of EEG recording files per patient. (c) Distribution of the number of seizures per patient (only those
with detected and documented seizures are plotted, based on the final ground-truth), and their seizure types (inset). (d)
Heat-map of seizure lengths for each patients with detected seizures; Changing color from green to red represents an
increase in the number of seizures in that band. (e) Histogram of anti-epileptic drugs (AED) administered for patients
(AED types may overlap in a given patient). (f) Monitoring sessions lengths.
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Fig. 3: Clinical test extra seizure example. This human arbiter missed this seizure at first but it was detected by AI. A review
by five clinicians agreed that it was a valid seizure detection. We can see the frequency evolution are at the frontal
(F8-T4, T4-T6, F3-C3) and the slowing at the temporal leads (Fp1-F3, Fp1-F7, FP2-F8, Fp2-F4) in this 24-second
EEG window.

is accomplished using Adam optimizer, and the learning rate
is set as 5×10−4. Training the model in the TUH train set of
the EEG signals took approximately one day.

C. Post Processing
After the machine learning model is trained with the TUH

dataset, we used it to run the inference model directly on
the RPAH without any further training and knowledge of
RPAH annotations. In this process, automatically, the high
risk (probability >= 10%) seizure areas were selected by
the model to be sent for a lens focus algorithm in charge
of reviewing the results and generating alerts. The lens is a
deterministic signal processing method called periodic wave-
form analysis (PWA), initially presented by the EpiScan tool
team [29]. Periodic energy index (PEI) and PWI values for
alpha, beta, theta, delta, gamma rhythms were calculated and,
through an automated and adaptive process of threshold setting
for the power in each band (rhythm), the lens was able
to identify most likely ictal events. Details of this method
are described in the Supplementary. Using this technique,
we achieved a significantly higher sensitivity than EpiScan
techniques. We maintained an acceptable level of false alarms
based on the results collected at RPAH during our system’s
test and deployment.

D. Clinical test with human arbiters
After the post-processing, the left potential seizure areas

are highlighted in the interface. Two board-certified practising

epilepsy neurologists and three board-certified practising EEG
specialists consist of our human arbiters committees. All
members in our committees only visualized the high-risk area
and made their decisions based on their previous clinical
experience. The final results are decided by the committees’
majority votes and then compared with the reference results.

E. Performance metrics

To assess how well the proposed method performs for the
seizure detection task, we compute several metrics, including
the Area Under the Receiver Operating Characteristic curve
(AUC), sensitivity or true positive rate, false-positive rate
(FPR), seizure detection rate (SDR) and false alarm per
24 hours (FA/24 hrs).

The SDR rate is calculated by the number of seizures
detected over the total number of seizures. Moreover, the
AUROC score is used to measure the model ability to classify
the seizure and non-seizure clips regardless of the threshold
selection. The value of recall verse FPR derives from the ROC
curve. In the clinical test, the accuracy of seizure time and
incorrect alarms are two important indicators to influence the
patient and clinicians. Therefore, we use SDR and FA/24 hrs
to measure how many seizures are detected correctly and how
many incorrect predictions over 24 hours.

IV. RESULTS

We test the deep neural network (DNN) on the TUH
Development dataset and do a prospective study on the RPAH

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.433990doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.433990
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

dataset. For the TUH dataset test, we compare our performance
with the Khaled et al. [15], where we only use 12-s input
but still improve 6% average AUC. We also test AUC on
the RPAH dataset, which reaches 0.82. For the 66 sessions
clinical test, our model missed 8 seizures (after reviewing by
neurologists, confirmed only 5 of them as seizures) compared
with purely human identification. Still, with the combination
of the proposed model and human arbiter, we find 5 more extra
seizures. We compare the traditional human method with our
proposed method into three aspects: accuracy, time cost, and
money cost, which show in Fig. 5. We tie on the accuracy, but
for each 24 hours recording, the proposed method takes more
than ten times less time (7.62 mins versus 1.5 hrs).

Fig. 4: Receiver operating characteristic (ROC) curves. Two
curves are using the area under the ROC curve (AUC)
metric. TUH-TUH represents the model is trained
on the TUH training dataset and tested on the TUH
development dataset. TUH-RPAH represents the model
is trained on the TUH training dataset and tested on
the RPAH dataset.

V. DISCUSSION

We trained our deep learning model with two types of infor-
mation: 1) background information - anytime except seizure
happens, and 2) seizure information - seizure onset to seizure
offset period. We were interested in how the deep network
performs with continuous EEG recording and the practical
usage in real clinical settings. Thus we did a prospective
study on the RPAH dataset, trained our model on the TUH
training dataset, and ran the inference on the RPAH dataset.
First, we test our model on the TUH dataset and get a 0.84
AUROC score (show on Table II) using 12-s window, which
is better than the performance achieved by Khaled et al. [15].
Although the AUC score only improve by 0.06, we use a 12-
s window, which is 5 times shorter than the Khaled et al..
We decided this as there were a large number of seizures less
than 60-s and evidence proved in Khaled et al. where the F1
score for using 12-s window are 0.1 and 0.27 smaller than
the 60-s window on the pediatric and adult LPCH (Luckile
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Fig. 5: Time consumption of the 66 sessions during clinical
test. This is a histogram showing the actual human
time spent on each clinical session. The average time
cost is 7.62 mins./24 hrs recording.
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Fig. 6: Performance comparison between human arbiter and
the proposed method. This is a radar curve with the
money cost, time cost and error rate on three axes.
The smaller triangle area means the better overall
performance.

Packard Children’s Hospital) dataset respectively. To identify
our model’s generalization, we tested the pre-trained network
directly on the RPAH dataset, which across nine years and
include 1142 sessions, the AUROC score reaches 0.82, which
is slightly lower than the TUH dataset. The detail curve
comparison is shown in Fig. 4.

Furthermore, we did a prospective clinical test on the 66
EEG recording sessions. We asked two epilepsy neurologists
and three experienced EEG specialists to label the seizure with
and without the AI interface’s help. The results are shown in
the Fig. 1. We can see that human arbiter can find 59/64
seizures by reviewing all the EEG recordings. In comparison,
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TABLE II: Results comparison

Dataset Prospective Method Detect seizure
length AUC Evaluation

method Sensitivity FA/24 hrs

NCR+MUV+KEMP Y EpiScan [18] Onset only − SDR* 72.00% 7.05
TUH EEG Corpus v1.1.0 N Golmohammadi et al. [30] Y − OVLP 39.15% 22.83
TUH EEG Corpus v1.1.0 N Meysam et al. [11] Y − OVLP 32.97% 73.52
TUH EEG Corpus v1.1.0 N Meysam et al. [14] Y − OVLP 35.35% 77.39
TUH EEG Corpus v1.4.1 N Meysam et al. [10] Y − OVLP 30.83% 6.75
TUH EEG Corpus v1.4.1 N Khaled et al. [15] Y 0.78 − − −
Stanford Hospital Y Khaled et al. [15] Y 0.70 − − −
TUH EEG Corpus v1.5.1 N Proposed AI Y 0.84 − − −
RPAH Y Proposed AI Y SDR* 78.54% 56.52
RPAH Y Proposed AI Y 0.82 SDR 76.68% 56.55
RPAH (66 sessions clinical test) Y EpiScan [18] Onset only − SDR 62.50% 7.02
RPAH (66 sessions clinical test) Y Human arbiter Y − SDR 92.19% 0
RPAH (66 sessions clinical test) Y Proposed AI+Human arbiter Y − SDR 92.19% 0

Note: We explain the metrics AUC, SDR, FA/24 hrs in detail in Section III-E. OVLP is referred to “Any Overlap Metric” [31]. The evaluation method OVLP considers the result
is correct if the detection is within the reference event or multiple shorter events detected within the long reference event. The sensitivity, FA/24 hrs, refers to the sensitivity and
the number of false alarms per 24 hours and is calculated by the corresponding evaluation method. In real clinical settings, neurologists are more concerned about when the seizure
happened and the frequency of seizures; thus, SDR is more suitable for the real application. The SDR* method combines the false alarms within 30 seconds into one and considers
all seizure lengths are 3 minutes.
NCR: Neurological Center Rosenhuegel in Vienna
MUV: Medical University of Vienna
KEMP: Epilepsy Center Kempenhaeghe in Heeze, the Netherlands
TUH: Temple University Hospital
RPAH: Royal Prince Alfred Hospital

with AI’s help, human arbiter only needs to check the area
with high susceptibility, saving lots of time and move cost as
in a clinical setting but still tied to the performance. General
speaking, averagely, it takes 1−1.5 hours and 1.5−2 hours for
one neurologist and one EEG specialist to review a 24 hours
surface EEG recording, respectively. Interestingly, with AI’s
help, one human arbiter found 15 potential extra seizures
that were not labelled and missed 8 seizures which the AI
does not highlight. The five human arbiters confirmed 5 out
of 15 are valid seizures ignored by the first time of review
(without AI). One of the extra seizures is showed in Fig. 3,
and neurologists found that these seizures have the common
characteristic that has short subtle frequency evolution. Thus it
is hard to identify when human arbiter first time reviewing the
whole recordings. For the 8 seizures that AI missed, three of
them were confirmed on video and not but EEG information,
and video input to confirm the seizure. In another five missed
seizures, neurologists found the majority of them were very
brief clinical seizures. Understandably, short seizures are quite
hard to detect as the EEG biomarker or patterns could be
ambiguous. Another weakness for the AI is the clinical seizure,
in which the patient usually reports and event. Still, there is
no change in the surface EEG signals – not all seizures are
associated with EEG surface EEG change. Overall, with the
help of AI, the human arbiter find 59/64 seizures, and the
time and the cost comparison is shown in Fig. 6. From the
figure, we can see that the proposed method save around 10
times money and time cost, while the error rate is tied. When
considering the overall performance, the proposed method
should be quite useful in the clinical setting, but the drawback
still evident for patients and neurologists who do not want
to miss even one seizure. The model needs to be further
improved to increase accuracy, but the proposed framework
will be useful in future clinical usage.

VI. CONCLUSION

Seizure prediction and detection capability has been studied
and improved over the last four decades. A board-certified
EEG specialist is required by law to diagnose the epilepsy,
however, it takes several years to train a clinician, and the
ability to generate data far exceeds the human ability to
translate the data. Therefore, a reliable detection system will
relieve the clinicians work as well as be helpful for patient to
have a more manageable life. In the meantime, the false alarm
is particular important to application as it impacts the workload
for the clinicians and patients. Our proposed method show the
advantage of largely reducing the time and money cost while
maintain a high accuracy level, and can apply directly into
clinical without acquiring the training data.
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VII. SUPPLEMENTARY INFORMATION

A. Method

1) Pre-processing: In this work, we used the short-time
Fourier transform (STFT) to translate raw EEG signals into
a spectrogram with three different window lengths of 12 sec-
onds. The Eq. 1 shows the Fourier transform that calculates
the information for the frequency domain, where m represents
the window length and n for the nth sample. The magnitude
is calculated by the square of the absolute value after the
STFT [32].

X(m,ω) =
end∑
n=0

x[n]ω[n−m]e−jωn (1)

M(m,ω) = |X(m,ω)|2 (2)

The EEG data consists of recordings of different locations
electrical potentials on the scalp which are presumably gener-
ated by mixed components of brain activities. The ICA [26]
algorithm is applied to decompose the signal into several
statistically independent topographic maps using the Blind
Source Separation (BSS) approaches [33]. The Eq. 3 shows
the principle of the BSS, ICA algorithms assume the matrix
A contains statistically independent topographic maps and M
represents for the time courses.

T ≈MAT (3)

Then we removed the components related to the EOG detected
on the channel ’FP1’ and ’FP2’ to get the signal after removing
the eye artefact.

2) Machine Learning Interface: CNN and LSTM have been
two widely used methods for computer vision and natural
language processing [24], [34]. In this work, we use three
Conv-LSTM blocks [24] combined with three fully connected
layers. The code is implemented with Keras Conv-LSTM
module, and the first Conv-LSTM layer has 16 n×2×3 kernels
using 1 × 2 stride where n represent the channel numbers.
The next two Conv-LSTM blocks both use 1 × 2 stride and
1 × 3 kernel sizes, whereas the Conv-LSTM block 2 use 32
filters and Conv-LSTM block 3 use 64 filters. Following the
three Conv-LSTM blocks are two fully connected layers with
sigmoid activation and output sizes of 256 and 2, respectively.
The detailed structure is showed on the Fig 7. For the clinical
result, we built the interface that show the possibility that AI
suggest which enable the clinician to make their decision based
on the EEG they saw and record the review time automatically.

3) Post-Processing Lens: The AI output of potential seizure
areas are further analyzed by the periodic waveform analysis
(PWA) method [29] that is used here as a lens and on its own
achieved a low score on sensitivity (see Table II). This methods
is used to calculate the rhythmic EEG patterns [35], which is
the most frequent patterns for the temporal lobe ellipses. First
the total harmonic energy (Eτ ) is calculated within a certain
period of EEG signal (xt). The PEI value is defined as the
maximum value in that periodical area, which is show on the
equation below:

Eτ =
∑
m>0

| 1√
τ

∫ ∞
−∞

xtψ
∗
t
τ
e−j2π

mt
τ dt|2 (4)

PEI = max
tmin≤τ≤tmax

Eτ (5)

Then the signal energy value is calculated in that period.

Nτ =
1√
τ

∫ ∞
−∞
|xtψ∗t

τ
|2dt (6)

Finally, the PWI value is defined as:

PWI =
Eτ
Nτ

(7)

Then the PWIα,PWIβ ,PWIθ,PWIδ ,PWIγ value are split
based on the different brain signal frequency range. Only the
value of PWI and PEI for all brain signals are higher than the
adaptive threhold (certain percenatge of 2 hours within that
area PWI and PEI value), the risk seizure area will reported
to the interface.

B. Results

The human arbiter (neurologists and EEG specialists) la-
belled 1, 142 sessions across 9 years. In contrast, 136 sessions
have seizures that are hard to make decisions without the help
of the video information or miss the sEEG whole electrode
information, thus to better compare with the AI performance,
we test 1, 006 sessions use our prospective study. The detail
results are showed on the Table IV, while human check and
label all 1, 142 sessions. After that, neurologists select 66
sessions use the proposed methods to do the clinical test, and
the detail information are shown on the Table III.

During the 66 sessions clinical test, as mentioned the
before, neurologists found 5 extra seizure with the help of the
interface, and compared with the seizure that AI miss, three
of them are confirmed can not directly find with only EEG
information.

1) Extra seizures detected by AI: The examples are shown
in Fig 9, 10, 11, 12

2) AI miss seizures: Three examples are shown in
Fig 13, 14, and 15, which are confirmed only on video and
not but EEG information.
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TABLE III: Clinical test detail information

Session Number No. seizures (Human arbiter) No. seizures (AI+Human arbiter) Clinical test time Recording length

1 0 0 0 : 07 : 03 18 : 23 : 53
2 3 3 0 : 05 : 28 23 : 44 : 16
3 8 9 0 : 11 : 07 17 : 27 : 31
4 3 4 0 : 01 : 02 06 : 10 : 57
5 0 0 0 : 00 : 11 16 : 27 : 02
6 0 0 0 : 05 : 54 18 : 37 : 44
7 0 0 0 : 01 : 06 18 : 15 : 15
8 0 0 0 : 02 : 24 17 : 11 : 10
9 0 0 0 : 01 : 00 0 : 51 : 48
10 0 0 0 : 03 : 12 14 : 04 : 13
11 0 0 0 : 00 : 23 10 : 18 : 34
12 0 0 0 : 02 : 28 19 : 51 : 37
13 0 0 0 : 01 : 10 06 : 40 : 56
14 0 0 0 : 00 : 28 06 : 21 : 43
15 0 0 0 : 05 : 13 06 : 50 : 31
16 0 0 0 : 03 : 34 25 : 23 : 21
17 1 1 0 : 03 : 21 02 : 46 : 42
18 1 1 0 : 07 : 31 23 : 41 : 59
19 0 0 0 : 09 : 25 17 : 00 : 39
20 2 2 0 : 08 : 37 24 : 01 : 36
21 1 1 0 : 02 : 54 24 : 42 : 02
22 0 0 0 : 09 : 54 20 : 41 : 51
23 1 1 0 : 00 : 33 01 : 25 : 52
24 1 1 0 : 11 : 09 30 : 16 : 09
25 0 0 0 : 00 : 25 02 : 24 : 13
26 0 0 0 : 03 : 35 20 : 31 : 00
27 0 0 0 : 04 : 30 16 : 19 : 59
28 0 0 0 : 00 : 29 01 : 24 : 35
29 0 0 0 : 00 : 03 25 : 49 : 53
30 0 0 0 : 00 : 31 01 : 19 : 17
31 0 0 0 : 00 : 53 03 : 10 : 56
32 0 0 0 : 07 : 41 24 : 12 : 53
33 1 1 0 : 10 : 58 04 : 55 : 00
34 0 0 0 : 12 : 20 23 : 47 : 51
35 2 3 0 : 02 : 37 21 : 26 : 48
36 0 0 0 : 09 : 08 21 : 39 : 24
37 0 0 0 : 02 : 24 20 : 18 : 14
38 0 0 0 : 04 : 44 09 : 00 : 22
39 0 0 0 : 04 : 41 23 : 52 : 12
40 0 0 0 : 04 : 47 14 : 53 : 24
41 0 0 0 : 00 : 10 00 : 25 : 32
42 0 0 0 : 05 : 23 06 : 26 : 45
43 3 3 0 : 05 : 24 17 : 00 : 31
44 0 0 0 : 00 : 46 02 : 49 : 18
45 0 0 0 : 00 : 09 01 : 19 : 10
46 0 0 0 : 02 : 18 01 : 33 : 55
47 1 1 0 : 13 : 09 23 : 51 : 00
48 1 1 0 : 11 : 15 18 : 44 : 52
49 0 0 0 : 06 : 33 23 : 01 : 36
50 0 0 0 : 02 : 02 06 : 23 : 43
51 0 0 0 : 00 : 46 00 : 29 : 46
52 1 1 0 : 02 : 13 00 : 56 : 00
53 2 2 0 : 08 : 08 08 : 04 : 06
54 17 15 0 : 11 : 17 24 : 16 : 04
55 3 2 0 : 11 : 37 15 : 10 : 56
56 0 0 0 : 02 : 15 06 : 03 : 09
57 0 0 0 : 03 : 47 16 : 13 : 56
58 0 0 0 : 01 : 05 05 : 42 : 41
59 2 2 0 : 04 : 29 14 : 37 : 38
60 4 4 0 : 07 : 54 15 : 27 : 53
61 1 1 0 : 00 : 46 08 : 27 : 35
62 0 0 0 : 02 : 46 16 : 13 : 24
63 0 0 0 : 00 : 54 16 : 13 : 55
64 0 0 0 : 00 : 53 07 : 40 : 35
65 0 0 0 : 00 : 18 06 : 58 : 55
66 0 0 0 : 01 : 04 18 : 38 : 22

Overall 59 59 4 : 42 : 14 889 : 14 : 39
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TABLE IV: Detailed Results of RPAH Comparison

Year AUC SDR FA/24 hrs SDR* FA/24 hrs* Total duration (hours) Number of sessions

2011 0.8993 82.45% 58.00 85.96% 57.96 1114.69 75
2012 0.9107 83.52% 56.77 83.52% 56.76 1752.62 117
2013 0.896 83.33% 47.11 86.67% 47.09 2090.99 118
2014 0.7382 73.02% 74.86 74.60% 74.84 1792.13 111
2015 0.8215 78.69% 64.78 78.69% 64.74 2075.35 139
2016 0.8547 80.25% 44.75 80.25% 44.72 1506.03 101
2017 0.6827 67.65% 53.41 70.58% 53.36 2171.21 174
2018 0.7286 58.49% 50.17 66.04% 50.07 1181.05 100
2019 0.7877 75.00% 56.54 75.00% 56.48 907.60 71

Overall 0.8172 76.68% 56.55 78.54% 56.52 14591.6 1006

Note: The metric AUC, SDR, FA/24 hrs are explained in detail in the Section III-E.
SDR* and FA/24 hrs* method combines all false alarms within 30 seconds as one and considers all seizure lengths are 3 minutes.
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Fig. 9: Extra seizure detected by AI (verified by the neurologist).
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Fig. 10: Extra seizure detected by AI (verified by the neurologist).
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Fig. 11: Extra seizure detected by AI (verified by the neurologist).
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Fig. 12: Extra seizure detected by AI (verified by the neurologist).
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Fig. 13: Seizure undetected by AI. There is no clear frequency evolution and there are lots of muscle and eye artifacts which
can only be confirmed by the video (verified by the neurologist).
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Fig. 14: Seizure undetected by AI. There is no clear frequency evolution and there are lots of muscle artifacts which can only
be confirmed by the video (verified by the neurologist).
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Fig. 15: Seizure undetected by AI. There is no clear frequency evolution and there are lots of muscle artifacts which can only
be confirmed by the video (verified by the neurologist).
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