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Abstract: Growing evidence suggests that conventional dendritic cells (cDCs) undergo 45 

aberrant maturation in COVID-19 and this negatively affects T cell activation. The presence 46 

of functional effector T cells in mild patients and dysfunctional T cells in severely ill patients 47 

suggests that adequate T cell responses are needed to limit disease severity. Therefore, 48 

understanding how cDCs cope with SARS-CoV-2 infections can help elucidate the mechanism 49 

of generation of protective immune responses. Here, we report that cDC2 subtypes exhibit 50 

similar infection-induced gene signatures with the up-regulation of interferon-stimulated genes 51 

and IL-6 signaling pathways. The main difference observed between DC2s and DC3s is the 52 

up-regulation of anti-apoptotic genes in DC3s, which explains their accumulation during 53 

infection. Furthermore, comparing cDCs between severe and mild patients, we find in the 54 

former a profound down-regulation of genes encoding molecules involved in antigen 55 

presentation, such as major histocompatibility complex class II (MHCII) molecules, β2 56 

microglobulin, TAP and costimulatory proteins, while an opposite trend is observed for 57 

proinflammatory molecules, such as complement and coagulation factors. Therefore, as the 58 

severity of the disease increases, cDC2s enhance their inflammatory properties and lose their 59 

main function, which is the antigen presentation capacity. In vitro, direct exposure of cDC2s 60 

to the virus recapitulates the type of activation observed in vivo. Our findings provide evidence 61 

that SARS-CoV-2 can interact directly with cDC2s and, by inducing the down-regulation of 62 

crucial molecules required for T cell activation, implements an efficient immune escape 63 

mechanism that correlates with disease severity. 64 
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Results and Discussion 86 

Clinical outcomes of COVID-19 are highly variable. Patients may show either no/mild 87 

symptoms (such as mild fever and cough) or severe respiratory involvement requiring 88 

hospitalization. In the most severe cases, Acute Respiratory Distress Syndrome (ARDS) can 89 

develop, with high levels of inflammatory hallmarks in the blood 1, 2 and diffuse intravascular 90 

coagulation (DIC) 3,4. In a non-negligible number of cases, COVID-19 is lethal 5. Patients 91 

presenting severe symptoms show immune dysregulation characterized by excessive release of 92 

type 1 and type 2 cytokines 2, and alterations of lymphoid and myeloid populations in the 93 

peripheral blood 6. Severe patients, diversely from mild patients, also show alterations in both 94 

Th17 and Th1 cell activation, with defects in the acquisition of effector functions 7.  95 

Cells of myeloid origin play a pivotal role during infections by sensing pathogens, producing 96 

inflammatory mediators and by contributing to the activation of adaptive immunity. In this 97 

context, dendritic cells (DCs) are particularly relevant since they are specialized in antigen 98 

presentation and T cell priming 8. Given the functional specialization of DCs, the differences 99 

observed in the activated T cell compartments in severe versus mild patients suggest that 100 

alterations in activation may also be present in the conventional DC (cDC) compartment in 101 

patients presenting with different levels of disease severity.  102 

cDCs have been divided in two subtypes, cDC1 and cDC2, originating from a common 103 

precursor (pre-DCs) 9,10,11,12. cDC1s have a high intrinsic capacity to cross-present antigens, 104 

due to the expression of the CLEC9A c-type lectin 13, and activate CD8+, Th1 and NK cells 14. 105 

Myeloid cDC2s express different Pattern Recognition Receptors (PRRs) and can promote a 106 

wide range of immune responses and especially CD4+ T cell responses 15. Recently, cDC2s 107 

have been divided in two subsets, DC2 and DC3 16,17,18. DC3s are a heterogeneous population 108 

and comprehend non inflammatory cells showing a CD163-CD14-CD5- phenotype, 109 

inflammatory CD163+CD14+CD5- cells and a CD163+CD14-CD5- intermediate subpopulation 110 

16.  111 

Functional impairments of cDCs have been described in COVID-19 patients, with decreased 112 

numbers in the blood 19,20, but not in bronchoalveolar lavage (BAL) samples 7, and reduced 113 

functionality, in terms of cytokines production and T cell priming capacity when restimulated 114 

in vitro 21,22.  Nevertheless, a defect of maturation following in vitro restimulation does not 115 

necessarily indicate functional impairment, as activated DCs may not further respond to PRR 116 

agonists. Therefore, no specific information is available concerning the impact of SARS-CoV-117 

2 infection on the maturation of DC subtypes and a better understanding is mandatory given 118 
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the specific role of cDC subtypes in the activation and skewing of adaptive immune responses 119 

that ultimately contribute to COVID-19 pathogenesis 23.  120 

In seeking for the impact of SARS-CoV-2 infection on blood DC subtypes, we analyzed 121 

peripheral blood DCs from severe and mild COVID-19 patients, according to World Health 122 

Organization (WHO) classification. Patients were enrolled from the STORM cohort (see 123 

Supplementary Table 1 for the clinical data of the patients) of San Gerardo Hospital in 124 

Monza, Italy.  125 

cDC1s were identified as CLEC9A+ and cDC2s as CD1c+FcεRIα+ over the CD11c+MHCII+ 126 

PBMCs excluding cells expressing markers for T and B lymphocytes (CD3 and CD19, 127 

respectively) and monocytes (CD88 and CD89) 16. CD14 was included in the analysis to 128 

identify DC3s 17 (Supplementary Fig. S1 for gating strategies). Consistent with some studies 129 

20 but not others 6, we found a decreasing trend in the frequency of cDC1s and DC2s and an 130 

increasing trend in DC3s in COVID-19 patients compared with healthy donors (HDs) (Fig. 131 

1A).  132 

To perform a systematic characterization of the transcriptional response of DCs to SARS-CoV-133 

2 infection, we analyzed three different single-cell transcriptomic datasets, two publicly 134 

available and a newly generated one. The analysis of three independent datasets allowed us to 135 

identify consistently altered signaling pathways, minimizing the effects of possible biases in 136 

the single datasets. 137 

The new dataset (dataset 1) was generated using a droplet-based single cell platform (10X 138 

Chromium) and contains scRNA-seq data of CD11c+ MHC-II+ cells isolated from PBMCs of 139 

three COVID-19 patients (two mild and one severe) and two HDs (Supplementary Table 1). 140 

The second dataset 22 (dataset 2) contains cellular indexing of transcriptomes and epitopes by 141 

sequencing (CITE-seq) data of PBMCs and enriched DCs obtained from 7 COVID-19 patients 142 

(three mild and four severe) and 5 HDs, while the third dataset 24 (dataset 3) contains scRNA-143 

seq data of PBMCs obtained from 18 COVID-19 patients (8 mild and 10 severe) and 21 HDs.  144 

Single-cell data from datasets 1 and 2 were first visualized using non-linear dimensionality 145 

reduction through uniform manifold approximation and projection (UMAP) and graph-based 146 

clustering algorithms (Supplementary Fig. 2A, 3A). Clusters containing myeloid DCs were 147 

identified based on the expression of markers that discriminate cDC2s and cDC1s from all 148 

other cell populations. Specifically, CD1C, FCER1A and CLEC10A were used to identify 149 

cDC2s, while CLEC9A was used to identify cDC1s (Supplementary Fig. 2B, 3B). For dataset 150 

3, myeloid DCs already annotated by the authors were considered 24. Clusters corresponding 151 

to myeloid DCs in the three datasets were re-clustered in further iterations to separate cDC1s 152 
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from cDC2s, to discriminate cDC2 subpopulations and to exclude possible contaminants. 153 

Specifically, DC3s were distinguished from DC2s based on the expression of CD14, CD163 154 

and S100A8 markers. This approach allowed us to clearly identify cDC subsets (Fig. 1B and 155 

Supplementary Fig. 3C,D). 156 

Next, in order to unravel the transcriptional response of each DC subset during SARS-CoV-2 157 

infection, we aggregated cell-level counts into sample-level pseudobulk counts, mitigating 158 

single-cell mRNA measurement noise, and identified differentially expressed genes (DEGs) 159 

between COVID-19 patients and HDs (Supplementary Table 2). The low numbers of cDC1s 160 

allowed their analysis only in dataset 2.  161 

In all DC subsets from the three datasets, when comparing expression profiles of COVID-19 162 

patients with those of HDs, most of the genes up-regulated in COVID-19 were interferon (IFN) 163 

stimulated genes (ISGs) (Fig. 1C and Supplementary Fig. 4A,B). On the other hand, among 164 

the most significantly down-regulated genes in COVID-19, there were those encoding MHC 165 

class II molecules (Fig. 1C), indicating an impaired antigen presentation capacity of these cells. 166 

To understand more deeply which biological signaling pathways were differentially regulated 167 

in COVID-19 patients compared with HDs, we performed Gene Set Enrichment Analysis 168 

(GSEA) using two different gene sets: the Hallmark collection from the Molecular Signatures 169 

Database (MSigDB) and the literature-derived Blood Transcription Modules (BTMs) 25 170 

(Supplementary Table 3). As it could be predicted by the identified DEGs, in all DC subtypes 171 

from the three datasets, maturation was dominated by ISGs while we could not detect the up-172 

regulation of signatures containing classical activation markers and cytokines for T cell 173 

priming (Fig. 1D and Supplementary Fig. 5A). Together with the IFN-induced pathways, IL-174 

6 pathways (IL-6-JAK-STAT3 and PI3K-AKT-mTOR 26) were recurrently up-regulated in 175 

cDC2s in all datasets (Fig. 1D). This is consistent with the relevance of IL-6 in COVID-19 176 

pathogenesis and the expansion of activated Th17 cells in COVID-19 patients27.    177 

The lack of a conventional maturation signature (lack of up-regulation of genes encoding 178 

MHCII and costimulatory molecules and cytokines) in circulating DCs prompted us to ask 179 

whether it was, in fact, possible to identify activated DCs in the blood. It could not be excluded 180 

that mature DCs reach circulation too late after activation when they are exhausted and, thus, 181 

only very late transcriptional events are visible.  182 

We, therefore, investigated the transcriptional responses of circulating DC2 and DC3 subsets 183 

at single-cell resolution in different clinical conditions. Two distinct publicly available datasets 184 

were analyzed: the dataset from Reyes et al. 28 containing scRNA-seq data of PBMCs and 185 

enriched DCs obtained from patients with urinary tract bacterial infections of increasing 186 
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severity (localized infection [Leuk-UTI], systemic infection with transient [Int-URO] or 187 

persistent organ dysfunctions [URO]), and the dataset from Hao et al. 29 containing CITE-seq 188 

data of PBMCs obtained from healthy volunteers that received an adenovirus-based vaccine. 189 

As previously described, we performed dimensionality reduction and unsupervised clustering 190 

to identify DC subpopulations. Our approach clearly identified DC subsets in both datasets 191 

(Fig. 2A and Supplementary Fig. 6). We then determined DEGs in infected or vaccinated 192 

donors with respect to the corresponding HDs (Supplementary Table 4) and performed 193 

GSEA.  194 

The results were in stark contrast to those obtained from COVID-19 patients. Indeed, in both 195 

datasets, circulating DC2s and DC3s showed an up-regulation not only of IFN pathways (as in 196 

COVID-19) but also of inflammatory signatures and genes relevant for immune responses 197 

(differently from COVID-19) (Fig. 2B,C and Supplementary Fig. 7,8). Among the most 198 

highly up-regulated genes there were several encoding activation molecules such as CCR1, 199 

CCR5, CXCL10, TNFSF10 (CD253/TRAIL) as well as Toll-like receptor (TLR) genes, (Fig. 200 

2B and Supplementary Fig. 7A,B).  201 

These findings were confirmed by pathway analysis, which showed a clear up-regulation of 202 

activation pathways in DC2 and DC3 subsets in response to bacterial infections or vaccine, 203 

such as the inflammatory response pathway and the TNF-α signaling pathway (Fig. 2C and 204 

Supplementary Fig. 8A,B). Among the leading edge genes driving the enrichment of the 205 

inflammatory response pathway in response to bacterial infections there were several ones 206 

relevant for T cell activation (IL1B, CCL5, TNFSF10, GPR183, CD69, SELL) 207 

(Supplementary Fig. 8C).  208 

Interestingly, we observed a stronger activation response of circulating cDC2s in patients with 209 

localized bacterial infections (Leuk-UTI group) and transient organ dysfunction (Int-URO 210 

group) than in patients with bacterial sepsis and persistent organ dysfunction (URO group) 211 

(Fig. 2C). This was expected since sepsis induces functional impairment of myeloid cells. 212 

These results indicate that conventionally activated DCs can be detectable in the blood when 213 

infections are both localized and systemic. Therefore, the lack of a classic activation signature, 214 

observed in cDC subtypes from blood of COVID-19 patients, is not a generalized phenomenon.  215 

Recent studies have indicated potential functional differences between DC2 and DC3 216 

subpopulations 30, in particular in inflammatory diseases, like Systemic Lupus Erythematosus 217 

(SLE), in which type I IFNs play a major role 16. In order to investigate a potential specific role 218 

for DC3s with respect to DC2s, we determined the genes differentially 219 
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induced/downmodulated by these two subpopulations in response to SARS-CoV-2 stimulation 220 

and compared them to bacterial sepsis.  221 

To increase our resolution, we pooled cDCs from the three COVID-19 datasets and performed 222 

Harmony integration 31, followed by graph-based clustering. After integration, we obtained 223 

2,415 cDCs (Fig. 3A) and we clearly identified clusters of cDC1s, DC2s and DC3s (Fig. 3B). 224 

Only 24 genes (p-value < 0.05 and absolute log2FC > 1) were differentially expressed in DC3s 225 

compared with DC2s in response to COVID-19 infection, of which 17 were up-regulated and 226 

7 were down-regulated (Fig. 3C, left panel and Supplementary Table 5). On the other hand, 227 

152 genes (p-value < 0.05 and absolute log2FC > 1) were identified as differentially regulated 228 

in DC3s compared with DC2s in response to intermediate urosepsis (Int-URO condition), of 229 

which 59 were up-regulated and 93 were down-regulated (Fig. 3C, right panel and 230 

Supplementary Table 5). 231 

The diversity in the responses of DC3s and DC2s during bacterial infections could be, at least 232 

partly, explained by the differential expression of some receptors, such as CD14 exclusively 233 

expressed by DC3s. CD14 is a component of the receptor complex of lipopolysaccharide 234 

(LPS), a major factor of the outer membrane of Gram-negative bacteria, and contributes to LPS 235 

recognition and internalization of the receptor complex 32. Therefore, thanks to the expression 236 

of CD14, DC3s can respond more efficiently to Gram-negative bacteria than DC2s. CD14 has 237 

also important roles as chaperon for ligands of endosomal and cytosolic PRRs32. Therefore, the 238 

differences between DC2 and DC3 responses observed in Gram-negative bacterial infections 239 

may also occur after Gram-positive bacterial recognition.  240 

In conclusion, these findings suggest that DC2s and DC3s respond in a very similar way to 241 

SARS-CoV-2 infections, while they show more diversified responses to bacterial infections. 242 

Interestingly, among the few genes differentially expressed between DC3s and DC2s in 243 

response to COVID-19, there were genes encoding complement factors and receptors (C1QC, 244 

C1QA and C5AR1) and, most importantly, anti-apoptotic genes such as AXL and CLU that 245 

resulted the most significantly up-regulated (Fig. 3C, left panel). This suggests that DC3s are 246 

less susceptible to apoptosis than DC2s and may explain why they tend to increase while all 247 

other cDC populations decrease during SARS-CoV-2 infection (Fig. 1A). When comparing 248 

these results with those obtained from bacterial infections, we found that genes associated with 249 

cell cycle progression and cell proliferation (RGCC, SENP5, SMC6, SERTAD3, MAD2L1BP) 250 

were specifically up-regulated in DC3s (Fig. 3C, right panel). Therefore, DC3s may 251 

proliferate during inflammatory responses or circulating DC3s may contain some proliferating 252 

progenitors that expand the DC3 population during bacterial infections.  253 
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Altogether, these observations could explain why DC3s increase in number in acute and 254 

chronic inflammatory conditions 16,33. Moreover, the higher persistence potential of DC3s 255 

induced by inflammation could explain why their frequency is highly variable in HDs. 256 

Coherently with these observations, we found an alteration of cDCs relative abundance in 257 

COVID-19 patients compared with HDs also at single-cell resolution. Specifically, DC3s 258 

showed increased frequencies in patients, which positively correlated with disease severity 259 

(Fig. 3D). Since DC3s are highly heterogeneous, we analyzed DC3 subpopulations at higher 260 

resolution. Hence, we retained clusters corresponding to DC3s and performed a re-clustering 261 

procedure to discriminate between DC3s and inflammatory DC3s (Fig. 3E). Interestingly, we 262 

identified three main phenotypes, characterized by low expression of both CD14 and CD163 263 

(clusters 2 and 6), intermediate expression (clusters 0, 1, 7 and 8) and high expression (clusters 264 

3, 4, 5), reflecting the heterogeneity of DC3 population (Fig. 3F,G,H). Clusters with the 265 

highest expression of both CD14 and CD163 (clusters 3, 4, 5) were annotated as inflammatory 266 

DC3s. We found a progressive increase in the relative abundance of inflammatory DC3s from 267 

HDs, to mild and finally to severe patients (Fig. 3I). This result was associated with the higher 268 

expression of the anti-apoptotic gene CLU in the inflammatory DC3s population, specifically 269 

in critically ill patients (Fig. 3J,K). Accordingly, an increasing trend in the frequency of 270 

inflammatory DC3s (CD14+CD163+), and not of non-inflammatory DC3s (CD14-CD163-), 271 

was observed in the blood of severe patients (Fig. 3L). 272 

In order to seek for specific alterations in the innate immune signature of mild and severe 273 

COVID-19 patients and to link immune response variation to disease severity, we investigated 274 

cDC2 gene expression profiles in severe versus mild COVID-19 patients. As previously 275 

described, we aggregated cell-level counts into sample-level pseudo-bulk counts and identified 276 

DEGs between severe and mild COVID-19 patients (Supplementary Table 6).  277 

In both DC2s and DC3s, we identified an important number of DEGs (200 for DC2s and 169 278 

for DC3s, p-value < 0.05 and absolute log2FC > 1) between severe and mild patients, indicating 279 

relevant differences in the transcriptional response of these two groups (Fig. 4A). Interestingly, 280 

inflammatory genes not directly related to the activation of adaptive immunity, like 281 

complement factors (C1QC, C1QB) and complement receptors (C5AR1), genes involved in the 282 

production of leukotrienes known to exacerbate respiratory syndromes (ALOX5AP), genes of 283 

the coagulation cascade (THBS1, THBD), factors involved in vasodilation (ADM) and other 284 

inflammatory genes like CD14, S100A8/A9, ADAM9 and CD163 were significantly up-285 

regulated in severe versus mild patients in DC2s and/or DC3s (Fig. 4A). In addition, genes that 286 
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negatively interfere with the maturation of DCs finalized to T cell activation, like TMEM176A, 287 

CD109, MT1E were up-regulated in severe compared to mild patients (Fig. 4A). Moreover, 288 

further supporting what discussed above, the anti-apoptotic gene CLU was found to be among 289 

the most significantly up-regulated genes in DC3s of severe patients (Fig.4A, right panel). 290 

Strikingly, genes encoding MHCII molecules, the costimulatory molecule CD86 and 291 

cytokines, such as IL1B, CCL3 and CCL4, showed a progressive down-regulation from HDs 292 

to mild and finally severe patients (Fig. 4B).  293 

These observations were consolidated by pathway analysis, which showed a clear up-294 

regulation of pathways involved in metabolism, coagulation, angiogenesis and reactive oxygen 295 

species in severe compared with mild patients, and a down-regulation of IFN pathways (Fig. 296 

4C). Interestingly, among the leading edge genes of the allograft rejection pathway, that was 297 

found to be down-regulated in severe compared with mild patients, there were many genes 298 

critical for DC-mediated T cell activation, such as those coding for proteins involved in antigen 299 

presentation on both MHCI and MHCII pathways (B2M, TAP1, TAP2, HLA-DMB, HLA-DRA) 300 

and genes encoding molecules relevant for T cell recruitment and activation (IL16, IL1B, 301 

CCL4) (Fig. 4D). Specific down-regulation of these genes in severely ill patients emphasizes 302 

the alteration of cDC functions in these individuals, which may be associated with a worse 303 

disease progression.  304 

Altogether, these observations indicate that, as disease severity increases, cDC2s progressively 305 

skew toward inflammatory activities and lose the antigen presenting function. This could 306 

explain the alteration of the activated T cell compartment observed in severely ill patients.   307 

Results shown till now indicate that, during COVID-19 infections, DC3s and DC2s respond 308 

similarly to the virus with three main features: i) the up-regulation of ISGs and IL-6 pathways; 309 

ii) a progressive down-regulation from mild to severe patients of genes encoding signal 1 and 310 

signal 2 molecules associated with antigen presentation; iii) the up-regulation of an 311 

inflammatory signature, mainly represented by complement and coagulation factors, in severe 312 

patients.  313 

We wondered whether these features could be due to the exposure to mediators released during 314 

SARS-CoV-2 infection or to the direct interaction of cDCs with the virus. The first cDC 315 

characteristic observed in our study is compatible with both the direct interaction with the virus 316 

and the exposure to paracrine cytokines, such as IFNs and IL-6 produced by bystander cells. 317 

The lack of expression of IFN and IL-6 genes in circulating DCs does not necessarily mean 318 

that cDCs cannot be a source of these cytokines, since the expression of genes encoding these 319 

molecules is acutely regulated and may be shut down when DCs reach the circulation. By 320 
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contrast, the systematic down-regulation of genes encoding MHCII molecules is more likely 321 

explained by a direct interaction of cDCs with the virus. This prediction was also supported by 322 

evidence that the virus can directly activate monocyte derived DCs following abortive infection 323 

34. 324 

Therefore, we investigated whether the direct interaction of cDC2s with the virus could induce 325 

a similar response to that observed at single-cell resolution. By using IL-6 and MHCII as 326 

readouts, we measured the response to the virus of cDC2s (CD1c+CD19- cells) freshly isolated 327 

from HDs. As predicted, we found that SARS-CoV-2 directly induced a significant down-328 

regulation of MHCII surface expression and the up-regulation of IL-6 in both DC2s and DC3s 329 

(Fig. 5A,B). Diversely, the exposure of cDC2s to sera from mild and severe patients, that 330 

contain inflammatory cytokines and other mediators, could not induce any modification in 331 

MHCII and IL-6 expression (Fig. 5C). This suggests that at least part of the peculiar response 332 

of cDCs induced in vivo by SARS-CoV-2 infection can be directly imposed by the virus.  333 

In conclusion, SARS-CoV-2 can be detected directly by DCs and induces down-regulation of 334 

signals necessary for activation of T lymphocytes, a phenomenon that is accentuated with 335 

disease severity. This allows the virus to evade control of the adaptive immune system, while 336 

the host attempts to counteract viral infection with innate immunity.  337 

Understanding how DCs manage SARS-CoV-2 infection will help identify ad hoc 338 

interventions to achieve optimal adaptive responses, a prerequisite for a good prognosis 35,23. 339 

 340 
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Materials and Methods   349 

Flow cytometric analysis 350 

PBMCs from COVID-19 patients enrolled from the STORM cohort were extracted from 351 

peripheral blood by density gradient centrifugation using Ficoll (GE Healthcare). Cells were 352 

washed twice and stained for 30 minutes on ice using the following anti-human antibodies 353 

(1:200, Becton Dickinson): anti-FcεRIα PE-Cy7, anti-CD14 PE, anti-CD1c APC-Cy7, anti-354 

Clec9 (CD370) Alexa 647, anti-CD5 BV786, anti-CD3 BV605, anti-CD19 BV605, anti-CD88 355 

BV605, anti-CD89 BV605, anti-CD11c BV480, anti-CD163 BV421, anti-HLA-DR BUV805. 356 

Cells were then washed and fixed using fixation buffer (Becton Dickinson) and acquired using 357 

BD FACSsymphony instrument (Becton Dickinson). Analyses were performed with Flow jo 358 

X software.  359 

cDC2s purification and activation 360 

Human cDC2 cells were purified from peripheral blood mononuclear cells (PBMCs) extracts 361 

from buffy coat of healthy donors (provided by Niguarda hospital blood bank) by Ficoll-Paque 362 

density gradient centrifugation. Briefly, blood was stratified on Ficoll-Paque PLUS (GE 363 

Healthcare) in 3:4 ratio and centrifuged at 1500 r.p.m. for 30 min without brake. PBMCs were 364 

washed twice, collected and CD1c+ cells were purified using MACS beads according to the 365 

manufacturer’s instructions (Miltenyi Biotec). Cells were cultured in Roswell Park Memorial 366 

Institute (RPMI) 1640 medium (Euroclone) containing 10% heat-inactivated fetal bovine 367 

serum (Euroclone), 100 IU of penicillin, streptomycin (100 µg/ml), 2 mM l-glutamine 368 

(Euroclone). cDC2s were infected with 0.4 MOI of SARS-CoV-2 for 18h or treated with serum 369 

of COVID-19 patients (ratio serum/medium 1:1), then collected and stained with anti-FcεRIα 370 

PE-Cy7, anti-CD14 PE, anti-CD1c APC-Cy7, anti-CD5 BV786, anti-CD3 BV605, anti-CD19 371 

BV605, anti-CD88 BV605, anti-CD89 BV605, anti-CD11c BV480, anti-CD163 BV421, anti-372 

HLA-DR BUV805 (1:200, all from Becton Dickinson). Cells were then fixed and 373 

permeabilized with cytofix/cytoperm reagent kit (Becton Dickinson) and stained with anti-IL-374 

6 FITC antibody, according to the manufacturer’s instructions. Samples were acquired with the 375 

BD FACSsymphony instrument (Becton Dickinson) and analyzed with Kaluza software. 376 

Single-cell RNA sequencing datasets analyzed in the study 377 

In this study, three different single-cell datasets from COVID-19 patients and healthy controls 378 

were analyzed.  379 
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Dataset 1 was newly generated. Myeloid cells were sorted (CD11c+ MHCII+) from 3 COVID-380 

19 patients (2 mild and 1 severe, enrolled from the STORM cohort) and 2 healthy donors using 381 

a MACSQuant Tyto (Miltenyi) (Supplementary Fig. 1B). After sorting, cell number and 382 

viability were evaluated using an automated cell counter. Viability for each sample was ≥75%. 383 

10,000 cells per sample were loaded on a Chromium Next GEM Chip G (10x Genomics). A 384 

Chromium controller (10x Genomics, Pleasanton, CA, USA) was used to generate single-cell 385 

GEMs, according to Chromium Next GEM Single Cell 5’ Library & Gel Bead Kit v1.1 386 

protocol (PN-1000165; 10x Genomics). Full-length cDNA amplification and 5’ gene 387 

expression library construction were performed according to manufacturers’ instructions in a 388 

Veriti 96-well Thermal Cycler (Thermo Fisher Scientific). Indexed libraries were sequenced 389 

on an Illumina Novaseq 6000 platform, on a S2 flowcell, 150bp PE (20,000 read pairs per cell). 390 

Reads from FASTQ files were aligned against the GRCh38 human reference genome and 391 

quantified using the Cell Ranger pipeline (10x Genomics) version 3.0 with default parameters. 392 

Single cell data have been deposited in GEO (GSE168388) and will be accessible upon 393 

publication. 394 

Dataset 2 22 is a CITE-seq experiment with PBMCs and enriched DCs from 7 COVID-19 395 

patients (three mild and four severe) and 5 HDs. Count matrices were downloaded from the 396 

Gene Expression Omnibus (GEO) (GSE155673).  397 

Dataset 3 24 is a scRNA-seq experiment with PBMCs from 18 COVID-19 patients (8 mild and 398 

10 severe) and 21 HDs. Seurat  objects were downloaded from FASTGenomics 399 

(https://www.fastgenomics.org/). Only cells annotated as myeloid DCs by the authors were 400 

used in downstream analyses.  401 

To compare transcriptional responses of cDC subsets between SARS-CoV-2 infection and 402 

other inflammatory conditions, we analyzed two additional publicly available datasets.  403 

The Reyes et al. dataset 28 is a scRNA-seq experiment with PBMCs and enriched DCs obtained 404 

from patients with bacterial infections and healthy controls. Briefly, subjects were enrolled in 405 

two different cohorts. A primary cohort contains subjects that were classified into three clinical 406 

categories: Leuk-UTI, Int-URO and URO. The Leuk-UTI group refers to subjects with urinary-407 

tract infection (UTI) with leukocytosis (blood WBC ≥ 12,000 per mm3) but no organ 408 

dysfunction. The Int-URO (intermediate urosepsis) group contains subjects with UTI with mild 409 

or transient organ dysfunction, and the URO (urosepsis) group refers to subjects with UTI with 410 

clear or persistent organ dysfunction. Ten subjects were classified as Leuk-UTI, seven as Int-411 

URO and ten as URO. A second cohort comprises hospitalized subjects classified into three 412 

conditions: subjects with bacteremia and sepsis not requiring intensive care unit (ICU) 413 
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admission (Bac-SEP group, four subjects), subjects with sepsis requiring ICU care (ICU-SEP, 414 

eight subjects) and subjects in the ICU for conditions other than sepsis (ICU-NoSEP, seven 415 

subjects). Data were downloaded from the Broad Institute Single Cell Portal 416 

(https://singlecell.broadinstitute.org/single_cell) (SCP548). For downstream analysis, we 417 

retained monocytes and DCs as annotated by the authors.  418 

The Hao et al. dataset 29 is a CITE-seq experiment with PBMCs from 8 healthy volunteers 419 

enrolled in an adenovirus-based HIV vaccine trial. For each subject, PBMCs were collected at 420 

three time points: immediately before (day 0), three days, and seven days following vaccine 421 

administration. Data were downloaded from https://atlas.fredhutch.org/nygc/multimodal-422 

pbmc/. For downstream analysis, we retained only cDCs as annotated by the authors.  423 

Single-cell data processing and analysis  424 

Data processing and analysis for all single-cell datasets was performed using the Seurat 425 

package (version 4.0) 29 in R (version 4.0.3).  426 

First, filters were applied to remove low-quality cells. These were based on the number of 427 

genes and UMIs detected in each cell and on the percentage of reads mapping to mitochondrial 428 

genes (cells with < 500 genes and > 10% of reads mapping to mitochondrial RNA were 429 

removed). Counts were then normalized and log-transformed using sctransform 36, while 430 

regressing out UMI counts and percentage of mitochondrial counts.  431 

For dimensionality reduction, PCA was performed. Principal components (PCs) were fed to 432 

Harmony 31 for batch correction and/or integration of datasets from both disease and healthy 433 

conditions. UMAP was used for 2D visualization. Clusters were identified with the shared 434 

nearest neighbour (SNN) modularity optimization-based clustering algorithm followed by 435 

Louvain community detection. Cell type assignment was manually performed using marker 436 

genes, as detailed in figures. cDCs were retained and re-clustered again to identify subsets.  437 

Pseudobulk differential gene expression analysis  438 

After the identification of cDC subsets, we aggregated cell-level counts into sample-level 439 

pseudobulk counts. For each DC subset, only donors with at least 10 cells were retained.  440 

For the dataset from Reyes et al., only samples from the primary cohort were considered for 441 

differential analysis due to the low number of DCs obtained from subjects from the secondary 442 

cohort.  443 

Differential expression analysis was performed using the quasi-likelihood framework of the 444 

edgeR package 37, using each donor as the unit of independent replication.  445 

 446 
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Gene Set Enrichment Analysis 447 

Pre-ranked GSEA 38 was performed on the differentially expressed genes (DEGs) using the 448 

fgsea package 39. The Hallmark gene sets and the Blood Transcription Modules (BTM) 25 were 449 

used. BTM families analyzed in this study are reported in Supplementary Table 3. 450 

Integration between datasets 451 

cDCs identified in the three COVID-19 datasets were pooled, integrated using Harmony 31, 452 

and further subclustered using the shared nearest neighbour (SNN) modularity optimization-453 

based clustering algorithm followed by Louvain community detection with a resolution of 0.6 454 

to identify cDC1, DC2 and DC3 clusters. 455 

Code availability 456 

Code used for data analysis will be made available upon publication. 457 

 458 
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Figure legends 646 

Fig. 1. The response of cDCs to SARS-CoV-2 infection is dominated by ISGs. (A) 647 

Percentage of cDC1s, DC2s and DC3s on CD45+ cells from whole blood of COVID-19 patients 648 

(n=22 mild and n=10 severe) and HDs (n=21). Statistical significance was determined using 649 

one-way analysis of variance, followed by Sidak’s multiple comparison test. *p < 0.05; **p < 650 

0.01. (B, upper panels) UMAP representations of cDC subtypes identified from the three 651 

scRNA-seq datasets analysed: dataset 1 (newly generated) and datasets 2 and 3 (publicly 652 

available). Cells are colored according to cDC subtype and donor origin (pink, HDs; lightblue, 653 

COVID-19). (B, lower panels) Violin plots illustrating expression levels of selected marker 654 

genes used for the manual annotation of cDC subtypes. (C) Heatmaps showing the top 100 655 

DEGs for cDC1, DC2 and DC3 subsets comparing COVID-19 patients and HDs from dataset 656 

2. Selected up-regulated genes (ISGs) are marked in red and down-regulated genes in blue. 657 

Ribosomal protein (RP) genes were removed from the top 100 DEGs. (D) GSEA of DEGs 658 

using the Hallmark collection: dataset 1 (left panel), dataset 2 (middle panel) and dataset 3 659 

(right panel). For each DC subset, top 15 pathways based on significance are shown. NES, 660 

normalized enrichment score. 661 

Fig. 2. Activation signature of cDCs during bacterial infections and adenovirus-based 662 

vaccine administration. (A) UMAP representations of cDC subtypes and corresponding 663 

violin plots illustrating expression levels of selected marker genes used for the manual 664 

annotation of cDC subtypes: Reyes et al. dataset (left panel) and Hao et al. dataset (right panel). 665 

(B) Heatmaps showing the top 100 DEGs for DC2 and DC3 subsets comparing: Leuk-UTI 666 

patients with HDs from Reyes et al. dataset (left panel) and vaccinated donors at day 3 with 667 

unvaccinated donors from Hao et al. dataset (right panel). Selected up-regulated genes are 668 

marked in red. Asterisk indicates genes associated with pro-inflammatory functions. 669 

Ribosomal protein (RP) genes were removed from the top 100 DEGs. (C) GSEA of DEGs 670 

using the Hallmark collection: Reyes et al. dataset (left panel) and Hao et al. dataset (right 671 

panel). For each DC subset, top 10 pathways based on significance are shown. NES, 672 

normalized enrichment score. Leuk-UTI, urinary tract infection with leukocytosis. Int-URO, 673 

intermediate urosepsis. URO, urosepsis.  674 

Fig. 3. DC2s and DC3s respond similarly to SARS-CoV-2 infection and inflammatory 675 

DC3s accumulate in severe patients. (A) UMAP representations of cDCs after datasets 676 

integration. Cells are colored according to dataset origin (left panel; pink, dataset 1; green, 677 

dataset 2; lightblue, dataset 3) and clinical condition (right panel; pink, HDs; green, mild 678 
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patients; lightblue, severe patients). (B) UMAP representation of cDC subtypes and 679 

corresponding violin plots illustrating expression levels of selected marker genes used for the 680 

manual annotation of cDC subtypes. (C) Volcano plots showing genes differentially induced 681 

in DC3s compared with DC2s in response to COVID-19 (left panel) and intermediate urosepsis 682 

(Int-URO condition, Reyes et al. dataset, right panel). Genes with p-value < 0.05 and absolute 683 

log2 fold change > 1 were considered significant. Selected genes are highlighted (red: up in 684 

DC3s; blue: up in DC2s). (D) Barplots showing the relative abundance of cDC populations in 685 

HDs, mild and severe patients. (E) Subclustering of DC3 population to identify inflammatory 686 

DC3s (clusters 3, 4 and 5). (F-H) Expression levels of selected marker genes used for the 687 

identification of inflammatory DC3s within the DC3 population: (F) violin plots showing 688 

expression levels of HLA-DRB1, CLEC10A, CLEC9A, CD14, CD163 and S100A8, (G) dotplot 689 

showing expression levels of CD14 and CD163 across DC3 clusters and (H) combined feature 690 

plot demonstrating co-expression of CD14 and CD163 in clusters 3, 4 and 5. (I) Barplots 691 

showing the relative abundance of DC3s and inflammatory DC3s in HDs, mild and severe 692 

patients. (J-K) Expression level of the anti-apoptotic gene CLU in DC3s and inflammatory 693 

DC3s is shown as (J) dotplot and (K) split violin plot by clinical condition (pink, HDs; blu, 694 

mild patients; lightblue, severe patients). (L) Percentage of inflammatory (CD14+CD163+) and 695 

non-inflammatory (CD14-CD163-) DC3s on CD45+ cells from whole blood of COVID-19 696 

patients (n=22 mild and n=10 severe) and HDs (n=21). 697 

Fig. 4. cDC2s enhance their inflammatory properties and lose antigen presentation 698 

capacity in severe COVID-19 patients. (A) Volcano plots showing genes differentially 699 

expressed in severe compared with mild patients in DC2s (left panel) and DC3s (right panel). 700 

Genes with p-value < 0.05 and absolute log2 fold change > 1 were considered significant. 701 

Selected genes are highlighted (red: up in severe patients; blue: up in mild patients). (B) 702 

Boxplots showing expression levels of selected genes in DC2s and DC3s in HDs, mild and 703 

severe patients. Statistical analyses were performed using Wilcoxon rank sum test. * p < 0.05; 704 

** p < 0.01. (C) GSEA of DEGs in severe compared with mild patients using the Hallmark 705 

collection. For each DC subset, top 10 pathways based on significance are shown. NES, 706 

normalized enrichment score. (D) Heatmaps showing leading edge genes of the allograft 707 

rejection pathway in mild and severe patients. Asterisk indicates genes associated with 708 

fundamental functions for DC-mediated T cell activation. 709 

Fig. 5.  SARS-CoV-2 directly induces down-regulation of HLA-DR and production of IL-710 

6 in DC2s and DC3s. (A, upper panel) Representative histograms showing HLA-DR 711 
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expression in cDC2s from HDs infected or not (NT) with 0.4 MOI of SARS-CoV-2 for 18 712 

hours. DC2s and DC3s were identified as CD5+ CD1c+ and CD5- CD1c+ respectively over the 713 

CD11+LIN- (CD88, CD89, CD3 and CD19) and FcεRIα+. (A, lower panel) Quantitative 714 

analysis of mean fluorescence intensity (MFI) of HLA-DR in DC2s and DC3s. Statistical 715 

significance was determined with unpaired student’s t-test. *p < 0.05, **p < 0.01; n=4 NT 716 

donors and n=7 donors for SARS-CoV-2 infection. (B, upper panel) Representative dot plots 717 

showing the percentage of IL-6 producing DC2s and DC3s after viral infection as described in 718 

B. (B, lower panel) Quantitative analysis of the percentage of IL-6 producing cells. Statistical 719 

significance was determined with unpaired student’s t-test. **p < 0.01; n=4 NT donors and 720 

n=7 donors for SARS-CoV-2 infection. (C, left panel) Quantitative analysis of the percentage 721 

of IL-6 producing DC2s and DC3s after 18h incubation with sera from n=4 mild and n=4 severe 722 

COVID-19 patients, NT (not treated). (C, right panel) Quantitative analysis of mean 723 

fluorescence intensity (MFI) of HLA-DR in DC2s and DC3s treated or not (NT) for 18h with 724 

sera from n=4 mild and n=4 severe COVID-19 patients. 725 
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Supplementary Figures and Tables 

 

 

 

 

Supplementary Figure 1. 

(A) Gating strategy to identify DCs subsets from PBMCs. Total DCs (cDCs TOT) were 

detected among the CD11c+ MHC-II+ and LIN- (CD88, CD89, CD3 and CD19) population. 

cDC1s were identified as CLEC9A+ from the CD14- fraction of total DCs. cDC2s (FcεRIα+) 

include CD14+ and CD14- cells. DC2s and DC3s were identified as CD5+ CD1c+ and CD5- 

CD1c+ respectively. Inflammatory DC3s were recognized as CD14+CD163+ cells. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.03.03.433597doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433597


2 

 

 
 

Supplementary Figure 2.  

(A) UMAP and clustering of single cells from dataset 1. (B) Feature plots showing the 

expression levels of selected marker genes used to identify cDC cluster. Black arrows indicate 

cDC cluster (cluster 10). This cluster was re-clustered in a final iteration to clearly delineate 

cDC subsets as shown in Figure 1B. 
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Supplementary Figure 3.  

(A) UMAP and clustering of single cells from dataset 2. (B) Feature plots showing the 

expression levels of selected marker genes used to identify cDC clusters. Black arrows indicate 
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cDC clusters (cluster 5 is cDC2 and cluster 25 is cDC1). (C) Re-clustering of clusters 5 and 25 

corresponding to cDCs. Clusters 5, 6 and 7 were identified as contaminants. Clusters 0, 1, 2, 3 

and 4 were re-clustered in a final iteration to clearly delineate cDC1, DC2 and DC3 subsets as 

shown in Figure 1B. (D) Violin plots referred to clusters in (C) showing expression levels of 

selected marker genes. 
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Supplementary Figure 4.  

Heatmaps showing the top 100 DEGs for DC2 and DC3 subsets comparing COVID-19 patients 

and HDs from (A) dataset 1 and (B) dataset 2. Selected up-regulated genes are marked in red 

and down-regulated genes in blue. Ribosomal protein (RP) genes were removed from the top 

100 DEGs.  
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Supplementary Figure 5.  

(A) GSEA of DEGs using the BTM collection: dataset 1 (upper panel), dataset 2 (middle panel) 

and dataset 3 (lower panel). For each DC subset, top 10 pathways based on significance are 

shown. NES, normalized enrichment score. 
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Supplementary Figure 6.  

(A) UMAP and clustering of cells annotated as DCs or monocytes by the authors. (B) Feature 

plots showing the expression levels of selected marker genes used to identify cDC clusters. 

Black arrows indicate cDC clusters (cluster 6 is cDC2 and cluster 12 is cDC1). (C) Re-

clustering of clusters 6 and 12 corresponding to cDCs. (D) Violin plots referred to clusters in 

(C) showing expression levels of selected marker genes. Cluster 5, positive for CLEC4C and 

TCF4 was identified as contaminant and removed. All other clusters were re-clustered in a final 

iteration to clearly delineate cDC1, DC2 and DC3 subsets as shown in Figure 2C. 
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Supplementary Figure 7. Heatmaps showing the top 100 DEGs for DC2 and DC3 subsets 

from (A) Reyes et al. and (B) Hao et al. datasets. Selected up-regulated genes are marked in 

red. Asterisk indicates genes associated with pro-inflammatory functions. Ribosomal protein 

(RP) genes were removed from the top 100 DEGs. Int-URO, intermediate urosepsis. URO, 

urosepsis.  
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Supplementary Figure 8.  

GSEA of DEGs using the BTM collection: (A) Reyes et al. dataset and (B) Hao et al. dataset. 

For each DC subset, top 10 pathways based on significance are shown. NES, normalized 
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enrichment score. (C) Heatmaps showing leading edge genes of the inflammatory response 

pathway in the Reyes et al. dataset. Leuk-UTI, urinary tract infection with leukocytosis. Int-

URO, intermediate urosepsis. URO, urosepsis. 
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Table S1. Characteristics of COVID-19 patients and healthy donors (HD) enrolled in 

the study. 
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Table S2. DEGs between COVID-19 patients and healthy donors in each DC subset 

from datasets 1, 2 and 3. 

Table S3. BTM families used for GSEA. 

Table S4. DEGs in each DC subset from Reyes et al. and Hao et al. datasets.  

Table S5. DEGs in DC3s compared with DC2s in response to SARS-CoV-2 infection 

and intermediate urosepsis. 

Table S6. DEGs in DC2s and DC3s in severe compared with mild patients.  
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