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Abstract 

Post-transcriptional gene regulation (PTGR) contributes to numerous 

aspects of RNA metabolism. While multiple regulators of PTGR have been 

associated with the occurrence and development of psychiatric disorders, a 

systematic investigation of the role of PTGR in the context of 

neuropsychiatric disorders is still lacking. In this work, we developed a new 

transcriptome -based algorithm to estimate PTGR and applied it to an RNA-

Seq dataset of 2160 brain samples from individuals with autism spectrum 

disorder (ASD), schizophrenia (SCZ), bipolar disorder (BD) and controls. The 

results showed that the contribution of PTGR abnormality to gene differential 

expression between three common psychiatric disorders and controls was 

about 30% of that of transcriptional gene regulation (TGR) abnormality. 

Besides, aberrant PTGR tended to decrease RNA stability in SCZ/BD, while 

increase RNA stability in ASD, implicating contrasting pathologies among 

diseases. The abnormal alteration of PTGR in SCZ/BD converged on the 

inhibition of neurogenesis and neural differentiation, whereas dysregulation 

of PTGR in ASD induced enhanced activity of apoptosis. This suggested that 

heterogeneity in disease mechanism and clinical manifestation across 

different psychiatric disorders may be partially attributed to the diverse role 

of PTGR. Intriguingly, we identified a promising RBP (RNA bind protein) 

ELAVL3 (ELAV-Like Protein 3) that have a profound role in all three 

psychiatric disorders. Our systematic study expands the understanding of the 

link between PTGR and psychiatric disorders and also open a new avenue for 

deciphering the pathogenesis of psychiatric disorders. 

Keywords: post-transcriptional gene regulation (PTGR), psychiatric 

disorders, RNA stability, RNA binding protein (RBP), ELAVL3 
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Introduction 

Psychiatric disorders, characterized by brain dysfunction, are caused by 

a combination of psychological, biological, and environmental factors, 

including schizophrenia (SCZ), bipolar disorder (BD), depression 

(Depression) and autism (ASD), and so on. Currently, it is generally 

postulated that psychiatric disorders are polygenic genetic disease with high 

genetic heterogeneity and complexity, the pathological mechanisms of 

psychiatric disorders remain poorly understood1. In the present study, several 

studies have revealed that the majority of the psychiatric associated risk loci 

lies in the gene regulatory region (non-coding region of gene) rather than loci 

within the gene coding region2-4, indicating that a greater role for 

dysregulation of gene expression and alternative splicing compared to 

dysfunction of the gene in contributing to the development of psychiatric 

disorders. Gene expression and alternative splicing are jointly determined by 

the transcriptional regulation mechanism (TGR) and the post-transcriptional 

regulation mechanism (PTGR). Recognizing the importance of understanding 

gene expression and splicing, several researches have undertaken large-scale 

efforts to study the impact of TGR abnormalities on psychiatric disorders5,6, 

and most of these studies focused on dysregulation of transcription factors and 

epigenetic patterns7,8. These investigations reported several susceptibility 

factors including the SCZ high risk ZNF804A9, 22q11.2 microdeletion10, ASD 

high risk CHD811, as well as the fever in maternal immune activation12. 

Meanwhile, PTGR, especially RBPs-mediated PTGR, as a major contributor 

in the control of gene expression and splicing regulation, and participates in 

the regulation of RNA metabolism13,14. Nevertheless, there are few studies on 

the PTGR estimation algorithm, leaving large parts of the PTGR, especially 

RBPs-mediated PTGR, unexplored15. A more comprehensive analysis 
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focusing on the PTGR and psychiatric disorders is necessary to accelerate our 

understanding of the role of RBPs-mediated PTGR in the pathogenesis of 

psychiatric disorders.  

Several studies based on RNA-seq provided evidence that the reads in 

intronic regions can represent the expression level of pre-mRNAs, which are 

mainly transcriptionally driven16-18. The reads in the exonic regions are 

correlated with the expression level of mature mRNAs (mature mRNAs), 

which are related to transcriptional in combination with post-transcriptional 

regulation events16-18. Therefore, the changes of the expression level of pre-

mRNAs and mature mRNAs across different conditions allow us to evaluate 

the contributions of post-transcriptional regulation to observed changes in 

steady-state RNA levels and identify abnormal changes of gene post-

transcriptional regulatory mechanism. Thus, these analytic methods have 

defined the difference of the logarithm of fold-change of exonic reads and the 

logarithm of fold-change of intronic reads (Δexon–Δintron) as altered post-

transcriptional regulation of mRNAs16-18. It is known that Δexon and Δintron 

are also affected by the RNA metabolic limitations, measurement errors, and 

other factors, and the presence of these biases leads to ∆intron much larger 

than ∆exon. However, these methods do not take into account these biases, 

which results in the overestimation of ∆PTGR.  

To provide a comprehensive view of the abnormal PTGR architecture 

across three common psychiatric disorders (ASD, SCZ, and BD) at the whole-

genome level and measure the contributions of RBPs-mediated PTGR for 

disease-specific changes in gene expression, we developed a computational 

method systematically analyzed the PTGR changes of 2160 brain 
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transcriptome samples data from the PsychENCODE Consortium19, including 

80 ASD samples, 594 SCZ samples, and 253 BD samples, as well as control. 

In summary, our analyses offer an updated method for PTGR estimation, and 

highlight that abnormal PTGR as a potential mechanism conferring key 

aspects of psychiatric disorders specificity and complexity, and find a novel 

direction for further research into the etiology of psychiatric disorders. 
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Materials and Methods 

Data collection 

For this study, all processed bulk RNA-seq alignment (.bam) files were 

collected from the PsychENCODE consortium. All bam files were aligned to 

the hg19 reference genome and available at 

https://www.synapse.org/#!Synapse:syn6039873. These include normal 

controls (n=1233), as well as schizophrenia (SCZ) (n=594), bipolar disorder 

(BD) (n=253), autism spectrum disorder (ASD) (n=80).  

Annotation of exon and intron reads 

For reads annotation, we made a custom intron GTF annotation file and 

a custom composite exon GTF annotation file based on gencode v19 GTF. 

The following set of rules was applied to generate two custom GTF files 

supporting a given genomic region as an exonic region or intronic region: 

intron coordinates of genes were extracted from GENCODE v19 as custom 

intronic GTF; exon and untranslated region coordinates within any isoform of 

genes were extracted from GENCODE v19 as custom composite exonic GTF. 

Gene-level read counts were calculated for intron and exon separately using 

featureCounts20.  

Covariate selection  

Exon/intron counts were compiled from gene level imported into R for 

downstream analyses. Genes were quantified in TPM and further filtered to 

include those with TPM > 1 in at least 50% of samples.  

Bulk RNA-Seq samples clinical data are available at 
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https://www.synapse.org/#!Synapse:syn4587614. Missing values in clinical 

data were imputed using the missMDA R package21. We summarized the top 

40 principal components which collectively explained 99% of the total 

variance. To determine which covariates to include in the final differential 

post-transcriptional regulation model, we performed multivariate adaptive 

regression as implemented in the earth package in R for intronic and exonic 

separately. The superset of potential covariates available for all samples 

included: study, tissue, libraryPrep, strand specificity, platform, individual ID 

Source, diagnosis, sex, ethnicity, PMI, RIN, ageDeath, along with all 40 

seqPCs. For continuous variables, we also included squared terms. These 

covariates with input into the earth model along with count data (limma voom 

normalized, centered, and scaled). The model was run using linear predictors 

and otherwise default parameters. As the model fits a maximum of 1000 genes 

simultaneously, we performed 1000 permutations randomly subsetting 1000 

genes at a time. From this, we chose as a set of known covariates those present 

in a total of the exons and introns resulting pruned models, which consisted 

of: study, diagnosis, sex, ethnicity, PMI, ageDeath, PC (1-3), PC (5-11), PC 

(13-18), PC20, PC22, PC23, PC (25-27), PC29, PC31, PC (33-36), PC39, 

RINS2, ageDeathS2, PC1S2, PC2S2, PC4S2, PC6S2, PC9S2, PC16S2, 

PC17S2, PC22S2.  

Exonic/Intronic count correction 

Count level quantifications were normalized for library size using TMM 

normalization in edgeR and were transformed as log2(CPM+0.5). Normalized 

and transformed exon/intron counts were then calculated using a linear mixed-

effects model using the nlme package in R. The covariates specified in the 
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previous section were included as fixed effects in the model. In addition, we 

included a random effect term for each unique subject to account for subject 

overlap across sequencing studies. All covariates except for diagnosis and 

subject were regressed from our exonic/intronic count dataset.  

New PTGR estimation algorithm 

The intronic counts representing the relative abundance of pre-mRNA, 

and the exonic counts representing the relative abundance of mature-mRNA. 

We took the median of all samples within covariates corrected exonic/intronic 

counts dataset as the reference sample Sref, and then for each gene in each 

sample S, we subtracted the median value across the samples to obtain Δexon, 

Δintron. Different condition exonic and intronic groups were analyzed 

separately.  

For each of control, SCZ, ASD, and BD set separately, we modeled the 

ratio of Δexon and Δintron for each gene by robust linear regression of Δexon 

vs. Δintron. The control group ratio is recorded as slope A. We used the same 

method to estimate the ratio of ∆exon and ∆intron in the disease group. The 

disease group ratio is recorded as slope B. If B>A, which means that PTGR is 

up-regulated in the B(disease) group (∆PTGR > 0), and representing the 

increased RNA stability in the disease group. Positive and negative ∆PTGR 

values correspond to increased RNA stability and reduced RNA stability, 

respectively. Statistical significance of ∆PTGR was determined using t-test 

shown below: 

𝑡 =
𝑠𝑙𝑜𝑝𝑒(𝐷𝑖𝑠𝑒𝑎𝑠𝑒)−𝑠𝑙𝑜𝑝𝑒(𝐶𝑡𝑟𝑙)

√𝑆𝐸(𝐷𝑖𝑠𝑒𝑎𝑠𝑒)2+𝑆𝐸(𝐶𝑡𝑟𝑙)2
 df=size (Disease)+size (Ctrl) 
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Here, Slope represents the robust linear regression slope value, and SE 

represents standard error of Slope. The df is the sum of samples in the control 

and disease groups.  

For each gene, the effect of PTGR vs TGR (transcription gene regulation) 

on gene expression can be estimated according to the following formula: 

𝑟𝑎𝑡𝑖𝑜 = |
𝑠𝑙𝑜𝑝𝑒(𝐷𝑖𝑠𝑒𝑎𝑠𝑒)

𝑠𝑙𝑜𝑝𝑒(𝐶𝑡𝑟𝑙)
− 1|  

The average ∆PTGR of each gene was obtained from the above analysis. To 

measure the ∆PTGR (∆ PTGR_in) of each gene in each individual of the 

disease, we used the following formula: 

∆𝑃𝑇𝐺𝑅𝑖𝑛 = ∆𝑒𝑥𝑜𝑛(𝐷𝑖𝑠𝑒𝑎𝑠𝑒) − ∆𝑖𝑛𝑡𝑟𝑜𝑛(𝐷𝑖𝑠𝑒𝑎𝑠𝑒) ∗ 𝑠𝑙𝑜𝑝𝑒(𝐶𝑡𝑟𝑙) 

Post-transcriptional perturbation dataset analysis 

We used RNA-seq data of schizophrenia patient-derived neural 

progenitor cells with purely post-transcriptional perturbations mediated by 

microRNAs from ref22. (GEO accession GSE80170) to evaluate the 

performance of the PTGR algorithm. The data include control samples, 

samples with the miR-9 knockdown, and samples with the miR-9 

overexpression. Reads were mapped to the hg19 assembly of human genome 

using STAR23 with default parameters. We used custom intronic GTF and 

custom composite exonic GTF for reads annotation, and gene-level read 

counts were calculated for intronic and exonic separately using featureCounts. 

We identified genes that were inferred to be up-PTGR or down-PTGR in the 
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knockdown/overexpression group. Because direct targets of miRNAs are 

enriched in miRNA seed matches in their 3′-UTR, we examined whether is 

genes that were up-PTGR or down-PTGR were enriched for miR-9 RNA seed 

sites in their 3′UTRs to evaluate the performance of PTGR algorithm. 

REMBRA PTGR effect deconvolution algorithm  

We closely followed the REMBRA pipeline for PTGR effect 

deconvolution. We did this to optimally enable comparisons between our 

PTGR algorithm and REMBRA algorithm. These steps are implemented in a 

software package available at https://github.com/csglab/REMBRANDTS17. 

Integrated PsychENCODE transcription regulatory results 

Summary differential expression genes results from the PsychENCODE 

were obtained from http://resource.psychencode.org/DER-

13_Disorder_DEX_Genes.csv. 

Identify key RBPs  

We predicted the interaction between DPRGs and 195 human RBPs 

through the combination of RBPs and phantoms, and then inferred the RBPs 

that plays a key role through linear models. We limited the analysis of RBP 

and miRNA binding sites to genes for which all isoforms had the same 3′ UTR 

start coordinates, and the 3’ UTR was composed of a single exon, in order to 

minimize the possibility of confounding effects of alternative splicing. The 3′ 

UTR start coordinates were extracted from GENCODE v19. For analysis of 

RBP binding sites, we first collected a non-redundant compendium of 

available sequence preferences for human RBPs. We obtained 217 position 
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frequency matrices (PFMs) representing 117 human RBPs from beRBP24, 

including PFMs with direct experimental evidence and those inferred by 

homology. Then, we calculated all pairwise PFM similarities using 

MoSBAT25, and then used affinity propagation to cluster the PFMs based on 

similarity, keeping only the “exemplar” from each cluster. This reduced the 

total number of PFMs to 154, which we call the non-redundant RBP motif set. 

Then, we scanned the 3′ UTR sequences with each PFM using AffiMx from 

the MoSBAT package, resulting in a vector of PFM scores that represents the 

affinity of the corresponding RBP for binding to different 3′ UTRs.  

To identify RBPs that are associated with disease-specific stability 

profiles, we used the gene-level stability measures as the response variable in 

multiple linear regression, with RBP binding site match counts as predictor 

variables. RBPs and miRNAs whose binding sites were significantly 

associated with disease-specific stability were identified based on t-test of 

regression coefficients at pvalue < 0.05.  

Developmental expression data 

Developmental expression data from the BrainSpan: Atlas of the 

Developing Human Brain (http://www.brainspan.org/).  

Functional enrichment analysis 

We performed gene ontology (GO) enrichment analysis using the R 

package clusterProfiler26 and GO interactome network was performed by 

Metascape27. 
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Results 

New PTGR evaluation algorithm 

For an unbiased estimate of the post-transcriptional regulation 

contributions to gene expression changes, we devised a computational method 

and applied it to the standard RNA-seq experiment. The abundance of reads 

lies in the intron region in RNA-seq data correspond to pre-mature mRNA 

abundance, changes in the abundance of intronic reads can be used to estimate 

the change in transcription regulation. While the abundance of reads lies in 

the exon region in RNA-seq data correspond to mature mRNA abundance, 

changes in the abundance of exonic reads can be used to estimate the changes 

in transcription regulation and post-transcription regulation. (Methods and Fig. 

1A). We first quantified the abundance of exonic and intronic reads in 

PsychENCODE RNA-seq datasets. As expected, we found that about 38% of 

reads were intronic reads, and 62% of reads were exonic reads (Fig. 1A). This 

observation is in agreement with previous studies16,18, a substantial number of 

reads in bulk RNA-Seq originate from pre-mature mRNA. For each of control, 

SCZ, ASD, and BD set separately, we modeled the ratio of Δexon and Δintron 

for each gene by robust linear regression of Δexon vs Δintron (Methods and 

Fig. 1B). The control group ratio is recorded as slope A. We used the same 

method to estimate the ratio of ∆exon and ∆intron in the disease group. The 

disease group ratio is recorded as slope B. If B>A, which means that the PTGR 

is up-regulated in the B(disease) group (∆PTGR > 0), and representing the 

increased RNA stability in the disease group. Positive and negative ∆PTGR 

value corresponds to increased RNA stability and reduced RNA stability, 

respectively.  
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To evaluate the performance of our PTGR algorithm, we measured 

ΔPTGR using RNA-seq data of schizophrenia patient-derived neural 

progenitor cells with purely post-transcriptional perturbations mediated by 

microRNAs(miR-9) from ref22. The regulation of a particular miRNA on its 

target messages by binding to the miRNA seed region, and therefore the direct 

targets 3′UTR of miRNAs are enriched in the miRNA seed region. As 

expected, our results indeed showed genes that were downregulated at the 

PTGR level in the miR-9 overexpression condition were significantly enriched 

for the miR-9 direct targets, and genes that were upregulated at the PTGR level 

in the miR-9 knockdown condition were significantly enriched for the miR-9 

direct targets (Fig. 1C). Our analysis highlighted that the PTGR algorithm is 

an accurate method for PTGR estimation.  

To deeper assess the accuracy of the PTGR algorithm in big data and 

compared the accuracy relative to other methods, we next applied the PTGR 

algorithm to the 2160 brain transcriptome samples across three common 

psychiatric disorders data from the PsychENCODE Consortium. We used the 

previous algorithm (REMBRANDTS) and the PTGR algorithm to evaluate 

the influence of PTGR on changes of gene expression (see Methods section). 

PTGR algorithm revealed the average effect of abnormal PTGR on changes 

in gene expression levels was approximately 30% of that of abnormal TGR, 

but the average influence of PTGR estimated by REMBRANDTS on gene 

expression was 2 times that of TGR (Fig. 1D). The estimation of 

REMBRANDTS was contradictory to the theory that the majority of the 

changes in gene expression are driven by transcriptional regulation. Our 

results demonstrated that the PTGR algorithm should provide more accurate 

estimates of mRNA stability compared to REMBRANDTS. 
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Dysregulation of PTGR in psychiatric disorders 

To generate a PTGR architecture across three diseases, we used the 

PTGR algorithm to assess differential PTGR in ASD, SCZ, and BD compared 

with control. Intriguingly, we noticed PTGR with the largest changes in ASD 

compared with SCZ/BD (Fig. 1D), and mRNAs appeared to be significantly 

more stable in ASD; the other two diseases mRNAs stability showed the 

reverse pattern (Fig. 2A). We identified widespread differential post-

transcriptional regulation genes (DPRGs) in ASD, SCZ, and BD [n =1807, 

1019, and 979 genes at false discovery rate (FDR) < 0.05, respectively] (Fig. 

2B), indicating a prominent role of post-transcriptional programs in disease 

development. Besides, DPRGs were enriched for up-regulated PTGR genes 

in ASD, whereas DPRGs were enriched for down-regulated PTGR genes in 

SCZ as well as BD. Notably, at the ∆PTGR level, there was inconsiderable 

cross-disorder sharing of this DPRGs signal, suggesting that ∆PTGR confers 

a substantial portion of disease specificity. Comparison of ∆PTGR of whole 

genome genes across three diseases suggested there was a significant SCZ/BD 

cross-disorder correlation in PTGR changes (Fig. 2B), although the majority 

of DPRGs were disorder-specific in SCZ/BD. This finding implied that SCZ 

and BD share overlapping genetic etiology at the PTGR level, and ASD is 

likely to be with disease specificity at the PTGR level (Fig. 2C). To gain better 

insights into the contributions of abnormal PTGR in disease development, we 

subsequently performed Gene Ontology (GO) analysis of ASD-, SCZ-, and 

BD-associated DPRGs, respectively. Regulation of apoptotic process was 

enriched in ASD up-regulated DPRGs, implying the involvement of apoptotic 

in the development of ASD (Fig. 2D). SCZ-/BD up-regulated DPRGs showed 

significant enriched in immune activation related biological processes (Fig. 

2D). Moreover, down-regulated DPRGs were associated with neural 
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development, neuron differentiation, and Synaptic Transmission in SCZ/BD, 

but no enrichment biological process in ASD (Fig. 2E). Together, this provides 

direct evidence that the disease specificity and complexity across three 

disorders partially attributed to the diversity of disease associated mRNA 

stability, suggesting clear divergence in the pathological mechanisms of 

psychiatric disorders.  

Disease-specific key RBPs that modulate mRNA stability in psychiatric 

disorders 

Since RBPs modulate mRNA stability via the Adenylate-uridylate (AU)-

rich elements (AREs) and regulate the expression of many genes at the post-

transcriptional level28, we examined whether DPRGs and differential 

expressed genes (DEGs) enriched in AREs. We indeed observed ARE 

enrichment in DPRGs, but not in DEGs (Fig. 2F). This result indicating that 

RBPs-regulated genes are enriched in DPRGs, and also provides further 

evidence to support the accuracy of the PTGR algorithm. Additionally, we 

performed enrichment analysis for transcription factors in DPRGs and DEGs, 

and observed transcription factors were significantly overrepresented in 

DPRGs (Fig. 2F), compared with DEGs, suggesting the abnormality of PTGR 

has a pervasive influence on the whole genome. Although the effect of PTGR 

on gene expression changes is less than that of TGR, PTGR may contribute 

as much to the changes of gene expression as TGR by affecting more upstream 

regulators. This work further highlights PTGR dysregulation as a critical, and 

relatively underexplored, mechanism linking abnormal gene expression with 

psychiatric disease pathophysiology. 
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The above observations prompted us to take a closer look at abnormal 

mRNAs stability of psychiatric disorders, but it is not clear which factors 

contribute the most to the abnormal landscape of mRNAs stability of 

psychiatric disorders. We combined the stability profiles of mRNAs of 

psychiatric disorders with the binding site predictions of the RBPs, and used 

multiple linear regression to identify key RBPs that modulate mRNAs 

stability in psychiatric disorders (see Methods for more details). This analysis 

identified multiple RBPs that were significantly predictive of disease mRNAs 

stability (Fig. 3A). Notable examples include FMR129 and QKI30, which is 

known ASD risk gene, and SCZ risk gene29,31, respectively. These promising 

candidate RBPs also including neurodevelopment associated ELAVL332 and 

IGF2BP family33, neuroimmune related gene ZPF3634, classical splicing 

factor SRSF135, and so on. Besides, we observed ELAVL3 was upregulated 

in ASD, ELAVL3 targets were more likely to be bound and more stable in 

ASD, and ELAVL3 was downregulated in SCZ/BD, ELAVL3 targets were 

more likely to be bound and less stable in SCZ/BD (Fig. 3A). Therefore, the 

presence of 3′ UTR binding sites for ELAVL3 was significantly associated 

with increased mRNAs stability in three disorders. In sum, the direction of the 

changes in stability was consistent with the direction verified experimentally 

in the literature30.  

Intriguingly, ELAVL3, a neural-specific RNA-binding protein which 

expression centered on early brain development (Figure 3B), displayed 

alterations of expression in all three psychiatric disorders. We subsequently 

analyzed 159 ELAVL3-bound genes expression level and found that the 

average expression of ELAVL3-bound genes also high in brain development 

(Figure 3E), demonstrating that the involvement of PTGR of ELAVL3 in early 
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brain development. we further examined the ∆PTGR of 159 ELAVL3-bound 

mRNAs and observed that these mRNAs were mainly increased stability in 

ASD and reduced stability in SCZ/BD (Fig. 3C). The GO analysis of the 

ELAVL3-bound mRNAs showed that these genes were significantly enriched 

in the biological processes of neurodevelopment, regulation of apoptotic 

process, neuron differentiation (Fig. 3D). Overall, our study implied the 

disruption of ELAVL3 may be one of the predominant risk factors that 

contribute to psychiatry-specific abnormal PTGR and provides a resource for 

mechanistic insight and therapeutic development. 
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Discussion 

In this study, we present a new algorithm and integrated it into the 

transcriptome big data of the brain across three major psychiatric disorders to 

reveal the abnormal pattern and significance of PTGR for the first time. 

The PTGR algorithm can be performed with any type of RNA-seq data 

set, for example, polyA RNA-Seq, single-cell RNA-Seq, whole RNA-Seq, to 

gain insights into the post-transcriptional regulatory mechanism responsible 

for the changes of gene expression. Notable, the accuracy of the PTGR 

estimate depends on the larger sample size, our method is more suitable for 

large sample data.  

RNA stability profiles across three diseases displayed that the aberrant 

PTGR changes give a new characteristic of each disorder, and PTGR changes 

have expanded the understanding of the pathogenesis of psychiatric disorders. 

The similar pattern of RNA stability between SCZ and BD in disease revealed 

their convergence at the PTGR level, and the reverse pattern on the RNA 

stability of between ASD and SCZ/BD showed the divergence of PTGR 

across three disorders. According to the shared and specific PTGR 

abnormalities of three diseases, we believe that SCZ and BD share the 

pathogenic mechanism, and the pathogenic mechanism of ASD is specific 

more than SCZ and BD. The convergence and divergence of mRNA stability 

across three diseases provide the theoretical basis for investigations targeting 

shared and specific disease mechanisms to link causal drivers with psychiatric 

disorders.  
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Gene expression and alternative splicing events are determined by both 

TGR and PTGR. However, there are limited studies to accurately assess the 

contributions of TGR and PTGR on changes in gene expression in psychiatric 

disorders. Our results found the effect of PTGR abnormality on gene 

expression in three common psychiatric disorders was 30% of that of TGR 

abnormality, suggesting that TGR changes exhibit larger effect sizes in 

diseased brain gene expression than TGR changes. However, our results found 

that the upstream regulatory factors were enriched in the DPRG, suggesting 

that abnormal PTGR in psychiatric disorders leads to abnormal expression of 

the upstream regulatory factors, which indirectly has a significant impact on 

downstream gene expression. Therefore, we hypothesized that PTGR and 

TGR might contribute equally to changes in gene expression of psychiatric 

disorders, and this finding brought the significance of the PTGR in psychiatric 

disorders to a higher level.  

The current understanding of the relationship between psychiatric 

disorders and PTGR mainly comes from the research of microRNAs 

(miRNAs), which regulate the degradation and translation of hundreds of 

mRNAs by binding to the 3 'non-coding region of mRNAs. Numerous well-

characterized miRNAs have been associated with psychiatric disorders, 

including miR-132, miR-195, miR-18a, miR-137, and so on. Although the 

influence of miRNAs and RBPs on PTGR has not been determined, existing 

studies have shown that RBPs are the all-around regulator of mRNA 

metabolism, and these findings suggest that RBPs play a non-negligible role 

in PTGR. Moreover, compared with transcription factors, RBPs regulate the 

end products of expression more directly, making RBPs a "new favorite" for 

drug intervention targets. The human genome encodes more than 800 RBPs 
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involved in the PTGR of mRNAs, yet only a small fraction has been 

functionally characterized. Encouragingly, our results identified many 

promising potential psychiatric susceptibility RBPs at the post-transcriptional 

regulation level. Ince-Dunn et al. performed a genome-wide analysis of nElavl 

targets and revealed that one function of nElavl is to control excitation-

inhibition balance in the brain32. Our results indicated ELAVL3 is a candidate 

RBP that plays a critical role in three psychiatric disorders, its activity 

increased in ASD, and in SCZ/BD activity decreased, resulting in cell 

apoptosis, neural development, and neuron differentiation of related genes 

mRNA stability aberrance. These observed suggesting that the PTGR 

mediated by ELAVL3 may be related to the excitation-inhibition imbalance 

and play an important role in the development of psychiatric disorders. Our 

results can help clarify the regulatory mechanism of RBP-mediated PTGR.  

In summary，we applied a new PTGR estimation method to RNA 

sequencing data of 2160 brain samples from ASD, SCZ, and BD, as well as 

controls individuals. We found that SCZ and BD shared a similar abnormal 

pattern of the PTGR, whereas ASD has a specific abnormality of PTGR，

revealing the regularity of PTGR abnormality in three psychiatric disorders. 

Besides, our results identified RBPs that play a critical role in psychiatric 

disorders, suggesting that the abnormalities of RBP-mediated PTGR may 

contribute to the development of psychiatric disorders. These findings bring 

new strategies for mechanistic insight and disease therapeutic development. 
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Figure 1.  New algorithm for PTGR estimation.  

(A) Theoretical basis schematic diagram of PTGR estimation algorithm (left). 

The fraction of exonic reads and intronic reads in PsychENCODE bulk RNA-

Seq dataset is shows in the pie chart. (right). The intronic reads represent the 

expression of pre-mRNAs, and the exonic reads represent the expression of 

mature- mRNAs. (B) Schematic diagrams of PTGR estimation method. 

Scatter plots comparing PTGR of disease (left) and control(right). Y axis 

represents the changes of exonic reads. X axis represents the changes of 

intronic reads. Each dot represents a sample, and the solid line represents fitted 

line.  (C) Density plot for miR-9 seed sequence enrichments in genes of 

miR-9 knockdown (left) and miR-9 overexpression (right). Y axis represents 

the changes of exonic reads. X axis represents the changes of intronic reads. 

Each dot represents a gene, and the color represents the degree of enrichment 

of genes with miR-9 seed sequence in the 3’UTR, with red representing 

enrichment and blue representing depletion. (D) Comparison of 

REMBRANDTS (left) and new PTGR algorithm (right). The violin plot 

shows the ratio of change of PTGR in disease vs. control to change of TGR in 

disease vs. control. The three lines within the violin plot represent the 75%, 

median, and 25% percentiles from up to bottom. ASD, BD and SCZ are 

respectively displayed in red, green and blue. 
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Figure 2. Dysregulation of PTGR in psychiatric disorders.  

(A) Density plot of ∆PTGR distribution within the whole genome genes in 

three diseases. The ∆PTGR > 0 represents the increase of RNA stability 

(disease vs. control), whereas ∆PTGR < 0 represents the decrease of RNA 

stability (disease vs. control). (B) Venn diagram showing cross-disorder 

overlap for genes with significantly differential PTGR (FDR < 0.05). ASD, 

BD and SCZ are displayed in red, green and blue, respectively. (C) The scatter 

plot shows the degree of correlation of ∆PTGR between diseases. Each dot 

represents a gene. The color represents the localized density of genes. Red 

represents high gene density, and the blue represents low gene density. The 

dotted line represents fitted line. (D) Gene ontology enrichments are shown 

for up-regulated gene of PTGR in each disorder. Numbers in parentheses 

represent the count of genes in each disorder. (E) Gene ontology enrichments 

are shown for down regulated gene of PTGR in each disorder. Numbers in 

parentheses represent the count of genes in each disorder. (F) The bar plot 

shows the enrichment degree of regulatory elements AREs(up) and 

transcription factors(bottom) in DPRGs and DEGs in three diseases. 
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Figure 3. Disease-specific top candidate RBPs that modulate RNA 

stability in psychiatric disorders.  

(A) RBPs that are significantly associated with disease-specific mRNA 

stability are shown (FDR < 0.05, t-test of regression coefficients). From up to 

bottom, there are identified RBPs in ASD, BD and SCZ. The left bar plot 

shows the predicted key RBPs, the corresponding RBP binding motif. Y axis 

within the left bar plot represents the average PTGR of predicted RBPs-bound 

genes in disease vs. control. The right bar chart shows the average log2fold-

change of the expression of RBP in disease vs. control. (B) Plot of 

spatiotemporal expression of ELAVL3 in human brain. (C) Heatmap shows 

the relative RNA stability of 159 predicted ELAVL3-bound genes in three 

diseases. The ∆PTGR represents the changes of PTGR of 159 predicted 

ELAVL3-bound genes in disease vs. control. (D) Enrichment analysis of 

ELAVL3-bound genes. Each color represents a kind of biological process 

category. (E) The box plot shows the average expression of 159 ELAVL3-

bound genes at different developmental stages. The stages windows of W1-9 

correspond to the developmental time windows in Figure 3 (B). 
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