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ABSTRACT 12	

The mammalian genome has a complex 3D organization, serving vital functional purposes, yet it 13	

remains largely unknown how the multitude of specific DNA contacts, e.g., between transcribed 14	

and regulatory regions, is orchestrated by chromatin organizers, such as Transcription Factors. 15	

Here, we implement a method combining machine learning and polymer physics to infer from only 16	

Hi-C data the genomic 1D arrangement of the minimal set of binding sites sufficient to recapitulate, 17	

through only physics, 3D contact patterns genome-wide in human and mouse cells. The inferred 18	

binding sites are validated by their predictions on how chromatin refolds in a set of duplications at 19	

the Sox9 locus against available independent cHi-C data, showing that their different phenotypes 20	

originate from distinct enhancer hijackings in their 3D structure. Albeit derived from only Hi-C, our 21	

binding sites fall in epigenetic classes that well match chromatin states from epigenetic 22	

segmentation studies, such as active, poised and repressed states. However, the inferred binding 23	

domains have an overlapping, combinatorial organization along chromosomes, missing in 24	

epigenetic segmentations, which is required to explain Hi-C contact specificity with high accuracy. 25	

In a reverse approach, the epigenetic profile of binding domains provides a code to derive from 26	

only epigenetic marks the DNA binding sites and, hence, the 3D architecture, as validated by 27	

successful predictions of Hi-C matrices in an independent set of chromosomes. Overall, our results 28	

shed light on how complex 3D architectural information is encrypted in 1D epigenetics via the 29	

related, combinatorial arrangement of specific binding sites along the genome.  30	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.03.01.433416doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433416
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 31	

The genome of higher organisms has a complex spatial organization within the cell nucleus1–6 as 32	

revealed by recent technologies7–13. Chromosomes are folded in a sequence of 0.5-1.0Mb wide 33	

domains, named TADs14,15, in sub-TADs and loops, and in larger structures such as A/B 34	

compartments7 and meta-TADs16. Importantly, such an organization serves vital functional 35	

purposes, as for instance distal enhancers control their target genes by establishing physical 36	

contacts with them, disruptions being linked to human diseases17–19. However, how chromatin 37	

architecture is shaped and orchestrated remains mostly unknown.  38	

To rationalize the complexity of Hi-C data, polymer models from statistical physics20–32 and a variety 39	

of computational methods33–36 have been developed. A class of models, such as the Strings and 40	

Binders (SBS) model21, has focused on the classical scenario where loops and contacts between 41	

distal DNA sites are established by diffusing molecules such as Transcription Factors (TFs), or some 42	

effective interaction potential, bridging cognate binding sites by thermodynamics mechanisms of 43	

phase separation21,25–32,37–39. Another interesting classical scenario has been considered by off-44	

equilibrium polymer models where loops are formed by extrusion, e.g., by molecules that bind to 45	

DNA and extrude a loop22–24, based on prior knowledge of the involved molecular factors, such as 46	

CTCF binding sites29,40.  47	

Here, we use a machine learning approach (PRISMR41) to infer from only Hi-C data the genomic 48	

location of the minimal set of binding sites best explaining contact patterns across chromosomes by 49	

only polymer physics via the molecular mechanisms envisaged by the SBS model. While PRISMR 50	

was previously applied to Mb wide genomic regions, we optimize its performance to extend the 51	

approach to the entire genome, improving the statistical power of our method of three orders of 52	

magnitude to understand how complex 3D architectural information is encrypted in 1D epigenetic 53	

signals. Without prior knowledge of binding factors, our approach can infer genome-wide the 54	

specific location of the distinct binding sites whereby DNA contacts are established as captured by 55	

Hi-C data, returning a picture of the key elements underlying chromosomes folding. We show that 56	

the SBS polymer model informed with the inferred binding sites recapitulates Hi-C data across 57	

chromosomes in human42 and murine14 cells with high accuracy, illustrating that its minimal 58	

ingredients are sufficient to make sense of a substantial fraction of contact patterns genome-wide. 59	

For sake of simplicity, we focus on the SBS model, but the method can be extended to 60	

accommodate additional mechanisms, such as loop extrusion22–24. 61	
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To test the inferred binding sites of the model and its envisaged folding mechanisms, we compared 62	

its predictions about the impact of mutations on chromosome conformations against independent 63	

experimental data. As a case study, we considered the Sox9 locus, where cHi-C data are available 64	

for a set of duplications43. We implemented in the wild-type chromosome model those duplications 65	

and derived de novo the corresponding contact maps that are successfully compared to cHi-C data, 66	

with no fitting parameters available. Our analysis also shows that different genomic variants 67	

produce different neo-TADs around Sox9 marked by specific enhancer hijackings, hence resulting in 68	

different phenotypes. 69	

Importantly, our inference procedure does not exploit previous knowledge on binding factors or 70	

epigenetics marks. Hence, the inferred binding domains can be used to bring together 71	

independently derived information on architecture and epigenetics, e.g., by crossing their genomic 72	

position with ENCODE databases. We find that the different binding domains fall in similarity 73	

classes based on epigenetics, well matching functional chromatin states derived in linear epigenetic 74	

segmentation studies such as active, poised and repressed states10,44–47. However, we discover that 75	

they have an overlapping, combinatorial genomic distribution at the current resolution of Hi-C 76	

experiments, lacking in linear segmentation studies, which is shown to be required to explain Hi-C 77	

contacts with high accuracy genome-wide.  78	

 79	

Finally, we validated the discovered association between machine learned binding sites and 80	

epigenetic features by reversing the approach. In the considered cell types, we used the epigenetic 81	

profiles of the different binding domains of even chromosomes as a code to derive from only 82	

histone marks of odd chromosomes the location and type of their binding sites. Next, those binding 83	

sites were used to inform the polymer models of odd chromosomes, which predicted the 84	

corresponding Hi-C matrices with an accuracy comparable to those directly inferred from Hi-C data.  85	

 86	

Overall, our results provide insights on how the 1D combinatorial arrangement of a comparatively 87	

small number of binding site types, barcoded by distinctive epigenetic signatures, encodes the 88	

architectural information guiding chromatin organizing factors to establish, through physics, the 89	

multitude of specific 3D contacts across chromosomal scales. 90	

 91	

 92	
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RESULTS 93	

Inferred binding domains explain Hi-C data genome-wide  94	

To dissect the molecular mechanisms that contribute to chromatin folding, we used the PRISMR 95	

machine learning procedure41 to infer the minimal SBS polymer model best explaining in situ Hi-C 96	

contact maps in human GM12878 B-lymphoblastoid cells at 5kb resolution across chromosomes42 97	

(Fig. 1B, Fig. S1, Materials and Methods). In the String and Binders (SBS) model21, a chromatin 98	

filament is modeled as a self-avoiding string of beads, including specific binding sites for diffusing 99	

molecules; such binders can bridge distal cognate sites along the sequence, producing loops and 100	

physical contacts (Fig. 1C). In particular, in the SBS model, contact domains of homologous sites are 101	

spontaneously established by their cognate binders via a thermodynamic mechanism known as 102	

micro-phase separation26,30,39. Specifically, PRISMR finds the minimal combination of the binding 103	

sites of the SBS model (Fig. 1D) that reproduces, within a given accuracy threshold, the 104	

experimental Hi-C contact matrix based only on polymer thermodynamics (Materials and Methods). 105	

The different groups of homologous binding sites are named the binding domains of the model. 106	

Importantly, PRISMR uses just Hi-C data as input, with no prior knowledge of binding factors. 107	

To check whether the model can explain in situ Hi-C data genome-wide, we compared the PRISMR 108	

derived SBS contact matrices to the original data (Fig. 1E, Fig. S1). In particular, we computed their 109	

Pearson correlation coefficient, r, their distance corrected Pearson correlation coefficient, r’, and 110	

their HiCRep stratum adjusted correlation coefficient, SCC48. The last two measures were 111	

considered to account for genomic proximity effects (see Materials and Methods). Model and 112	

experimental data were found to be comparatively similar across chromosomes, as r, r’ and SCC 113	

range around r=0.94, r’=0.74 and SCC=0.86, respectively. Notably, from the SBS model the 114	

thermodynamics ensemble of chromosomal 3D conformations can also be derived; a snapshot, e.g., 115	

of chromosome 20 is pictured in Fig. 1F. 116	

Additionally, to prove the general validity of the method, we tested its performance on a mouse 117	

embryonic stem cells Hi-C dataset at 40kb resolution14, finding that the PRISMR inferred and 118	

experimental contact matrices have high correlation values, comparable to those reported above 119	

for the 5kb human data (Fig. S2). 120	

The model binding domains, i.e., the sets of homologous binding sites along the chromosomes, are 121	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.03.01.433416doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433416
http://creativecommons.org/licenses/by-nc-nd/4.0/


the output of PRISMR. The algorithm returns 30 different binding site types per chromosome in 122	

GM12878 (Fig. 1D, see Materials and Methods). Interestingly, a single binding domain covers on 123	

average a genomic length comparable to the size of a TAD (3.1+-1.9Mb), yet the range of their 124	

interactions, rInt, extends more than one order of magnitude longer, up to tens of Mbs (Fig. S3A, 125	

Materials and Methods). The distribution of rInt, P(rInt), is significantly different from a random 126	

control model obtained by bootstrapping the location of binding sites (Materials and Methods) and 127	

is asymptotically consistent with a power-law scaling, P ~ 1/rInt, typical of hierarchical structures 128	

made of domains within domains, as in Cantor sets (Fig. S3A, Materials and Methods). The broad 129	

range of values of rInt shows that chromatin interactions extend above the size of single TADs, with 130	

higher-order 3D structures formed at scales below and above the A/B compartment level16. The 131	

derived 3D structure of chromosomes (Fig. 1F) shows indeed that, rather than being a linear chain 132	

of TADs, they tend to fold on themselves in complex structures, such as meta-TADs16 (see also 31).  133	

Taken together, the high correlations found between the SBS model and Hi-C contact data show 134	

that the 1D binding domains inferred genome-wide by PRISMR contain key information sufficient to 135	

recapitulate 3D contact patterns genome-wide in human and mouse cells. That sheds light on the 136	

molecular mechanisms shaping chromosome architecture, supporting the view that the 137	

combinatorial action of a comparatively small number of TFs, mediating the interactions between 138	

cognate binding sites, can spontaneously fold chromatin in its 3D structure through just the laws of 139	

physics.  140	

Validation of the inferred binding domains against duplications in the Sox9 locus 141	

To validate the binding domains inferred by our approach, i.e., the determinants of folding and 142	

their envisaged mode of action, we compared our model predictions against previous 143	

independently produced cHi-C data in E12.5 limb bud cells from mice carrying homozygous 144	

structural variants in the Sox9 locus43. We considered three mutations (Fig. 2, Fig. S4): a 0.4Mb 145	

duplication (DupS) in the non-coding DNA region within the Sox9 gene TAD (intra-TAD duplication), 146	

associated with female to male sex reversal in humans; a 1.6Mb duplication (DupL) that 147	

encompasses the neighboring TAD boundary, with no phenotypic effect; and a slightly longer 148	

1.8Mb duplication (DupC), associated to limb malformation, which also includes Kcnj2, the next 149	

flanking gene. Specifically, we implemented those mutations in the SBS polymer model of the wild-150	

type region in mESC inferred by PRISMR30 and derived the novel contact matrices from only 151	
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polymer physics, with no fitting parameters whatsoever. The Pearson and distance-corrected 152	

Pearson correlation coefficients between the model predicted and cHi-C contact maps across the 153	

three mutations are as high as r=0.88 and r’=0.48, reflecting their good degree of similarity (Fig. 2, 154	

Fig. S4).  155	

Those results provide a stringent validation to our approach and demonstrate that predictions on 156	

the 3D structure of chromatin based on the inferred binding domains can be accurate to the point 157	

to anticipate ectopic contacts produced by disease-associated mutations.  158	

Enhancer hijackings in neo-TADs at the mutated Sox9 locus link to phenotype 159	

To understand the origin of the ectopic contacts in the mutated systems, within our model we 160	

dissected the interactions of the duplicated from the original DNA sequences and the 161	

corresponding 3D structures, pieces of information inaccessible by Hi-C data (Fig. 2, Fig. S4, S5).  162	

DupS is fully included within the TAD encompassing Sox9 (Fig. S4A). Within our model, a TAD and its 163	

corresponding enrichment of interactions derive from the presence of a prevailing type of binding 164	

sites in that DNA region (see, e.g., TAD A, B, C in Fig. 4D-F). Hence, the duplicated and the original 165	

sequence in DupS (region B2’ and B2 in Fig. S5A) share many homologous binding sites, which 166	

produce the contacts between such regions visible in the interaction matrix mapped along the full, 167	

duplicated genome (Fig. S4A, S5A). When those contacts are mapped back onto the wild-type 168	

sequence, an excess of interactions appears localized around the mutated region within the 169	

corresponding TAD, but no major changes to the overall contact pattern, as experimentally found in 170	

cHi-C data43. The model derived 3D structure of the mutated locus shows, indeed, that the 171	

duplicated region remains well embedded into the rest of the locus (Fig. S5C). 172	

Conversely, in DupL the duplicated region spans two TADs (Fig. 2). In our model, those TADs are 173	

produced by different prevailing types of binding sites. Accordingly, the portion of the duplication 174	

within the Sox9 TAD (region B1’ in Fig. 2C) has enriched contacts with itself and its corresponding 175	

original sequence (B1), but less with the portion of the duplication within the flanking TAD and its 176	

original sequence (resp. region A2’ and A2). Since B1’ is enriched of self-contacts but has 177	

comparatively less interaction with its neighboring genomic regions A2’ and A2, it forms a separate 178	

chromatin domain (termed a ‘neo-TAD’43) remaining partially isolated from the rest, as seen in a 179	

snapshot of the 3D structure of the locus (Fig. 2E, red region). As the isolated neo-TAD does not 180	
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include main genes, DupL has no phenotype43.  181	

Finally, DupC produces a neo-TAD as much as DupL, however, it now includes a copy of the next 182	

flanking gene, Kcnj2 (Fig. S4). As seen in the contact matrix of the full genome, within the neo-TAD 183	

the duplicated Kcnj2 establishes ectopic contacts with the duplicated part of the regulatory region 184	

of Sox9. So, Kcnj2 is mis-expressed, leading to the associated phenotype43.  185	

In brief, our findings clarify how mutations impact chromatin architecture and the mode of action 186	

of the 3D structure in regulating gene activity. In particular, they explain how the considered 187	

structural genomic variations at the Sox9 locus differently alter 3D conformation and gene 188	

regulation by specific enhancer hijackings, resulting in distinct phenotypes.  189	

Epigenetic profile of the binding domains  190	

To shed light on the nature of the model inferred binding sites (Fig. 1D), we correlated their 191	

genomic locations with histone mark tracks available in the ENCODE database49 for the GM12878 192	

cell line. In particular, we used the binding domains derived from even-numbered chromosomes to 193	

compute such correlations, in order to use the derived barcode linking binding site types and 194	

epigenetics to later independently predict the architecture of odd-numbered chromosomes. In our 195	

analysis, we retained only statistically significant correlation values, i.e., those above a random 196	

control model with sites having bootstrapped genomic positions (Materials and Methods). As the 197	

different binding domains tend to fall in groups with similar epigenetic profiles, we clustered them 198	

to identify genome-wide significantly distinct epigenetic classes (Materials and Methods). The 199	

Akaike Information Criterion50 (AIC) returns a set of 9 statistically different groups (Fig. 3A), a result 200	

also supported by basic hierarchical clustering (Fig. S6B).  201	

Three classes of binding domains strongly correlate with active chromatin marks (Fig. 3A), but they 202	

are distinct from an epigenetic point of view. While class 1 is enriched for only active marks, classes 203	

2 and 3 are both enriched also in H3K9me3. Also, class 3 shows a stronger correlation with 204	

H3K4me1 as compared with class 2, a histone mark associated especially with active enhancer 205	

regions10,44–47. Interestingly, the genomic positions of the sites of the first three classes (Fig. 3B) are 206	

partially correlated (Fig. S7C, Materials and Methods). Their histone signatures are also consistent 207	

with DNA accessibility, early replication time and RNAseq transcription data (Fig. S6C). That 208	

supports the view that the binding sites in class 1, 2 and 3 are responsible, genome-wide, especially 209	
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for specific contacts between transcribed and regulatory regions, mediated by factors such as 210	

active Pol-II, as experimentally demonstrated at a number of loci40. Class 4 has the typical signature 211	

of bivalent chromatin, with H3K27me3 combined with active marks. Its binding sites could be 212	

responsible for interactions between regions including, for instance, poised genes and their 213	

regulators, as seen in FISH co-localization experiments40. Classes 5 and 6 are significantly correlated 214	

with H3K27me3 and could be responsible for the experimentally observed self-interacting domains 215	

of PRC repressed chromatin51. Interestingly, the first six classes are the only ones to correlate with 216	

CTCF binding sites (Fig. S6C). That confirms the significance of CTCF in regulating chromatin 217	

architecture and gene activity (see, e.g. 52), highlighting that its role can be modulated by different 218	

sets of histone marks and molecular factors. 219	

Classes 7 and 8 display a lack of active marks, but while class 8 does not correlate with any of the 220	

used histone marks, class 7 shows a correlation with H3K9me3, a mark usually associated with 221	

constitutive heterochromatin and lack of transcription factor binding. Finally, class 9 (named `low 222	

signal’) has a very low correlation with available histone marks. However, consistently with 223	

previous studies10,44–47, it covers almost 15% of the genome, while the other classes range from 224	

around 2% to 10% in genomic coverage (Fig. S7A). Interestingly, the different classes are 225	

significantly differently enriched over the different chromosomes and not consistent with a uniform 226	

random genomic distribution (Fig. S7B, p-values<0.05, Materials and Methods). 227	

To understand the relative importance of the different types of binding domains in shaping 228	

chromatin architecture, we conducted a set of in-silico experiments with mutant models where 229	

each class, one at the time, is erased. Specifically, from the wild-type chromosome models we 230	

removed the binding domains of a given class. Next, we computed the contact maps of the mutated 231	

model and measured across chromosomes the variation of the Pearson, r, and distance-corrected 232	

Pearson correlation coefficient, r’, between the mutated model and wild-type Hi-C contact map 233	

(Materials and Methods). The variation is found to be proportional to the genomic coverage of the 234	

different classes in both cases (Fig. S7D,E). That implicates that no binding class has a special role in 235	

holding the architecture of the genome in place. The linear relation whereby the removal of, say, 236	

10% of binding sites genome-wide roughly results in a 10% reduction of r highlights the structural 237	

stability of the system: the removal of a small fraction of binding sites proportionally alter the 238	

structure but does not produce a sudden collapse of the architecture, as reported by recent 239	

experiments53–57. 240	
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Finally, as a control of the robustness of the association between binding site types and epigenetics, 241	

we applied the same approach to the mentioned mouse ES cells14, using the corresponding set of 242	

ENCODE histone modifications in mouse, and found an overall analogous classification (Fig. S8). 243	

Summarizing, the inferred binding site types have each a specific epigenetic barcode falling in 244	

classes that match well those found by previous epigenetic genome segmentation studies10,44–47. 245	

However, our binding domains are inferred from only Hi-C data without prior knowledge of 246	

epigenetics. Hence, they bring together independent information on architecture and epigenetics. 247	

A crucial feature of the model binding domains to explain contact data is that the different types do 248	

overlap with each other along the genome at the resolution of the considered Hi-C data. Therefore, 249	

they naturally provide each DNA window with a distinctive set of binding site types. This is an 250	

important difference with 1D epigenetic segmentation classes: by definition, those have no 251	

genomic overlap, thus each DNA window is associated to only one of such classes. Epigenetic 252	

segmentations have been shown, though, to correlate with Hi-C contacts28,32,46.  253	

Epigenetic linear segmentation only partially captures chromatin folding 254	

To deepen our comprehension of the interplay of chromosome epigenetics and folding, we 255	

investigated the architectural information content retained in 1D epigenetic segmentations of the 256	

genome and compared it with the more complex DNA barcoding given by the classes of our binding 257	

domains. As done in previous studies10,44–47, we segmented chromosomes in 9 epigenetic classes 258	

based only on ENCODE histone marks (Fig. 4A,B). For simplicity, we opted for 9 classes to match the 259	

number of different types of binding domains found above. Such a number of classes is comparable 260	

to those in previous segmentation studies, and our results are not affected by more complex 261	

choices of segmentation (until the scale of the single binding domain is reached). Next, we derived 262	

in-silico the contact maps predicted by a polymer model based only on such a 1D epigenetic 263	

segmentation. Specifically, we considered a polymer model where chromatin physical interactions 264	

only occur between homologous 1D-segmented epigenetic regions28. Interestingly, while the 265	

overall contact patterns from such a model visually resemble Hi-C patterns (for example, r=0.78 for 266	

chromosome 20), their distance-corrected Pearson correlation, r’, with Hi-C data is very low (for 267	

chromosome 20 r’=0.02, Fig. 4A,C and Fig. S9, Materials and Methods). Hence, the patterns derived 268	

from a polymer model constructed from 1D epigenetic segmentation is only partially better than 269	

one where Hi-C pair-wise interactions are replaced by the average value corresponding to that 270	
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genomic separation. Conversely, an SBS model with 9 types of binding domains, based on 271	

epigenetics classes, genomically overlapping as discussed before, has r=0.89 and r’=0.43 for 272	

chromosome 20; and, as stated, the model with the full set of inferred binding domains has r=0.97 273	

and r’=0.84. 274	

To understand the partial failure of 1D epigenetic segmentation in explaining contact data (Fig. 275	

4B,C), for each pair of genomic sites we identified the binding domain that mostly contributes to 276	

their pair-wise interaction within the full SBS model (Fig. 4D,E,F, Materials and Methods). For 277	

clarity, we focus on a case-study 20Mb-wide region on chromosome 20. Plaid-patterns are visible in 278	

its Hi-C contact map, as expected from A/B compartments (Fig. 4A); they are also visible in the 279	

matrix of the most contributing binding domains (Fig. 4F), where rich and fine substructures appear 280	

as well. Consider, for instance, the TAD associated to region C in Fig. 4. The interactions within that 281	

TAD are mainly related to binding domains in class 7 (magenta, Fig. 4F), which is indeed the most 282	

abundant within the genomic region where C is located (Fig. 4E). Its interactions with the upstream 283	

region A can be simply traced back to homotypic interactions within class 7 itself, which is also the 284	

most abundant in A. However, the flanking region B, in which class 6 (dark blue) is the 1st most 285	

abundant, also interacts with C (Fig. 4F). That occurs because class 7 is the 2nd most abundant in B 286	

(Fig. 4E) and because in C class 6 is, in turn, the 2nd most abundant. Such an example illustrates that 287	

a linear epigenetic segmentation model with homotypic interactions fails to account for the 288	

complexity of the observed contact pattern because a homotypic interaction between B and C 289	

would only occur if the two regions belong to the same class. Analogously, the contacts between 290	

regions A and B originate from different overlapping binding domains included in those regions. A 291	

similar reasoning can be extended to the plaid-pattern of A/B compartments (which is a specific 292	

example of a two classes genome 1D segmentation) capturing the overall interactions between 293	

homologous active and repressed regions respectively7,42. Yet, a much more complex and finer 294	

structure of contacts exists (including interactions across A and B compartments). Indeed, it has 295	

been shown that polymer models based on a linear epigenetic classification of domains are forced 296	

to include heterotypic interactions to accurately explain Hi-C data32. 297	

Overall, homotypic interactions between the domains of a coarse-grained linear epigenetic 298	

segmentation of the genome, such as compartment A/B, are not enough to explain the specificity 299	

of Hi-C patterns with high accuracy since a complexity of relevant heterotypic contacts exists 300	

between those regions. The origin of those heterotypic interactions is understood within our 301	
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analysis showing that multiple binding domains are present in a genomic segment. Their genomic 302	

1D combinatorial overlaps associate a distinctive interaction profile to each DNA segment, 303	

containing the information required to produce through physics the complex details of the system 304	

3D conformations (Fig. 4). In turn, the specific set of histone marks barcoding each binding domain 305	

provides a code linking epigenetic to architecture.  306	

The epigenetic barcode of binding domains predicts de novo chromatin architecture  307	

To validate the identified association between linear epigenetic features and chromosome 308	

conformations, we considered a reverse approach whereby starting from only epigenetics data, 309	

through the mentioned barcode we identify the key binding sites of a set of independent 310	

chromosomes and, next, predict their contact matrices via polymer physics (Fig. 5A). Specifically, 311	

we exploited the epigenetic barcoding provided by the classification of the binding domains of 312	

even-numbered chromosomes, as previously described, to identify de novo the binding sites of 313	

odd-numbered chromosomes. To determine the locations and types of the binding sites, we 314	

partitioned each 5kb genomic window (5kb is the resolution of Hi-C) of odd-numbered 315	

chromosomes in equal-sized, 0.5kb sub-windows, which we epigenetically profiled by measuring 316	

the abundance of the mentioned key set of histone marks (Materials and Methods). We then 317	

computed the correlations between the epigenetic profile of each sub-window and the centroids of 318	

the epigenetic classes of the binding domains of even-numbered chromosomes (Fig. 3A). We focus 319	

on those epigenetics classes because they recapitulate the main functional groups found in 320	

segmentation studies; additionally, considering 9 types of sites is more stringent than considering 321	

all the binding domains found on even chromosomes. Exploiting such a larger set of domains 322	

would, of course, improve our results. Finally, each sub-windows of odd-numbered chromosomes 323	

was assigned with a binding site type corresponding to the epigenetic class having the highest 324	

correlation (Fig. 5A).  325	

Once obtained the genomic locations of the binding sites along odd-numbered chromosomes, we 326	

computed their contact matrices via the SBS polymer model and compared them with the 327	

corresponding in situ Hi-C maps (Fig. S10A,B). Fig. 5B,C shows, for example, the contact data of 328	

chromosomes 19 and 21 predicted by use of the above defined code that links binding sites, i.e., 329	

architecture, to epigenetic marks. In all the considered cases, the predicted matrices well capture 330	

the patterns of interactions seen in Hi-C data even at large genomic distances, albeit for simplicity 331	
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we considered only 9 types of binding domains. Accordingly, the correlation and distance-corrected 332	

correlation coefficients (r=0.91 r’=0.47 and r=0.91 r’=0.63 for respectively chromosome 19 and 20) 333	

are much higher than those found by 1D epigenetic segmentation, as seen above. 334	

Taken together, our results show that the barcode linking epigenetics marks to the binding domains 335	

inferred by PRISMR from Hi-C data, albeit still incomplete, can predict the genome’s 3D architecture 336	

to a good level of accuracy. A crucial difference between ours and epigenetic segmentation 337	

strategies to predict chromatin contacts58 is the intrinsically overlapping nature of binding domains, 338	

lacking in segmentations, which is necessary to recapitulate accurately the complex pattern of 339	

chromatin interactions. 340	

 341	

DISCUSSION 342	

To infer from Hi-C data the different types of DNA binding sites determining chromosome 343	

architecture and their genomic position, we employed an approach based on machine learning41 344	

and the physics of the SBS polymer model of chromatin. The SBS model quantifies the scenario 345	

where TFs mediate the interactions between distal cognate binding sites, establishing DNA contacts 346	

and loops21. We found that the 3D structures derived by the model informed with the inferred 347	

putative binding domains, and folded through only polymer physics, explain Hi-C data genome-wide 348	

with high accuracy in human GM12878 B-lymphoblastoid42 and mES14 cells. That shows that the 349	

basic molecular ingredients considered by the model are sufficient to explain contact patterns 350	

across genomic scales. Thus, the binding domains encode key molecular information required to 351	

fold chromatin and provide an architectural code whereby 3D conformations can be established 352	

based on the 1D sequence (Fig. 6). To explain folding with high accuracy, they have a combinatorial 353	

organization along chromosomes, which is needed to control the intricate multitude of genomic 354	

interactions captured in Hi-C maps and their functional specificity, via a comparatively smaller 355	

number of molecular factors. Additionally, the non-trivial arrangement of binding domains provides 356	

structural stability to the 3D conformation of the genome, as experimentally reported53–57.  We 357	

found that binding domains produce chromatin interactions extending across chromosomal scales, 358	

above the size of single TADs and A/B compartments, in a hierarchy of higher-order 3D structures, 359	

as in the meta-TADs16 picture. 360	
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Next, we associated each of the Hi-C inferred binding domains to an epigenetic profile based on the 361	

genomic correlation with a few main ENCODE histone marks. The model binding domains turn out 362	

to belong to main epigenetic classes, similar in human and mouse cell types, which well match 363	

known chromatin states (e.g., active, poised, repressed) derived by linear segmentation studies10,44–364	
47. However, as stated, the identified binding domains have broad overlaps along the genome, a 365	

feature that is missing in linear segmentations but is required to explain Hi-C accurately. The few 366	

coarse-grained epigenetic classes here discussed constitute only a first, simplified description of the 367	

epigenetic features of the binding domains that shape chromatin architecture inferred by PRISMR. 368	

More generally, their barcode is expected to be associated with a broader set of (still partially 369	

unknown) molecular factors, including histone marks, CTCF42, Active/Poised Pol-II40 and additional 370	

factors, such as PRC151, PRC240 and MLL3/459. Furthermore, molecular mechanisms beyond those 371	

envisaged by the SBS model, such as DNA loop extrusion22–24, appear to play a role in chromosome 372	

folding and the code can be extended to accommodate them.  373	

The inferred binding domains and the associated architectural interaction code were tested by 374	

making predictions on the changes of the 3D structure caused by a set of structural variants at the 375	

Sox9 locus linked to human diseases. Notably, the predicted contact maps were confirmed by 376	

independent cHi-C data in cells carrying such mutations43. This is a stringent validation because 377	

there are no available fitting parameters. The model also helps understanding how the mutations 378	

differently affect the 3D structure of the locus (e.g., forming neo-TADs) and how that differently 379	

impacts gene regulation and, hence, phenotype by enhancer hijackings.  380	

Finally, in a reverse approach, based on the discovered link between epigenetics and binding 381	

domains, we identified the binding sites of an independent set of chromosomes from only their 382	

epigenetic marks. Those binding sites were sufficient to predict de novo, via the physics of the SBS 383	

model, the contact matrices of those chromosomes with good accuracy, validating our approach.  384	

Overall, the agreement between our results and independent experimental Hi-C data strengthens 385	

the scenario where chromatin 3D architectural information is encoded in a 1D combinatorial 386	

arrangement of epigenetically barcoded sites, which can be inferred across chromosomes and cell 387	

types by our computational approach. By integration of different genomic data, it provides a 388	

quantitative picture of the deep cause-effect relationship between epigenetics, architecture and 389	

function, which we tested to predict the phenotypic effect of mutations linked to congenital 390	
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disorders. That can help the development of computational tools in biomedicine to infer the link 391	

between genotype and phenotype from the features of the genomic landscape.  392	
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MATERIALS AND METHODS 393	

The String & Binders Switch model of chromatin 394	

To investigate the 3D structure of the genome, we employed the String & Binders Switch (SBS) 395	

model21,26,30. According to the SBS, a chromatin filament (from small loci to entire chromosomes) is 396	

modeled as a self-avoiding walk polymer chain of beads, a fraction of which, named binding sites, 397	

interacts with diffusing molecular binders. The interaction between binding sites and binders allows 398	

for the formations of loops along the polymer and, therefore, permits its spontaneous folding (Fig.  399	

1C). Each bead can be bound only by its specific, cognate type of binders and, to fully describe the 400	

complexity of the system, different types of interactions are allowed together with inert sites along 401	

the chain that do not interact with any binder (apart from steric effects). We represent these 402	

different interactions as different “colors” of the system, “gray” beads being the non-interacting 403	

particles (Fig.  1C). Key parameters of the model are the concentration, c, and the binding energy, 404	

Eint, of each different type of binder.  As a function of c and Eint, the system of corresponding, 405	

cognate binding sites exhibits a coil-globule phase transition from an open conformation (at low 406	

concentration or energy) to a globule, compact phase (at high concentration or energy) as 407	

extensively discussed in previous studies26,30,39. The presence of different sets of binding sites (here 408	

named “binding domains” and represented with different colors) interacting with different, cognate 409	

molecular factors allows the formation of complex 3D structures by microphase separation. 410	

The PRISMR method  411	

To determine the distribution of the different binding sites along the SBS polymer chain, here we 412	

used PRISMR, a previously illustrated machine learning procedure41. The PRISMR algorithm is a 413	

polymer physics-based method that, starting from an experimental contact matrix (e.g. Hi-C or 414	

GAM), finds the minimal polymer model that, at equilibrium, best describes the input. Although we 415	

focus on the SBS polymer model to describe a chromatin filament, the PRISMR algorithm can be 416	

easily generalized to different models.  417	

A detailed description of the PRISMR method can be found in ref 41. Here we just summarize the 418	

key points of the algorithm. An SBS polymer model of a genomic region is composed of L beads, 419	

depending on the resolution of the input contact matrix of the region. For instance, a 10Mb locus at 420	

10kb resolution is partitioned in L=1000 bins. Furthermore, we split each of the L bins into r 421	
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different sub-units, considering that a single DNA bin could include many binding sites and interact 422	

with different factors. The SBS polymer is then completely characterized by the arrangement of the 423	

binding sites along the chain. Given the number n of different types of binding sites, PRISMR finds 424	

the color arrangement along the polymer chain by the minimization, via an iterative Simulated 425	

Annealing (SA) Monte Carlo optimization procedure60,61, of a specific cost function made of two 426	

terms. The first term representing the distance between the experimental and the model predicted 427	

contact matrices; the second one is a Bayesian term proportional to the total number of colored 428	

sites of the polymer through a parameter λ and penalizes the addition of new colored beads. In this 429	

way we account for the necessity to fit well the input data and, at the same time, we attempt to 430	

avoid overfitting. After initializing the SBS polymer in a random configuration, by assigning a 431	

random color to each bead, a standard iterative SA procedure is performed, as available in public 432	

software repositories (see e.g.62), to optimize the model60,61. Schematically, each SA step consists in 433	

randomly changing the color of a polymer bead, compute the average contact matrix of the new 434	

polymer, evaluate the new cost function, compare it with the cost function in the previous step 435	

and, based on it, accept or reject the color change. SA steps are iteratively repeated until 436	

convergence41. The entire procedure is repeated many times by varying the polymer initial 437	

configurations and the model parameters n, r, and λ, to find their optimal values. 438	

Details on the application of PRISMR genome-wide 439	

In this study, we present the first genome-wide application of the algorithm. Precisely, here we 440	

applied PRISMR over the somatic chromosomes of the human genome, obtaining, for each 441	

chromosome independently, the SBS polymer that best describes its corresponding Hi-C matrix. We 442	

employed published in situ Hi-C data42 relative to the human GM12878 cell line at 5kb of resolution 443	

and normalized according to the method described in ref 63. To reduce the local noise in the input 444	

Hi-C data, we applied a gaussian filter with a standard deviation equal to 1 along both x and y 445	

directions. The optimal value of the parameters of the algorithm has been estimated as already 446	

described in ref 41, that is, we repeated the SA procedure many times starting from different initial 447	

conditions and different values of n, r, and λ to set these parameters at the values that explain the 448	

input data within a given accuracy. As input data for the optimal parameter evaluation, we used the 449	

contact matrix of chromosome 12, a medium-sized chromosome, obtaining n=30 different types of 450	

binding sites, r=30 and λ=3x10-5. The same values for the parameters n, r, and λ have been used to 451	

obtain the best SBS polymer for all the other chromosomes. Fig. S1A shows the comparison 452	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.03.01.433416doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433416
http://creativecommons.org/licenses/by-nc-nd/4.0/


between the contact matrices inferred by PRISMR (lower triangular maps) and the in situ Hi-C 453	

matrices (upper triangular maps). The global pattern obtained by PRISMR is highly correlated with 454	

the experimental one as also quantified by the comparatively high values of the Pearson’s (r), 455	

distance-corrected Pearson’s (r’)41 and stratum-adjusted (SCC)48 correlation coefficients (Fig. S1B, 456	

see below). In the calculation of r and r’, to correct for outliers, we did not consider genomic 457	

distances below 25kb. The PRISMR method is highly generalizable across different experiments and 458	

data resolution. To test that, we also applied our method to genome-wide Hi-C data in mouse 459	

embryonic stem (mES) cells14 at 40kb resolution (Fig. S2A). The correlations between experimental 460	

and model matrices obtained in mouse are as high as the values obtained in human, as shown in 461	

Fig. S2B. 462	

Structural variants at the Sox9 locus and validation of PRISMR 463	

As a validation of the PRISMR inference method and the SBS model, we implemented in-silico a set 464	

of three previously studied structural variants in E12.5 limb bud cells from mice43. Specifically, we 465	

started from a SBS polymer model3 of the region chr11:109000000-115000000 (mm9, mESC cells) 466	

including the Sox9 gene and implemented on it, independently, the following duplications: DupS, an 467	

intra-TAD duplication of the region chr11:111760000-112160000; DupL, an inter-TAD duplication of 468	

the region chr11:110960000-112520000; DupC, another inter-TAD duplication of the region 469	

chr11:110760000-112520000. We then computed the PRISMR predicted contact maps for each 470	

duplication, under no adjustable parameters, obtaining the following values of correlations r and r’, 471	

between model and experimental matrices (excluding the effect of strong outliers <5th and >95th 472	

percentile): r=0.88 and r’=0.48 in DupS; r=0.82 and r’=0.41 in DupL; r=0.82 and r’=0.47 in DupC (Fig. 473	

S4). 474	

Matrix similarity evaluation 475	

The agreement between experiment and model matrices has been quantified using Pearson’s 476	

correlation coefficient, r. We also used two additional measures: 1) the distance corrected Pearson 477	

correlation coefficient, denoted by r’, that is the Pearson’s correlation coefficient between the two 478	

matrices where we subtracted from each diagonal (corresponding to a given genomic distance) 479	

their average contact frequency; 2) the stratum-adjusted correlation coefficient, denoted by SCC, 480	

from the HiCRep48 method with a smoothing parameter h=10 and an upper bound of interaction 481	
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distance equal to 5Mb. These two measures have been used to put aside the expected decreasing 482	

trend of the pairwise contact frequency with genomic distance, which tends to dominate in the 483	

simple Pearson correlation value. 484	

Molecular Dynamics simulations  485	

 To obtain 3D conformations of the PRISMR derived SBS models, shown in Fig. 1F, Fig. 2D,E and Fig. 486	

S5C,D, we performed Molecular Dynamics (MD) simulations.  To this aim, we proceeded as 487	

described in ref 30. Briefly, the polymer chain and the binders move in the system according to the 488	

Langevin equation, integrated with the LAMMPS software64, using standard dimensionless 489	

parameters65. The SBS parameters used are the same reported in ref 30, i.e., the beads and binders 490	

interact with an interaction energy Eint=8.1KbT  and the binder concentration is high enough to 491	

allow the coil-globule transition (c=194nmol/l for the Sox9 WT and similar values for the 492	

duplications). To make MD computation times feasible for the entire chromosome 20, we 493	

considered a coarse-grained version of its SBS polymer, having a 50-fold reduced number of beads. 494	

All the conformations are taken in the equilibrium globular phase. In all the snapshots, beads 495	

coordinates have been interpolated with a smooth third-order polynomial splice curve by using the 496	

POV-RAY66 software. 497	

Characterization of the binding domains arrangement along chromosomes 498	

To study how the different binding domains (colors) span along the genome, we employed two 499	

main measures. The first one, that measures the domain size, is the genomic coverage, i.e., the 500	

fraction of beads of a given color multiplied by the length of the chromosome it belongs to. 501	

Averaging over all the sizes of the domains identified by PRIMSR across chromosomes, we find that 502	

the genomic length covered by each domain is on average 3.1 Mb, with a standard deviation of 1.9 503	

Mb, a value close to the mean-size of a TAD. To measure, instead, the range of the interactions due 504	

to a single binding domain, we defined rint as two times the standard deviation of the center of 505	

mass of that domain. The distribution of rint, P(rint), extends far beyond the size of the single 506	

domain, ranging from a few mega-bases to more than 100 Mb (Fig. S3A). To check the statistical 507	

significance of the domains identified by PRISMR, we compared P(rint) with a control model 508	

obtained by randomly bootstrapping the location of our binding sites along the genome, and we 509	

found that the two distributions are significantly different (p-value<0.001, Wilcoxon’s rank sum 510	
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test). We also found that P(rint) is asymptotically consistent with a power-law scaling, as shown in 511	

Fig. S3A where the right-hand side of the distribution is well described by a power-law fit (dotted 512	

red curve in the graph). 513	

Another way to test the significance of the binding domains identified by PRISMR is to measure 514	

their mutual overlap41, to be compared with the expected level of overlap in the random model of 515	

bootstrapped domains mentioned before. To this aim, given a pair of different domains on a 516	

chromosome, we defined their overlap q as the sum of products of binding sites occurrences of the 517	

two colors in each genomic window, normalized to have q=100% in the case of identical domains 518	

(the cartoon in Fig. S3B gives a visual impression of what q is measuring). We found that the 519	

distribution P(q) of the overlap of the binding domains predicted by PRISMR is significantly different 520	

(p-value<0.001, Wilcoxon’s rank sum test) from the one expected in the random control model (red 521	

and blue distributions in Fig. S3B, respectively). 522	

Epigenetic analysis of the binding domains 523	

To obtain insight into their molecular nature, we analyzed the PRISMR inferred binding domains in 524	

the light of epigenetics data. To this aim, we downloaded from the ENCODE database49 a set of 5 525	

key histone modifications (H3K4me3, H3K4me1, H3K36me3, H3K9me3 and H3K27me3) in the 526	

human GM12878 cell line. ChIP-Seq signals were binned at 5kb resolution by summing the signal 527	

contained within each 5kb window (using the bedtools map tool from the bedtools67 software). 528	

After that, to measure the similarity between our binding domains and the histone marks, we 529	

computed Pearson’s correlation coefficient between the number of binding sites of each domain 530	

and each histone mark profile. Next, we employed a control model to retain only statistically 531	

significant correlations. To this aim, first, we computed the Pearson correlations between 532	

chromatin mark signals and randomized binding domains signals obtained by bootstrapping their 533	

actual genomic locations; then, we retained as significant only the correlation values above the 534	

95th or below the 5th percentile of the distribution of the random correlations. We then collected 535	

data in a rectangular matrix X, whose element Xij is either the significant correlation between the i-536	

th binding domains and the j-th histone mark or zero if the correlation was not significant. Since 537	

each row of X represents a binding domain's correlation profile with the considered histone 538	

modifications, we refer to them as the epigenomic signature of the binding domain. To find binding 539	

domains with similar epigenomic signatures, we performed a hierarchical clustering analysis on X 540	
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using the Python SciPy clustering package with ‘Euclidean’ distance metric and ‘Ward’ linkage 541	

method. To assess the number of clusters in the hierarchical clustering output, we cut the 542	

dendrogram at different values (ranging from one to the number of binding domains) and 543	

evaluated the Akaike Information Criterion50 (AIC) as the number of clusters k is varied. As shown in 544	

Fig. S6A, while no sharp transitions are present, the curve has a global minimum at k=9. We 545	

therefore grouped all the different rows of X in 9 different classes according to their affinity to each 546	

cluster (Fig. S6B). Each of the 9 classes can be characterized by the epigenetic signature of its 547	

centroid, which is the average histone signature of the domains belonging to the given class (Fig. 548	

3A). To assign biologically meaningful labels to the obtained classification, we looked at the 549	

enrichment of several types of functional annotations. Precisely, we first binned each annotation 550	

track at 5kb resolution, then, for each pair of annotation mark and epigenetic class, we computed 551	

the average of the Pearson correlation values between that mark and the binding domains of that 552	

class (see Fig. S6C). The set of functional annotations in GM12878 cell line considered in this study 553	

is taken from ENCODE and include: (1) all remaining available histone modifications; (2) 554	

transcription factors binding sites; (3) DNase hypersensitive sites; (4) replication timing data from 555	

the Repli-seq assay; (5) transcription data from RNA-seq assay (Fig. S6C). 556	

To further test the association between binding domains and epigenetics, we repeated the above 557	

analysis for the mouse case. Specifically, we computed correlations among the genome-wide 558	

binding domains obtained from Hi-C data in mES cells and a corresponding set of ENCODE histone 559	

modifications in that cell line. As shown in Fig. S8A-C, we found an overall similar epigenetic 560	

classification of the binding domains in human and mouse. 561	

Characterization of epigenetic classes of binding domains 562	

The genomic coverage of a given epigenetic class has been computed as the fraction of sites of the 563	

binding domains belonging to that class (Fig. S7A). To study, instead, how the domains of a given 564	

class are distributed along the chromosomes, we counted, for each class, the number of domains 565	

falling in each chromosome (Fig. S7B, dotted lines are the average values). We found that their 566	

distribution is significantly different over the different chromosomes, as measured by the 567	

comparison with a uniform distribution obtained by randomly bootstrapping the domains of a given 568	

class over the chromosomes (p-value<0.05 for each epigenetic class, Kolmogorov-Smirnov test). We 569	

also asked whether the genomic positions of the sites of the different classes (Fig. 3B) were 570	
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correlated with each other. To figure out that, we computed the Pearson correlation between the 571	

genomic location of the sites of all the possible pairs of epigenetic classes, averaged over the 572	

different chromosomes (Fig. S7C). We found that classes with similar histone signature correlate 573	

with each other and anti-correlate with classes showing a very different histone pattern. 574	

We investigated the impact of the different epigenetic classes on genome architecture by 575	

measuring the effect on contact matrices of the withdrawal of the binding domains belonging to 576	

each class. Precisely, given the list of the binding domains of a class, we replaced their interacting 577	

binding sites with gray, non-interacting elements along each chromosome. We then computed the 578	

PRISMR contact matrices of the modified SBS polymer and measured their correlations r and r’ with 579	

Hi-C. Finally, we evaluated the variation of the correlation, Δr and Δr’, with respect to the wild-type 580	

model (r=0.94 and r’=0.76), averaged over all chromosomes. The variations of r and r’ obtained are 581	

shown as a function of the genomic coverage of each epigenetic class in Fig. S7D. 582	

Most abundant and most contributing binding domains to chromatin pairwise contacts 583	

As the different binding domains can overlap with each other, to better visualize their locations 584	

along the genome, we show in Fig. 4E (upper bar) the 1st most abundant binding domain, i.e. the 585	

one with the largest number of binding sites, per bin. Analogously, Fig. 4E (lower bar) shows the 2nd 586	

most abundant binding domain per bin. In both cases, to help the visualization, the domains are 587	

colored with their epigenetic class color. 588	

The contribution of the different binding domains in forming the interactions between bin pairs is 589	

then highlighted in Fig. 4F, where the colors of the most contributing binding domains are shown. 590	

Specifically, for a given pair-wise contact, we defined the contribution of a binding domain to that 591	

contact as the number of pairs of its binding site type between the two considered bins. The 592	

binding domain having the highest number of binding site pairs is the most contributing one and is 593	

colored with the color corresponding to its epigenetic class. 594	

Epigenetic linear segmentation model  595	

To obtain a model based exclusively on the interaction among segments with a similar epigenetic 596	

profile, we considered the dataset of five histone modifications discussed in section “Epigenetic 597	

analysis of the binding domains”. We marked each 5kb genomic window with the z-score value of 598	
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the signal of each histone mark in that window. Then, we performed a hierarchical clustering 599	

analysis to gather the genomic windows with similar histone profiles in 9 different groups, in order 600	

to match them with the 9 different types of binding domains found above. The obtained linear 601	

segmentation has been employed to define a polymer model for chr.20 with 9 different colors 602	

corresponding to the different linear epigenetic classes (Fig. 4B), where interactions can only occur 603	

between same-colored windows. Finally, we derived in-silico the contact map of such a model and 604	

compared it with the corresponding experimental matrix (Fig. 4A-C and Fig. S9A-B). We found that 605	

the Pearson correlation and distance-corrected Pearson correlation between the matrices are 606	

r=0.80 and r’=0.21. 607	

We have also considered an additional model by assigning each of the different binding sites of 608	

chr.20 the color of the epigenetic class it belongs to. We found that this 9 color SBS model, that in 609	

contrast to the linear segmentation model has overlapping binding domains, has correlations 610	

r=0.89 and r’=0.43 with Hi-C. 611	

Prediction of de novo chromatin structures from epigenetic data by combinatorial barcode 612	

The derived combinatorial code linking 3D conformation to 1D epigenetic signature can be used to 613	

predict de novo binding domains in independent chromosomes from epigenetics data only. 614	

Specifically, we used the code derived from the set of even-numbered chromosomes in GM12878 615	

to predict the location of the binding sites along the odd-numbered chromosomes in the same cell 616	

line. To this aim, we partitioned each of their 5kb windows (which is the in situ Hi-C data resolution) 617	

in ten 500-bp sub-windows and binned the signal of the five key histone marks (H3K4me3, 618	

H3K4me1, H3K36me3, H3K9me3 and H3K27me3) in those sub-windows. In this way, we obtained a 619	

state vector for each sub-window, whose components are the histone marks' abundances in that 620	

window. We checked that different sub-windows partitions, ranging from 5 to 20 sub-windows per 621	

bin, led to only marginally different results. To assign each sub-window to a specific binding site 622	

type (in the sense of the SBS model), we compared them with the centroids of the epigenetic 623	

classes of the binding domains of even-numbered chromosomes. Precisely, we computed the 624	

Pearson correlation coefficient between the state vector and each row of the centroid matrix, then 625	

assigned to that sub-window a binding site type corresponding to the epigenetic class with the 626	

highest correlation. Besides, two non-interacting ‘gray’ beads were added in each sub-window, so 627	

to match the number of beads per 5kb-bin of the PRISMR inferred polymer models. The described 628	
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procedure results in an SBS polymer with 9 different binding domains for each odd chromosome. 629	

Afterward, we used the SBS model to calculate the predicted polymers' contact matrices and 630	

compared them with the independent Hi-C data (Fig. S10). As reflected by the Pearson and distance 631	

corrected Pearson correlations, in all cases, the contact pattern is well described (see for instance 632	

chromosomes 19 and 21 in Fig. 5).  633	
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FIGURES 

 

Fig.1 The inferred binding domains explain Hi-C data across chromosomes. 

(A) Our method combines machine learning and polymer physics to infer from only Hi-C data 

the genomic location of the minimal set of binding sites required to recapitulate chromatin 

conformations genome-wide by use of the SBS polymer model of chromatin. Additionally, by 

correlations with epigenetic data, the inferred binding domains can be assigned a molecular 

barcode. (B) In situ Hi-C data42 of chromosome 20 at 5kb resolution (log-scale). (C) A scheme 

of the SBS polymer model of chromatin: it quantifies the scenario where diffusing binders 

bridge and loop distal cognate binding sites. Each colored bead is a single binding site. The 

genomic location of the binding sites encodes the 1D information whereby their cognate 

binders produce the 3D structure via polymer physics. (D) Plots displaying the position and 

abundance of the different types of binding sites (binding domains) along chromosome 20, 
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as inferred by our method. For visualization purposes, the different domains, each 

represented with a different color, are drawn in groups of 10 in different rows. Albeit 

derived from only Hi-C data, the binding domains have specific correlations each with a set 

of epigenetic marks, and the colors reflect those associations (see Fig.3). (E) The model 

inferred contact matrix of chromosome 20 has a Pearson, distance-corrected Pearson and 

stratum adjusted correlation with Hi-C respectively equal to r=0.97, r’=0.85, SCC=0.92. 

Similar results are found across chromosomes (Fig. S1). (F) A time snapshot of the 3D 

structure of the SBS model of chromosome 20. 
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Fig.2 The inferred binding domains are validated against mutations at the Sox9 locus. 

(A) Contact data43 of the wild type Sox9 locus from cHi-C experiments in E12.5 limb buds 

(top) and of the SBS model of the locus in mESC (bottom) have a correlation r=0.89 and 

r’=0.44. (B) Based on the WT model, the contact map of a mutant bearing the DupL 

duplication is predicted from only physics (bottom). It has a good correlation (r=0.82, 

r’=0.41) with independent DupL cHi-C data43 (top). Model predictions are also validated 

across the other available Sox9 mutations (Fig. S3, S4). (C) Mapping the model contacts on 

the DupL full genome clarifies the origin of the associated neo-TAD (red). The colored circles 

mark corresponding interaction regions as mapped on the WT and DupL full genomes. (D)-

(E) Snapshots of the model predicted 3D conformation of respectively the WT and DupL 

locus (the color scheme reflects the colored bars in panel A and C) with its neo-TAD. 

Different mutations result in different 3D structures and distinct enhancer-hijackings, 

explaining their phenotypes (Fig. S3, S4). 
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Fig.3 Epigenetic profiles of the inferred binding domains. 

(A) The model binding domains, inferred from Hi-C data only, correlate each with a specific 

set of epigenetic tracks. They cluster in 9 main classes genome-wide according to their 

correlations with the shown ENCODE key histone marks (Fig. S6). The epigenetic profile, i.e., 

the barcode of the centroid of each class is shown in the heat-map. The 9 classes match well 

chromatin states derived in epigenetic segmentation studies. (B) Their abundance along 

chromosomes is not uniform (p-value<0.05, Fig.7), as shown here for the binding sites of 

chromosome 20. 
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Fig.4 Chromatin architecture patterns are only partially captured by linear epigenetic 

segmentation. 

(A) In situ Hi-C data42 (scales as in Fig. 1) of a 20Mb wide region on chr20 in GM12878 and 

(B) its linear epigenetic segmentation are shown. (C) The contact map of a model based only 

on homotypic interactions between linear segmented epigenetic domains has a Pearson 

correlation r=0.78 with Hi-C data. Yet, its distance corrected correlation is much lower, 

r’=0.02, returning only a marginal improvement over a control model where each interaction 

is replaced by the average at the corresponding genomic separation. (D) The contact map of 

the inferred SBS model of the region has r=0.97 and r’=0.84 with Hi-C data. (E) The PRISMR 

inferred 1st and 2nd most abundant binding site types of the SBS model of that region are 

shown. (F) The plot of the SBS most contributing binding domain to each pairwise contact 

highlights that a combinatorial overlap of different binding site types along the sequence, 

missing in linear segmentations, is required to capture the complexity and specificity of 

interaction patterns. For example, interactions (CC) within the TAD in region C are mainly 

related to binding domains in class 7 (magenta), the most abundant one in C. A and C also 

interact mainly through class 7, the most abundant in A too. Yet, region B, where class 6 

(dark blue) is the most abundant, interacts with C mainly through class 7, its 2nd most 

abundant. Analogously, contacts between A and B originate from different overlapping 

binding domains in those regions. 
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Fig.5 The epigenetic barcode of binding domains predicts chromatin contacts. 

(A) In a reverse approach, we correlate the epigenetic profiles of binding domains from even 

chromosomes with epigenetic signals from odd chromosomes to identify the binding sites of 

the latter. Next we use the SBS polymer model to predict 3D structures and contact matrices 

of odd chromosomes to be compared against independent Hi-C data. (B) Top: in situ Hi-C 

data42 (scales as in Fig. 1) of chromosome 19 in GM12878. Bottom: the predicted contact 

matrix has a correlation, a distance-corrected correlation and a stratum adjusted correlation 

with Hi-C respectively equal to r=0.91, r’=0.47 and SCC=0.65. (C) Top: Hi-C data of 

chromosome 21. Bottom: the predicted contact matrix has correlations with Hi-C equal to 

r=0.91, r’=0.63 and SCC=0.50. 
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Fig.6 Chromatin 3D architectural information is encrypted in a combinatorial 1D 

arrangement of epigenetic barcoded sites. 

Our approach infers, from Hi-C data only, the minimal set of binding sites along the 1D 

genome sequence (left) required to produce, via polymer physics (e.g., interactions with 

diffusing cognate binding molecules), 3D structures (right) consistent with Hi-C contacts. The 

inferred binding sites are barcoded by specific epigenetic marks (vertical bars) and fall into 

epigenetic classes (bead color) well matching functional chromatin states known from linear 

segmentation studies. However, they have a genomic overlapping, combinatorial 

organization, lacking in epigenetic segmentations, necessary to explain Hi-C contacts with 

high accuracy genome-wide. Their epigenetic barcode was shown to predict de novo 

chromatin conformations, e.g., after genetic or epigenetic variations, showing that the 

inferred combinatorial 1D arrangement of binding sites carry accurate, specific 3D 

architectural information genome-wide.  
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