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Abstract 

Background: The pathological mechanisms of Major depressive disorders (MDD) is 

associated with over-expressing of negative emotions, and the overall temporal-spatial 

patterns underlying over-representation in depression still remained to be revealed to 

date. We hypothesized that the aberrant spatio-temporal attributes of the process of sad 

expressions relate to MDD and help to detect depression severity.    

Methods: We enrolled a total of 96 subjects including 47 MDDs and 49 healthy 

controls (HCs), and recorded their Magnetoencephalography data under a sad 

expressions recognition task. A hidden Markov model (HMM) was applied to separate 

the whole neural activity into several brain states, then to characterize the dynamics. To 

find the disrupted spatial-temporal features, power estimations and fractional 

occupancy of each state were contrasted between MDDs and HCs. 

Results: Three states were found over the period of emotional stimuli processing 

procedure. The visual state was mainly distributed in early stage (0 - 270ms) and the 

limbic state in middle and later stage (270ms - 600ms) of the task, while the 

fronto-parietal state remained a steady proportion across the whole period. MDDs 

activated statistically more in limbic system during limbic state (p = 0.0045) and less in 

frontoparietal control network during fronto-parietal state (p = 5.38*10-5) relative to 

HCs. Hamilton-Depression-Rating Scale scores was significantly correlated with the 

predicted severity value using the state descriptors (p = 0.0062, r = 0.3933). 

Discussion: As human brain exhibited varied activation patterns under the negative 

stimuli, MDDs expressed disrupted temporal-spatial activated patterns across varied 
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stages involving the primary visual perception and emotional contents processing 

compared to HCs, indicting disordered regulation of brain functions. Furthermore, 

descriptors built by HMM could be potential biomarkers for identifying the severity of 

depression disorders.  
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Introduction:  

In major depressive disorder (MDD), patients usually exhibit a mood-congruent 

processing bias especially toward the processing of negative emotional facial 

expressions (Stuhrmann, Suslow, & Dannlowski, 2011). This kind of mood-congruent 

bias makes MDD patients over-express negative information (Dalili, Penton-Voak, 

Harmer, & Munafo, 2015). This phenomenon was characterized with the mechanisms 

of stimulus processing and specific over-stimulated biological system (Furey, 2011; 

Roiser, Elliott, & Sahakian, 2012). The response to negative emotional stimulus in 

visual areas would be regarded as biomarkers for depression (Furey et al., 2013). 

 

A series of event-related potentials (ERPs) studies have shown that the processing of 

negative emotional information bias could be a potential phenotype for MDD 

Harris, & Williams, 2018). During the process of negative stimulus task, several 

ERPs waveforms were identified to be associated with MDD. Early P1 (100-150ms) 

reflecting fast perceptual process and evoked unconscious emotions in MDD. Middle 

N170 (150-200ms) was regarded as indispensable component of emotional processing. 

The amplitude of late P300 (250-600ms) was suggested to be a biological marker for 

pathophysiological mechanisms. According to these founds, one can see that the 

negative bias for MDD was distributed over various temporal stages following the 

onset of emotional stimuli.  

 

Since the different temporal stages for the process of the negative emotion were 
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closely associated with impaired neural mechanism for MDDs, aberrant spatial 

patterns underlying different periods deserved further analyses. Based on this, 

literature reported that the responsiveness of brain regions like amygdala and 

hippocampus, which were involved in limbic system, was associated with depression 

severity by utilizing sliding time window algorithm (Bi et al., 2019; Suslow et al., 

2010). Previous time frequency analysis in sensor level has found that MDD patients 

expressed increased activations in occipital lobes when dealing with sad faces (Jiang 

et al., 2019). Neural activities in prefrontal cortices were hypo-activated in MDD 

patients under the negative emotional stimulus with dynamic connectivity regression 

(DCR) algorithm (Bi et al., 2016). Besides, the response of the parietal lobe to sad 

faces also negatively correlated with disorders severity according to micro-state 

analysis (Mel'Nikov et al., 2018; Soni, Muthukrishnan, Sood, Kaur, & Sharma, 2018). 

Lots of evidences have suggested that MDD patients exhibited the disrupted 

spatiotemporal specificity when dealing with sad facial stimulus, nevertheless, studies 

revealing the transient dynamics in large-scale brain networks were still rare in 

relation to the task. Thus, further exploration is required to probe the rich dynamic 

dysfunction underlying MDD of during the whole period for stimuli processing.  

 

A novel data-driven algorithm Hidden Markov model (HMM) could be utilized to 

characterize the dynamics of the temporal-spatial brain patterns in network level. 

Relative to traditional window-based approaches, it could capture transient neural 

signals under pure negative emotion in milliseconds for each subject, without 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.433735doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.433735
http://creativecommons.org/licenses/by/4.0/


pre-specifying the window length (Quinn et al., 2018; Vidaurre et al., 2016). Besides, 

it is convenient for HMMs to generate state-wise mean activation maps in large-scale 

network via the multivariate observation model, as well as to observe the processing 

of visual perception, decision making and motor response by the sequential 

spatiotemporal activation maps. Recent study also showed that impaired brain 

dynamics could be characterized not only in limited targeted regions but also in the 

large-scale brain networks via HMMs (Charquero-Ballester et al., 2020). Furthermore, 

dynamic descriptors such as fractional occupancy inferred from HMMs were found to 

correlate with symptoms of schizophrenia patients, emerging the potential of the 

promotion to other psychosis, like MDD (Zhi, Calhoun, Lv, Ma, & Ke, 2018). 

 

In the present study, we aimed at exploring the abnormal spatiotemporal brain 

patterns in MDD patients under the negative emotional task. To achieve this, an 

AE-HMM model was applied on Magnetoencephalogram (MEG) data recorded under 

the stimulus of sad facial recognition task. MEG with high temporal resolution in 

milliseconds could be utilized to explore neuropsychological mechanisms of fast 

neural activity for MDD. The processing of chronological neural activity across visual 

task was characterized by several brain states whose dynamic descriptors are 

identifiable for MDD. Furthermore, regression analysis was adopted to explore the 

ability of these dynamic descriptors to indicate the severity of disorders in MDD. Our 

study might be a promotion to apply HMM to the field of MDD. We provided a new 
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perspective to the evolution process of negative emotional stimulus over the visual 

task especially in MDD patients.  
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Methods 

Participants 

One hundred individuals (50 HC and 50 MDD) were enrolled in the Nanjing Brain 

Hospital between October 2011 and June 2016. All individuals were given Mini 

international Neuropsychiatric Interview (MINI) to exclude potential MDD from HC. 

After exclusion in clinical judgment (potential bipolar disorders) and imaging quality 

(excessive head motion and other artifacts), ninety-six individuals (49 HC and 47 

MDD) were recruited in this study. They were all matched in gender, age and 

education (Table1). For MDD, the severity of disease was assessed by professional 

psychiatrists using Hamilton Depression Rating Scale (HAM-D) and the Diagnostic 

and Statistical Manual of Mental Disorders, fourth edition (DSM-4). The inclusion 

criteria were no brain injury, alcohol or drug abuse. All individuals were right-handed 

and provided with written consent forms. This study was approved by the ethical 

committee at Nanjing Brain Hospital. 

Table 1. Demographic and clinical scores of all individuals 

 MDD 

N = 47 

HC 

N = 49 

t p-value 

Gender (male/female) 24 / 23 25 / 24 0.094 0.844 

Age (years) 31.68 ± 7.54 31.53 ± 7.40 0.057 0.963 

Education (years) 13.57 ± 5.91 14.47 ± 4.56 0.112 0.828 

Score of 17-item HAMD 21.83 ± 5.95    

Data were presented as the range of mean ± standard deviation (two tailed t-tests) 
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Stimuli and task 

All individuals were engaged in a passively viewing task of emotional faces. Forty 

sad facial expressions were chosen from the Chinese Facial Expression Video System 

(Jiang et al., 2019; Jing-Lun, Yao, & Xie, 2007). Each video was presented lasting for 

3 seconds. Then a fixation cross picture was also displayed during the rest. An 

random inter-trial interval of 0.5s, 1s, or 1.5s followed each facial expression. 

 

Data acquisition and preprocessing 

Task MEG data were recorded with a whole-head CTF275 MEG system (VSM Inc) 

with a 300 Hz sampling rate. Individuals were scanned lying in the supine position in 

a magnetically shield room. When scanned, individuals were required to adjust head 

positions if their head motions exceeded 5 mm compared to the initial position. 

Individuals’ structural T1 images were recorded using a 1.5T GE system and 3D 

gradient-echo pulse sequence. 

 

MEG data were pre-processed using Matlab-based fieldtrip toolbox (Oostenveld, 

Fries, Maris, & Schoffelen, 2011). First, Notch filter was used to remove 50Hz power 

line noise. Then, we excluded trials containing excessive variance with large channel 

jumps based on visual inspection. No significant difference in the number of excluded 

trials was found between MDD and HC (MDD:6.1 ± 2.7; HC:5.3 ±3.2). Furthermore, 

data were decomposed into 275 components using an independent component 

analysis (ICA) (Jung, Makeig, Westerfield, Townsend, & Sejnowski, 2001). The 
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number of ICA components was equal to the number of MEG sensors and 

components related to cardiac and muscle artifacts, eye blinks were rejected.   

 

Source reconstruction 

The pre-processed data in sensor space were projected in source space onto a 6mm 

grid by a Linearly Constrained Minimum Variance (LCMV) beamformer (Woolrich, 

Hunt, Groves, & Barnes, 2011). The LCMV beamformer normalized grid in MNI 

space and constructed a realistic head model using participant’s structural MRI. A 

covariance matrix was calculated across all trials using the spatial filters. 

Subsequently, the spatial orientations of each epoch were rotated in order to maximize 

the variance. Source activity was estimated by multiplying spatial filters with 

sensor-level time series across the whole scale. Subsequently, a multivariate 

symmetric orthogonalization was applied to attenuate the spatial leakage interferences 

(Colclough, Brookes, Smith, & Woolrich, 2015). 

 

Construction of AE-HMM over all subjects 

To further explore dynamics in whole brain, MEG data in source space were 

processed using matlab-embedded HMMAR toolbox (Vidaurre et al., 2016). In this 

study, an AE-HMM was constructed to exhibit the process of dynamics transition 

during the emotional face task. Before estimating the model, whole-brain voxel set in 

source space were projected onto ninety brain regions based on AAL90 template. 

Subsequently, source time-series were filtered between 1-120 Hz and the amplitude 
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envelope was calculated using Hilbert transition. Data were concatenated across all 

individuals to constitute a big 3-dimension matrix whose first dimension is the 

number of individuals, and the second dimension is the number of brain regions, the 

third dimension is the number of time series. A schematic of the whole process was 

exhibited in Figure1.  

 

Figure 1 The architecture of the whole pipeline 

(A) A schematic for the preprocessing of MEG signal applied prior to HMM analysis. (B) A 

schematic for HMM model, in which Xt denotes the brain resides at time point t, while the Yt 

denotes the observed data. (C) An illustration of brain activation patterns from HMM used to 

predict disorders severity with Support-Vector-Regression model.  
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Considering the variance distribution of our data and making sure the lowest free 

energy, this study denoted K=3 before training the model which also followed 

findings in Hirschmann’s study (Hirschmann et al., 2020). The observation model 

subsequently was constructed by training 1000 iterations with pre-defined K states.  

 

Statistical analysis over state-wise spatial-temporal characters between MDDs 

and HCs  

To characterize the spatial power distribution of each state, covariance matrix was 

obtained from observation model. The mean activation map was calculated by 

averaging the prior distributions of the envelope value for brain regions in each state. 

According to the study in 2019 (Luppi et al., 2019), regions in AAL90 template were 

divided into seven networks based on dynamic interactions and diversified functions 

of brain. Each inferred state was shown together with a mean activation for distinct 

brain networks. Using the time courses of posterior probabilities inferred from HMM, 

the power activation map of each subject was estimated. Next, non-parametric 

two-sample t tests were utilized over state-wise power activation in network level 

between MDD and HC groups. The multiple comparisons were controlled via a 

Bonferroni correction. 

 

In addition, Fractional occupancy (FO) was computed to characterize the dynamics of 

inferred brain states in each participant. This descriptor is defined as the proportion of 
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each state time spent in the whole time length (Zhi et al., 2018). To further analyze 

the dysfunction of brain dynamics, FO values in each state were then compared 

between MDDs and HCs by two-sample independent t test. 

 

Correlational analysis between dynamic characters and MDD severity 

To assess the relation between patients’ disease severity and HMM descriptors, a 

support vector machine regression (SVR) algorithm was applied to regress disease 

severity in MDD using FO values and HAM-D scores. A Gaussian kernel regression 

was applied with a leave-one-out-cross-validation (LOOCV). Mean Absolute Error 

(MAE) was then calculated by average absolute bias between predictive value and 

real value to assess the predictive performances. Finally, correlational analysis was 

performed between predicted scores and real HAM-D scores via Pearson correlation.  
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Results  

State-wise temporal-spatial patterns for all subjects 

In current study, three brain states were identified by AE-HMM over all subjects. As 

observed in Figure2 A, the fractional occupancy of hidden states at each time point 

was exhibited through the whole time. Specifically, state1 has a sustained proportion 

after stimulus onset, lasting about 270ms and characterizing the early stage of task. 

State2 showed a large occupancy between 270 and 600ms during the middle and latter 

part of the epoch. State3 exhibited a relatively small but constant occupancy over the 

whole post-stimulus process. 

 

In spatial view, as shown in Figure2 B, only brain networks with top 30% activation 

level was retained to characterize the most active networks of each state. Specifically, 

state1 showed relatively active neural activation in visual network (VN) and dorsal 

attention network (DAN), while the brain activity in state2 was mainly occupied by 

limbic system and default mode network (DMN). State3 was featured with dominant 

brain activation in VN and fronto-parietal control network (FPN).  
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Figure 2 The spatial-temporal brain states of all subjects 

(A) The averaged probability distribution during the pre-post stimuli across all subjects. The red 

line denoting state1, pink line denoting state2, yellow line denoting state3. (B) The activation 

pattern characterized by different brain networks in three states. Time series data were normalized 

to have zero mean, and the regions of top 30% activation level were retained.  

 

Disrupted spatial-temporal patterns associated with MDD 

After comparing network power between MDD and HC groups, network with 

significant differences were found in two states: limbic system in state2 and FPN in 

state3. Brain regions in these two networks were illustrated in Figure3 A, relative to 

HCs, MDD patients manifested significant increased brain activation in limbic system 

during state2 (p = 0.0045, survived after Bonferroni correction) and significant 

attenuated activity in FPN during state3 (p = 5.38*10-5, survived after Bonferroni 

correction) (Figure3 B). 
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Figure 3 Aberrant spatial patterns for MDD versus HCs 

(A) Individual network activation maps were compared between MDDs and HCs, and the regions 

in distinctive networks were shown. The blue nodes represented regions in limbic system and 

yellow nodes represent regions in FPN (the detailed contents of brain abbreviations in 

supplementary Table1) (B) The distribution of mean network power between HC and MDD 

groups. The above picture represented mean power activation in limbic system and the below 

picture represented mean power activation in FPN. *p < 0.05 after Bonferroni correction.  

 

For temporal characters, after comparing FO values of each state between HC and 

MDD groups, MDD subjects exhibited significant higher FO values in state1 (p = 

0.009, survived after Bonferroni correction) and lower FO values in state 2 versus 

HCs (p = 0.006, survived after Bonferroni correction) (Figure4 A).  

 

Dynamic characters related to MDD severity 

Since dysfunction of FO was proven to be associated with the depressed disorders, the 

descriptor was selected as the indicator to the severity of disorders in MDD group. As 

shown in Figure4 B, the spatial distribution of the real value of HAM-D total scores 

was consistent with predicted value visually. In statistical, the residuals for each 

depressed individual were exhibited in Figure4 C, satisfactory predicted outcomes, 

which meant that the residuals of MAE in the 95% confidence interval, were obtained 

in 45 subjects out of all the 47 individuals with MDD (Satisfactory ratio: 95.7%). 
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Furthermore, real HAM-D score across all depressed patients were significantly 

correlated with predicted outcomes in Figure4 D (p = 0.0062, r = 0.3933).  

 

Figure 4 Prediction of disorders severity using FO 

(A) The violins plot for the distributions of FO values in brain states between HC and MDD 

groups. *p < 0.05 after Bonferroni correction, ns not significant. (B) The spatial distribution of 

clinical scores predicted by SVR model, X axes and Y axes represented FO values of visual state 

and limbic state respectively, and the magnitude of Z axes expressed the clinical scores, the black 

hollow dots representing real scores while the green asterisks denoted predicted scores. (C) 

Residuals distributions of predicted scores for each depressed individual, the blue line segment 

with a middle dot meant the residuals of MAE still in the 95% confidence interval, whereas the 

red line segment represented the MAE for this individual out of the confidence interval. (D) The 

Pearson correlation with predicted HAMD scores and real scores (p = 0.0062, r = 0.3933).  
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Discussion 

This study characterized the aberrant brain activation patterns of mood disorders and 

found specific state regulating different brain systems through diverse temporal stages 

of the sad facial recognition task. Besides, dynamic descriptors of FO inferred from 

each state were regarded as valuable index for individualized severity of depression.  

 

First, the current study revealed the common neural patterns under the negative 

stimuli for all subjects. We inferred the whole procedure of  negative emotions 

processing into three separate brain states. Specifically, during the early stage of 

visual stimuli processing (around 0-270ms), subjects showed dominant activation in 

VN and DAN. During the middle and latter processing stage after the onset of the 

stimuli (around 270-600ms), subjects manifested more activation in limbic system 

and DMN. Besides, subjects exhibited a relative small but essential proportion of 

brain activation in FPN and VN in the whole task (0-600ms). These findings were 

consistent with what previous literature has reported in visual perception tasks (Quinn 

et al., 2018). In general, subjects may show an early occipital response after viewing 

the facial expressions and then gradually transform to the response to the elaborate 

emotional contents underlying faces by regulating limbic system.  

 

Relative to HCs, MDD patients manifested the aberrant temporal-spatial pattern 

during the whole process. In early perceptual stage viewing sad expressions, 

depressed patients manifested statistically decreased FO value in early visual state 
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contrast to HCs. The attenuated FO for early visual perception meant that MDDs 

spent shorter time capturing negative information from expressions, which suggested 

the rapid recognition toward sad faces, corresponding to negative emotions biases in 

previous findings (Almeida, Pajtas, Mahon, Nakayama, & Caramazza, 2013; Sterzer, 

Hilgenfeldt, Freudenberg, Bermpohl, & Adli, 2011). Besides, in line with previous 

findings, depressed patients who manifested decreased VN activity might affect visual 

perception function that was associated with the occurrence and recurrence of mental 

disorders (Dai & Feng, 2011). Furthermore, previous evidence supported that the 

DAN often exerts a top-down regulation on the VN to integrate information during 

the visual perception stage. Thus, this aberrant brain state might represent the 

dysfunction of top-down mechanism for primary processing, which indicated that 

MDDs failed to treat negative information comprehensively and their inhibited 

visual-related cortices made them overexpress negative things and neglect other 

information (Desseilles et al., 2011; Schupp et al., 2004; Vossel, Geng, & Fink, 2014). 

In middle and later stage for deep processing of emotional elements. Compared with 

HC group, depressed patients manifested significant increased FO values as well as 

hyper-activated power in limbic system of the state. Since limbic-related regions 

involved amygdala, hippocampus have been considered as the core for processing 

human expressions configuration and elaborate emotional contents (Almeida et al., 

2013; Sterzer et al., 2011), significant higher FO values in limbic state meant that 

MDDs spent more time indulging in sad contents and over expressing or even 

ruminating in negative things. Certainly, this kind of aberrant dynamic character 
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underpinned by the impaired pathological neural circuits. Current study reported that 

statistically elevated activity was observed in limbic system versus HCs during the 

middle and later stage. Combined with previous findings, we thought that negative 

information successfully elicited robust responsiveness on limbic system, especially 

core regions like amygdala (Hall et al., 2014; Suslow et al., 2010). Generally, 

hyper-activated limbic system in the deeper processing of negative information may 

be another potential indicator to depressive disorders.  

 

Another important finding was that MDD patients exhibited statistically attenuated 

power activation of FPN relative to HCs during the whole process. The underlying 

mechanism underpinning the dysregulated FPN was essential for explaining the 

neural mechanism of MDD. Previous studies found that FPN was involved in highly 

adaptive control processes and suggested it could communicate with other systems 

throughout the brain (Power et al., 2011). In other words, the FPN might regulate 

other networks to coordinate with specific goals and reduce the goal-disrupting effects 

brought by other networks. Specifically, evidence supported that both DAN 

coordinating attention to task stimuli, and limbic system connecting to mental states 

may be regulated by FPN (Cole, Repovs, & Anticevic, 2014). In present exploratory 

analyses, although there existed no statistically difference in temporal character 

between MDDs and HCs, decreased activity of FPN was found in MDDs contrast to 

HCs. Hypo-activated FPN state may interfere the coordinating function that 

influences goal-driven brain activities and result in dysregulated brain functional 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.433735doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.433735
http://creativecommons.org/licenses/by/4.0/


networks. The disrupted spatial patterns of FPN state could also be viewed as a 

potential pathophysiological biomarker for identifying depression. 

 

Besides, in current exploratory analyses, the FO values of early visual and limbic 

states were applied as input features of a regression model, which get the predicted 

outcomes consistent with real HAM-D scores. This finding meant that simple FO 

parameters describing the aberrant distribution of HMM state occupancies could 

predict the specific disorder severity for each subject. The satisfactory prediction 

results of 95.7% may be resulted from the process as we descried above that 

depressed patients perceive the negative emotion from the stimuli more quickly and 

then over experience in the sad contents. The overall dysfunction for the distort time 

allocation implied the defective emotional regulation system underpinned by the 

impaired neural circuits of MDD. Thus, the dynamic character of FO values could not 

only discriminate the MDD patients but also indicate the individual depression 

severity. 

 

In summary, we reconstructed the brain states in the overall process of a passively sad 

expression recognition task via AE-HMM and found that aberrant temporal-spatial 

patterns in different process stages like primary visual processing and emotional 

contents processing were correspond to the different dysfunction of brain functions 

for MDD respectively. Furthermore, dynamic descriptors of FO values inferred from 

HMMs could reflect the aberrant dynamism and predict the severity of MDD 
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precisely. Overall, our findings may offer new insights on the pathology of negative 

emotion process for MDD and predict individual depression severity via a very simple 

dynamic character.  
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