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Abstract 

Among the biomedical efforts in response to the current coronavirus (COVID-19) pandemic, 

pharmacological strategies to reduce viral load in patients with severe forms of the disease are 

being studied intensively. One of the main drug target proteins proposed so far is the SARS-

CoV-2 viral protease 3CLpro (also called Mpro), an essential component for viral replication. 

Ongoing ligand- and receptor-based computational screening efforts would be facilitated by an 

improved understanding of the electrostatic, hydrophobic and steric features that characterize 

small molecule inhibitors binding stably to 3CLpro, as well as by an extended collection of 

known binders. 

Here, we present combined virtual screening, molecular dynamics simulation, machine learning 

and in vitro experimental validation analyses which have led to the identification of small 

molecule inhibitors of 3CLpro with micromolar activity, and to a pharmacophore model that 

describes functional chemical groups associated with the molecular recognition of ligands by 

the 3CLpro binding pocket. Experimentally validated inhibitors using a ligand activity assay 

include natural compounds with available prior knowledge on safety and bioavailability 
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properties, such as the natural compound rottlerin (IC50 = 37 µM), and synthetic compounds 

previously not characterized (e.g. compound CID 46897844, IC50 = 31 µM). In combination with 

the developed pharmacophore model, these and other confirmed 3CLpro inhibitors may 

provide a basis for further similarity-based screening in independent compound databases and 

structural design optimization efforts, to identify 3CLpro ligands with improved potency and 

selectivity. 

Overall, this study suggests that the integration of virtual screening, molecular dynamics 

simulations and machine learning can facilitate 3CLpro-targeted small molecule screening 

investigations. Different receptor-, ligand- and machine learning-based screening strategies 

provided complementary information, helping to increase the number and diversity of identified 

active compounds. Finally, the resulting pharmacophore model and experimentally validated 

small molecule inhibitors for 3CLpro provide resources to support follow-up computational 

screening efforts for this drug target. 
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INTRODUCTION 

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), represents a major challenge for health care 

systems around the world. Patients experience highly heterogeneous symptoms, 

ranging from asymptomatic forms and mild symptoms of a respiratory infection to 

severe illness, which can lead to hospitalization and death.  

While the first vaccines against COVID-19 have received Emergency Use Authorization 

(EUA) by the Food and Drug Administration (FDA) and mass vaccination campaigns are 

currently ongoing, the available drug-based treatments for the disease are still limited. 

In the RECOVERY trial, a randomized trial designed to provide a fast and robust 

assessment of potential treatments for COVID-19, the corticosteroid dexamethasone 

was associated with a reduced mortality for patients with severe forms of the disease, 

when using a moderate dose (6 mg daily for 10 days) [1]. The FDA has included 

dexamethasone in their list of drugs used for hospitalized patients with COVID-19, and 

the European Medicines Agency (EMA) has endorsed the use of dexamethasone in 

patients from twelve years of age and weighing at least 40 kg, who require 

supplemental oxygen therapy. Moreover, the drug remdesivir, which inhibits the viral 

RNA-dependent RNA-polymerase (RdRp), was approved by the FDA for the treatment 

of COVID-19 requiring hospitalization. Remdesivir provided a statistically significant 

shorter median time to recovery in the clinical trial ACTT-1 [2], and significant 

symptom improvements vs. the standard of care in the GS-US-540-5774 trial [3], but 

no statistically significant improvements were observed for overall 29-day mortality in 

the ACTT-1 trial. In the independent SOLIDARITY trial no significant benefits were 

found in terms of reduced mortality, reduced initiation of ventilation or hospitalization 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.03.02.433618doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433618
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

duration [4]. Other potential treatment options against COVID-19 studied in clinical 

trials, such as tocilizumab [5], colchicine [6], synthetic neutralizing antibodies [7], or 

convalescent plasma [8], among others, were at the time of writing still under 

investigation. Overall, while first significant successes in COVID-19 treatment have 

been achieved using pharmacological methods, there is a broad consensus that 

additional primary or adjuvant treatment approaches are required to further reduce 

mortality and hospitalization rates. 

For the development of new drug therapies against COVID-19 both human and viral 

protein drug targets have been proposed. Suggested human drug targets include in 

particular proteins involved in mediating the entry of SARS-CoV-2 into the cell, such as 

the proteases TMPRSS2 and FURIN, which have been implicated in the proteolytic 

processing of the viral spike protein before cell entry [9,10]. The viral targets mainly 

include proteins involved viral replication (3CLpro / Nsp5 [11], PLpro / Nsp3 [12], RdRp 

/ Nsp12 [13], Hel / Nsp13 [14]), and proteins associated with viral cell entry (S1, S2 

[15]) and release (ORF3a [16,17]). 

One of the viral targets of particular interest is the 3C-like protease (3CLPro, Mpro), 

which is needed by SARS-CoV-2 for the cleavage of viral polyproteins into 11 non-

structural proteins (NSPs) that are essential for viral replication [11]. Apart from its 

critical role in replication, 3CLPro may also represent a well-suited target for drug 

development, because multiple crystal structures are available with high resolution (< 

1.3 Å) and favorable quality characteristics, and first small molecule inhibitors for both 

the SARS-CoV-2 and SARS-CoV forms of the protein have already been identified [18–

21]. While these inhibitors still have limitations in terms of either their binding affinity 

for the target protein, their bioavailability, adverse drug effects or high manufacturing 
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costs, the existing structural data for 3CLPro provides ample opportunities to apply 

both receptor- and ligand-based computational screening approaches in order to 

identify more potent and selective inhibitors. 

To contribute to the ongoing research efforts on identifying improved 3CLPro 

inhibitors, here we present the results of a combined computational and experimental 

screening and pharmacophore generation approach. By integrating multiple 

computational approaches for molecular docking, ligand-based screening, machine 

learning and Molecular Dynamics (MD) simulations, we have ranked small molecule 

compounds from the public libraries provided by the repositories ZINC [22], 

SWEETLEAD [23] and the company MolPort (www.molport.com) as candidate 

inhibitors for 3CLPro. Top-ranked compounds and a few reference molecules 

previously proposed as 3CLpro inhibitors in the literature were experimentally 

assessed using a ligand activity assay to identify a subset of inhibitors and their IC50 

values. We also compared the utility of different strategies for inhibitor discovery on 

the MolPort library. This extended analysis focused only on the MolPort compounds, 

because this library was our main resource for commercially available compounds and 

therefore of particular relevance for the experimental studies, and due to its smaller 

size (~7.7 million compounds), an extension to more computationally demanding 

screening approaches was still feasible in terms of runtime requirements. Finally, the 

validated inhibitors, which include both natural compounds with existing information 

on ADMETox characteristics, as well as previously uncharacterized synthetic 

compounds, were used to generate a pharmacophore model (i.e. a computational 

model that describes the steric and chemical features of compounds associated with 

the binding to the target protein).  
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The information derived from this model and the confirmed inhibitors provide a 

resource to facilitate follow-up efforts on the structural design of more potent and 

selective 3CLpro inhibitors or the similarity-based inhibitor screening in additional 

compound databases.  

The reader should note that the workflows used for computational screening in the 

present study are limited by their design for typical high-performance computing 

systems in an academic setting. Recent supercomputer-based virtual screening 

approaches, which have also been applied to 3CLpro inhibitor screening, can explore 

a significantly wider search space of compounds and conformations, and therefore 

also have the potential to achieve higher hit rates. Specifically, supercomputing-based 

screening methods have recently been shown to enable an improved modeling of 

3CLpro receptor flexibility using ensemble docking [24], extensive MD simulations to 

generate high-resolution conformational ensembles [25], and the application of more 

advanced polarizable force fields [26]. Similarly, for the experimental assessment of 

3CLpro inhibitory activity, recently developed assays published during the writing time 

of this manuscript provide a higher scalability and throughput than the Förster 

resonance energy transfer (FRET) assay used in the present work, and have already 

identified new 3CLpro inhibitors as drug candidates for further development [20]. 

Because supercomputing facilities and more recent inhibition assays were not 

available to us, the goal of our study was to contribute to research on inhibiting SARS-

CoV-2 3CLpro by providing complementary results and data with the methods and hit 

rates achievable in an academic setting, in particular through the computational 

discovery and experimental confirmation of new micromolar 3CLpro inhibitors, and 

through the creation of pharmacophore models specific to the conformational and 
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physicochemical properties of these inhibitors. The identified inhibitors and the 

information from the pharmacophore model provide both an input to support further 

screening studies, e.g. using independent private compound libraries, and a basis for 

the rational design of compounds with improved activity and ADMETox properties. 

The potential for further structural optimization of initial screening hits has recently 

already been illustrated in a study using computational lead optimization of the weak 

hit compound perampanel for 3CLpro inhibition, which led to the design and 

confirmation of multiple noncovalent, nonpeptidic 3CLpro inhibitors with significantly 

improved affinity in a kinetic assay, that were successfully confirmed to inhibit 

infectious SARS-CoV-2 replication in vitro [21,27]. 

In the following sections, we first present the computational and experimental 

methods used for screening and compound validation, the results of the screening 

procedure in terms of the characteristics of the validated inhibitors, and finally a 

discussion of the pharmacophore model generated from the analysis of these 

confirmed inhibitors. 

 

 

METHODS 

In order to identify and characterize small molecule inhibitors for SARS-CoV-2 3CLpro 

and build a pharmacophore model, a multi-step computational screening procedure 

was combined with subsequent ligand activity assay experiments. The main 

component of the computational screening consisted of a filtering procedure involving 

multiple receptor- and ligand-screening approaches in combination with a final 

molecular dynamics (MD) simulation to confirm the stability of the binding for the top-
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ranked compounds and docking poses. An overview of this part of the screening 

approach is shown in Figure 1, the detailed methodology, including the prior 

preprocessing of protein and compound structures, is discussed in the following 

sections below. Additionally, as part of the in silico selection of candidate compounds 

for experimental validation, the structural bioinformatics based screening was 

complemented by a machine learning approach for compound selection, using a 

training set of molecular descriptor data derived from known binders and non-binders 

for 3CLPro. This complementary screening approach is presented in detail in the 

section ‘Machine learning based compound screening’ below. 

The compounds prioritized using these in silico screening methods were then 

evaluated experimentally to determine the subset of stable binders and their 3CLpro 

inhibitory activity, using an in vitro Förster-type resonance energy transfer (FRET) 

assay. These experimental analyses are described in more detail in the section ‘in vitro 

assay for 3CLpro inhibitory activity assessment’. 
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Figure 1. Overview of overall workflow for the screening procedure, starting with a compound library 

of > 1 billion compounds from the databases ZINC, SWEETLEAD and the MolPort. Due to the large size 

of the ZINC database, this compound repository was pre-filtered to focus on compounds that are 

commercially available and have drug-like chemical and ADMETox properties, and receptor-based 

screening was only applied after prior ligand-based screening (see section on ‘Ligand pre-processing 

and filtering’). More computationally expensive approaches relying only on receptor-based screening 

were only applied to the smaller SWEETLEAD and MolPort libraries, and machine learning based 

compound screening was only applied to the MolPort library (see sections on ‘Receptor-based 

screening using molecular docking’ and ‘Machine learning based compound screening’). A final 

selection of 95 top-ranked compounds derived from the in silico screening approaches was tested 

experimentally using a FRET assay to assess the 3CLpro inhibitory activity. Confirmed active compounds 

were characterized in terms of their known or computationally estimated ADMETox and bioavailability 

properties. Finally, pharmacophore models were generated for the active compounds. 
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COMPUTATIONAL METHODS 

Protein structure pre-processing 

Three publicly available protein crystal structures for 3CLPro from the Protein Data 

Bank [28] were chosen for the molecular docking analyses and binding affinity 

estimation (PDB: 5R8T, 6YB7 and 6LU7). The structures 5R8T and 6YB7 were selected 

mainly due to their resolution (5R8T: 1.27 Å, 6YB7: 1.25 Å) and quality (R-free value: 

0.208 for 5R8T and 0.192 for 6YB7), see additional quality assessments described 

below), whereas the structure 6LU7 was used additionally as a representation of the 

holo form of the protein in complex with an inhibitor (resolution: 2.16 Å, R-free value: 

0.235), allowing us to compare docking results across different types of structures. 

Since many previously reported 3CLpro inhibitors are allosteric inhibitors [29–31], and 

allosteric inhibitors have been proposed to disrupt the 3CLpro dimer or slow the rate 

of processing significantly [29], we did not focus specifically on targeting the 3CLpro 

dimerization interface, but aimed to cover all binding pockets associated with already 

identified small molecule inhibitors. As an alternative approach, for the SARS-CoV 

version of 3CLpro, previous studies have also investigated peptide inhibitors designed 

specifically to target the dimerization [32,33]. 

The receptor structures were pre-processed using the Schrödinger Maestro software 

(version 11.8.0.1.2, www.schrodinger.com) by adding hydrogens, generating 

protonation states, and optimizing hydrogen positions using the ‘Protein Preparation 

Wizard’ with default settings. The quality of the original and processed structures was 

assessed using the software tools Verify3D [34], WHATCHECK [35] and PROCHECK [36] 

as implemented in the software SAVES 5.0 (http://servicesn.mbi.ucla.edu/SAVES), 

confirming the suitability of the structures for docking simulations in terms of common 
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quality control checks [37]. For structure files containing multiple chains, the chain 

with the highest Verify3D score was chosen for further analysis. 

 

Ligand pre-processing and filtering 

Small molecule compounds were obtained from the databases ZINC (version: ZINC15, 

May 2020, [22]), SWEETLEAD (version: 1.0, [23]), and the public library provided by 

the company MolPort (May 2020, www.molport.com). All ligands from the 

SWEETLEAD database were first preprocessed using the AutoDock ligand preparation 

script, and docked into the 3CLpro binding pocket using AutoDock-GPU [38]. For the 

ZINC database, in order to focus on compounds that are commercially available and 

have drug-like chemical and ADMETox properties, a filtering was first applied by 

downloading only compounds with the properties “drug-like”, “purchasable” 

(minimum purchasability = “Wait OK”) and reactivity = “clean”. This first-step filtering 

reduced the initial 1,276,766,435 substances to 898,838,573 retained substances. 

These filtered compounds were downloaded in SMILES-format, using the “ZINC-

downloader-2D-smi.wget” script derived from the “Tranches” web-page on ZINC 

(https://zinc.docking.org/tranches/home). 

The pre-selection of compounds from ZINC was then further filtered using a ligand-

based similarity screening. For this purpose, a similarity assessment approach 

involving a graph-based molecular representation known as “feature trees” was 

applied, as implemented in the BioSolveIT Ftrees software (version 6.2). With this 

method the topological and physicochemical similarity of the library compounds to 

known small-molecule inhibitors for 3CLpro reported in the literature was scored 

(considering inhibitors for both the SARS-CoV and SARS-CoV-2 versions of the 3CLpro 
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protein). Specifically, the literature-derived query compounds include the reported 

SARS-CoV-2 3CLpro inhibitors GC-376 [18], ebselen [39,40] and baicalein [41], and the 

reported SARS-CoV 3CLpro inhibitors amentoflavone [42], hesperetine [43], 

pectolinarin [44] and dieckol [45]. Moreover, to further extend the search space of 

potential candidate inhibitor compounds, four additional query compounds for the 

feature tree search were included by adding the top-ranked compounds from the 

initial AutoDock-GPU screening (see above). All compounds from the ZINC library 

exceeding a minimum similarity threshold of 0.8 in the FTrees screen to these query 

compounds were retained for the subsequent molecular docking analyses. 

For the screening of the MolPort compound library, due its association with our main 

provider for the commercial ordering of compounds and its smaller size (~7.7 million 

compounds) compared to the ZINC library, we tested multiple alternative more 

extensive screening approaches without prior library filtering: (1) a screening 

approach relying purely on fast molecular docking approaches (see details in following 

section), (2) a screening approach relying purely on machine learning (see section on 

‘Machine learning based compound screening’ below), and (3) a combination of 

molecular docking and ligand-similarity based screening using the software FTrees 

(following the same approach as for the ZINC database, but without prior database 

filtering, and focusing on the most potent available 3CLPro inhibitor, GC-376, as query 

compound; see following section for the description of the docking analyses). 

Conformers for the collected compounds were generated using the OpenEye OMEGA 

software (version: 3.1.2.2, http://www.openeye.com) using the classic mode with 

default parameters. 
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Receptor-based screening using molecular docking 

In order to obtain a robust ranking of compounds using molecular docking, the 

compound libraries prepared in the previous step (i.e. the filtered version of the ZINC 

database, and the unfiltered SWEETLEAD and MolPort databases) were docked into 

the 3CLpro binding pocket using three different approaches, AutoDock-GPU (an 

OpenCL and Cuda accelerated version of AutoDock4.2.6, [38]), OpenEye HYBRID 

(version 3.4.0.2, [46–48]), and LeadIT/FlexX (version 2019.Nov.2-Ubuntu-18.04-x64, 

[49]). To use the available computing time efficiently and only consider compounds 

with high relative ranking scores for all docking approaches for further analysis, the 

two most time-efficient docking methods AutoDock-GPU (with the parameter ‘nrun’ 

for the thoroughness of the search space exploration set to 100, and default 

parameters otherwise) and OpenEye HYBRID (with default docking parameters) were 

first run on the pre-selected compound libraries, and only compounds with higher 

than average scores from the AutoDock-GPU and OpenEye HYBRID screens were also 

docked using FlexX (with default docking parameters), including a subsequent 

estimation of the binding affinity for the top 30 docking poses using the LeadIT/HYDE 

approach [50]. The docking methods are semi-flexible, taking ligand flexibility into 

account; however, as a limitation in contrast to recent supercomputer-based 

screening approaches, which address receptor flexibility using high-resolution 

ensembles of many 3CLpro receptor conformations [25], ensemble docking and 

enhanced sampling MD [24], the assessment of receptor flexibility in the present study 

was restricted to the MD simulations applied to the top-ranked compounds derived 

from the docking analyses (see section on ‘Molecular dynamics simulations’). 
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For the MolPort library, we compared both a screening approach relying purely on 

molecular docking of the unfiltered library, and a joint docking and ligand similarity-

based scoring approach, which filtered the compounds by including only those 

reaching a minimum similarity threshold of 0.8 in the ligand-based screening using 

FTrees (see previous section). Finally, the list of compounds docked with each method 

was ranked and sorted according to the sum of ranks across the scores for all methods. 

Only top-ranked compounds achieving consistently high docking scores for the three 

pre-processed 3CLpro protein structures (PDB: 5R8T, 6YB7 and 6LU7) were used for 

experimental validation. Visualizations of the top-scoring docked compounds were 

generated in the software Chimera (version 1.12, [51]) and binding interactions were 

analyzed using PoseView (version 1.1.2, [52]). A list of all used software tools and their 

versions, as well as scripts including the commands and parameters for the virtual 

screening analyses are provided on GitHub (https://github.com/eglaab/3clpro). 

 

Molecular dynamics simulations 

To assess the ligand binding stability for the top-ranked compounds derived from the 

docking simulations in the 3CLpro binding pocket, molecular dynamics (MD) 

simulations were carried out using a GPU-accelerated version of the software NAMD 

(Git-2020-07-30 for Linux-x86_64-multicore-CUDA, [53]). Topology and force field 

parameters for the MD simulations were assigned from the CHARMM36 protein lipid 

parameter set [54,55] for the receptor and from the CHARMM General Force Field 

(CGenFF) parameter set [56] for the ligands. The step size was 2 fs, and the simulation 

was performed for a duration of 20 ns. Video animations of the simulations were 

created by applying the “MD Movie” function in the software Chimera (version 1.12, 
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build 41623, [51]) to the trajectory data for the protein-ligand complexes derived from 

NAMD. The detailed configuration settings used for NAMD and exemplary video 

animations of MD simulations for confirmed inhibitors are provided on GitHub 

(https://github.com/eglaab/3clpro). 

 

Machine learning based compound screening 

As an alternative to conventional receptor- and ligand-based screening strategies, we 

also tested a compound ranking approach using machine learning. For this purpose, 

quantitative properties for the investigated compounds were determined by 

calculating molecular descriptors as implemented in the R software package “rcdk” 

(version 3.5.0) [57] using SMILES compound representations [58] as input. First, 

molecular descriptors were computed for a previously published training set 

collection of small molecules containing both previously reported SARS-CoV or SARS-

CoV-2 3CLPro inhibitors (486 compounds, used as positive set) and compounds 

reported not to bind to 3CLPro (700 compounds, used as negative set) [59]. The 

covered classes of descriptors in the package “rcdk” include topological descriptors 

(e.g. TPSA, Wiener index, Kier-Hall Smarts descriptor), geometrical (e.g. gravitational 

index, Petitjean shape index, moment of inertia), electronic (e.g. CPSA, H-bond donor 

count, H-bond acceptor count), constitutional (e.g. rotatable bond count, acidic group 

count, weight) and hybrid descriptors (WHIM and BCUT descriptors; see the 

documentation of the rcdk software package to retrieve the complete list of more 

than 200 descriptors).  

A classification model using the Random Forest algorithm as implemented in the R 

software package “randomForest” (version 4.6-14, [60]) was then built on this training 
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data of molecular descriptors for the positive and negative compound sets, using 250 

decision trees and default settings otherwise. This model was applied to all 

compounds from the MolPort library, by computing the descriptors for each 

compound as input to the model and generating probabilistic predictions. Finally, the 

predicted probability for each compound to belong to the positive set of 3CLPro 

inhibitors was used to rank the compounds, and the top 20 compounds with the 

highest probabilities were selected for in vitro testing. A script for the machine 

learning analyses has been made available on GitHub 

(https://github.com/eglaab/3clpro). 

 

EXPERIMENTAL METHODS 

In vitro assay for assessing the 3CLpro inhibitory activity of the compounds 

Assay principle: Förster resonance energy transfer (FRET) assays can be applied in 

various configurations in cells [61] and in reporter systems [62] to detect molecular 

proximity and with the proper biosensor also activity. Here we employed an in vitro 

FRET assay for the evaluation of the candidate small molecule inhibitors for 3CLpro 

obtained from the in silico screening approaches. We used a substrate peptide of 

3CLpro labelled with a fluorescent dye (Dabcyl) and an acceptor-quencher (Edans) at 

the N- and C-terminus, respectively. The substrate peptide does not fluoresce in the 

uncleaved state, when the quencher blocks the fluorescence of the dye. When 3CLpro 

cleaves the substrate, the fluorescence of the dye is de-quenched and an emission 

signal is observed. The inhibitor blocking the activity of 3CLpro prevents FRET-peptide 

cleavage. Thus, in the presence of an inhibitor a lower fluorescence signal is observed 

[63]. A similar FRET-based assay has recently been applied to test candidate 3CLpro 
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inhibitor compounds derived from the lead optimization of a prior week screening hit, 

and some of these compounds were also successfully confirmed to inhibit infectious 

SARS-CoV-2 replication in Vero E6 cells [21,27]. Moreover, after the completion of our 

experimental studies, an optimized assay for high-throughput screening of 3CLpro 

using a new fluorogenic substrate became available [20]. This assay has been used to 

identify two irreversible 3CLpro inhibitors, azanitrile (Ki = 24.0 nM) and pyridyl ester 

(Ki = 10.0 nM) [20], as candidates for further development and provides a more 

scalable methodology than the one applied in the present study. Thus, for follow-up 

in vitro screening studies of 3CLpro inhibitors, more recently developed assays may be 

preferred over the assay with lower throughput employed here. 

 

Method: The assays were performed following the guidelines of the 3CL Protease 

assay Kit (#79955, BPS Biosciences, San Diego CA, USA). The inhibitory effect on 

3CLpro was assessed using the substrate peptide Dabcyl-KTSAVLQSGFRKM-E(Edans)-

NH2, obtained from Biosyntan. The assays were run on a 384-well plate (black, low 

volume, round bottom; Corning #4514) and the reaction volume per well was 20 µl. 

Briefly, all candidate inhibitors were dissolved in DMSO and three-fold or five-fold 

diluted in the assay buffer. The known 3CLpro inhibitor and reference compound GC-

376 was dissolved in water and diluted from 100 µM. To the dilution series of 

inhibitors, 3CLpro (100 ng/reaction) was added and incubated for 30 min at room 

temperature (RT). Then 50 µM of substrate peptide was added. The reaction mix was 

incubated at RT overnight with the plates sealed. On the next day, fluorescence 

intensity was measured at excitation wavelength 360 ± 10 nm and emission 460 ± 20 

nm using Clariostar (BMG Labtech, Germany) plate reader. 3CLpro used in the assay 
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was N-terminally MBP-tagged (MW – 77.5 kDa) and obtained from BPS Biosciences 

(#100707). The data were fit into a log c(inhibitor) vs response three-parameter dose-

response model using the software Prism (GraphPad). IC50 value estimates were 

determined individually for each replicate, and the mean and standard error of the 

mean (SEM) were calculated. Importantly, many of the assessed compounds were 

polyaromatic natural products, which exhibited interfering fluorescence or 

absorbance in our FRET-based assay. Therefore, out of 96 compounds tested in the 

3CLpro activity assay, 12 compounds were filtered out from further analysis 

(highlighted in blue color in the lists of tested compounds in the Supporting 

Information). Assays involving principles of time-resolved FRET may be suitable for 

future follow-up screening of compounds with background fluorescence [64,65]. 

 

RESULTS AND DISCUSSION 

In silico screening results and final compound selection for in vitro testing 

For the experimental testing of candidate 3CLPro small molecule inhibitors, 86 

commercially available compounds selected from the top-scoring candidates derived 

from the different receptor-, ligand- and machine learning based screening 

approaches (see Methods), which had passed all prior in silico filtering stages, were 

ordered from the company MolPort. The complete list of tested screening 

compounds, including common compound identifiers and characteristics (SMILES, 

molecular weight, logP) is provided in the Supporting Information. The 86 top-ranked 

compounds are subdivided into 18 compounds derived from the virtual screening of 

the ZINC and SWEETLEAD libraries (Table S2 in the Supporting Information; see 

Methods for the prefiltering and screening approaches), 30 compounds derived from 
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the screening of the MolPort library using combined ligand similarity screening and 

molecular docking (Table S3), 18 compounds from the screening of the MolPort library 

using combinations of docking algorithms only (Table S4), and 20 compounds from the 

purely machine learning derived compound ranking for the MolPort library (Table S5). 

In addition to these screening-derived compounds, the known inhibitor GC-376 [18] 

was included as a reference compound, and the following commercially available 

compounds previously reported as SARS-CoV-2 or SARS-CoV 3CLPro inhibitors in the 

literature, were also acquired for experimental inhibitory activity assessments: 

Ebselen [39,40], baicalein [41], amentoflavone [42], hesperetine [43], pectolinarin 

[44], luteolin [42], quercetin [42], pristimerin [66], and 1-hydroxypyridine-2-thione 

zinc [67]. For the compounds confirmed as binders (see Table 1), PAINS and Brenk's 

substructure alerts [68,69] were checked to determine frequent hitters (promiscuous 

compounds, see Table 2). GC-376 is a prodrug that converts into the peptide aldehyde 

GC-373 [70]; hence, the active compound is GC-373, and the inhibitor is therefore 

referred to as “GC-376 / GC-373” in the following. Example video animations of the 

MD simulations which were applied to the top-ranked docking-derived compounds to 

confirm the stability of the binding are provided online together with the 

configuration settings used for the MD simulation software NAMD 

(https://github.com/eglaab/3clpro). 

 

In vitro testing results for candidate 3CLpro inhibitors 

In total, 95 selected compounds were assessed to determine their in vitro 3CLpro 

inhibitory activity, including the 86 candidate compounds identified from the in silico 

analyses and 9 candidate compounds derived from the literature, as described above. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.03.02.433618doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433618
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

GC-376 was used as a positive control for 3CLpro inhibitory activity. The IC50 value of 

GC-376 was in the low micromolar range (0.18 to 0.98 µM), matching approx. with 

previously reported IC50 values for GC-376 (0.19 μM) and its structurally similar 

metabolized form, GC-373 (0.4  μM) [70] (see Supporting Information for the dose-

response curves). The Z’ value [71], used as a measure of assay robustness, ranged 

from 0.5 to 0.8, indicating the suitability of the assay for compound screening in a 

high-throughput format. Importantly, the main purpose of the activity assay is to 

obtain a robust relative ranking of ligands in terms of their inhibitory activity rather 

than high precision absolute activity estimates. 

 

Table 1: Hits from 3CLpro screening assay with IC50 values. *For the compounds no. 1 and 3 only a 

limited amount of the reagent could be acquired, and therefore no replicate runs could be performed 

for these specific compounds. 

# Compounds Molport ID IC50 (Mean ± 
SEM) / µM 

Structure 

 GC-376 
(prodrug for 
 GC-373) 

MolPort-046-
767-490 

1.2 ± 0.3 

 
1 M-8524 MolPort-047-

408-524 
31* 

 

2 rottlerin MolPort-003-
959-457 

37.0 ± 0.6 
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3 M-1805 MolPort-000-
821-805 

100*  

 
4 amentoflavone MolPort-001-

741-078 
143 ± 23 

 
5 baicalein MolPort-001-

741-408 
208 ± 55 

 
6 luteolin MolPort-000-

706-683 
343 ± 77 

 
7 pectolinarin MolPort-007-

980-807 
468 ± 58 

 
 
 

Overall, 7 out of the 95 tested compounds were confirmed as active, with a lowest 

IC50 of 31 µM for the screening compound M-8524 (CID 46897844, see Table 1). 

Considering the different conducted screening analyses separately, each type of 

strategy uniquely identified at least one of the confirmed inhibitors: (1) The 

combination of molecular docking and ligand similarity screening on the ZINC 

database identified the inhibitor rottlerin among 18 compounds tested, (2) the 

screening of the MolPort database using fast docking approaches detected another 

inhibitor (compound M-1805) out of 18 tested candidates, and (3) the screening of the 

MolPort library using machine learning identified a further inhibitor out of 20 assessed 

compounds. The complete list of active compounds, including their names, vendor ID, 

IC50 values and 2D structure representations are shown in Table 1. Detailed assay 
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validation results and dose-response curves for these inhibitors are provided in the 

Supporting Information. 

 

ADMETox and bioavailability properties of the 3CLpro screening assay hits 

While the identified inhibitors did not display a higher activity than the currently 

available most potent inhibitor GC-376 / GC-373, used as reference compound, 

multiple of the confirmed actives are natural compounds with favorable bioavailability 

and ADMETox (Absorption, Distribution, Metabolism, Excretion and Toxicity) 

properties, that may provide a basis for follow-up structure design optimization 

efforts or further ligand-based similarity screening in independent compound 

databases. 

To compare all actives in terms of ADME and physicochemical characteristics, 

corresponding parameters of the confirmed inhibitors were estimated 

computationally using the software SwissADME (see Table 2 for a summary of key 

features and Figures S4 to S11 in the Supporting Information for a more 

comprehensive overview of parameters). This analysis suggested that a subset of 

compounds, including M-8524, baicalein and luteolin, fulfil multiple typical properties 

of drug-like, orally bioavailable compounds in terms of the drug-likeness scores 

proposed by Lipinksi et al. [72], Ghose et al. [73], Veber et al. [74], Egan et al. [75], 

Muegge et al. [76], and have Abbott Bioavailability Scores above 0.5 [77]. Moreover, 

some of these compounds also pass all or most PAINS and Brenk's filters [68,69] or 

display lead-like properties (250 g/mol ≤ molecular weight ≤ 400 g/mol, xlogP ≤ 3.5, 

num. rotatable bonds ≤ 7) [78], potentially providing a basis for further structural and 

chemical optimization. By contrast, the reference compound GC-376 is not drug-like 
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or lead-like according to these scores and has a low bioavailability score (0.17, see 

Table 2 and Supporting Information).  

 

Table 2: Estimated drug- and lead-likeness and bioavailabilty scores (bioavailability is low = below 0.25, 

medium = between 0.25 to 0.75, high = above 0.75) of the confirmed 3CLpro inhibitors as estimated 

using the SwissADME software (more detailed information on the specific score violations and alerts as 

well as other physicochemical and ADME estimations can be found in the Supporting Information). 

Passed filters are highlighted in green color, failed tests are marked in red color. 

Compounds GC-376 M-8524 rottlerin M-1805 amento-
flavone baicalein luteolin pectolinarin 

Druglikeness 
(Lipinski) 

No (2 
violations) Yes Yes (1 

violation) Yes No (2 
violations) Yes Yes No (3 

violations) 

Druglikeness 
(Ghose) 

No (1 
violation) Yes No (2 

violations) Yes No (2 
violations) Yes Yes No (4 

violations) 

Druglikeness 
(Veber) 

No (2 
violations) Yes No (1 

violation) 
No (1 
violation) 

No (1 
violation) Yes Yes No (1 

violation) 

Druglikeness 
(Egan) 

No (1 
violation) Yes No (1 

violation) 
No (1 
violation) 

No (1 
violation) Yes Yes No (1 

violation) 

Druglikeness 
(Muegge) 

No (1 
violation) Yes No (1 

violation) 
No (1 
violation) 

No (3 
violations) Yes Yes No (4 

violations) 

Bioavailability 
Score low medium medium low low medium medium low 

PAINS 0 alerts 0 alerts 0 alerts 2 alerts 0 alerts 1 alert 1 alert 0 alerts 

Brenk 1 alert 0 alerts 1 alert 3 alerts 0 alerts 1 alert 1 alert 0 alerts 

Lead-likeness No (2 
violations) 

No (3 
violations) 

No (2 
violations) 

No (1 
violation) 

No (2 
violations) Yes Yes No (2 

violations) 

 

 

Apart from the computationally estimated ADME properties, prior information on 

bioavailability and ADMETox characteristics was available for some of the natural 

products among the confirmed inhibitors. The natural compound with the lowest IC50 

value, rottlerin, is derived from the powder that covers the capsules of the 
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tree Mallotus phillippinensis (also known as Indian Kamala, Rottlera tree, or monkey-

faced tree) [79], which mainly occurs in Asia, Afghanistan and Australia. The powder 

has traditionally been used as antiparasitic agent against the tapeworm in India for 

multiple centuries, providing a first indication of favorable safety properties. In mouse 

model studies, rottlerin was investigated as a preventive or adjuvant supplement for 

pancreatic cancer [80], as a protective agent against cisplatin-induced nephrotoxicity 

[81], and as a potential medication in a psoriasis model, where it was well tolerated 

with no significant changes in bodyweight [82]. Tissue bioavailability and 

pharmacokinetic analyses in vitro and in vivo suggest that rottlerin is efficiently 

absorbed in cells and tissues [80]. 

The natural product with the second lowest IC50 is amentoflavone, which had 

previously already been reported to inhibit the 3CLpro protein from SARS-CoV (the 

virus from the 2002-2004 SARS outbreak) [42]. However, a later study suggested that 

the binding reaction results from a non-specific aggregate formation or complexation, 

because no effective inhibition was observed in the presence of 0.01% Triton X-100 

[44]. Amentoflavone is a biflavonoid contained in several plant species including 

Ginkgo biloba, Hypericum perforatum (St. John's wort), Xerophyta plicata and 

Chamaecyparis obtusa. No detailed prior toxicological studies of amentoflavone could 

be identified, but several bioactivities have been reported in the biomedical literature, 

including anti-viral effects [83,84]. 

Among the other natural compounds confirmed to bind to SARS-CoV-2 3CLpro, 

baicalein displays some of the most favorable drug-likeness scores (see Table 2). This 

flavonoid is found in the dried roots of the plant Scutellaria baicalensis (S. baicalensis) 

Georgi [85], and was previously already reported to display an antiviral activity against 
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SARS-CoV in vitro [86] and to inhibit the SARS-CoV-2 3CL protease in vitro [41]. The 

use of baicalein containing roots was widespread in traditional Chinese herbal 

medicine over centuries, and a wide range of pharmacological activities have been 

identified. These include antiviral activities were reported for further virus species 

apart from SARS corona viruses, including dengue virus [87,88], H5N1 influenza A virus 

[89], and Japanese encephalitis virus [90]. 

Luteolin, a structurally similar compound to baicalein, also displayed similar estimated 

ADME properties in terms of favorable drug-likeness and bioavailability scores (see 

Table 2), and an inhibitory effect of luteolin on SARS-CoV 3CLpro was observed in a 

previous study using a FRET assay (IC50 = 20.2 µM) [42]. Regarding the bioavailability 

of luteolin, oral administration of pure luteolin in rats (14.3 mg/kg) has been shown to 

result in a limited peak plasma concentration of 1.97 ± 0.15 μg/mL, which was 

increased to 8.34 ± 0.98 μg/mL when delivering the compound in peanut hull extracts 

[91]. Luteolin is contained in small quantities in both medicinal plants and commonly 

consumed vegetables and spices (e.g. broccoli, thyme, pepper, and celery), and 

displays no mutagenic effects in the Ames test in contrast to other flavonoids [92], 

such as quercetin. Interestingly, quercetin, which only differs structurally from luteolin 

by the position and number of hydroxyl groups, was also reported to bind to SARS-

CoV 3CLpro [42], but with a slightly higher IC50 than luteolin (IC50 = 23.8 µM). When 

testing quercetin as a candidate inhibitor of SARS-CoV-2 3CLpro in the FRET analyses 

reported here, it did however not show any activity. This suggests that the hydroxyl 

group positions in flavonoids are an important determinant of their activity for SARS-

CoV-2 3CLpro. 
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Finally, the last natural product confirmed to bind to SARS-CoV-2 3CLpro is 

pectolinarin. It was previously already found to block the enzymatic activity of SARS-

CoV 3CL protease according to a FRET protease assay, using a similar approach as in 

the study presented here [44]. The compound is isolated from plants of the genus 

Cirsium. Specifically, the plant Cirsium setidens, which contains pectolinarin as a major 

active compound, has been used in traditional Korean medicine against hypertension, 

hemostasis, hematoma and hematuria [93]. Regarding prior pharmacokinetics studies 

for pectolinarin, after oral administration of 6 mL/kg Cirsium japonicum DC extract in 

rats, the maximum plasma concentration of the component pectolinarin was 877 ±97 

ng/mL, reached after 5 min. [94]. However, pectolinarin displays low drug- and lead-

likeness and bioavailability scores in the computational estimations (see Table 2). 

 

 

 

Pharmacophore model for 3CLpro small molecule inhibitors 

In order to generate a pharmacophore model that describes characteristic features of 

3CLpro small molecule inhibitors, we investigated the interactions of the identified 

inhibitors with residues in the receptor binding pocket using the best scoring docking 

pose for each compound according to the binding affinity estimation by the software 

HYDE. For the reference inhibitor GC-376 / GC-373 used for comparison, the relevant 

pose was derived from a crystal structure which contains this compound in complex 

with 3CLPro (PDB ID: 7D1M). Similarly, for compound baicalein a crystal structure of 

the complex with 3CLpro was already available (PDB ID: 6M2N) and used to extract 

the binding pose. Figure 2 shows the 2D representations of the estimated hydrogen 
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bond interactions (dotted lines) and hydrophobic contacts (green lines) for each 

inhibitor in the 3CLPro binding pocket as determined using the software PoseView 

[52]. 
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Figure 2. 2-dimensional representations of the hydrogen bond interactions (dotted lines) and 

hydrophobic contacts (green lines) between confirmed small molecule inhibitors and residues in the 

3CLPro binding pocket: a) GC-373, b) M-8524, c) rottlerin, d) M-1805, e) amentoflavone, f) baicalein, g) 

luteolin, h) pectolinarin. Plots were generated using the software PoseView. The inhibitor GC-376 / GC-

373 is shown in the pose derived from a crystal structure of 3CLPro in complex with this compound 

(PDB ID: 7D1M). All other sub-figures represent the best scoring docking poses for the corresponding 

compounds according to the HYDE binding affinity estimation score. 

 

An overview of the binding pocket residues involved in these protein-ligand 

interactions is provided in Table 3, highlighting all interactions shared by at least two 

compounds in color, and representing identical residues by identical colors. Most 

hydrogen bond interactions and hydrophobic contacts with binding pocket residues 

are shared by multiple ligands, suggesting that they reflect a common binding mode 

and a characteristic signature of interactions that favor stable ligand binding. The 

residues most frequently participating in these protein-ligand interactions are Glu166 

(involved in hydrogen bonds for 8 inhibitors, and in hydrophobic contacts for 3 

inhibitors), Thr190 (H-bonds: 5, Contacts: 1), Gln189 (H-bonds: 2, Contacts: 3) and 

Gln192 (H-bonds: 5). Interestingly, the two residues His41 and Cys145 which have 

previously been confirmed to be critical for catalysis [95] are also involved in hydrogen 

bond interactions with some of the inhibitors (His41 for amentoflavone; Cys145 for 

GC-376 / GC-373) and hydrophobic contacts (His41 for GC-376 / GC-373, 

amentoflavone, and baicalein; Cys145 for baicalein), and these compounds may 

directly interfere with the catalytic mechanism. Overall, both the shared interactions 

(see Table 3) and the graphic overlay of the docked or crystal structure derived ligand 
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conformations (see Figure 3) suggest that the confirmed inhibitors use a similar 

binding mode to engage the 3CLpro binding pocket.  

 

Table 3. Overview of hydrogen bond interactions (2nd column) and hydrophobic contacts (3rd column) 

between the inhibitors and residues in the 3CLPro binding pocket (inferred by applying the PoseView 

software with default settings). The residue 3-letter codes and numbers correspond to the 3CLPro 

amino acids involved in the interaction type indicated in the column header (residues are sorted by 

increasing position in the 3CLpro amino acid sequence). All residues shown in color are involved in 

binding interactions for at least two different inhibitors, where identical colors represent identical 

residues. These shared interactions across multiple ligands may represent critical features that favor 

the binding of small molecules in the 3CLPro binding pocket. 

Compounds H-bonds Contacts 
GC-376 / GC-
373 

Phe140, Cys145, His163, His164, Glu166, 
Gln189 His41, Thr190, Ala191 

rottlerin Glu166, Gln189, Thr190, Gln192 - 

M-8524 Glu166, Thr190, Gln192 Met165, Glu166, Leu167, Pro168  

M-1805 Ser144, Gly143, Glu166, Thr190, Gln192  Met165, Glu166 

amentoflavone His41, Asn142, Gly143, Thr190, Gln192 His41, Glu166, Pro168, Gln189 

baicalein Glu166, Gly143 His41, Met49, Cys145, Met165, 
Gln189 

luteolin His164, Glu166, Thr190, Gln192 Met165, Gln189 

pectolinarin Gly143, Ser144, Glu166 Ser45 
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Figure 3. a) Molecular surface representation of the 3CLpro protein with an overlay of all confirmed 

actives in the binding pocket (top right) in their best scoring docking conformations (only for GC-376 / 

GC-373 and baicalein, crystal structures of the protein-ligand complex were available and used instead 

of molecular docking derived conformations). The 3CLpro secondary structure is displayed as a blue 

ribbon, surrounded by the solvent excluded molecular surface representation in transparent blue, and 

with the colored ligands shown in a stick representation. b) Larger scale representation of the overlaid 

pair of ligands with the lowest IC50 values: GC-376 (light green) and M-8524 (pink) in the 3CLpro binding 
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pocket (top right part of figure 3 a); c) overlaid pair of ligands rottlerin (purple) and M-1805 (dark green); 

d) overlaid pair of ligands amentoflavone (orange) and baicalein (light gray); e) overlaid pair of ligands 

luteolin (dark gray) and pectolinarin (red). 

 

Next, we created dedicated pharmacophore models for each of the inhibitors using 

the structure-based pharmacophore design approach in the software LigandScout 

[96]. Two example pharmacophore models are shown in Figure 4 for the reference 

compound GC-376 / GC-373 (Figure 4 a), and the newly identified inhibitor rottlerin 

(Figure 4 b), respectively. These two compounds occupy a similar space in the binding 

pocket, like most identified inhibitors in their docked binding conformation (see Figure 

3), but engage at least partly in different hydrogen bond and hydrophobic interactions 

with the residues in the pocket. Thus, by merging the pharmacophore models for 

these and all other confirmed inhibitors into a single model, further virtual screening 

and structural design optimization efforts may exploit the unified model to identify 

new inhibitors with suitable steric properties that engage in more energetically 

favorable combinations of interactions than those covered by the already identified 

actives. Therefore, the pharmacophore models for the individual ligands were 

integrated by aligning the structures and their associated pharmacophores by 

receptor-derived reference points and interpolating the overlapping features, using 

the default settings in the LigandScout software. In contrast to the models for the 

individual inhibitors, the resulting merged pharmacophore model does not lend itself 

to direct interpretation, due to its larger coverage of potential binding interactions 

that can be exploited by a ligand. However, its more comprehensive coverage of 

potential interactions provides a computational resource for further screening studies 
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on independent compound databases that is more informative than individual 

structures of protein-ligand complexes. The merged pharmacophore model has 

therefore been made available in the “Compressed Pharmaceutical Markup 

Language” (PMZ) format on GitHub (https://github.com/eglaab/3clpro). The reader 

should note that this ligand-based pharmacophore model is specific to the inhibitors 

identified in the present project, and should therefore ideally be considered in 

combination with other published pharmacophore models exploiting additional 

information sources, e.g. a recently proposed receptor-based pharmacophore 

definition for 3CLpro that combines information from molecular simulations and 

crystallographic studies [25]. 

 

Figure 4. a) Pharmacophore model for 3CLpro derived from the reference inhibitor GC-376 / GC-373 

using the software LigandScout (conformation obtained from the PDB crystal structure 7D1M after pre-

processing with the software Schrödinger Maestro, see Methods). The yellow spheres represent 

hydrophobic interactions, the red spheres and arrows correspond to hydrogen bond acceptors, and the 

green spheres and arrows to hydrogen bond donors. b) Pharmacophore model for 3CLpro derived from 

the inhibitor rottlerin using the software LigandScout (conformation obtained from the best scoring 

pose in molecular docking according to the HYDE scoring approach, see Methods). While the 

comparison of rottlerin and GC-376 / GC-373 suggests that they occupy a similar space in the 3CLpro 
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binding pocket and share a hydrogen bond interaction with the residue Glu166, most interactions are 

distinct. This may open up possibilities for the screening of new compounds that exploit interactions 

from the pharmacophore models of both the GC-376 / GC-373 and rottlerin ligand. 
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CONCLUSIONS 

The SARS-CoV-2 3CLpro protein is one of the main drug targets of interest for COVID-

19, due to its critical role in viral replication, the availability of multiple high quality 

protein crystal structures and the prior identification of first small molecule inhibitors 

as a basis to computationally screen for inhibitors with improved inhibitory activity, 

bioavailability and ADMETox characteristics.  

The combined computational and experimental analyses presented here reveal new 

natural and synthetic compounds inhibiting 3CLpro with micromolar activity, e.g. 

rottlerin and M-8524, and provide a pharmacophore model that describes key 

structural and chemical properties of active compounds. Both this pharmacophore 

and the confirmed hits provide a resource to support follow-up efforts on the 

structural design of more potent and selective 3CLpro inhibitors and similarity-based 

inhibitor screening in additional compound databases. The pharmacophore analyses 

suggest that many of the 3CLpro inhibitors share hydrogen bond and hydrophobic 

interactions with binding pocket residues, including interactions with the two residues 

His41 and Cys145, that have previously been confirmed to be critical for catalysis. 

Apart from the new inhibitors identified through the screening of the ZINC, 

SWEETLEAD and MolPort databases, we also assessed compounds previously 

proposed as SARS-CoV 3CLPro inhibitors in the literature in terms of their SARS-CoV-2 

3CLPro inhibitory activity, confirming amentoflavone, baicalein, luteolin and 

pectolinarin as actives (albeit with lower affinities then GC-376 / GC-373, rottlerin and 

M-8524, among others), and rejecting several other candidate compounds as actives 

(in the lists of tested compounds in the Supporting Information, the confirmed 

compounds are all marked with a star symbol; the compounds which could not be 
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assessed in the assay due to high background fluorescence are marked in blue, and all 

other compounds were invalidated). Analyses of ADMETox and physicochemical 

parameters of the confirmed hit compounds show that these compounds differ 

significantly with regard to relevant known or computationally estimated properties, 

and that a subset of the hits displays favorable bioavailability and safety characteristics 

in terms of the prior knowledge available. 

Regarding the computational methodological aspects of the project, as part of the 

virtual screening we have tested different screening approaches, including the 

integration of molecular docking and ligand similarity screening, the combined 

application of fast docking approaches without prior compound library filtering, and 

the use of machine learning for screening. The observation that each of these 

approaches uniquely identified at least one of the experimentally confirmed inhibitors 

suggests that the different screening strategies provide independent and 

complementary information, which can help to increase the overall number and 

diversity of the identified active compounds. Identifying structurally and chemically 

diverse active compounds with a similar binding mode is important for the creation of 

more comprehensive integrated pharmacophore models. 

Limitations of the computational and experimental screening approach employed 

include a restricted scalability of the in vitro assay for assessing 3CLpro inhibitory 

activity, which has recently been addressed by the development of an optimized assay 

for high-throughput screening of 3CLpro [20], and limitations in terms of the size of 

the compound library and the conformational search space that could be explored 

using high-performance computing facilities available in a typical academic setting, 

which may be addressed using recent dedicated supercomputer-based screening 
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approaches [24–26]. Extending 3CLpro virtual screening to supercomputer-based 

methodologies has also recently been shown to enable an improved modeling of 

receptor flexibility using ensemble docking [24], extensive MD simulations to generate 

high-resolution conformational ensembles [25], and the application of more advanced 

polarizable force fields [26]. 

As a next step, extended/further screening and structural optimization analyses for 

3CLpro inhibitors will be required. This will help to pave the way for additional activity 

assessments in preclinical models and the subsequent development of lead 

compounds. 
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DATA AND SOFTWARE AVAILABILITY 

The Supporting Information contains the lists of all experimentally assessed candidate 

3CLPro inhibitors, the dose-response curves and structures in SMILES format for all 

experimentally confirmed active compounds, the results for the validation analyses of 

the FRET-based 3CLPro in vitro assay and the reference inhibitor GC-376, and the 

detailed results for the physicochemical and ADME analyses. Scripts including the 

commands and parameters for the molecular docking analyses, the ligand similarity 

search, the machine learning based screening, the configuration settings used for the 

software NAMD, as well as a list of all used software tools and their versions, and 

exemplary video animations of MD simulations for confirmed inhibitors are available 

on GitHub (https://github.com/eglaab/3clpro). 

 

SUPPORTING INFORMATION 

• Tables S1-S5: Lists of experimentally assessed candidate 3CLPro small 

molecule inhibitors 

• Figures S1-S2: Validation of the FRET assay and the reference compound 

• Figure S3: Dose-response curves for the active compounds 

• Figures S4-S11: Physicochemical and ADME analyses for the active compounds 

• Used software tools and versions for the virtual screening analyses 

• Step-by-step description of the virtual screening analyses 
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