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In Situ Transcriptomics (IST) is a set of image-based tran-
scriptomics approaches that enables localisation of gene expres-
sion directly in tissue samples. IST techniques produce multi-
plexed image series in which fluorescent spots are either present
or absent across imaging rounds and colour channels. A spot’s
presence and absence form a type of barcoded pattern that la-
bels a particular type of mRNA. Therefore, the expression of a
gene can be determined by localising the fluorescent spots and
decode the barcode that they form. Existing IST algorithms usu-
ally do this in two separate steps: spot localisation and barcode
decoding. Although these algorithms are efficient, they are lim-
ited by strictly separating the localisation and decoding steps.
This limitation becomes apparent in regions with low signal-to-
noise ratio or high spot densities. We argue that an improved
gene expression decoding can be obtained by combining these
two steps into a single algorithm. This allows for an efficient
decoding that is less sensitive to noise and optical crowding.

We present IST Decoding by Deconvolution (ISTDECO), a
principled decoding approach combining spectral and spatial
deconvolution into a single algorithm. We evaluate ISTDECO
on simulated data, as well as on two real IST datasets, and com-
pare with state-of-the-art. ISTDECO achieves state-of-the-art
performance despite high spot densities and low signal-to-noise
ratios. It is easily implemented and runs efficiently using a GPU.

ISTDECO implementation, datasets and demos are avail-
able online at: github.com/axanderssonuu/istdeco

Correspondence: axel.andersson@it.uu.se

1 Introduction

Identification of cell types in a tissue provides invaluable in-
formation on biological processes such as development and
disease progression. Cells can be identified based on tran-
scriptomics, i.e., their gene expression. Single-cell RNA se-
quencing techniques (Svensson et al., 2018; Grün and van
Oudenaarden, 2015) make it possible to identify cell types
and monitor the heterogeneity of complex tissues. To un-
derstand the functional architecture of a tissue it is essential
to reconstruct the spatial organisation of its constituent cell
types. Therefore, single cell sequencing analyses are often
complemented with imaging-based methods for in situ spa-
tial transcriptomics, or IST (Ke et al., 2013; Shah et al., 2016;
Wang et al., 2018; Moffitt et al., 2016; Codeluppi et al., 2018;
Eng et al., 2019). These methods enable mapping of gene
expression in the form of mRNA molecules directly in tissue
samples. This in turn enables identification of specific cell

type location, so that the functional roles of cells inside the
tissue architecture can be explored. Typically, IST techniques
produce large image series where small but bright spots are
present and absent in different colour channels and imaging
rounds, see Figure 1a. The spots themselves originate from
fluorophores that have bound to different parts of the mRNA
sequences. The fluorophores start to fluoresce when irradi-
ated with light of a particular wavelength, making it possible
to image the molecules. Due to diffraction and aberration
in the microscope, the imaged fluorophores are blurred by a
point spread function that is often approximated by a Gaus-
sian. The combination of absent and present spots across
rounds and channels, at a particular location, forms an on-off
intensity pattern, i.e., a type of barcode. IST experiments are
usually designed such that different types of barcoded pat-
terns are observed for different types of mRNA molecules.
The location and mRNA type can therefore be determined
by localising the Gaussian shaped spots and decode the bar-
coded intensity pattern across the rounds and channels. This
is usually performed automatically using different types of
image analysis pipelines.

1.1 Related Work
Ke et al. (2013) introduced one of the first image analysis
pipelines for IST experiments. Here, spots are first located
and segmented in a reference image. This reference image
is obtained by using an anchor sequence that simultaneously
labels all targeted mRNA. A spot’s location is then defined
as the centre of the segment. The mRNA type is decoded by
matching the observed barcode with a list of targeted barcode
types — each type corresponding to an mRNA type. This list
is often referred to as a codebook. Another algorithm was
presented by Chen et al. (2015). Here, signal spots are first
localised in individual channels using a Gaussian-fitting al-
gorithm (Babcock et al., 2012). This allows partially over-
lapping spots to be localised. The localised spots are con-
nected across different rounds based on spatial proximity to
create a barcode that is decoded using the codebook. To pro-
cess higher volumes of data, the pipeline was later modified
by Moffitt et al. (2016). In this pipeline individual pixels are
first labelled with a barcode type from the codebook. Adja-
cent pixels with the same label are called as the same RNA.

The problem of optical crowding was also addressed
by Codeluppi et al. (2018) who proposed a non-barcoded ap-
proach. Here, individual spots are enhanced using Laplacian
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of Gaussian (LoG) filters and detected as local maxima above
an automatically calculated threshold. The LoG filters were
also used by Wang et al. (2018) to localise the fluorescent
spots. The most dominant colour in each sequencing round
is used to create a barcode that is decoded using a codebook.
An initiative was made in 2017 to unify the image analysis
techniques of the different IST decoding methods into a sin-
gle framework. The result is an open source Python based
library named Starfish (Perkel, 2019; Shannon et al., 2018).
Today, Starfish provides decoding pipelines for IST methods
such as (Ke et al., 2013; Moffitt et al., 2016; Codeluppi et al.,
2018; Wang et al., 2018). The decoding pipelines are in-
spired by the pipelines from the original publications but are
adapted into the Starfish framework.

The most closely related method — developed com-
pletely independently from ours — is BarDensr (Chen et al.,
2020), which relies on a nonnegative matrix regression for
unmixing and deconvolving multiplexed image data. Bar-
Densr also models physical properties such as signal gain,
phasing, and spectral overlap, and builds on optimising a
sparsity regularised least squares problem.

1.2 Our contribution

Summarising existing IST techniques, we notice that meth-
ods either first locate spots and then decode the barcode (Ke
et al., 2013; Chen et al., 2015; Wang et al., 2018), or first
decode the barcode and then determine the location of the
spots (Moffitt et al., 2016). We also note that recent IST tech-
niques allow for larger gene panels as well as increased mea-
surement throughput (Moffitt et al., 2016), but are limited by
optical crowding (Chen et al., 2015; Codeluppi et al., 2018).
Although existing algorithms are efficient, they are funda-
mentally limited by strictly separating the localisation and
decoding steps. This limitation becomes especially apparent
in regions with low signal-to-noise ratio or high spot densi-
ties. We argue that an improved spot localisation and barcode
decoding can be obtained by simultaneously solving the two
problems. We summarise our contribution as follows:

• We propose a tool named In Situ Transcriptomics De-
coding by Deconvolution (ISTDECO) which simul-
taneously deconvolves the barcode type and location
from multiplexed IST images. The result is a set of
non-multiplexed images where individual sparse spots
directly indicate the location of a particular type of
mRNA. This dramatically simplifies the gene expres-
sion quantification.

• We show that deconvolution-based approaches main-
tain high precision and recall despite low signal-to-
noise ratios and high spot densities, achieving state-
of-the-art performance.

• By evaluating ISTDECO on data from two real IST
experiments, we conclude that barcodes detected with
ISTDECO are highly correlated with barcodes de-
tected with two state-of-the-art algorithms.

• We make the tool freely available at
github.com/axanderssonuu/istdeco.

2 Methods

2.1 Notation & Intuition

To describe ISTDECO we start by introducing a few matri-
ces. We let our image data be denoted by Y ∈Rrc×n

d

+ , where
r is the number of staining rounds, c is the number of colour
channels, n is the image width, and d is the number of spatial
dimensions. Next, we model the spatial shape of the signal
spots using a Gaussian kernel parameterised by the standard
deviation σpsf . To conveniently be able to use vectorised no-
tation, we represent convolution with this kernel in terms of
a matrix G ∈ Rn

d×nd

+ . The spots are also present and absent
across different rounds and channels, hence forming different
types of barcoded patterns. The different types of barcoded
patterns are collected in a codebook D ∈ R+

rc×m, where m
is the number of different barcode types. With these matrices
we stipulate the observation model

Y =DXG+ b+ ξ, (1)

where b ∈ Rrc×n
d

+ corresponds to background and ξ repre-

sents noise. The matrix X ∈ Rm×n
d

+ contains coefficients
that indicate which barcode type are present at each spatial
location. That is, X can be interpreted as a reshaped image
with m different channels, each channel corresponding to a
particular barcode type. The channels show small point-like
spots that indicate the location of the different barcode types.
Determining the matrix X therefore dramatically simplifies
the localisation and decoding of the gene expression as an in-
dividual spot in X would directly indicate the location and
barcode type. This is exemplified in Figure 1b. As Y , D
and G are known, and b can be estimated using standard im-
age processing, a naive approach is to directly solve X from
Eq. 1. Unfortunately, the equation is ill-conditioned. How-
ever, we can exploit the prior knowledge that X should be
nonnegative. Hence an alternative approach is to instead es-
timate a nonnegative X using constrained optimisation. In
practice this means finding the minimiser of a function that
measures the difference between Y and DXG subjected to
constraints on nonnegativity. Next, we derive this function
using maximum likelihood estimation (MLE).

2.2 The Objective Function

To derive our objective function, we start by assuming a set-
ting with Poisson distributed noise. We claim that this is an
adequate assumption as the pixels in the camera effectively
count the number of photons emitted from the fluorophores.
The photon count usually follows a Poisson statistic. Math-
ematically, we assume Poisson distributed noise with mean
DXG+ b. The MLE of such a distribution is obtained by
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Fig. 1. (A) Example of image data from an IST experiment with r sequencing rounds and c colour channels. Fluorescent spots are spread out across the tissue and are
present and absent across imaging rounds and colour channels. Zooming in reveals the Gaussian shape of the signal spots. (B) Given observations Y , the idea of ISTDECO
is to find anX such that Y =DXG+b+ξ, whereD is a known codebook with targeted barcode types,G is a known blurring kernel that models the point-spread-function,
and b is known background. The variable X, referred to as the decoded images, tells which barcode type is present at what location.

maximising

p(Y |DXG+b) =
rc,nd∏
i=1,j=1

[
(DXG+b)Y �e−(DXG+b)÷Y !

]
ij

(2)
with respect to X . The symbol � denotes the Hadamard
product and the divisions, exponents, factorials, and expo-
nentials are elementwise. In practice, maximising Eq. 2 is
numerically inconvenient, and it is better to minimise the
negative logarithm of the likelihood. Dropping all terms in-
dependent of X , we have to solve

argmin
X≥0

rc,nd∑
i=1,j=1

[
DXG−Y� log(DXG+ b)

]
i,j

. (3)

2.3 Minimising the objective function
To find a nonnegative X we follow Lee and Seung (2001)
and derive the following update rule:

X(t+1) =X(t)�

[
D>

(
Y

DX(t)G+ b

)
G>

]
÷

[
D>1G>

]
(4)

where 1 is an rc× nd matrix with ones. This update is
commonly used in nonnegative matrix factorisation algo-

rithms (Lee and Seung, 2001) as well as in Richardson-Lucy
deconvolution (Bertero et al., 2009). It possesses a few im-
plicit biases. Firstly, consecutive updates converge to the
MLE. Secondly, if all matrices are initialised as nonnegative
then X will remain nonnegative over the updates. Thirdly, if
X(t+1) is obtained from Eq. 4, and if b= 0, then

‖DXG‖1 = ‖Y ‖1. (5)

Such a constraint is known to induce sparsity (Bertero et al.,
2009) and may seem intuitive in the sense that "no fluorescent
signal is thrown away".

2.4 Simultaneous localisation and barcode de-
coding

Deconvolving the image data through iterations of Eq. 4 en-
ables the simultaneous localisation and decoding. This is
done by performing a spatial non-maxima suppression in
each of the channels in X and picking signal spots with in-
tensities above a threshold τs. Furthermore, we occasionally
observed barcoded intensity patterns that were not present in
the codebook (possible a result of uneven washing between
sequencing rounds or cross-reactivity of probes). In those
situations, a combination of coefficients in X were used to
explain the observed pattern, resulting in false-positive de-
tections. To filter these detections, we introduced a barcode
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quality feature which compares explained with observed sig-
nal:

Qi,j = (XG′)i,j
(D>Ȳ G′>)i,j

(6)

where Ȳi,j = min(Y −b,0)i,j and the multiplication with G′

corresponds to blurring with a constant filter with width equal
to 2d3σpsfe+ 1. The set of decoded barcodes is thus

B = {(i, j) | τs ≤X ′i,j , τq ≤Qi,j}, (7)

where i indicates the barcode type, j the barcode location,
X ′ is the non-max suppressed X , and τq is a threshold for
the quality feature. The parameters τs and τq must be tuned
empirically. For this matter we found it practical to include
a set of nontargeted barcodes in the codebook. The number
of nontargeted barcodes detected can help us assess the false
discovery rate (FDR), and help us tune the thresholds. We
define this FDR as:

FDR = #non-targeted barcode detected

#barcode detected

/
#non-targeted barcode types in codebook

#barcode types in codebook
. (8)

The FDR is 1 when the method randomly assigns barcode
types from the codebook and 0 when no nontargeted bar-
codes are detected. In practise, we found it convenient to
initially set thresholds to be very inclusive, and during post-
processing tune the thresholds such that a desired FDR is ob-
tained.

3 Experiments on Synthetic Data
We first evaluate the proposed decoding method on synthetic
data.

3.1 Generating synthetic data
We consider an experiment with c = 4 channels and r = 5
sequencing rounds, and a codebook of m = 100 barcode
types. We sample spot locations from a continuous uniform
distribution but avoid locations along image edges. Spot
intensities are also sampled from the uniform distribution
U(3

4Ispot,
5
4Ispot). In our experiments we test the decoding on

different values for Ispot and on images with different num-
bers of barcodes. We also add noise to our image: Noise sam-
pled from a Poisson distribution with λnoise = 2 to emulate the
stochastic nature of photons interacting with the pixel sen-
sors, and noise from a normal distribution (µrn = 0, σrn = 1

2 ),
to emulate the noise induced by converting electrons into a
digital signal. The shape of the spots are approximated by
Gaussians with σspot = 1.2. Figure 2 shows four synthetic
images with different numbers of RNA and different signal
intensities.

3.2 Starfish Decoders
We compare our proposed method with four decoders avail-
able in the Starfish library as well as with BarDensr (Chen
et al., 2020).
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Fig. 2. Synthetic images with markers for ground truth (GT) at different signal densi-
ties and signal intensities. The images are maximum projected over one sequencing
round.

BarDensr (BarDensr) - BarDensr solves the barcode
matching and localisation problem jointly by optimising a
sparsity regularised least squares objective function.

PixelSpotDecoder (PSD) - A Starfish adaptation of the
decoding pipeline presented by Moffitt et al. (2016). Individ-
ual pixels are decoded into targeted barcodes by comparing
the intensity distribution across rounds and channels with a
pre-defined codebook. Connected pixels that are mapped to
the same barcode are called as the same mRNA.

TrackPyDecoder (TPD) - Spots are detected using the
Crocker-Grier algorithm (Allan et al., 2014; Crocker and
Grier, 1996) from a reference image showing all signal spots.
The barcode is determined by taking the maximum across
channels in each round at the signal location.

LocalMaxPeakFinder (LMPF) - Spots are located as local
maxima whose absolute intensities exceed an automatically
calculated threshold. The barcode is determined similarly to
TPD.

BlobDetector (BD) - Spots are detected using multiple
Laplacian of Gaussians. Detected spots are connected across
rounds and channels, forming a trace which is mapped to a
particular barcode. The barcode is determined similarly to
TPD.

We also introduced a background removal hyperparame-
ter. For the Starfish decoders, the synthetic images were pre-
processed by subtracting this parameter and clipping nega-
tive values to zero. For ISTDECO and BarDensr, this pa-
rameter was used in the observation model, i.e., as the back-
ground offset b. Hyperparameters for the respective decoders
were tuned using hyperparameter optimisation package Hy-
perOpt (Bergstra et al., 2013).

3.3 Evaluation

We evaluate the performance of our proposed method on im-
ages with different signal-to-noise ratios (SNR) and on im-
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Fig. 3. F1 score computed on image series with different number of spots, nspot,
and different spot intensities, Ispot. The dots have been jittered horizontally to avoid
overplotting.

ages with different numbers of spots. The different hyperpa-
rameters for each method were tuned tuned on a set of five
synthetic images and then tested on 30 images. Each method
was tuned and tested on the same set of images. The tuning
and testing process was repeated for images with different
Ispot as well as images of different numbers of mRNAs. We
use the F-measure, (F1), to evaluate the decoding. A true-
positive (TP) is defined as a correctly decoded barcode with
distance less than 3 [px] away from a ground truth barcode.
A false-positive (FP) is either a wrongly decoded barcode, or
a barcode that is more than 3 [px] away from a ground truth
barcode. Furthermore, a false-negative (FN) is defined as a
ground truth barcode that does not have a correct decoded
barcode within 3 [px]. Detected barcodes were paired with
ground truth barcodes using the Hungarian algorithm with an
assignment reward for true-positive detections.

3.4 Results

Figure 3 shows the F1 measure for the respective methods
computed on images with different SNR and images with dif-
ferent numbers of spots. Precision and recall of the different
approaches are available in the supplementary information.

As ISTDECO is implemented solely using vectorised op-
erations it can run very efficiently on a GPU. In Figure 4
we compare the F1 score of ISTDECO and BarDensr versus
wall-clock time. The experiment was carried out on simu-
lated 2D images with r= 5, c= 4, n= 256, m= 75, σspot ∼
U(1.0,1.4). We consider two different signal-to-noise ra-
tios; high SNR (Ispot = 45), and low SNR (Ispot = 4), as
well as two different spot densities; sparse (nspot = 103) and
dense (nspot = 104). Hyperparameters were tuned using grid
search. Details on parameter tuning are available in the sup-
plementary information.
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Fig. 4. Both ISTDECO and BarDensr decode the gene expression by iteratively
optimising an objective function. Consequentially, there is a relationship between
the quality of the decoded barcodes and the duration of the optimisation. Here we
show the F1 score versus wall-clock time for the two respective methods on images
with different signal-to-noise ratios and spot densities. Both are executed on a GPU.

4 Experiments on Real Data
We also consider data from two real IST experiments, and
compare ISTDECO with the authors’ original decoding
pipelines.

4.1 MERFISH Dataset
We first consider a MERFISH dataset, publicly available
in Starfish (Shannon et al., 2018), with barcodes localised
and decoded using the authors’ original pipeline (Moffitt
et al., 2016). We will refer to these detected barcodes as
the MERFISH reference barcodes. The image data con-
sists of a 2048× 2048 [px] field of view with 8 imaging
rounds and 2 channels. The codebook comprises 130 differ-
ent barcode types corresponding to different mRNA species.
The codebook also contains 10 different non-targeted bar-
code types that are used for false-discovery diagnostics. To
make the comparison as fair as possible, we utilise the same
pre-processing and post-processing strategy as Moffitt et al.
(2016): First, we pre-process the images using a Gaussian
high-pass filter with standard deviation set to 2 [px], and
normalise the colour channels using provided scale factors.
Thereafter, we follow Moffitt et al. (2016) and filter the ref-
erence barcodes whose contiguous area was less than 4 [px].
Each of the reference barcodes also have a total magnitude
attribute. This attribute reflects the brightness of an observed
barcode. We use this attribute in a final post-processing step
to filter barcodes such that a pre-selected FDR is obtained.

4.2 In Situ Sequencing Dataset
The second dataset that we consider is from an In Situ Se-
quencing (ISS) experiment (Qian et al., 2020). The dataset is
publicly available from Andersson et al. (2021) and consists
of a 9216× 4098 [px] large field of view, with 5 rounds and
4 channels, and a codebook consisting of 170 barcodes. Here
we have added 9 additional non-targeted barcodes to the au-
thors’ original codebook to allow for false discovery diagnos-
tics. The images are pre-processed with a top-hat filter and
registered similar to Qian et al. (2020). Finally, we generated
a set of ISS reference barcodes using the pipeline by Qian
et al. (2020). The barcodes were post-processed similarly
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to Qian et al. (2020), i.e., by discarding detected barcodes
whose cosine angle to the best matching barcode type in the
codebook falls below a threshold. We set this threshold such
that a pre-selected FDR is obtained.

4.3 Running ISTDECO

We run ISTDECO on the MERFISH image data, as well
as the ISS image data for 50 iterations to generate X . A
Gaussian-shaped point-spread-function with σpsf = 1.0 and
σpsf = 1.75 was used on the respective MERFISH and ISS
datasets. We used the provided codebooks to define the
codebook matrices. On the ISS images, the cross-talk com-
pensated codebook was used to define D. The barcodes in
X were located after non-max suppressing with a radius of
1.5 [px]. Barcodes with an intensity less than the 99th per-
centile of the image data were discarded.

4.4 Results

After running ISTDECO on the MERFISH and ISS dataset,
we compared detected barcodes with those in the reference
datasets. Here there are three questions that we want to in-
vestigate. Firstly, how many nontargeted barcodes do we de-
tect? Secondly, are the barcodes detected by ISTDECO of
the same type as the reference barcodes? Thirdly, are the
barcodes detected by ISTDECO located in proximity to the
barcodes in the reference data?

We started by investigating the first question. By filtering
the barcodes based on the quality score we can obtain differ-
ent FDR. Figure 5a shows the number of targeted barcodes
and number of nontargeted barcodes detected versus differ-
ent thresholds on the barcode quality score. Furthermore,
Figure 5b shows the number of targeted barcodes detected
versus FDR rate. Similarly, Figure 5c shows the number of
targeted barcodes versus number of nontargeted barcodes de-
tected. If the detected barcodes are filtered such that a very
low FDR is obtained, ISTDECO finds roughly the same num-
ber of targeted barcodes as the reference methods. However,
if we allow slightly higher FDR, then ISTDECO tends to find
more targeted barcodes than the reference.

Next, we investigated whether ISTDECO’s detected bar-
codes are of the same type as the barcodes in the reference
datasets. We started by considering three different FDR. For
the MERFISH dataset we chose the FDRs 2e-3, 1e-2, 3e-2.
Likewise, for the ISS dataset, we chose the FDRs 1e-4, 1e-
3 and 5e-3. For a particular FDR, we compared the number
of barcodes of each specific type detected by ISTDECO with
the number of barcodes of the same types detected by the ref-
erence methods, see Figure 5d. Here we see a correlation in
the number of barcodes detected, indicating that ISTDECO
detects barcodes of a similar type as the reference methods.
We use the Pearson correlation coefficient, r, to quantify this
correlation. For both datasets r was approximately around
0.98 for the three considered FDR.

Finally, we wanted to see if the barcodes detected by IST-
DECO are spatially close to the reference barcodes. For the

MERFISH experiments, we considered two FDRs: A strict
rate of 2e-3 and a more inclusive rate of 3e-2. We then com-
puted the spatial distances from each barcode detected by
ISTDECO, filtered to obtain the strict FDR, to the nearest
barcode of the same type among the MERFISH barcodes,
filtered to obtain the inclusive FDR. We found that roughly
80 % of the barcodes detected by ISTDECO were within
3 [px] to a MERFISH reference barcode. We did the opposite
as well, i.e., computed the nearest neighbour distance from
MERFISH barcodes to ISTDECO barcodes. Figure 6 shows
the percentage of detected barcodes that have a nearest neigh-
bour distance less than d [px] to a similar barcode, detected
using a different method. Here we see that most of the bar-
codes in the MERFISH and ISS reference data are spatially
close to a barcode detected by ISTDECO. However, as the
nearest neighbour distance is lower from ISTDECO to one of
the reference methods, than from a reference method to IST-
DECO, we hypothesize that ISTDECO detects barcodes that
are not found by the reference method. Visual assessment of
these barcodes indicate that they may be true signals that are
missed by the reference method. We refer to supplementary
information for figures of barcodes that are only detected by
ISTDECO, as well as barcodes not detected by ISTDECO.

5 Discussion & Conclusion
Here we have proposed ISTDECO — a deconvolution tool
for localising and decoding barcodes in in situ spatial tran-
scriptomic images. The tool builds on maximising the likeli-
hood of a Poisson statistics using multiplicative updates. The
update in Eq. 4 solely consists of vectorised operations and
can therefore efficiently be computed with a GPU. For that
matter, we chose to implement ISTDECO using the deep
learning framework PyTorch. With an 8GB laptop GPU
we managed to process a 2048× 2048 field of view with 8
rounds, 2 channels and 140 barcodes in less than 30 sec-
onds. Even larger speedup can be obtained by adopting
down-sampling strategies similar to Chen et al. (2020).

The algorithm is relatively simple and can be imple-
mented in just a few lines of code. Despite its simplicity, the
method performs well on synthetic data, also at high signal
densities, outperforming heuristic algorithms, and compara-
ble to similar algorithms such as BarDensr.

It should also be noted that ISTDECO requires the spots
to be adequately aligned across the rounds and channels. This
can be achieved by registering the image data. We found a
point-cloud based registration like Qian et al. (2020) to be
very effective.

In terms of the experiment on MERFISH image data, we
found a strong correlation in how frequent the different types
of barcodes were detected. We also found that most of the
ISTDECO detected barcodes are in proximity of similar bar-
codes detected by the reference algorithm. This indicates
an agreement between the MERFISH reference method and
ISTDECO. We also noted a strong correlation between IST-
DECO and the ISS reference method. Occasionally, on the
ISS images, fluorescence was not ideally washed away be-
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tween sequencing rounds, resulting in situations where fitting
a barcode became very ambiguous — even for hand-curated
methods.

In conclusion, we believe that ISTDECO is a simple yet
effective tool for molecular detection in multiple xed images.
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Supplementary Information

Hyperparameter Tuning
For the speed test in Section 3.4, the parameters of ISTDECO and BarDensr were tuned using grid search. For ISTDECO this
involved tuning the standard deviation σpsf as well as the background b. For BarDensr we chose to only fit the rolony matrix
(using the dense learner) as this would decrease the computational time during testing. The other parameters tuned were the
blur level of the heat kernel, the baseline b, and the parameter controlling the regularisation. For both methods, the signal spots
were located through non-maxima suppression using a radius of 1 [px]. The F1 score was computed after different number of
optimisation iterations by searching for the intensity threshold that gave the highest F1. This search was not included in the
timing. This text is supplementary to Section 3.4 in the main text.

Supplementary Figures
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Fig. 8. Comparison between barcodes detected by ISTDECO and barcodes in the MERFISH reference data. Detections are thresholded such that an FDR of 0.01 is
obtained. Each image is centred around a barcode that is detected by ISTDECO but is not found within a radius of 3 [px] in the reference data.
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Fig. 9. Comparison between barcodes detected by ISTDECO and barcodes in the ISS reference data. Detections are thresholded such that an FDR of 5e-3 is obtained.
Each image is centred around a barcode that is detected by ISTDECO but is not found within a radius of 3 [px] in the reference data. The first channel is an anchor channel
showing all bases.
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