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Abstract

Motivation: Tumour heterogeneity is being increasingly recognised as an important characteristic of
cancer and as a determinant of prognosis and treatment outcome. Emerging spatial transcriptomics data
hold the potential to further our understanding of tumour heterogeneity and its implications. However,
existing statistical tools are not sufficiently powerful to capture heterogeneity in the complex setting of
spatial molecular biology.
Results: We provide a statistical solution, the HeTerogeneity Average index (HTA), specifically designed to
handle the multivariate nature of spatial transcriptomics. We prove that HTA has an approximately normal
distribution, therefore lending itself to efficient statistical assessment and inference. We first demonstrate
that HTA accurately reflects the level of heterogeneity in simulated data. We then use HTA to analyse
heterogeneity in two cancer spatial transcriptomics datasets: spatial RNA sequencing by 10x Genomics
and spatial transcriptomics inferred from H&E. Finally, we demonstrate that HTA also applies to 3D spatial
data using brain MRI. In spatial RNA sequencing we use a known combination of molecular traits to assert
that HTA aligns with the expected outcome for this combination. We also show that HTA captures immune-
cell infiltration at multiple resolutions. In digital pathology we show how HTA can be used in survival analysis
and demonstrate that high levels of heterogeneity may be linked to poor survival. In brain MRI we show
that HTA differentiates between normal ageing, Alzheimer’s disease and two tumours. HTA also extends
beyond molecular biology and medical imaging, and can be applied to many domains, including GIS.
Availability: <attached; publicly available upon acceptance>.
Contact: levyalona@gmail.com zohar.yakhini@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
This study provides a novel solution for characterising and statistically
assessing spatial heterogeneity. Recently, there has been growing evidence
that phenotypical and clonal heterogeneity may play a crucial role
in tumour biology and in affecting cancer progression and treatment
outcome [12, 2]. Cancer cells differ in molecular characteristics such
as mutations, gene expression and copy number aberrations. These
differences, which define the concept of clonality in tumours, are a
potentially detrimental hallmark of cancer. In particular, tumour sub-
populations may possess a unique combination of molecular traits that
enables them to evade treatment [6]. The heterogeneous environment
arising from such sub-populations has been mainly investigated through

bulk measurements. However, bulk measurements lack the spatial
dimension, which may harbour potentially critical information. For
example, the evolutionary dynamics of cancer may result in tumour
subclones residing in distinct microhabitats that support the development
of therapy-resistant populations [7]. In glioblastoma, differences in copy
number alterations and somatic mutations were observed when assessing
different tumour microenvironments: EGFR-amplified cancer cells were
mainly found in poorly vascularised regions, whereas PDGFRA-amplified
cancer cells were observed in close proximity to endothelial cells [11].
The spatial distribution of immune-cells among tumour cells has a long-
standing role in diagnosis [8], and was proven useful in predicting
prognosis and treatment response in multiple cancer types and molecular
settings [21, 15]. Recent advances in spatial transcriptomics, including
technology developed for direct measurement (e.g., Visium spatial RNA-
sequencing (RNA-seq) by 10x Genomics [1]), as well as approaches for
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inferring such information from digital pathology images [5, 10] , have
accentuated the interest in analysing molecular heterogeneity from a spatial
perspective [3, 10, 14] , with some studies already indicating its potential
clinical utility [14, 10].

To support such analyses, we have developed a statistical tool that
measures the level of spatial heterogeneity – the HeTerogeneity Average
index (HTA). We demonstrate its use using synthetic data, two spatial
transcriptomics datasets and four brain MRI scans. We also demonstrate
its applicability to other domains.

Several methods have been recently adopted from other fields, mainly
ecology, to assist in the quantitative analysis of the spatial heterogeneity of
molecular measurements [20]. However, such methods, originating from
other fields, do not easily extend to complex biological environments.
First, they were mostly designed for univariate and bivariate analyses.
For example, Morisita-Horn [17] is a measure of overlap between two
types of elements, such as two species. It has been used in [13] to
measure the colocalisation of immune and cancer cells in breast cancer;
Moran’s I, and the more recent q-statistic [19], both originating in ecology,
measure the spatial auto-correlation and spatial stratified heterogeneity
(respectively) of a single attribute with respect to neighbouring locations
in space. Another method, Ripley’s K [18], determines whether a single
attribute is dispersed, clustered, or randomly distributed in the target spatial
environment. Since we are interested in analysing complex biological
environments, with many molecular traits, univariate and bivariate
methods fall short of providing an adequate solution (as demonstrated
in Section 4). Moreover, these methods may also be difficult to interpret or
complex to use (e.g., including edge-correction and radius parameters as
in Ripley’s K). Importantly, little is known about the distribution of the null
hypothesis for the vast majority of these methods. For Morisita-Horn and
Ripley’s K, for example, p-values are empirically estimated using Monte-
Carlo simulations, which are computationally expensive and less accurate
compared to methods based on a known null distribution.

The method we propose in this paper, HTA, which is based
on Shannon’s entropy, addresses these shortcomings. First, HTA is
multivariate, allowing it to capture a richer representation of heterogeneity,
even in the bivariate case (see Section 4, Figure 10); second, it lends itself to
easier interpretation since it is based on the notion of entropy; and third, for
a fixed set of traits, it requires only a single input parameter. Importantly,
the HTA distribution, under a null model, can be well characterised and it
thus facilitates efficient statistical assessment and inference.

2 Methods
In this section we introduce HTA - the HeTerogeneity Average index.
We first (Section 2.1) define an index called HTI (HeTerogeneity Index
– a variation of Shannon’s entropy) which we will use to measure
heterogeneity at a local level. The HTA index (Section 2.2), representing
heterogeneity at the whole sample level, will be based on averaging local
HTIs. Finally (Section 2.3), we prove that HTA has an approximately
normal distribution.

2.1 HTI

We first define a heterogeneity index, HTI [10], on which HTA is based.
HTI is a variation of Shannon’s entropy. Formally:

HTI = −
C∑
c=1

pc logC(pc)

where C is the number of non-empty trait combinations that may be
observed in the analysed sample, which typically equals 2|traits| − 1 (the
number of subsets excluding the empty set); and pc is the proportion of

spatial positions for which exactly all traits in combination c manifest.
A spatial position, for instance, could be a barcoded spot in spatial
transcriptomics data or a tile derived from a pathology whole-slide image
as in [5, 10].

For example, for two traits, e.g. FOXA1 and MKI67, whose gene
expression levels were spatially resolved to a whole slide image from
a breast cancer sample, we have C = 3 for 3 possible non-empty
trait combinations: FOXA1 (only), MKI67 (only) and Both. If the
tissue is homogeneous with nearly all of its sections falling into one
of these three options (say Both), then p(Both) ∼= 1, p(FOXA1) ∼=
0, p(MKI67) ∼= 0, and HTI is 0. If, however the tissue is heterogeneous
with 1/3 of the tiles falling into each option then: p(Both) =

1/3, p(FOXA1) = 1/3, p(MKI67) = 1/3 and HTI is 1. The
logarithm base C guarantees that HTI falls within [0, 1]. In this case, a
high HTI indicates there may be two or more phenotypically different cell
types, whereas a low HTI would reflect single phenotypical dominance.

While HTI was shown to capture heterogeneity at a global level [10],
it is agnostic to the within-tissue distribution of the trait combinations.
For example, the sample in Figure 2 (left), and the sample in Figure 2
(right) have different spatial distributions of the same elements, but HTI
is 1 in both cases. This is expected since HTI is a global measure of
heterogeneity. However, there is clearly a difference in heterogeneity at
the local level, which may have important clinical implications. Our HTA
index, described below, which uses HTI at the local level, is designed to
capture this difference. Indeed, as noted in Figure 2, the corresponding
HTA scores are 0 (homogeneous) on the left and 1 (heterogeneous) on the
right.

2.2 HTA

2.2.1 HTA definition
HTA, HeTerogeneity Average index, is essentially a weighted average of
HTIs across a defined set of spatial regions of a sample (Figure 1 depicts
such regions). To formally describe HTA, we first define what regions of
a matrix are, and then use these to define HTA.

Consider a matrix M , where each entry corresponds to a spatial
location in the sample (e.g. a barcoded spot from spatial RNA-seq data
or a single tile from a pathology image [10]) and indicates which of theC
trait combinations is present therein (or ’None’ otherwise). We will call
such a matrix a trait-combination matrix.
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HTA: 0.98 (p-val: 0.66) 
Shape: (32,32), region size: (8,8) 

HTA: 0.99 (p-val: 0.8) 
Shape: (32,32), region size: (16,16) 

HTA: 0.62 (p-val: 0.4) 
Shape: (32,32), region size: (2,2) HTA: 0.63 (p-val: 0.81), region size: 2 HTA: 0.98 (p-val: 0.5), region size: 8 HTA: 1 (p-val: 0.33), region size: 16

Fig. 1. HTA applied to synthetic random data of shape (32, 32) across three different region sizes (2,8,16 left-to-right). The data (dot location and color) is held constant across all three.
p-values demonstrate heterogeneity sinceH0 is not rejected (HTA p-value> 0.3) for all region sizes.

HTA: 0.98 (p-val: 0.66) 
Shape: (32,32), region size: (8,8) 

HTA: 0.99 (p-val: 0.8) 
Shape: (32,32), region size: (16,16) 

HTA: 0.62 (p-val: 0.4) 
Shape: (32,32), region size: (2,2) HTA:  0  (p-val:  ~0) HTA:  0.98  (p-val:  0.5) HTA:  1  (p-val:  ~1)

Fig. 2. HTA applied to synthetic data across three different distributions (homogeneous, random heterogeneous, deterministic heterogeneous from left-to-right). Region size and trait
proportions are held constant (8 and 0.5 resp.). HTA p-values: (left) significant homogeneity (p ∼= 0); (middle) not significant (p = 0.23); (right) significant heterogeneity (1-p ∼= 0).

BHTA: 0.56 (p-val: 0.26),  region size 5 HTA: 0.43 (p-val:! ),  region size 5< 10−20 HTA: 0.57 (p-val:! ),  region size 15< 10−14 HTA: 0.6 (p-val:! ),  region size 30< 10−10A

B C DHTA: 0.53 (p-val: 0.56),  region size 5 HTA: 0.6 (p-val:! ),  region size 15< 10−11E HTA: 0.44 (p-val:! ),  region size 5< 10−16 HTA: 0.64 (p-val:! ),  region size 30< 10−8

B

F

C

G

D

H

ESR1 GATA3 FOXA1 
GATA3 FOXA1 
ESR1 GATA3

Fig. 3. Heterogeneity maps and corresponding HTAs for: (B-D) two traits: ESR1 and GATA3; (F-H) three traits: ESR1, GATA3 and FOXA1. Each color represents the manifestation of
a different trait combination. In B-D, red means that ESR1 and GATA3 are highly expressed (above their respective medians), green – only GATA3 is highly expressed and orange – only
ESR1 is highly expressed. In F-H, due to the large number of trait-combinations, we note here the most common trait combinations and provide the full legend in Supplementary S4: grey –
all three traits are highly expressed, pink – GATA3 and FOXA1 are highly expressed, red – ESR1 and GATA3 are highly expressed. HTA is significantly homogeneous at all region sizes
(5, 15 and 30) in both settings (HTA p-values < 10−8). This aligns with the expected outcome for this cancer type (Luminal B breast cancer, for which the cancer cells highly express
these three transcription factors); (A) and (E): the resulting heterogeneity maps if the respective trait-combinations were randomly distributed (H0). HTA p-values are 0.26 and 0.56 (A,
E respectively) at region size 5, as expected underH0.

B C DHTA: 0.65 (p-val: 0.47), region size 5 HTA: 0.52 (p-val:! ), region size 5< 10−14 HTA: 0.69 (p-val:! ), region size 15< 10−6 HTA: 0.75 (p-val: 0.1), region size 30B C DA

Fig. 4. (B-D) Heterogeneity maps and HTA depicting the mutual distribution of ERBB2 (HER2) and CD8A (T-cells) for the bottom half of Figure 3, chosen due to indications of high
tumour content in that portion (see Section 3.2). (A) The resulting heterogeneity map if ERBB2 and CD8A were randomly distributed (H0). HTA is: (B-C) significantly homogeneous
p < 10−6; (D) heterogeneous p = 0.1 (H0 not rejected); (A) heterogeneous p = 0.47.
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HTA
Let M

∣∣
G

= {M1,M2, ...,MR} be the set of regions obtained
by applying grid G to some trait-combination matrix M . Let
{n1, n2, ..., nR} be the corresponding number of entries in each region
that are not ’None’. Then we define:

HTA(M
∣∣
G

) :=

R∑
r=1

nr

n
HTI(Mr) =

R∑
r=1

nr

n

(
−

C∑
c=1

nrc

nr
log

nrc

nr

)
(1)

where nrc is the number of entries in region r that manifest trait
combination c ∈ {1, . . . , C}, and n is the total number of entries, in
the entire matrix, that manifest at least one trait.

Note that since nr is the number of entries in region r that are not
’None’, this means that

∑C
c=1

nrc
nr

= 1, for all r. Empty regions (where
all elements in the region are ’None’) are discarded.

For example, in spatial RNA-seq, each entry in M that is included
in n represents a barcoded spot that manifests at least one trait (e.g., the
coloured dots in Figure 3D), and each included region of M contains
several such barcoded spots (e.g., the non-empty regions bordered by the
grid lines in the same figure). In digital pathology, where each whole-
slide image is divided into thousands of smaller images (tiles), each entry
represents a single tile in which at least one trait is present and each region
of M contains several such tiles.

We note that HTA monotonically decreases with grid refinement. This
is similar to the fact that:

H(Y |X) ≤ H(Y ) (2)

for any random variables X and Y (for a proof see Supplementary S1).
Indeed, we observe this in Figure 1, where HTA decreases from right-
to-left. We note that since region-based methods are inherently sensitive
to region size, HTA’s monotonicity provides an added advantage since it
guarantees an ordering one can expect to observe when moving between
region sizes. In Figure 4, for example, we can see that for the largest
region size (D), the null hypothesis of heterogeneity is not rejected (HTA
p = 0.1), whereas at the smaller region sizes (B-C) it is. Knowing that
HTA monotonically decreases with grid refinement, a user may be inclined
to test finer grids before concluding that the sample is heterogeneous with
respect to the mutual spatial distribution of T-cells among HER2 cells.

2.3 HTA p-value

We compute the HTA p-value under the null model in which all trait
combinations are uniformly distributed across the tissue sample, as in
Figures 3 A, E and 4 A (i.e., a random permutation of the exact trait
combinations present within the tissue sample, naturally preserving the
observed frequencies).

2.3.1 Equal-weight regions
If we assume that all regions contain the same number of entries, we obtain
that HTA is normally distributed, by the classical central-limit theorem
(Lindeberg–Lévy CLT). Formally, we denote Xr , r = 1, . . . , R to be
HTI(Mr). Then, under the null hypothesis, the random variablesXr are
iid. Therefore, by the CLT, their mean (HTA) is normally distributed:

1

σ/
√
R

(
X̄r − µ

) d−→ N (0, 1) (3)

where µ and σ are the mean and standard-deviation of Xr , under the
null model.

In our case this means:

1

σ/
√
R

( 1

R

R∑
r=1

Xr − µ
)

=
1

σ/
√
R

(HTA− µ)
d−→ N (0, 1) (4)

µ and σ depend on both the region size and the distribution of trait
combinations in the matrix M . We can estimate these quantities from
simulations of M under the null model. For a limited region size, we can
also compute these quantities precisely by running an exhaustive search
across the permutations of trait combinations in a single region to obtain
all possible values for Xr and its resulting distribution.

Using this approach for two traits (3 non-empty trait combinations,
C = 3) and region sizes s = 2 and s = 3 (yielding square regions with
22 = 4 and 33 = 9 elements, respectively) we obtain, for example, that
for sufficiently large values of R the following holds:

HTA(C = 3, s = 2) ∼ N (0.57,
0.312

R
) .

HTA(C = 3, s = 3) ∼ N (0.83,
0.172

R
) .

2.3.2 Weighted regions
For actual data, the number of entries in each region may vary as a function
of the positions in which entries ofM are empty. Their corresponding HTIs
are therefore no longer identically distributed under the null hypothesis.
Specifically, we have different means and stds for the HTI of each of the
regions, indexed by r, which we denote by µr and σr , respectively. For
example, a region with only one entry will always exhibit a single trait
combination, leading to HTI = 0 and therefore µr = 0, whereas a region
with more entries has a positive probability of obtaining a non-zero HTI
and therefore µr > 0. Since the classical CLT (Lindeberg–Lévy CLT)
assumes that the random variables are iid, we turn to a different version of
CLT that applies to independent, but not identically distributed, random
variables – the Lyapunov CLT:

Lyapunov CLT
Let X1, X2, . . . Xm be independent random variables with EXi = µi
and VarXi = σ2

i <∞. Denote Yi = Xi − µi.
(Lyapunov Condition) If there exists δ > 0 such that:

lim
m→∞

1

s2+δm

m∑
i=1

E
(∣∣Yi∣∣2+δ) = 0 (5)

where:

s2m = Var
( m∑
i=1

Yi

)
=

m∑
i=1

σ2
i (6)

then:

1

sm

m∑
i=1

(Xi − µi)
d−→ N (0, 1) (7)

In our case, we want to use this theorem with Xi = nr
n
HTI(Mr)

and m = R and obtain:

1

sR

(
HTA−

R∑
r=1

µr
)
d−→ N (0, 1) (8)

We observe that the Lyapunov condition is satisfied in our case. For
any δ > 0,

E|Yr|2+δ ≤ EY 2
r ≤ 1 (9)

because Yr ∈ [0, 1] (since HTI ∈ [0, 1]).
Therefore:
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1

s2+δR

R∑
r=1

E|Yr|2+δ ≤
1

s2+δR

R∑
r=1

VarYr =
1

sδR
(10)

where the first inequality follows from Equation 9 combined with the
fact that VarYr = EY 2

r and the equality follows immediately from the
definition of s2R (Equation 6).

It remains to show that sR → ∞ as R → ∞. Indeed, under the null
hypothesis, the set of variances {σ2

r}Rr=1 is bounded away from zero if we
assume that there are no single-sample regions (otherwise we may increase
the region size), or that there is a constant number of such regions.

Given a specific dataset, in order to use Lyapunov CLT, we must
estimate µr and σr for all relevant (non-empty) regions, r = 1, . . . , R.
We do so by simulating 1, 000 random-uniform permutations of the trait
combination matrix (while holding constant the original positions of non-
empty elements) and for each permutation we compute HTIs for all relevant
regions. Then, for each region r ∈ {1, . . . , R}, we use its 1, 000 HTIs to
estimate µr and σr .

We emphasize that the normal approximation holds only for
sufficiently large values ofR. We also note that for adequate interpretation
of the HTA results, one should consider two one-sided p-values. Namely
p and 1 − p, which represent the alternative hypotheses of homogeneity
and heterogeneity, respectively. To determine the overall significance, the
smaller p-value should be doubled.

3 Results
In this section we demonstrate the use of HTA in several domains.
We begin with synthetic data for both 2-dimensional and 3-dimensional
spatial data (Section 3.1). We then apply HTA to two 2-dimensional
spatial transcriptomics datasets: Visium spatial RNA-seq by 10x Genomics
(Section 3.2) and spatial transcriptomics inferred from pathology whole-
slide images (Section 3.3). We also demonstrate a 3-dimensional use case
using MRI images (Section 3.4). Finally, we demonstrate that HTA extends
to other domains by analysing US census data (Section 3.5)

3.1 Synthetic data

In Figures 1 and 2, we depict results from applying HTA to 2-dimensional
heterogeneity maps of shape (32, 32), each of which represents a trait-
combination matrix. Regions are the visible square areas that fall between
the grid lines. In Figure 1 we see heterogeneity maps for two traits, each of
which has a random uniform distribution with probability 0.5 of occurrence
in each position. As one would expect, the null hypothesis that the trait-
combinations are randomly distributed is not rejected in all three region
sizes (2, 8 and 16) since HTA p-values are > 0.3.

Figure 2 demonstrates that HTA discerns between homogeneous
and heterogeneous distributions. Holding the region size constant, we
observe that a perfectly homogeneous distribution within each region
(left) is significantly homogeneous (HTA p-value ∼= 0), while a perfect
heterogeneous distribution (right) is significantly heterogeneous (HTA 1-
p-value ∼= 0). In comparison, a random heterogeneous distribution from
H0 (middle) is neither (HTA p-value 0.5). This means that both significant
homogeneity and significant heterogeneity are identified using HTA.

In Figure 5 we applied HTA to a 3-dimensional heterogeneity map
of shape (32, 32, 3) (for the x, y, z axes, respectively). Since the region
size can now also vary across the z-axis, we use two region sizes that
differ only along this axis: (8, 8, 1) and (8, 8, 3) as illustrated at the
bottom of Figure 5. Using a region size of (8, 8, 1), as in Figure 5 (left),
where each region manifests exactly one of the trait combinations, we
obtain significant homogeneity (HTA p-value ∼= 0). Conversely, using a
region size of (8, 8, 3) , illustrated in Figure 5 (right), where each region
contains an equal amount of each of the three trait combinations, we obtain
significant heterogeneity (HTA p-value of ∼= 1).

3D Spatial heterogeneity 
Shape: (32,32,3)

HTA: 0.00  
(p-val !  0) ≅

HTA: 1.00  
(p-val !  1) ≅

region size 
 (8,8,3)

region size 
 (8,8,1)

Fig. 5. A 3D heterogeneity map and HTA for two region sizes that differ along the z-axis.
The two illustrations below describe the resulting regions and are followed by HTA results:
(left) region size (8, 8, 1) each region is perfectly homogeneous, yielding HTA 0 and HTA
p-value∼= 0; (right) region size (8, 8, 3) – each region is perfectly heterogeneous, yielding
HTA 1 and HTA p-value∼= 1.

3.2 Spatial RNA sequencing

We use 10x Genomics’ Visium breast cancer spatial gene-expression data
(see Supplementary S2 for details). The sample is a Stage Group IIA
breast cancer of type Luminal B (ER positive, PR negative and HER2
positive). To determine nrc, the number of entries in region r manifesting
trait-combination c, we use the median threshold for each gene. An entry
manifests combination c if all the genes in this combination are above their
respective median expression level. Since this sample is Luminal B, it is
expected that ESR1, FOXA1 and GATA3 would be spatially co-expressed
[9], leading to a significantly homogeneous HTA index. We tested both
two and three traits. Indeed, in Figure 3 B-D we observe that the tissue
sample is significantly spatially homogeneous at both a local and global
resolution (smaller and larger region-sizes, respectively), obtaining HTA
p-values of < 10−10. This is compared to a random permutation of the
observed trait combinations underH0 (Figure 3 A) which obtains an HTA
p-value of 0.26 even at the smallest region size of 5. For the three traits:
ESR1, GATA3 and FOXA1 (Figure 3 F-H) we observe similar results, with
HTA p-value of < 10−8 at all three region sizes. This is in comparison
to the random permutation of the observed trait combinations (Figure 3 E)
which obtains an HTA p-value of 0.56 at region size 5.
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Previous research has shown that T-cells remaining at the periphery
of cancer cells, with low tumour infiltration, may be indicative of poor
prognosis compared to tumours with high T-cell infiltration [16] . HTA can
help identify such cases. In Figure 4 B-D we generated the heterogeneity
map for ERBB2 (HER2) and CD8A (T-cells) using the same HER2 positive
breast cancer sample. We focused on the area where ESR1 and GATA3
are relatively co-expressed (bottom half of the tissue in Figure 3) since,
as explained above, these regions are likely to have high tumour content.
Using HTA, we observe significant homogeneity in the two smaller region-
sizes, 5 and 15, with HTA p-values < 10−6. Interestingly, at the larger
region size of 30 we no longer observe significant homogeneity, with a
p-value of 0.1. For context, a random dispersion of these T-cells (Figure
4A) is not significantly homogeneous, with an HTA p-value of 0.47. The
significant homogeneity at the two smaller region sizes mean that the
tumour cells are rarely, if at all, infiltrated by T-cells. However, the lack of
significant homogeneity at the larger region size indicates that there is at
least some infiltration of T-cells (otherwise we would observe significant
homogeneity at this level too).

Since HTA is designed to handle a large number of traits, it is capable
of capturing certain characteristics of clonal composition. We demonstrate
this using the same breast cancer sample and 7 breast cancer driver genes:
MYC, ESR1, ERBB2, GATA3, FOXA1, TP53 and CDK4. In Figure 6
A we can see the resulting heterogeneity map. Using a region size of 15,
we obtain a significantly homogeneous HTA (p-value: 10−16). In B we
observe a random permutation of the observed trait combinations, which
results in a non-significantly homogeneous HTA (p-value: 0.43). Since 7

traits give rise to 27−1 = 127 non-empty combinations (provided that all
are present), we do not attempt to display the legend. Instead, we produce
a ’region-report’ to identify the most frequent combinations in regions
of interest. For example, in the bottom left corner, at (−0.5, 59.5), the
most frequent combination is all 7 driver genes, accounting for 73% of
the elements in that region. The second most frequent combination is the
6 driver genes that remain after removing CDK4. While the region to its
right has a similar composition, two regions to the right, at (29.5, 59.5),
already exhibits a different, yet relatively homogeneous composition: the
combination of all 7 account for 41% of the elements; a small number
of different combinations of 6 of the driver genes account for 26% and;
the vast majority of the remaining elements (accounting for 28%) are
several combinations of 4 and 5 genes. These observations align with
the significantly homogeneous HTA, and may indicate that the significant
homogeneity may be due to the gradual formation of a dominant subclone
that over-expresses all 7 genes.

3.3 Spatial transcriptomics from pathology whole-slide
images

In this section we use spatial transcriptomics inferred from breast cancer
pathology whole-slide images obtained from [10]. This dataset contains
324 subjects for which: (a) MKI67 and miR-17 expression were spatially
resolved to their respective pathology whole-slide images, yielding binary
maps that indicate where each gene was detected as over-expressed; and
(b) survival data is available. Since not all slides, and therefore inferred
maps, have the same size, we first resize them to (90, 90), chosen based
on their median shape. To ensure that the maps remain binary, we use
nearest neighbour interpolation during resizing. We apply HTA using the
three region sizes: 15, 30 and 45. We then split the cohort into two equal
sets based on their HTAs: > median HTA and ≤ median HTA (relatively
heterogeneous and relatively homogeneous, respectively). Figure 7 shows
the results for the survival analysis performed using these heterogeneity-
based assignments. We observe significant survival differences in the two
larger region sizes, with the middle one, region size 30, obtaining the
lowest p-value of 0.01.

A

B

HTA: 0.59 (p-val:! ),  region size 15< 10−16

HTA: 0.64 (p-val: 0.43),  region size 15

Fig. 6. Heterogeneity maps and HTA for 7 breast cancer driver genes: MYC, ESR1,
ERBB2, GATA3, FOXA1, TP53 and CDK4. (A) actual heterogeneity map, with HTA p-
value of 10−16 at region size 15; (B) heterogeneity map under H0 (random permutation
of the trait-combinations), with HTA p-value of 0.43.

3.4 MRI

In this section we demonstrate the use of HTA in the context of 3D data by
analysing brain MRI scans (see Supplementary S3 for further details). We
use 4 axial MRI scans from 4 different subjects, representing: (1) normal
ageing, (2) Alzheimer’s disease (3) Metastatic bronchogenic carcinoma
and (4) Glioma. For each subject, we obtained the only two weighted
sequences that were available for all four: T2-weighted and Proton density
(PD) weighted (these accentuate different properties; for details see, e.g.,
[4]). We use these as the traits, where a strong signal (brighter) gets 1
and a low signal (darker) gets 0, depending on whether they are above
or below the median grayscale value, correspondingly. Since MRI scans
are sequences of images (slices), they represent a 3-dimensional space.
We use 3 different slices per subject taken from similar locations in each
(Supplementary S3). We use 3 for visualisation purposes, but the analysis
applies to any number of slices. In Figure 8 we see the resulting 3D
heterogeneity maps and HTA for all four subjects. The shape of each
map is (256, 256, 3) and the region size is (128, 128, 3). Normal ageing
(top) is the only one that is not significantly homogeneous at a 0.01

threshold (p-value 0.02). The remaining three, each of which represents a
different disease, are significantly homogeneous. The figures are ordered
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A

C

B

Fig. 7. Survival analysis with respect to HTA derived from two spatially-resolved traits in
breast cancer pathology whole-slides – MKI67 and miR-17 expression level. Binary spatial
transcriptomics maps, inferred from the slides of 324 subjects, were split into high and low
HTA with respect to the cohort’s median: > median (blue) and ≤ median (orange). The
plots differ in the region size used to compute HTA. HTA region sizes and corresponding
log-rank p-values: (A) 15, p = 0.15; (B) 30, p = 0.01; (C) 45, p = 0.06. All maps were
resized to (90, 90), close to the median map size, using nearest neighbour interpolation.
Each survival curve is shown with a 95% confidence interval.

Normal ageing 
HTA: 0.55  (p-val: 0.02) 

Alzheimer’s 
HTA: 0.72  (p-val: 0.0002) 

Metastatic bronchogenic carcinoma 
HTA: 0.63  (p-val:! ) < 10−84

Glioma 
HTA: 0.62  (p-val:! ) < 10−149

Fig. 8. Heterogeneity maps and HTA for 4 MRI scans taken from different subjects. The
shape of each heterogeneity map is (256, 256, 3) and the region size is (128, 128, 3).
From top to bottom (highest to lowest HTA p-values): (1) normal ageing, (2) Alzheimer’s
disease (3) Metastatic bronchogenic carcinoma and (4) Glioma.

in decreasing p-values. Interestingly, the two cancer scans obtain the
strongest significance, with p-values 10−84 (metastatic bronchogenic
carcinoma) and 10−149 (glioma). Alzheimer’s disease is also significantly
homogeneous, with a p-value of 0.0002.

We note that for images, there may be other binarization techniques
besides the median that are worth considering (e.g., Li thresholding to
detect background vs foreground). Specifically for MRI, it may also be
relevant to use actual raw signal measurements, provided such data is
available. In such a case, other binarization methods may be better suited
than the median value threshold. We have kept the median threshold for
simplicity of demonstration.

3.5 Census data

To demonstrate the overall utility of HTA we also applied it to recent
census data for 3, 092 counties across the US, excluding those in Alaska,
Hawaii and Puerto Rico due to their relatively large distance from the other
states (see Supplementary S5). For each county, the data contains the total
population per ethnicity, across multiple ethnicity groups. In Figure 9 we
observe the heterogeneity map and corresponding HTA index and p-value
obtained for the three ethnicity-related traits: "Black or African American
alone > 5% of total population in county", "Asian alone > 5% of total
population in county" and "American Indian and Alaska Native alone >
5% of total population in county" for region size 70. We observe significant
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HTA: 0.16  (p-val < ! ) 
shape = (630, 630), region size = (70, 70)

10−19

Fig. 9. Heterogeneity maps and HTA for US census data for three ethnicity-related traits:
"Black or African American alone > 5% of total population in county", "Asian alone > 5%
of total population in county" and "American Indian and Alaska Native alone > 5% of total
population in county" using region size 70. We observe significant homogeneity with HTA
p-value< 10−19 .

HTA:  0 
MH  1

HTA:  1 
MH  1

Fig. 10. HTA captures a richer representation of heterogeneity, allowing it to differentiate
between types of overlap (a proxy used for heterogeneity), even in the bivariate case.

homogeneity, with HTA p-value 10−19, indicating that people from the
same ethnic origin tend to cluster in specific regions. Since all regions
included over 5% "White alone" we did not include this category.

Since the size of such maps could potentially be much larger, we also
tested whether 100 random-uniform permutations (required to compute
Lyapunov CLT parameters, as described in Section 2.3.2), instead of
1, 000, would be sufficient to obtain similar HTAs and p-values. The
results for 100 repeats are nearly identical to those of 1, 000 repeats: we
obtain p-values 10−19 for 1, 000 and 10−18 for 100.

4 Discussion
HTA provides a solution to the growing need for statistical analysis
tools that are capable of quantifying spatial heterogeneity in the complex
setting of high throughput molecular biology data, including spatial
transcriptomics and digital pathology. It is also useful in other domains,
including imaging and geographic information systems. HTA accurately
reflects spatial heterogeneity at multiple resolutions, can handle a large
number of variables (trait-combinations) and lends itself to efficient
statistical assessment. In the context of addressing multiple traits, we also
note the difference between HTA and the existing literature. For example,
Figure 10 demonstrates that Morisita-Horn, which measures the overlap
between two traits across all regions of a given space, will declare a perfect
overlap for both examples shown in the figure, whereas HTA successfully
discerns between the two.

While HTA is multivariate, it may not easily scale to hundreds or
thousands of molecular traits. This can be overcome by using aggregation
methods to obtain several meta-traits, each representing a group of
individual traits. We demonstrate this in Supplementary S6 using immune
pathway enrichment scores (computed using GSVA [? ]), representing
a total of 69 genes, and using cluster IDs obtained from 10X’s Loupe
Browser, representing 2, 786 genes. Using such aggregation methods HTA
can be applied to data that spans a large number of individual traits.

We have also shown that HTA can be used at multiple scales, controlled
by the region-size parameter. We note that other multi-scale measures,
such as 2D multi-scale entropy (e.g., [? ]), as well as fractal-based and
wavelet-based methods (e.g., [? ]), while multi-scale, do not apply to the
trait-combination representation that HTA can analyse. These methods
apply either to 2D images, with a strong emphasis on relationships between
colors, or to 2D binary matrices. Since the colors in the heterogeneity maps
are not ordinal, and since there is more than one trait-combination, neither
option is relevant.

HTA also has other advantages. First, HTA is simple to use since it
requires a single input parameter (region size) and easy to interpret since it
is directly derived from Shannon’s entropy. This is in contrast to available
tools that are limited in at least one of these aspects. HTA also applies
to any d-dimensional space. We demonstrated this in 3-dimensions using
both synthetic and MRI data. Finally, HTA extends beyond the scope of
molecular biology and medical imaging and can be used in many other
domains, as was demonstrated with US census data.

HTA can be further used in down-stream analyses. For example, in
the case of ERBB2 (HER2) and CD8A (T-cells) demonstrated in Figure 4,
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different HTAs could potentially be associated with different responses to
immune therapy treatment. Results of applying HTA in digital pathology
show that HTA may be predictive of survival in breast cancer.

HTA offers many potential extensions worthy of investigation in future
work. One option is to combine HTA scores from multiple scales into a new
measure that summarizes them. It may also be relevant to extend HTA to
apply to continuous measurements. Finally, alternative permutation-based
null models may also be investigated. For example, a locality preserving
null model (where the region can be determined by some radius) may be
useful in certain cases where retaining local characteristics is important.
We note, however, that it may not be appropriate when considering
more global phenomenons. One such case is when measuring the level
of T-cell infiltration, as demonstrated in Figure 4; had we performed a
locality preserving permutation, we would not have been able to assess the
significance of infiltration since such a permutation would cause the null
model to assume that there is T-cell infiltration to begin with (this sample
has immune cells around cancer cells in most locations). Nevertheless,
alternative null models may be highly relevant in other cases, and offer
interesting opportunities for further investigation.

As spatial transcriptomics data and digital pathology inference
techniques become increasingly available and accurate, we expect
methods that address spatial distributions, including HTA and its potential
extensions, to become ubiquitous.
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