bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.434168; this version posted March 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Title: Deletion disrupts a conserved antibody epitope in a SARS-CoV-2 variant of concern
2	
3	Running Title: Transmission of an unexpected SARS-CoV-2 RBD deletion variant
4	
5	Authors: Linda J. Rennick ^{1,2} , Lindsey R. Robinson-McCarthy ^{3,4} , Sham Nambulli ^{1,2} , W. Paul
6	Duprex ^{1,2} * and Kevin R. McCarthy ^{1,2} *
7	
8	Affiliations: ¹ The Center for Vaccine Research, University of Pittsburgh School of Medicine,
9	Pittsburgh PA ² The Department of Microbiology and Molecular Genetics, University of
10	Pittsburgh School of Medicine, Pittsburgh PA ³ Hillman Cancer Center, Pittsburgh PA and ⁴ The
11	Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA.
12	
13	Abstract:
14	Multiple SARS-CoV-2 variants with altered antigenicity have emerged and spread
15	internationally. In one lineage of global concern, we identify a transmitted variant with a deletion
16	in its receptor binding domain (RBD) that disrupts an epitope which is conserved across
17	sarbecoviruses. Overcoming antigenic variation by selectively focusing immune pressure on this
18	conserved site may, ultimately, drive viral resistance.
19	
20	Main Text:
21	The SARS-CoV-2 spike (S) glycoprotein is the target of protective antibodies and sole antigen
22	delivered in widely deployed vaccines ¹⁻⁴ . Emergent variants (B.1.1.7, B.1.351, P.1) have
23	independently acquired a common series of mutations that confer resistance to therapeutic
24	antibodies and serum from infected or vaccinated individuals. Variant spread has been rapid.
25	Reformulated therapies and vaccines are in development. Directing antibodies to conserved
26	sites therapeutically, as a consequence of immune recall or via designed immunogens can, in

27 theory, overcome antigenic variation. These strategies rely upon sites that slowly, if ever, accrue 28 diversity. We identify a transmitted B.1.1.7 variant with a deletion in a site of pan-sarbecoviruses 29 conservation. This deletion disrupts the binding of an antibody that engages both SARS-CoV 30 and SARS-CoV-2. The acquisition of antigenic novelty in S glycoprotein has been recurrent and 31 convergent. By extension conservation at this site may not persist. 32 Using sequences deposited in the GISAID database⁵, we have monitored variants of concern 33 34 for the acquisition of additional epitope-altering mutations. We identified a transmission cluster 35 of six identifiably different individuals that share a nine-nucleotide deletion within the S gene 36 encoding the RBD. These viruses belong to the B.1.1.7 lineage, which had already acquired two

37 independent deletions in recurrent deletion region ⁶ (RDR) 1 (Δ 69-70) and RDR2 (Δ 144/145).

38 Spread via human-to-human transmission is likely given the timing of sample collection,

39 geographic proximity and the clustering of sequences within a phylogeny of contemporaneously40 circulating B.1.1.7 isolates (Fig. 1).

41

42 The deletion removes residues 375-377 of the RBD. All three have been conserved for the 43 duration of the pandemic. We examined their conservation among divergent sarbecoviruses, 44 including SARS-CoV, bat and pangolin sequences (Fig. 2a). Among these isolates the three 45 codons differ only by synonymous nucleotide substitutions suggesting selective pressures to 46 preserve the identity of each amino acid. Residues 375-377 contribute to an extended surface 47 that is broadly conserved among sarbecovirus (Fig. 2b). This site is distal from the interface between RBD and its receptor angiotensin-converting enzyme 2 (ACE2)⁷. In the "three RBD" 48 49 down state of the S glycoprotein trimer, residues 375-377 form a β -strand which is recessed and 50 facing inward to the trimer 3-fold axis of symmetry. Sampling of "RBD-up" conformations and 51 receptor engagement exposes this site.

52

53 Despite its transient exposure, the conserved surface is immunogenic. A number of reported 54 antibodies, isolated from different donors, engage this site and can bind/neutralize other sarbecoviruses. Antibody CR3022, elicited by a SARS-CoV infection during the 2003-2004 55 outbreak, initially defined this antibody class and their common epitope ⁸⁻¹⁰ (Fig. 2b). These 56 57 antibodies inhibit viral replication but have limited neutralization potency in single round infection 58 assays ¹¹⁻¹³. CR3022, like others makes direct contacts with residues 375-377. We introduced 59 Δ 375-377 into an S glycoprotein expression construct and detected expression by indirect 60 immunofluorescence using an N-terminal domain binding antibody, 4A8¹⁴. The formation of 61 multinucleated, syncytia demonstrates S-Δ375-377 remains a functional membrane fusogen 62 (Fig. 2c). However, the deletion abolishes CR3022 binding. While evolutionary conserved, this 63 site is mutable and a single mutation event results in antibody escape.

64

SARS-CoV-2 only recently crossed into humans. Mounting evidence suggests that specific variants of concern have evolved some resistance to dominant humoral responses. Specifically how SARS-CoV-2 will adapt to immune pressures imposed by a human antibody repertoire is to be determined. This transmitted variant, with a deletion at an otherwise conserved site demonstrates that antigenic stability in animal species may not always extend to humans.

70

Focused genetic surveillance has not identified additional $\Delta 375$ -377-linked cases. The virus was sufficiently fit to transmit between at least five individuals and to define their viral consensus sequences. This early period of S evolution has been defined by recurrent, convergent evolution. Many defining mutations in current variants of concern are identical or functionally equivalent. The alteration of a conserved epitope by $\Delta 375$ -377 not only represents an additional antigenic step in a variant of concern (B.1.1.7), but also demonstrates a capacity of this site to acquire antibody resistance rapidly.

78

The emergence of variants of concern and their continued evolution demonstrate that S is not
as antigenically stable as initially hypothesized ^{15,16}. Second generation vaccines may
selectively focus antibodies to conserved epitopes, either by design or as a consequence of
recalling responses from immunologic memory. The conserved site tolerates both S-Δ375-377
and mutations about its periphery ¹⁷⁻²⁰. It may not be a suitable target for therapeutic antibodies
or immune focusing immunogens.

85

86 Acknowledgements:

We gratefully acknowledge the authors from the originating laboratories and the submitting
laboratories, who generated and shared via GISAID genetic sequence data on which this
research is based (Table 1). We sincerely apologize to the many authors we could not cite due
to limitations on references. This work was supported by The University of Pittsburgh, the
Center for Vaccine Research (WPD and KRM), The Richard King Mellon Foundation, the Henry
L. Hillman Foundation and the Commonwealth of Pennsylvania, Department of Community and
Economic Development (WPD)

95 **Author contributions**:

- L.J.R., L.R.R-M, S.N, W.P.D and K.R.M designed the experiments; L.J.R., L.R.R-M, S.N and
- 97 K.R.M. performed the experiments; L.J.R., L.R.R-M, S.N, W.P.D and K.R.M. analyzed data and
- 98 L.J.R., L.R.R-M, S.N, W.P.D and K.R.M wrote the manuscript.

99 Methods

100 Materials and Methods

101

102 Sequence analysis:

103 Sequences were obtained from the publicly available GISAID database ⁵ and acknowledged in

104 supporting Table 1. Sequence analysis was performed in Geneious (Biomatters, New Zealand).

105 To identify deletion variants in S gene, sequences were mapped to NCBI reference sequence

106 MN985325 (SARS-CoV-2/human/USA/WA-CDC-WA1/2020), the S gene open reading frame

107 was extracted, remapped to reference and parsed for deletions using a search for gaps

108 function.

109

All sequences were aligned in MAFFT^{21,22} and adjusted manually for consistency. To evaluate 110 111 the phylogenetic relationships between S- Δ 375-377 variants and isolates from 112 contemporaneously circulating B.1.1.7 we obtained sequences of B.1.1.7 variants from the 113 United Kingdom from samples that were obtained from Mid-late December 2020. The first 114 sequenced B.1.1.7 isolate hCoV-19/England/MILK-9E2FE0/2020 (EPI ISL 581117), was 115 included. FastTree²³ was used to generate a preliminary phylogeny. Branches from a node 116 containing S-Δ375-377 variants were extracted and along with hCoV-19/England/MILK-117 9E2FE0/2020 (EPI ISL 581117) were re-aligned. The final Maximum- Likelihood phylogenetic trees were calculated using RAxML²⁴ using a general time reversible model with optimization of 118 119 substitution rates (GTR GAMMA setting), starting with a completely random tree, using rapid 120 Bootstrapping and search for best-scoring ML tree with 10,000 bootstraps of support performed. 121 The phylogeny of sarbecoviruses used the indicated sequences and were produced using 122 RAxML²⁴ with the same parameters as above.

123

124 Cell lines:

Human 293F cells were maintained at 37° Celsius with 5% CO_2 in FreeStyle 293 Expression Medium (ThermoFisher) supplemented with penicillin and streptomycin. Vero E6 cells were maintained at 37° Celsius with 5% CO_2 in high glucose DMEM (Invitrogen) supplemented with 1% (v/v) Glutamax (Invitrogen) and 10% (v/v) fetal bovine serum (Invitrogen).

129

130 Recombinant IgG expression and purification:

131 The heavy and light chain variable domains of 4A8¹⁴ and CR3022⁸ were synthesized by

132 Integrated DNA Technologies (Coralville, Iowa) and cloned into a modified human pVRC8400

133 expression vector encoding for full length human or mouse IgG1 heavy chains and human

134 kappa light chains ²⁵. IgGs were produced by polyethylenimine (PEI) facilitated, transient

transfection of 293F cells that were maintained in FreeStyle 293 Expression Medium.

136 Transfection complexes were prepared in Opti-MEM and added to cells. Five days post-

137 transfection supernatants were harvested, clarified by low-speed centrifugation, adjusted to pH

138 5 by addition of 1 M 2-(N-morpholino)ethanesulfonic acid (MES) (pH 5.0), and incubated

139 overnight with Pierce Protein G agarose resin (Pierce, ThermoFisher). The resin was collected

140 in a chromatography column, washed with a column volume of 100 mM sodium chloride 20 mM

141 (MES) (pH 5.0) and eluted in 0.1 M glycine (pH 2.5) which was immediately neutralized by 1 M

142 TRIS(hydroxymethyl)aminomethane (pH 8). IgGs were then dialyzed against phosphate

143 buffered saline (PBS) pH 7.4.

144

145 Cloning and transfection of SARS-CoV-2 spike protein deletion mutants:

146 S-Δ375-377 was generated in HDM_SARS2_Spike_del21_D614G²⁶ a plasmid containing

147 SARS-CoV-2 S protein lacking the 21 C-terminal amino acids.

148 HDM_SARS2_Spike_del21_D614G was a gift from Jesse Bloom (Addgene plasmid # 158762;

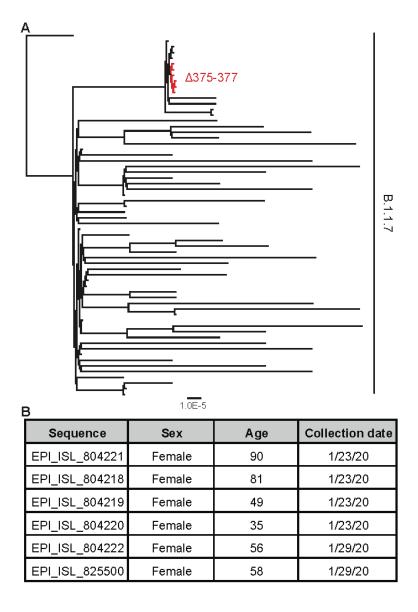
149 http://n2t.net/addgene:158762; RRID:Addgene_158762). The region containing amino acids

- 150 375-377 was excised using appropriate restriction enzymes and replaced by a synthetically
- 151 generated gBlock (Integrated DNA Technologies) with amino acids 375-377 deleted. The
- 152 Gibson Assembly reaction, transformations, clone screening, plasmid DNA preparation and
- 153 transfections were performed as described previously ⁶
- 154
- 155 Indirect immunofluorescence:
- 156 Indirect immunofluorescence was performed as previously reported ²⁷. Cells were transfected
- 157 with the SARS-CoV-2 S-Δ375-377 protein deletion mutant and controls. Primary monoclonal
- antibodies were 4A8 (mouse Fc; 1 µg/ml) and CR3022 (human Fc; 4 µg/ml), and secondary
- 159 antibodies were goat anti-mouse Alexa Fluor-568, Invitrogen, and goat anti-human Alexa
- 160 Fluor-488, Invitrogen, both used at 1:400 dilution.
- 161
- 162 Structure visualization:
- 163 Structural figures were rendered in Pymol (The PyMOL Molecular Graphics System, Version 2.0
- 164 Schrödinger, LLC).
- 165

166 **References**

- 167
 1
 Baden, L. R. *et al.* Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl

 168
 J Med **384**, 403-416, doi:10.1056/NEJMoa2035389 (2021).
- 1692Logunov, D. Y. et al. Safety and efficacy of an rAd26 and rAd5 vector-based170heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised171controlled phase 3 trial in Russia. Lancet **397**, 671-681, doi:10.1016/S0140-1726736(21)00234-8 (2021).
- 173
 3
 Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N


 174
 Engl J Med 383, 2603-2615, doi:10.1056/NEJMoa2034577 (2020).
- 1754Voysey, M. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222)176against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil,177South Africa, and the UK. Lancet **397**, 99-111, doi:10.1016/S0140-6736(20)32661-1178(2021).
- Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data from
 vision to reality. *Euro Surveill* 22, doi:10.2807/1560-7917.ES.2017.22.13.30494 (2017).
- 181 6 McCarthy, K. R. *et al.* Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive 182 antibody escape. *Science*, eabf6950, doi:10.1126/science.abf6950 (2021).

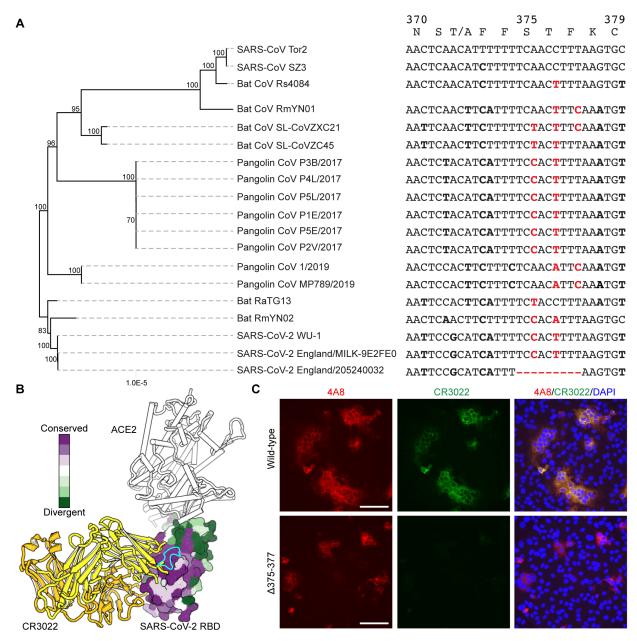
183	7	Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the
184		ACE2 receptor. Nature 581, 215-220, doi:10.1038/s41586-020-2180-5 (2020).
185	8	ter Meulen, J. et al. Human monoclonal antibody combination against SARS
186		coronavirus: synergy and coverage of escape mutants. PLoS Med 3, e237,
187		doi:10.1371/journal.pmed.0030237 (2006).
188	9	Tian, X. et al. Potent binding of 2019 novel coronavirus spike protein by a SARS
189		coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 9, 382-385,
190		doi:10.1080/22221751.2020.1729069 (2020).
191	10	Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of
192		SARS-CoV-2 and SARS-CoV. Science 368, 630-633, doi:10.1126/science.abb7269
193		(2020).
194	11	Huo, J. et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell
195		Host Microbe 28, 445-454 e446, doi:10.1016/j.chom.2020.06.010 (2020).
196	12	Wrobel, A. G. et al. Antibody-mediated disruption of the SARS-CoV-2 spike glycoprotein.
197		Nat Commun 11, 5337, doi:10.1038/s41467-020-19146-5 (2020).
198	13	Finkelstein, M. T. et al. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2
199		Spike to Guide Therapy and Vaccine Design Strategies. Viruses 13,
200		doi:10.3390/v13010134 (2021).
201	14	Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike
202		protein of SARS-CoV-2. Science 369, 650-655, doi:10.1126/science.abc6952 (2020).
203	15	Dearlove, B. et al. A SARS-CoV-2 vaccine candidate would likely match all currently
204		circulating variants. Proc Natl Acad Sci U S A 117, 23652-23662,
205		doi:10.1073/pnas.2008281117 (2020).
206	16	Rausch, J. W., Capoferri, A. A., Katusiime, M. G., Patro, S. C. & Kearney, M. F. Low
207		genetic diversity may be an Achilles heel of SARS-CoV-2. Proc Natl Acad Sci U S A
208		117 , 24614-24616, doi:10.1073/pnas.2017726117 (2020).
209	17	Greaney, A. J. et al. Comprehensive mapping of mutations to the SARS-CoV-2 receptor-
210		binding domain that affect recognition by polyclonal human serum antibodies. bioRxiv,
211		2020.2012.2031.425021, doi:10.1101/2020.12.31.425021 (2021).
212	18	Greaney, A. J. et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike
213		Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 29, 44-
214		57 e49, doi:10.1016/j.chom.2020.11.007 (2021).
215	19	Starr, T. N. et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain
216		Reveals Constraints on Folding and ACE2 Binding. Cell 182, 1295-1310 e1220,
217		doi:10.1016/j.cell.2020.08.012 (2020).
218	20	Liu, Z. et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal
219		and serum antibody neutralization. Cell Host Microbe, doi:10.1016/j.chom.2021.01.014
220		(2021).
221	21	Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple
222		sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059-3066,
223		doi:10.1093/nar/gkf436 (2002).
224	22	Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
225		improvements in performance and usability. <i>Mol Biol Evol</i> 30 , 772-780,
226		doi:10.1093/molbev/mst010 (2013).
227	23	Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution
228		trees with profiles instead of a distance matrix. Mol Biol Evol 26, 1641-1650,
229		doi:10.1093/molbev/msp077 (2009).
230	24	Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
231		large phylogenies. Bioinformatics 30, 1312-1313, doi:10.1093/bioinformatics/btu033
232		(2014).

- 233 25 Watanabe, A. *et al.* Antibodies to a Conserved Influenza Head Interface Epitope Protect
 234 by an IgG Subtype-Dependent Mechanism. *Cell* **177**, 1124-1135 e1116,
 235 doi:10.1016/j.cell.2019.03.048 (2019).
- Crawford, K. H. D. *et al.* Protocol and Reagents for Pseudotyping Lentiviral Particles with
 SARS-CoV-2 Spike Protein for Neutralization Assays. *Viruses* 12,
- doi:10.3390/v12050513 (2020).
- Klimstra, W. B. *et al.* SARS-CoV-2 growth, furin-cleavage-site adaptation and
 neutralization using serum from acutely infected hospitalized COVID-19 patients. *J Gen Virol*, doi:10.1099/jgv.0.001481 (2020).
- Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize
 evolutionary conservation in macromolecules. *Nucleic Acids Res* 44, W344-350,
 doi:10.1093/nar/gkw408 (2016).
- 245 29 Celniker, G. *et al.* ConSurf: Using Evolutionary Data to Raise Testable Hypotheses
 246 about Protein Function. *Israel Journal of Chemistry* 53, 199-206,
 247 doi:https://doi.org/10.1002/ijch.201200096 (2013).
- 248

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.434168; this version posted March 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

249 Figures:

250


251

252

Fig. 1. Transmission cluster within the B.1.1.7 lineage with a novel deletion in RBD. a.

- 254 SARS-CoV-2 genome sequences with a nine-nucleotide deletion at codons 375-377 (red
- branches) cluster together among contemporaneously circulating B.1.1.7 isolates (black
- branches). The maximum likelihood phylogenetic tree is, rooted on EPI_ISL_581117 and was

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.434168; this version posted March 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

calculated with 10,000 bootstrap replicates. **b.** GISAID accession numbers and metadata fromthe six individuals.

- 259
- 260

Fig. 2. Deletion of a conserved site abolishes CR3022 binding a. phylogeny of sarbecovirus genomes and nucleotide sequences of the deletion region. Differences from SARS-CoV Tor2 are shown in bold and in red for codons 375-377. SARS-CoV Tor2 specific translation and amino acid numbering is above. The maximum likelihood phylogenetic tree was calculated with 10,000 bootstrap replicates. **b.** A structure of SARS-CoV-2 bound with ACE2 (white) (PDB:

- 266 6M0J). CR3022 (6W41) (yellows) has been docked in by aligning ACE2 RBDs. The RBD
- surface is colored by conservation among the coronavirus isolates above using ConSurf^{28,29}
- and residues 375-377 are circled in cyan. S glycoprotein distribution in Vero E6 cells at 24 h
- 269 post-transfection with plasmids encoding SARS-CoV-2 S-Δ375-377 or wild-type S glycoprotein,
- visualized by indirect immunofluorescence in permeabilized cells. A monoclonal antibody
- against the N-terminal domain of SARS-CoV-2 S protein (4A8; red) detects wild-type and
- 272 mutant protein. CR3022 monoclonal antibody (CR3022; green) does not detect the S-Δ375-377
- 273 mutant. Overlay images (4A8/CR3022/DAPI) depict co-localization of the antibodies; nuclei
- were counterstained with DAPI (blue). The scale bars represent 100 µm.