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Abstract

Background Metabolic network models are increasingly being used in health care and
industry. As a consequence, many tools have been released to automate their
reconstruction process de novo. In order to enable gene deletion simulations and
integration of gene expression data, these networks must include gene-protein-reaction
(GPR) rules, which describe with a Boolean logic relationships between the gene
products (e.g., enzyme isoforms or subunits) associated with the catalysis of a given
reaction. Nevertheless, the reconstruction of GPRs still remains a largely manual and
time consuming process. Aiming at fully automating the reconstruction process of
GPRs for any organism, we propose the open-source python-based framework GPRuler.

Results By mining text and data from 9 different biological databases, GPRuler can
reconstruct GPRs starting either from just the name of the target organism or from an
existing metabolic model. The performance of the developed tool is evaluated at
small-scale level for a manually curated metabolic model, and at genome-scale level for
three metabolic models related to Homo sapiens and Saccharomyces cerevisiae
organisms. By exploiting these models as benchmarks, the proposed tool shown its
ability to reproduce the original GPR rules with a high level of accuracy. In all the
tested scenarios, after a manual investigation of the mismatches between the rules
proposed by GPRuler and the original ones, the proposed approach revealed to be in
many cases more accurate than the original models.

Conclusions By complementing existing tools for metabolic network reconstruction
with the possibility to reconstruct GPRs quickly and with a few resources,
GPRuler paves the way to the study of context-specific metabolic networks, representing
the active portion of the complete network in given conditions, for organisms of
industrial or biomedical interest that have not been characterized metabolically yet.
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Background

Current advances in genome sequencing technologies enable a fast and cheap overview
into the genetic composition of virtually any organism. Nevertheless, determining the
global metabolic profile of a cell or organism is fundamental to provide a comprehensive
readout of its functional state, resulting from the interplay between genome,
biochemistry and environment. In this context, genome-scale metabolic models (GEMs)
offer a systemic overview for the investigation of cell metabolic potential, because of
their key feature of embracing all available knowledge about the biochemical
transformations taking place in a given cell or organism [1].

Over the years, extensive efforts have been made to automate the reconstruction
process of these models, reaching high levels of quality and detail. However, less
attention has been dedicated to clarify the associations among the set of genes involved
in the catalysis of a given reaction.

According to the underlying catalytic mechanism, metabolic reactions can be
classified as non-enzymatic and enzymatic. In the first scenario, metabolic reactions
occur either spontaneously or small molecule catalyzed, implying that no gene is
necessary for their catalysis. In the second case, enzymatic reactions occur only
catalyzed by specific enzymes, which are protein macromolecules that are specifically
responsible for reactions catalysis [2]. From the structural point of view, an enzyme may
be classified as either monomeric or oligomeric entity. In its monomeric state, an
enzyme consists of a single subunit, implying that a single gene is responsible of its final
state. In this scenario, different protein isoforms representing highly related gene
products differing in either their biological activity, regulatory properties, intracellular
location, or spatio-temporal expression may alternatively catalyze the same function
and, hence, the same reaction [3]. Conversely, in its oligomeric state, enzymes are
protein complexes including multiple subunits that are all necessarily required to allow
the corresponding reaction to be catalyzed.

In GEMs, the associations between genes, proteins and reactions and the description
of how gene products concur to catalyze the associated reaction are usually encoded
through logical expressions typically referred to as gene-protein-reaction (GPR) rules
(Figure 1). GPR rules use the AND operator to join genes encoding for different subunits
of the same enzyme, and the OR operator to join genes encoding for distinct protein
isoforms of the same enzyme or subunit. Combining these two operators into
expressions allow complex scenarios to be described, such as multiple oligomeric
enzymes behaving as isoforms due to the sharing of a common part and to the presence
of one or more subunits constituting distinctive features of the different isoforms.

The reconstruction of GPR rules for their integration within metabolic networks
does not constitute a novel task in literature. A Pubmed search of the last twenty years
using the following four queries “gene-protein-reaction rules”,
“gene-protein-reaction associations”, “GPR rules” and “GPR associations”
returned 52 papers dealing with this issue. We reconstructed a network to analyse their
citation status highlighting the most adopted strategies and data sources, as reported in
Figure 2. Apparently, the most exploited sources are biological databases such as
KEGG [4], UniProt [5], STRING [6] and MetaCyc [7], as well as genome
annotations [8, 9], biochemical evidence presented in journal publications and
reviews [10–12], and GPRs of closely related organisms [13]. The analysed articles also
include work that relies exclusively on manual reconstruction of GPR rules, as e.g. [14],
and work that limits to reconstruct one-to-one associations between genes and reactions
rather than logical relationships among genes, proteins, and reactions [15].

Our analysis of literature also highlighted the existing formally defined pipelines for
the automatic generation of GPR rules within metabolic networks. The most cited one
is SimPheny [16], which is a closed source industrial software application developed by

2/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.28.433152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.28.433152
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Logic of GPR rules. A metaphorical representation is exploited to explain
the meaning of the AND and OR operators used in the reconstruction of GPR rules. In
the box on the left named ”Enzyme subunits“, the AND operator joins genes encoding
for different subunits of the same enzyme. Metaphorically, the head and tail of the
key represent the subunits of the same enzyme. Both parts of the key are required to
open the door, and the lack of one of the two parts precludes the opening of the door.
Biologically speaking, when both the subunits forming the enzyme are available, the
enzyme can catalyse the reaction where it is involved. In the box on the right named
”Enzyme isoforms“, the OR operator joins genes encoding for different isoforms of the
same enzyme. In this case, two distinct keys representing the enzyme isoforms can
alternatively open the door. Differently from the previous situation, just one of the two
isoforms is sufficient to catalyse the reaction.

the Genomatica company for the creation, enrichment and analysis of genome-scale
metabolic models. In spite of its large use in literature, SimPheny is of difficult
applicability, given that it is not released as independent product by the company. In
view of its closed nature, it is not even possible to assess the strategy and information
sources used by the tool, nor the automation level.

Two more recently implemented software have been made available that aim at
reconstructing genome-scale metabolic networks for any target organism with the
possibility to enrich them by creating the corresponding GPR associations: the RAVEN
Toolbox 2.0 [17] and merlin [18].

The RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks)
Toolbox 2.0 is a MATLAB-based tool for constraint-based metabolic modelling [17] that
assists de novo semi-automated draft model reconstructions for given target organisms
starting from genome sequence, including the possibility to automatically reconstruct
their GPR rules. The complete pipeline can be executed starting from the genome
sequencing of a given organism. Nevertheless, to our knowledge, the metabolic network
draft returned by the tool does include information on the genes associated with each
reactions but omits information on the relationships among the genes, which are joined
together by OR boolean operators, regardless of whether their products are subunits or
isoforms. Hence, substantial and time-consuming manual contribution is required to
obtain the correct final GPRs.

The Metabolic Models Reconstruction Using Genome-Scale Information (merlin) is
an open source software equipped with graphical interface to guide the user along all
the proposed features in terms of genome-scale metabolic network reconstruction from
genome annotation and implementation of the corresponding GPR associations through
the usage of KEGG Orthology data. The graphical interface extends its applicability to

3/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.28.433152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.28.433152
http://creativecommons.org/licenses/by-nc-nd/4.0/


a wide range of users since programming skills are not demanded. Nevertheless, during
our testing, the software failed in automatically creating GPR associations for the target
organism Haloferax volcanii DS2 suggested in the tool tutorial, with empty rules
associated to all tested reactions.

In view of the above, we propose a new methodology called GPRuler to efficiently
automate the reconstruction process of GPR rules within metabolic networks of given
organisms. In particular, we want to guarantee a white box among the currently
available tools in order to introduce an open-source, clear and reproducible pipeline that
can be applicable to any organism independently of its genome size, where the manual
intervention is minimized in favour of an automatic information retrieval and managing.
To achieve our aim, we rely on an extra available source not yet exploited by state of
the art, which is the Complex Portal [19] database, which contain information about
protein-protein interactions and protein macromolecular complexes established by given
genes.

Methods

Tool implementation

GPRuler has been implemented in Python programming language, by using the 3.7
version. The overall GPRuler pipeline can be executed starting from two alternative
inputs. In the first case, an already available draft SBML model or a simple list of
reactions lacking the corresponding GPR rules can be provided. In the second case,
GPRuler takes as exclusive input the name of the organism of interest. In both cases,
the inputs are firstly processed to obtain the list of metabolic genes associated with
each metabolic reaction in the target organism/model. This intermediate output is then
used as input for the core pipeline, which returns as ultimate output the GPR rule of
each metabolic reactions.

The overall proposed pipeline is graphically summarized in Figure 3, and its
sequential execution steps are detailed in the following and in Figure 4.

From reactions list to annotated metabolic genes

GPRuler can handle the scenario where a metabolic model has already been
reconstructed in terms of included biochemical reactions, but information on the
associated genes and, of course, on GPR rules is not available yet.

In order to reconstruct this information, five biological databases are exploited:
MetaCyc, KEGG, Rhea [20], the Chemical Entities of Biological Interest (ChEBI) [21],
the Transporter Classification Database (TCDB) [22]. Firstly, all data available in these
databases regarding the target organism, in their most recent version, are downloaded
in order to speed up all the subsequent steps and, overall, the entire pipeline.

To get the set of genes involved in the catalysis of a given input reactions, cross-links
identifiers to the above mentioned databases must be retrieved. To this aim,
GPRuler identifies the metabolites involved in the reaction in primis (Figure 4,
Metabolites identification green box), by using the ChEBI database as primary
source, which is an open source dictionary about any distinguishable molecular entity
naturally or synthetically produced involved in living organisms processes. Additionally
to all the provided information about name, identifier, synonyms and direct links to the
entries in KEGG and MetaCyc databases, we exploited two other information obtained
from ChEBI: the IUPAC International Chemical Identifier (InChI) and the ChEBI
ontology. The InChi is an alphanumeric string providing a unique digital signature to
any compound based on its structural representation. The ChEBI ontology is a tree-like
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description of structurally related compounds, which are included in increasingly more
general categories.

Metabolites are also identified in our pipeline through the MetaCyc database, which
is a curated database of experimentally derived metabolic pathways involved in both
primary and secondary metabolism, and of their associated metabolites, reactions, and
genes. The PythonCyc package provided a Python interface to Pathway Tools, which is
bioinformatics software accessing to all the information available in MetaCyc database.

Finally, KEGG COMPOUND and KEGG GLYCAN databases are queried to
retrieve data about all the compounds annotated in this database, including links to
external database such as ChEBI. KEGG is a biological resource consisting of multiple
cross-linked databases that collect information relative to genes, enzymes, compounds,
reactions and pathways.

Once the stored compounds data in ChEBI, MetaCyc and KEGG are extracted, the
FuzzyWuzzy Python package is used for string matching between the target metabolite
and a list of strings. Leveraging the Levenshtein distance to compute the similarity score
between strings, the FuzzyWuzzy package extract the best matches to the target string.

Once the metabolites involved in each reaction of the input list have been assigned a
proper identifier, GPRuler determines the reaction identifiers (Figure 4, Reactions
identification green box), as annotated in KEGG REACTION, MetaCyc and Rhea
database. Rhea is an expert-curated biochemical reactions resource using the chemical
dictionary from ChEBI to describe reaction participants. Rhea is currently linked to
several resources including UniProtKB, KEGG and MetaCyc.

In view of the fact that the three considered reaction databases are not completely
independent one from another, as first action before querying them, our pipeline joins
them in what we refer to as macro database. This macro database includes the union of
the biochemical reactions present in each of the examined databases. In case the same
reaction is found in multiple resources, it is represented as a unique object
encompassing all the available annotated information about the reaction. Each reaction
entry will include the corresponding set of reactants and products, cross-links to
external resources and the list of corresponding EC numbers and catalyzing genes, from
each of the consulted databases.

The macro database is then queried to infer for each input reaction the
corresponding identifier and hence the corresponding annotated list of genes (Figure 4,
Genes identification green box). Target reactions can be splitted in two kinds:
internal, i.e. taking place within a given compartment inside the model, and transport,
i.e. moving metabolites across compartments. For internal reactions, to retrieve the
identifier it is sufficient to search for a reaction in the macro database that shares the
same reactants and products.

For transport reactions, to retrieve the identifier it is necessary to query the TCDB
database in addition to the macro database. The TCDB is a freely accessible database
for transport proteins providing structural, functional, and evolutionary information
about transporters from organisms of all types. This database is based on the
Transporter Classification (TC) system, which is an approved classification system for
membrane transport proteins analogous to the Enzyme Commission (EC) system used
for the enzymes, except that it also includes functional and phylogenetic information.
Exploiting the mapping provided by TCDB between the TC systems and the substrates
annotated to be transported, TC codes for the target transport reaction are identified
and the corresponding list of genes is isolated.

Finally, the identified list of genes of each reaction is then filtered to only keep
entries whose subcellular location information is in accordance with those associated by
the user to the reaction (Figure 4, Genes filter green box). Annotations about gene
products localizations are inferred from Uniprot database and the Gene Ontology (GO)
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knowledgebase [23,24], which provides an organism-independent description of genes
and gene products in terms of biological processes to which the gene or gene product
takes part, associated molecular functions and cellular components that refers to the cell
location where a gene product is active. Each available annotation is associated to an
evidence code indicating if the annotation is manually or computationally assigned to a
particular term. Subcellular locations deriving from manual annotation are preferred
over those deriving from automatic predictions.

From organism name to the annotated metabolic genes and
reactions

When the input is the name of a target organism, GPRuler seeks to retrieve all
annotated metabolic genes of this organism, by accessing the KEGG database resource.

The first step of GPRruler is the determination of the KEGG identification code
corresponding to the target organism’s name typed by the user. The user may be asked
to disambiguate among a list of possible candidates codes.

The unambiguous identification of the target organism is then exploited to look for
the corresponding list of genes involved in metabolic reactions catalysis (Figure 4,
Genes identification blue box). In particular, the KEGG GENOME database is
firstly queried to retrieve the complete reference genome sequences of the target
organism. In order to isolate only metabolic actors, the KEGG BRITE functional
hierarchy is used to filter out all the non-metabolic genes, whereas the KEGG
REACTION database is queried to extract from the remaining ones the corresponding
list of biochemical reactions involving them (Figure 4, Reactions identification

blue box). Programmatical access to all data stored in KEGG database is performed
thanks to the Bioservices Python package [25]. The macro database described in the
previously section is also queried to enrich the selected list of reactions in terms of the
corresponding annotated genes. Finally, the identified list of genes retrieved for each
reaction is filtered according to their annotation of subcellular location from Uniprot
and Gene Ontology, as already described (Figure 4, Genes filter blue box).

Retrieving protein quaternary structures and protein-protein
interactions from Uniprot

To characterize the relationships among the metabolic genes isolated in the previous
steps of the pipeline and reconstruct the GPR rules (Figure 4, GPR rules

reconstruction orange box), GPRuler relies on the information included in the
Uniprot database and in particular in the “Interaction” section. Uniprot is an
open-source database that provides a collection of manually and computationally
determined functional annotations about proteins. Among the available data, the
“Interaction” section organises in multiple subsections information about the quaternary
structure of proteins and the set of binary protein-protein interactions established with
other proteins or protein complexes. In particular, interchangeable participants and/or
different chains or subunits belonging to the same complex are referenced through their
gene names within a textual description.

For each metabolic gene associated with a reaction, GPRuler access the “Interaction”
section of the Uniprot database to perform text mining, aiming at extracting, relatively
to the input metabolic gene product, the list of genes participating in the same protein
complexes, together with genes coding for isoforms. To guide the process of data
extraction, we first identified the textual expressions containing relevant information. In
this regard, we used the nltk Python library to tokenize the textual description of the
“Interaction” section of investigated proteins and to carry out a frequency analysis,
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leaving aside the stop words that appeared frequently without conveying any meaning
about the entire text. A frequency analysis of the remaining words highlighted the key
words that, with the highest frequency count, guided in the extraction of the target
information [26].

In particular, the analysis of a random set of genes belonging to two of the most
annotated and known organisms, namely Homo sapiens and the yeast Saccharomyces
cerevisiae, revealed the following four terms as top words: complex, component,
interact, and by similarity. These key terms allow to identify, within the analysed
texts, protein-coding genes that participate in the same protein complex of the queried
protein, or that establish binary protein-protein interactions with it. These interactions
are automatically derived from the IntAct Molecular Interaction Database [27], where
all protein-protein interactions result from literature curation or manual user submission.
In addition, manually curated information about protein-protein interactions derived
from experimentally characterized proteins in closely related species and propagated to
the target one, is also considered. In addition to the analysis of monograms, different
length n-grams allowed to identify more extended expressions to enrich the search for
target information in the “Interaction” section of Uniprot database. Among them,
“interact with”, “part of a complex with”, “consist of”, “associate with”,
“heteromerization with” represent some of the identified expressions.

In addition to the “Interaction” section, the “Function” section of the Uniprot
database has been considered for text mining due to its role of describing
isoform-specific functions or functionalities associated to the investigated protein as
precursor of protein complexes. Information retrieval underwent the same initial text
processing described ahead.

Programmatic access to data stored in Uniprot database is performed via the
Bioservices package.

Retrieving protein macromolecular complexes from Complex
Portal

In addition to textual annotation of proteins, Uniprot database also offers
cross-references to other biological databases storing data about protein-protein
interactions.

Among them, Complex Portal is a manually curated database of macromolecular
complexes relative to 21 key organisms representative of different taxonomic groups,
including Homo sapiens, Mus musculus, Saccharomyces cerevisiae, Escherichia coli,
Arabidopsis thaliana, Caenorhabditis elegans. All the included data derive from both
physical and molecular interaction evidences resulting from literature search and
manual inference from scientific background or homolog information in closely related
species. Identifiers of protein complexes established by each input metabolic gene
product are firstly extracted from the Uniprot search and access to Complex Portal
data is achieved thanks to the Python requests and json libraries in order to extract all
the components constituting the investigated complexes.

Retrieving known and predicted protein-protein interactions
from STRING

Another cross-referenced database to Uniprot about protein-protein interactions is
STRING database. STRING is a database with a high coverage in terms of both
annotated proteins and organisms, that deal with physical and functional associations
for specific target proteins resulting from data integration of publicly available
protein–protein interaction sources, including inference of functional associations
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between genes from genomic-context predictions, genome-scale laboratory experiments,
gene co-expressions, co-citation analysis of scientific texts, manually curated interactions
from other biological databases, knowledge transfer between organisms. The available
knowledge is further complemented with computational predictions.

The programmatic access to STRING database is made possible by the STRING
application programming interface (API). Among the implemented functionalities,
“retrieving the interaction network” and “performing functional enrichment” are used to
extract other protein-coding genes constituting a complex with the queried protein. In
particular, the “retrieving the interaction network” method allows to retrieve the
interaction network established by the target protein. Once this network is obtained,
the “performing functional enrichment” method allows to perform functional enrichment
analysis for each one of the selected proteins by mapping them onto several databases,
including Gene Ontology, KEGG pathways, UniProt Keywords, PubMed publications,
Pfam domains, InterPro domains and SMART domains. Thanks to this method it is
possible to select, from the proteins included in the extracted interaction network, those
belonging to the same protein complexes of the input queried protein.

Retrieving protein isoforms from KEGG

Another type of relationship among genes involved in a given reaction that must be
reconstructed is the possible existence of protein isoforms. In this regard, KEGG
Orthology database, which belongs to the collection of databases included in KEGG
database, is a database of functional orthologs, which have been defined based on their
molecular functions by exploiting experimentally characterized genes or proteins with
similar sequences in other organisms. From the KEGG gene identifier under
investigation, it is possible to trace back to the associated KEGG Orthology identifier
that returns for the specific organism under investigation the set of genes having this
identifier, which are grouped together because of molecular functions similarity.
Similarly to Uniprot, Bioservices package is used to programmatically access KEGG
ORTHOLOGY database and automatically extract all the necessary information. In
case that genes identifiers are not expressed as KEGG identifiers, a converter from
external databases to KEGG database is provided by exploiting specific functionalities
of Bioservices.

Joining all retrieved information to generate final GPR rules

In the last step of GPRuler, all the data retrieved in the previous four steps is used to
list, for each queried gene, the genes coding for subunits of the same protein complex to
which the target gene belongs to or for alternative protein isoforms. Once this
information is available, it needs to be organized to generate the final GPR rule. In this
regard, all the possible pairs of genes associated to a given reaction are linked with either
an AND or OR operator according to the type of relationship between them that has been
previously inferred by GPRuler. In particular, the AND operator is assigned if the two
genes encode for different subunits of the responsible enzyme, whereas the OR operator
is assigned if they encode for alternative protein isoforms of the associated enzyme. In
the simplest scenarios all the involved genes encode for isoforms of the same enzyme or
they all encode for distinct subunits of the same enzyme. In a more heterogeneous
scenario, in which both enzyme subunits and isoforms are present, GPRruler firstly
joins genes related by an AND operator and enclose them in separated parentheses and
then all the information about genes encoding for protein isoforms is included.
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Results

The core ability of GPRuler is to determine the GPR rule associated to each reaction. It
follows that determining the right relationships among the involved genes (i.e.,
reconstruct the GPR rule) takes priority in validating the tool. To assess the degree of
confidence of the reconstructed GPR rules and hence the accuracy of GPRuler, we
exploited four curated metabolic models as ground truth.

According to the type of relationships established among genes involved in a given
reaction, GPR rules can be categorized into five classes. In the simplest case, reactions
can be associated to empty rules (here labelled as “No gene” rules) when no gene is
involved in reaction catalysis, or to single gene rules (here labelled as “One gene” rules)
when a unique gene is responsible for reaction catalysis. In these cases, minimum effort
from GPRuler is required because the final GPR rule will simply correspond,
respectively, to an empty string and to a rule involving the unique responsible gene.

An active role of our approach is played over more complex situations when multiple
genes are involved in reaction catalysis generating the here labelled “Multi gene” rules,
where the necessity to determine the right relationships among the involved genes takes
place. In particular, “Multi gene” GPR rules can be characterized by just OR operators
among genes (here labelled as “OR” rules), by just AND operators (here labelled as
“AND” rules), or by both AND and OR operators in the most intricate scenarios (here
labelled as “Mixed” rules).

We executed GPRuler by using a workstation equipped with 72 Intel Xeon 2.60GHz
cpus and a TB of memory.

Performance evaluation of GPRuler on a manually curated core
model

We firstly assessed the accuracy of GPRuler in reconstructing the GPR rules of
HMRcore model, which is a core model of central carbon metabolism that we extracted
from the genome-wide HMR metabolic model [28] and we subsequently introduced and
curated in [29–32]. We decided to use this model as benchmark to evaluate the
performance of our approach because of the manually curated GPR rules associated to
its reactions. Moreover, given the huge size of genome-scale models and the difficulty to
control all the included GPRs, starting from a core model allowed a tighter control of
the output.

HMRcore model consists of 315 reactions that, according to the previous GPR
classification, are mainly associated to single gene rules representing the 45.7%. The
remaining rules are 16.5% classified as “No gene” and 37.8% as “Multi gene”. The
newly generated GPR rules has been compared with the corresponding ones in the
original HMRcore model as follows. We reconstructed for each comparison the truth
table undergoing the boolean expression of both the original and the new GPR rules by
using the involved n genes as input variables. Considering that each variable can
assume values equal to 1 (True) or 0 (False), the resulting truth table shows all the
possible 2n input combinations. Each input combination is then exploited to solve the
two logic expressions under evaluation. After that, the resulting outputs are saved in a
vector and add to the two truth matrices. The difference of the original and the newly
generated GPR rule matrices will return 0 only when a perfect match between the two
rules under comparison is obtained. In the opposite case, when a value different from 0
is obtained, a more or less wide discrepancy between the two input rules is achieved. It
is worth noting that comparison of rules exceeding 20 genes needs to be manually
evaluated because of the undergoing computationally expensive problem. The
automated comparison is then followed by manual inspection of the negative matches in
order to reveal false negatives due to cases where the rule generated by
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GPRuler updates the original counterpart in the tested model according to the
biological knowledge from the explored databases.

In case of HMRcore model, the application of GPRuler on the reactions included in
this model and the subsequent comparison with those stored in the original model,
produced a perfect match for 110 of the 315 examined reactions, corresponding to a
total of 34.9%. Considering the category of each rule, we correctly inferred 26.9% of
“No gene” rules (14 out of a total of 52), 46.5% of the “One gene” rules (67 out of a total
of 144), 15.4% of “AND” rules (2 out of a total of 13), 31.4% of the “OR” rules (27 out
of a total of 86), and none of the 20 “Mixed” rules.

Following a manual deep analysis of the 205 wrongly obtained GPR rules
(representing the 65.1% of total reactions of HMRcore model) compared to their original
counterparts, 148 rules turned out to be replaceable with those generated through our
methodology because in line with the information stored in the exploited databases.
Thanks to this manual curation, the percentage of correctly predicted GPR rules of
HMRcore increased from 34.9% to 81.9% (as shown in Figure 5A), reaching the 100% of
the GPRs that can be automatically constructed. In particular, we curated 38 rules
afferent to the “No gene” category by increasing the corresponding coverage to 100%
(52 out of a total of 52), 68 rules afferent to the “One gene” category by increasing the
corresponding coverage to 93.8% (135 out of a total of 144), 1 rule afferent to the “AND”
category by increasing the corresponding coverage to 23.1% (3 out of a total of 13), 41
rules afferent to the “OR” category by increasing the corresponding coverage to 79.1%
(68 out of a total of 86), and none of the 20 “Mixed” rules. In Figure 5B, a detailed
overview of the automatically reconstructed rules is reported.

The execution time of GPRruler on HMRcore was 2 hours and 24 minutes. The
complete list of GPR rules generated by GPRuler for HMRcore model is available in the
Additional file 2.

Performance evaluation of GPRuler on annotated genome-scale
metabolic models

In light of the positive outcomes achieved with a small metabolic model of manually
curated GPR rules, we extended the application of GPRuler at the genome-scale level for
two of the most known and studied organisms, which are Homo sapiens and the yeast
Saccharomyces cerevisiae. By considering the high level of knowledge of these organisms,
we are confident in the accuracy and curation level of the GPR rules reconstructed for
their metabolic reactions, whose generation derived from the integration of multiple
biological databases, including SGD, BioCyc, Reactome, KEGG and UniProt.

The first considered genome-scale metabolic model is Recon3D [33], which is the
most updated version of human metabolism. Recon3D model consists of 13543 reactions
that, according to the previous GPR classification are mainly associated to single gene
rules representing the 43.3%. The remaining rules consist of 28.2% “No gene” rules and
28.5% “Multi gene” rules.

The application of GPRuler on the reactions included in this model and the
subsequent comparison with those stored in the original model produced a perfect
match for 4378 of the 13543 examined reactions, corresponding to a total of 32.3%. In
particular, considering the subcategory to which the obtained rules belong according to
the included boolean operators, we correctly inferred 60.7% of “No gene” rules (3565
out of a total of 5867), 13.3% of the “One gene” rules (507 out of a total of 3821), 1.6%
of “AND” rules (4 out of a total of 254), 8.9% of the “OR” rules (299 out of a total of
3345), and 1.2% of the “Mixed” rules (3 out of a total of 256).

Following the same procedure discussed in the previous section to understand the
reason of the negative response returned by the remaining 9165 reactions (67.7%), we
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carried out a manual deep analysis by comparing the wrongly obtained GPR rules with
their original counterparts. Unexpectedly, 5039 of the examined 9165 rules turned out
to be replaceable in Recon3D model with those generated through our methodology
because in line with the information stored in the exploited databases. Thanks to this
manual curation, the percentage of total correctly predicted GPR rules of Recon3D
increased from 32.3% to 69.5% (as shown in Figure 5A), reaching the 100% coverage of
the GPRs that can be automatically reconstructed. More in detail, we curated 2301
rules afferent to the “No gene” category by increasing the corresponding coverage to
99.9% (5866 out of a total of 5867), 1574 rules afferent to the “One gene” category by
increasing the corresponding coverage to 54.5% (2081 out of a total of 3821), 44 rules
afferent to the “AND” category by increasing the corresponding coverage to 18.9% (48
out of a total of 254), 1081 rules afferent to the “OR” category by increasing the
corresponding coverage to 41.2% (1380 out of a total of 3345), and 39 rules afferent to
“Mixed” category by increasing the corresponding coverage to 16.4% (42 out of a total of
256). In Figure 5C, a detailed overview of the automatically reconstructed rules is
reported.

A consideration about the examined rules in Recon3D model concerns some
scenarios that should be revised in the original model independently of their comparison
with rules generated from our approach.

A first case regards the two reactions labelled in Recon3D model as “2OXOADOXm”
and “AKGDm”. GPR rules of these reactions did not result in completely accordance with
the corresponding rule reconstructed through GPRuler due to the inclusion of the
PDHX gene. A manual investigation of HumanCyc database [34] highlighted the
affiliation of this gene to another protein complex different from the one involved in the
reactions catalysis, which is the pyruvate dehydrogenase. Similarly, “GLXO1” reactions
includes all genes corresponding to a different enzyme compared to the involved one.
Consequently, inclusion of these genes in the current rules should be reviewed.

A second and consistent set of reactions was found to have contradictory GPR rules
due to AND and OR operators simultaneously joining same genes. On behalf of this
scenario, the reactions of Recon3D model labelled as “AHEXASE2ly”, “AHEXASEly”,
“NDPK10”, “NDPK1” and “PFK” fall in this category. The most likely explanation of this
behavior is the automatic generation of GPR rules successively missing a manual
curation. Alongside with this hypothesis, a biological explanation of contradictory genes
relationships might emerge in relation to alternative forms of the same enzyme. In these
situations, the usage of parentheses within the logical expression becomes fundamental
to discriminate automatic from biological annotations.

A last scenario emerged from the analysis of Recon3D model regards the reactions
labelled as “GUACYC”, “CREATt4 2 r”, “GLYKm”, “GUACYC”, “HPCLxm”, “NOS1”, “NOS2”,
“r0400”, “r0924”, “MTHFC”, “PSP L”, “TPI”, “r0345”, “GLYK”, “FTHFL”, “MTHFD2”,
“HMR 2041”, and “HMR 4790”. In this cases, comparison of the original GPR rule with
GPRuler showed the need for a revision of the included gene identifiers. In all these
reactions, genes no longer existing due to dismissal of their identifiers preventing the
correct determination of the rule under consideration are included.

The execution time of GPRuler on Recon3D model was 231 hours and 33 minutes.
The complete list of GPR rules generated by GPRuler for Recon3D model is available in
the Additional file 3.

The other two genome-scale models considered for the performance testing of
GPRuler are Yeast 7 and Yeast 8 models, which are the last two releases of S. cerevisiae
genome-scale metabolism. The application of the pipeline to these two models returns
comparable results between them.

Yeast 7 consists of 3493 reactions whose GPR rules resulted mostly categorized as
“No gene” (34.1%) and “One gene” (48.7%). The remaining 17.2% consists of “Multi
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gene” rules. GPRuler applied to the reactions included in Yeast 7 proved to be able to
perfectly reconstruct 1600 GPR rules, representing the 45.8% of the rules stored in the
model. In particular, considering the category of each rule, we correctly inferred 69.6%
of “No gene” rules (829 out of a total of 1191), 40.6% of the “One gene” rules (691 out
of a total of 1701), 7.1% of “AND” rules (11 out of a total of 156), 17.1% of the “OR”
rules (69 out of a total of 403), and none of the “Mixed” rules.

As in the previously discussed models analysis, manual investigation of generated
GPR rules that negatively matched their counterpart in the original Yeast 7 model
allowed to highlight all the cases where the newly reconstructed rule better fits the
biology of the involved genes. Thanks to this manual curation, the global performance of
GPRuler increased up to 70.5% (as shown in Figure 5A), totally covering the percentage
of rule that can be automatically generated. The curation process of these 1893 rules
revealed that 861 of them resulted better in line with the information stored in the
exploited databases after their generation with GPRuler. More in detail, we curated 362
rules afferent to “No gene” category by increasing the corresponding coverage to 100%
(1191 out of a total of 1191), 328 rules afferent to “One gene” category by increasing the
corresponding coverage to 59.9% (1019 out of a total of 1701), 8 rules afferent to “AND”
category by increasing the corresponding coverage to 12.2% (19 out of a total of 156),
154 rules afferent to “OR” category by increasing the corresponding coverage to 55.3%
(223 out of a total of 403), and 9 rules afferent to “Mixed” category by increasing the
corresponding coverage to 21.4% (9 out of a total of 42). In Figure 5D, a detailed
overview of the automatically reconstructed rules is reported.

The execution time of GPRuler on Yeast 7 model was 14 hours and 2 minutes. The
complete list of GPR rules generated by GPRuler for Yeast 7 model is available in the
Additional file 4.

The updated model version of Yeast 7, namely Yeast 8, is a little bit larger than its
predecessor since it consists of 3991 reactions. GPR rules classification showed that “No
gene” and “One gene” rules cover, respectively, 34.5% and 47.4% of all the metabolic
reactions included into the model, and “Mixed” rules cover the 18.1%. The execution of
GPRuler perfectly reconstructed 1182 GPR rules, representing the 47.2% of the rules
stored in the model. In particular, considering the category of each rule, we correctly
inferred 74.9% of “No gene” rules (1032 out of a total of 1377), 39.7% of the “One gene”
rules (751 out of a total of 1892), 5.5% of “AND” rules (9 out of a total of 163), 17.5%
of the “OR” rules (90 out of a total of 513), and none of the “Mixed” rules.

The manual curation of the negatively matched GPR rules as in the previously
presented models revealed, similarly to Yeast 7, the ability to correctly reconstruct the
71.4% of the model rules (as shown in Figure 5A), covering the 100% of rules that can
automatically generated. Going into detail of the obtained GPRs, we correctly inferred
345 rules afferent to “No gene” category by increasing the corresponding coverage to
100% (1377 out of a total of 1377), 402 rules afferent to “One gene” category by
increasing the corresponding coverage to 60.9% (1153 out of a total of 1892), 16 rules
afferent to “AND” category by increasing the corresponding coverage to 15.3% (25 out
of a total of 163), 194 rules afferent to “OR” category by increasing the corresponding
coverage to 55.4% (284 out of a total of 513), and 10 rules afferent to “Mixed” category
by increasing the corresponding coverage to 21.7% (10 out of a total of 46). In
Figure 5E, a detailed overview of the automatically reconstructed rules is reported.

The execution time of GPRuler on Yeast 8 model was 13 hours and 30 minutes. The
complete list of GPR rules generated by GPRuler for Yeast 8 model is available in the
Additional file 5.
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Discussion

Regardless of the starting input used from GPRuler to reconstruct GPR rules, the
accuracy of the generated output mainly depends on the level of annotation of the
investigated organism within public biological databases.

Two main classes of errors emerged from the analysis of our results. The first class
regarded the Uniprot database and the textual annotation of gene products it provides.
This database groups any biological knowledge about a given gene product spanning
from the general function to the annotated catalytic activity, to cross-references
pointing to data collected from external databases. Moreover, a lot of the available
information is hidden behind the annotated GO terms, which provide a textual
description about biological processes and molecular functions associated to the gene
product. All these data need to be explored to infer the correct biological function and
biochemical reactions that gene products catalyse in order to solve the association
between genes and reactions and how genes interact among them. However, analyses on
text structures and on how information about protein function, structure and
interactions is stored in the database revealed a lack of uniformity in the way data are
stored and presented. This issue sometimes led to problems of failed mining of gene
products annotations with the consequent lacking of the correct information within the
generated rules. Most of GPRuler failures arose from the impossibility, unless by
manual intervention, to codify upstream of the pipeline the associations between
reactions and genes. Due to insufficient availability of data within the here exploited
biological sources, GPRuler did not allow for an automated retrieval of these data,
preventing from reconstructing the correct rule. In this context, Uniprot and Gene
Ontology and the large quantity of information they contain could help to infer these
relationships and generate the correct rules. Nevertheless, due to the lack of structured
data in these databases, more work is required to process and understand the provided
information. For this reason, sophisticated text mining algorithms will be evaluated for
a more efficient data retrieval and interpretation. In addition, the success of
GPRuler execution is also invalidated from the fact that much of the information we are
looking for to reconstruct the right relationships are stored in organism-specific
databases that we do not intend to include in GPRuler because the here presented
pipeline has been developed to be applied to any organism. Consequently, only
biological databases that are generic for all domains of life have been considered.

In the light of the above and as a consequence of the missing detailed description of
the pipeline followed in the here tested metabolic models to generate the included GPR
rules, there is reason to believe that most of the included data mainly come from
manual curation.

In addition to all this, the pipeline has been conceived to be completely automatic,
minimizing the manual contribution. When GPRuler starts from an existing metabolic
model, how information is stored within models becomes crucial for the correct success
of GPRuler. This specifically refers to the presence within the tested models of
metabolites not immediately and automatically always traceable to the corresponding
object into the considered biological databases, because of a missing standard in the
used nomenclature that prevents from finding any link to existing compounds database.
This issue pushed us to draw up a dedicated strategy in order to automatically identify
metabolites involved in a given list of reactions, as described in Methods section.
Nevertheless, due to the reasons explained above, this automatic procedure required in
few specific cases a minimal manual contribution to review metabolites for which a
shortlist of candidate identifiers is returned. In other situations, a manual curation of
some particular instances has been instead necessary. An example is represented by the
metabolite ACP1 that corresponding to the Acyl-carrier protein should be included as
ACP because it does not exist in the indicated form. Furthermore, we noticed that,
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within the tested models, reactions involving the NADPH cofactor are linked in some
specific cases to reactions objects that within biological databases involve the adrenal
ferredoxin metabolite. Following an analysis of biological knowledge, the adrenal
ferredoxin results dependent from NADPH for its activity [35]. Therefore, we manually
enriched the list of identifiers associated to NADPH metabolite with also those coming
from adrenal ferredoxin. Similarly, the electron transferring-flavoproteins, which are
FAD-containing proteins [36], have been manually linked to the FAD and FADH2

cofactors. Finally, the last two cases of manual curation regarded situations where the
oxidation states of a given metabolite is missing resulting in an ambiguity of its
identification, such as for the iron element that usually existing as +2 or +3 cations is
used in Yeast 7 model to just indicate the ferrous ion form, and the usage in Yeast 7
and Yeast 8 models of the generic compound diglyceride for referring, as reported in
KEGG COMPOUND database, to the specific chemical entity 1,2-Diacyl-sn-glycerol.

In addition to the just introduced scenarios, cases of impossibility to identify
metabolites by any methods both automatic and manual occurred. Being the
metabolites identification involved in the target reactions the starting point of GPRuler,
an insufficiently curated metabolic model becomes limiting for the correct detection of
the related catalysing genes and their relationships, affecting in this way the
performance of the tool.

Conclusion

In this work, we proposed an open-source tool called GPRuler in order to automate the
reconstruction process of GPR rules for any living organism.

We applied the developed tool to four case studies, namely the HMRcore metabolic
model and the genome-scale metabolic models Recon3D, Yeast 7 and Yeast 8, in order to
assess the accuracy of GPRuler and the degree of confidence of the reconstructed GPRs.

By evaluating the resulting rules, as compared to their original counterparts, we
verified the ability of GPRuler to reproduce the original GPR rules with a very high
level of accuracy. After a manual curation of the comparisons producing negative
matches between original and newly created rules, GPRuler proved to be able to reach a
total coverage of the rules that can in principle be automatically reconstructed without
any manual intervention.

The developed pipeline, besides producing good outcomes in terms of performance
and accuracy, allowed to point out some issues in the original GPR rules stored in the
investigated genome-scale models, especially in Recon3D, that need to be considered for
future revisions of the models themselves.

With the advent of high-throughput technologies, an increasingly intensive
generation of omics data occurred, paving the way towards the achievement of a
system-level knowledge of cells. Although informative, relying only on these data is not
enough to phenotypically characterize cells. In order to improve phenotypic predictions,
it is appropriate to consider that a complete functional cell readout is not limited to
gene expression analysis of cell. On the contrary, a characterization of its metabolic
profiling, which represents the closest level of investigation to cell phenotype is required
considering that a complex and non linear intracellular regulatory system occurs
between gene expression and metabolic level.

Over years, several strategies have been proposed in order to integrate gene
expression data into GEMs [31,37–39] to derive context-specific networks representing
the active portion of the complete network in given conditions. In this way, more
biologically meaningful metabolic insights in distinct experimental conditions can be
derived as a function of genes expression profiles encoding for subunits or isoforms of
specific enzymes. Regardless of the approach developed to integrate omics data within
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GEMs, the success of these tools and the reliability of the formulated hypotheses strictly
depends on the quality of the GPR rules included into the models. Hence, the
importance of curating the GPR rules, whose good quality can also guarantee the
successful outcome of multiple phenotype prediction experiments, including simulations
of gene knock-out or gene expression variation, which allow to analyse the effect of these
perturbations on the global system functioning.

Given the strong interest of life sciences research towards the omics data integration,
having novel implements able to improve new knowledge discovery by boosting the
performance of already existing computational tools involved at the forefront in this
research line currently represents a priority in the scientific community. GPRuler may
represent a breakthrough in this sense as complement of all those computational tools
demanding, for their optimal functioning, a reliable implement able to reconstruct GPR
rules for any organism of interest in an automated way and minimizing the manual
intervention. Although, as highlighted in the Results and Discussion sections, some
aspects need to be improved, today GPRuler represents a significant step beyond the
state of art in the GPRs reconstruction field, paving the way towards future versions
where a complete automation of the pipeline will take place.

Supporting Information

Additional file 1

List of references associated to each label in Figure 5.

Additional file 2

GPR rules generated by GPRuler for HMRcore model. Each row shows in the
column Rxn the reaction for which the GPR rule has been generated, in the column
rule original the corresponding original rule in the model, in the column rule GPRuler
the rule reconstructed by GPRuler and in the column Evaluation the output of the
comparison between the rule in the rule original and in the rule GPRuler column:
Perfect match if the comparison produced a perfect match between the two rules;
Corrected by GPRuler if the two GPRs resulted different, but the original one in the
model turned out to be replaceable by the rule generated by GPRruler because more in
line with the underlying biology; Not automatically reconstructed by GPRuler if the
GPR reconstructed by GPRuler did not result automatically attributable to the original
form stored in the model.

Additional file 3

GPR rules generated by GPRuler for Recon3D model. Each row shows in the
column Rxn the reaction for which the GPR rule has been generated, in the column
rule original the corresponding original rule in the model, in the column rule GPRuler
the rule reconstructed by GPRuler and in the column Evaluation the output of the
comparison between the rule in the rule original and in the rule GPRuler column:
Perfect match if the comparison produced a perfect match between the two rules;
Corrected by GPRuler if the two GPRs resulted different, but the original one in the
model turned out to be replaceable by the rule generated by GPRruler because more in
line with the underlying biology; Not automatically reconstructed by GPRuler if the
GPR reconstructed by GPRuler did not result automatically attributable to the original
form stored in the model.
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Additional file 4

GPR rules generated by GPRuler for Yeast 7 model. Each row shows in the
column Rxn the reaction for which the GPR rule has been generated, in the column
rule original the corresponding original rule in the model, in the column rule GPRuler
the rule reconstructed by GPRuler and in the column Evaluation the output of the
comparison between the rule in the rule original and in the rule GPRuler column:
Perfect match if the comparison produced a perfect match between the two rules;
Corrected by GPRuler if the two GPRs resulted different, but the original one in the
model turned out to be replaceable by the rule generated by GPRruler because more in
line with the underlying biology; Not automatically reconstructed by GPRuler if the
GPR reconstructed by GPRuler did not result automatically attributable to the original
form stored in the model.

Additional file 5

GPR rules generated by GPRuler for Yeast 8 model. Each row shows in the
column Rxn the reaction for which the GPR rule has been generated, in the column
rule original the corresponding original rule in the model, in the column rule GPRuler
the rule reconstructed by GPRuler and in the column Evaluation the output of the
comparison between the rule in the rule original and in the rule GPRuler column:
Perfect match if the comparison produced a perfect match between the two rules;
Corrected by GPRuler if the two GPRs resulted different, but the original one in the
model turned out to be replaceable by the rule generated by GPRruler because more in
line with the underlying biology; Not automatically reconstructed by GPRuler if the
GPR reconstructed by GPRuler did not result automatically attributable to the original
form stored in the model.

Availability of data and materials

GPRuler tool is available in the qLS GitHub repository at
https://github.com/qLSLab/GPRuler. The datasets supporting the conclusions of this
article are included within the article and its additional files.

Acknowledgments

The institutional financial support to SYSBIO.ISBE.IT within the Italian Roadmap for
ESFRI Research Infrastructures is gratefully acknowledged. Financial support from the
Italian Ministry of University and Research (MIUR) through grant ‘Dipartimenti di
Eccellenza 2017’ to University of Milano Bicocca, Department of Biotechnology and
Biosciences is also greatly acknowledged.

Author contributions

Conceptualization: MD and DP; Implementation of GPRuler tool: MD and DP;
Manuscript writing: MD, DP and CD. All authors read and approved the final
manuscript.

Declaration of Interests

The authors declare that they have no competing interests.

16/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.28.433152doi: bioRxiv preprint 

https://github.com/qLSLab/GPRuler
https://doi.org/10.1101/2021.02.28.433152
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Edward J O’Brien, Jonathan M Monk, and Bernhard O Palsson. Using
genome-scale models to predict biological capabilities. Cell, 161(5):971–987, 2015.

2. Markus A Keller, Gabriel Piedrafita, and Markus Ralser. The widespread role of
non-enzymatic reactions in cellular metabolism. Current Opinion in
Biotechnology, 34:153–161, 2015.

3. Peter Gunning. Protein Isoforms and Isozymes, volume 835. 01 2006.

4. Minoru Kanehisa, Yoko Sato, Masayuki Kawashima, Miho Furumichi, and Mao
Tanabe. Kegg as a reference resource for gene and protein annotation. Nucleic
acids research, 44(D1):D457–D462, 2016.

5. UniProt Consortium. Uniprot: a worldwide hub of protein knowledge. Nucleic
acids research, 47(D1):D506–D515, 2019.

6. Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan
Wyder, Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H
Morris, Peer Bork, et al. String v11: protein–protein association networks with
increased coverage, supporting functional discovery in genome-wide experimental
datasets. Nucleic acids research, 47(D1):D607–D613, 2019.

7. Ron Caspi, Richard Billington, Ingrid M Keseler, Anamika Kothari, Markus
Krummenacker, Peter E Midford, Wai Kit Ong, Suzanne Paley, Pallavi
Subhraveti, and Peter D Karp. The metacyc database of metabolic pathways and
enzymes-a 2019 update. Nucleic acids research, 48(D1):D445–D453, 2020.

8. Satyakam Dash, Thomas J Mueller, Keerthi P Venkataramanan, Eleftherios T
Papoutsakis, and Costas D Maranas. Capturing the response of clostridium
acetobutylicumto chemical stressors using a regulated genome-scale metabolic
model. Biotechnology for biofuels, 7(1):144, 2014.

9. David Malatinszky, Ralf Steuer, and Patrik R Jones. A comprehensively curated
genome-scale two-cell model for the heterocystous cyanobacterium anabaena sp.
pcc 7120. Plant physiology, 173(1):509–523, 2017.

10. Hadi Nazem-Bokaee, Saratram Gopalakrishnan, James G Ferry, Thomas K Wood,
and Costas D Maranas. Assessing methanotrophy and carbon fixation for biofuel
production by methanosarcina acetivorans. Microbial cell factories, 15(1):10,
2016.

11. Yu Zhang, Jingyi Cai, Xiuling Shang, Bo Wang, Shuwen Liu, Xin Chai, Tianwei
Tan, Yun Zhang, and Tingyi Wen. A new genome-scale metabolic model of
corynebacterium glutamicum and its application. Biotechnology for Biofuels,
10(1):169, 2017.

12. Kelly Botero, Silvia Restrepo, and Andres Pinzón. A genome-scale metabolic
model of potato late blight suggests a photosynthesis suppression mechanism.
BMC genomics, 19(8):863, 2018.

13. Vinay Satish Kumar, James G Ferry, and Costas D Maranas. Metabolic
reconstruction of the archaeon methanogen methanosarcina acetivorans. BMC
systems biology, 5(1):28, 2011.

14. Tobias B Alter, Lars M Blank, and Birgitta E Ebert. Genetic optimization
algorithm for metabolic engineering revisited. Metabolites, 8(2):33, 2018.

17/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.28.433152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.28.433152
http://creativecommons.org/licenses/by-nc-nd/4.0/


15. Ankita Chatterjee, Benazir Huma, Rahul Shaw, and Sudip Kundu.
Reconstruction of oryza sativa indica genome scale metabolic model and its
responses to varying rubisco activity, light intensity, and enzymatic cost
conditions. Frontiers in plant science, 8:2060, 2017.

16. Nathan D Price, Jason A Papin, Christophe H Schilling, and Bernhard O Palsson.
Genome-scale microbial in silico models: the constraints-based approach. Trends
in biotechnology, 21(4):162–169, 2003.
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Figure 2. Literature analysis dealing with GPR reconstruction. In the circular plot,
nodes correspond to the examined papers (red nodes), the adopted strategies (blue
nodes) and data sources (green nodes). Directed edges connect a given work or tool
to the exploited sources. If the source is not mentioned, the node remains isolated.
Rectangles identify through their size the citation status of the corresponding node.
References associated to each label are reported in the Additional file 1.
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Figure 3. Graphical representation of GPRuler tool.
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Figure 4. A detailed graphical representation of GPRuler tool. The central part of the
figure illustrates the two alternative paths that can be followed to reconstruct the GPR
rules according to the two possible inputs of GPRuler: the SBML model (green) and the
organism name (blue). The green and the blue rectangles connected to each other by
dashed arrows show the steps to follow in each path to achieve the core pipeline (orange
rectangle), which returns as ultimate outcome the GPR rules. The ten boxes on the top
and bottom of the figure represent the exploited sources used by GPRuler, including
both biological databases (white boxes) and the FuzzyWuzzy Python package (gray box),
listing which information is retrieved from each of them. Each coloured arrow links each
step of the pipeline to the used source and, in particular, to the type of data for which
that particular source is queried.
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Figure 5. Performance of GPRuler tool. Panel A shows a summary of GPRuler perfor-
mance highlighting the percentage of automatically reconstructed rules in each tested
models (“Automatic” label coloured in dark yellow) against the not automatically recon-
structed ones (“Not automatic” label coloured in light blue). The mosaic plots below
show in B) HMRcore, C) Recon3D, D) Yeast 7 and E) Yeast 8 model the numerosity
of the automatically reconstructed GPR rules as proportional to the size of internal
rectangles, classified according to the type of relationships established among genes
involved in reaction catalysis: “No gene”, “One gene” and “Multi gene”. In the “Multi
gene” class, the three subclasses “OR”, “AND” and “Mixed” are also represented. On
the horizontal side of each mosaic plot, the proportion of “No gene”, “One gene” and
“Multi gene” automatically generated GPR rules in each model is reported. On the
vertical side of each mosaic plot, the same information is reported for the three classes
“OR”, “AND” and “Mixed” over the percentage of automatically generated Multi gene
rules.
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