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ABSTRACT 
 
Antiangiogenic therapy began as an effort to inhibit VEGF signaling, which was thought to be the 
sole factor driving tumor angiogenesis. It has become clear that there are more pro-angiogenic 
growth factors that can substitute for VEGF during tumor vascularization. This has led to the 
development of multi-kinase inhibitors which simultaneously target multiple growth factor 
receptors. These inhibitors perform better than monotherapies yet to date no multi-kinase inhibitor 
targets all receptors known to be involved in pro-angiogenic signaling and resistance inevitably 
occurs. Given the large number of pro-angiogenic growth factors identified, it may be impossible 
to simultaneously target all pro-angiogenic growth factor receptors. Here we search for kinase 
targets, some which may be intracellularly localized, that are critical in endothelial cell proliferation 
irrespective of the growth factor used. We develop a quantitative endothelial cell proliferation assay 
and combine it with “kinome regression” or KIR, a recently developed method capable of 
identifying kinases that influence a quantitative phenotype. We report the kinases implicated by 
KIR and provide orthogonal evidence of their importance in endothelial cell proliferation. Our 
approach may point to a new strategy to develop a more complete anti-angiogenic blockade. 
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Introduction 
 
Nearly all tissues require vascularization to maintain homeostasis. Angiogenesis, or the 

formation of new microvasculature from existing vessels, allows for tissue growth in both normal 
and pathological circumstances (Potente, Gerhardt, and Carmeliet 2011). A few examples include 
much of development, wound healing, the formation of the placenta during pregnancy, diabetic 
retinopathy, and cancer. The complex process involves the coordination of many growth factor-
dependent processes including matrix degradation, cell proliferation, motility, morphogenesis, 
and apoptosis. It was originally thought that vascular endothelial growth factor, or VEGF, was 
necessary and sufficient for both normal and pathological angiogenesis (Carmeliet 2005). Indeed, 
blocking VEGF signaling can greatly improve clinical outcomes in the pathological cases of 
diabetic retinopathy (Crawford et al. 2009) and macular degeneration (Cabral et al. 2017). 
However, given the somewhat disappointing failure of therapies targeting VEGF in cancer, it 
appears that, at least in the case of tumor angiogenesis, other growth factors can suffice in the 
absence of VEGF signaling (Jászai and Schmidt 2019; Khan and Bicknell 2016; Grépin and Pagès 
2010). 
 

Renal cell carcinoma (RCC), the most common form of kidney cancer, is one particular 
cancer where the inhibition of angiogenic signaling is under heavy investigation (Hsieh et al. 
2017). RCC provides an instructive example of the importance of VEGF and other angiogenic 
growth factors. RCC patients treated with VEGFR2 kinase domain inhibitors show moderate 
increased survival but also eventually develop resistance (Grünwald and Merseburger 2013; 
Choueiri et al. 2015). Upregulation of other pro-angiogenic growth factors, namely HGF and FGF, 
have been suggested as potential factors leading to such resistance (Mollica et al. 2019; Zhou et al. 
2016). Interestingly, newer generation VEGFR inhibitors which also possess the ability to inhibit 
other pro-angiogenic factors provide clinical benefit even in patients with total resistance to 
VEGFR2 mono-inhibition (Choueiri et al. 2015). This has led to calls for the development of a 
more complete angiogenic blockade (Grünwald and Merseburger 2013). Given the lack of direct 
comparative studies on the pathways used by different pro-angiogenic growth factors, it is 
currently unclear what a complete angiogenic blockade would require.  
 
Growth factors have many effects on cells, with perhaps none so well appreciated as their 
requirement for the passage of untransformed cells through the cell cycle (Gross and Rotwein 
2016). Upon the completion of mitosis, if cells in culture find themselves in the absence of growth 
factors, they exit the cell cycle and enter into a reversible quiescent state (Zetterberg and Larsson 
1985). If growth factors are subsequently replaced, cells re-enter the cell cycle, resume growth, 
duplicate their genome, and divide. The intracellular signaling pathways that transduce the 
growth factor signal to cell cycle machinery have been intensively studied and many key signaling 
pathways have been identified for specific growth factors. However, many cell types, such as 
endothelial cells, respond to multiple growth factors, raising the question of uniqueness and 
redundancy in growth factor signaling pathways.    
 
In the absence of growth factors, untransformed cells with intact apoptotic pathways also become 
apoptotic (Sarkar and Mandal 2009; Letai 2006). Thus, the addition of growth factors also serves 
to suppress pro-apoptotic signaling and cell death. From this perspective, growth factors are often 
referred to as survival factors (Collins et al. 1994). The mechanisms by which individual 
angiogenic factors promote passage through the cell cycle and suppress death have been studied 
to a certain extent. How growth factor signaling pathways comparatively influence cell 
proliferation is less well studied. 
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We present here a quantitative assay to study the intracellular signaling responses to 
proangiogenic growth factors with the goal of identification of shared pathways in primary dermal 
human microvascular endothelial cells (DMECs). We focus on how growth factors influence 
proliferation, or the growth of endothelial cell populations. Proliferation is a complex phenotype 
determined by a balance of birth and death. The assay requires the formulation of a basal 
proliferation medium in which a low rate of proliferation is achieved through the balance of a low 
birth rate and a low, but non-zero, death rate. The assay is used to screen ~30 reported 
angiogenic growth factors for effects on proliferation and identify three that produce a robust 
increase in proliferation. We then assay the effects of a carefully chosen panel of kinase inhibitors, 
which when combined with KIR, a recently developed machine learning method (Taranjit Singh 
Gujral, Peshkin, and Kirschner 2014; Rata et al. 2020; Taranjit S. Gujral et al. 2014), implicates 
specific kinases as important in DMEC proliferation in response to specific growth factors. 
Focusing on the intersection of the implicated kinases in each growth factor tested, we identify 
kinases that are central to endothelial cell proliferation regardless of the growth factor input. 
Finally, we apply an orthogonal method to contribute to the evidence for the kinases implicated 
by KIR.  
 
 
Establishment of a Quantitative Endothelial Cell Proliferation Assay 
 
We wish to create an assay and accompanying analytical framework that will produce quantitative 
measures of DMEC proliferative response to single purified pro-angiogenic growth factors. This 
includes generating an experimental system that allows for the passive counting of cells over time, 
computing proliferation rates and characterizing the proliferative response of DMCEs to pro-
angiogenic growth factors. We then use the assay to determine the quantitative effects of a highly 
characterized set of kinase inhibitors on DMECs’ proliferation rate. Inhibitor alteration of the 
proliferation rate is then fed into KIR analysis, generating a ranked list of kinases with predicted 
contribution to setting the proliferation rate.  
 
The Experimental System  
        To create a quantitative, time-lapse assay of proliferation in response to purified growth 
factor, we labelled the nuclei of dermal microvascular endothelial cells with nuclear-localized 
mCherry (Fig1A). Imaging of NLS-mCherry-labeled DMECs counterstained with a DNA-binding 
dye revealed the labelling efficiency to be ~97% (not shown). Using 384-well plates, with a single 
4x image, we were able to image the entire population of labeled cells within a well. Expression of 
the nuclear-localized mCherry offered the ability to use image processing methods to count cells 
in real-time (FigS1A). Through comparison with manually counted images, we estimated an 
absolute counting error of 3% (not shown). The counting error from the automated method was 
independent of density (Fig.S1B). Finally, expression of this nuclear reporter proved to be passive 
as it did not alter the doubling time when compared to unlabeled parental population (Fig S1C). 
Therefore, we are able to count cells proliferating in vitro in a reliable, non-invasive manner.  
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Box 1 
        Cell proliferation, or growth of cell populations, is a combination of cell birth and death. The per capita proliferation rate, P, 
can be defined as the difference between the birth rate, 𝐵, and death rate 𝐷 
                                                                                  
                                                                                	𝑃 = 𝐵 − 𝐷.     Eq.1 
 
It may be worth specifically pointing out some implications of the fact that the proliferation rate is determined by a balance of cell 
birth and death. On the extreme end of the spectrum where conditions are entirely favorable, the death rate will be zero and P = B. 
Conversely, when conditions do not allow for birth but also lead to death, P = -D. In conditions in between these two extremes, any 
observed proliferation rate can be achieved through a balance of birth and death.   
      The per capita birth rate has units of births per cell per unit time while the death rate has units of deaths per cell per unit time. 
As our experimental system allows for the measurement of live and dead cells over time, we wish to obtain estimates of birth and 
death rates through time-lapse measurements of the number of nuclei and the number of dead cells. To do so, we first define the 
proliferation rate as: 
 

!"
!#
= 𝑃(𝑡)𝑁(𝑡),     Eq. 2 

 
where 𝑁(𝑡) is the number of nuclei at time 𝑡 and 𝑃(𝑡) is the instantaneous proliferation rate. The generality of this simple model is 
apparent since from it one can arrive at a whole family of commonly applied models of population growth. For example, if 𝑃(𝑡) is 
defined as a constant, say 𝑘$, then equation 2 has the solution of exponential growth: 
 

𝑁(𝑡) 	= 	𝑁%	𝑒&!#	     Eq.3   
Where 𝑁% is the population size at time 𝑡 = 0.  Equation 3 well describes many populations, particularly in the early phase of 
growth (i.e., before density-dependent effects begin to dominate). Likewise, if one assumes a density dependence of the population 
growth of a specific form, then equation can be solved to yield the logistic growth model.  
 
 
Since equation 2 depends so strongly on 𝑃(𝑡), the issue therefore becomes a matter of discovering what 𝑃(𝑡) looks like in our 
assay. Equation 2 can be rearranged to  

𝑃(𝑡) = !"
!#

𝑁(𝑡)/ ,      Eq. 4 
 
to obtain a useful form for examination of P(t) from the data as everything on the right-hand side is easily observable. 
 
Similarly, we can study the death rate by defining it as 
 
 

!'
!#
= 𝐷(𝑡)𝑁(𝑡),      Eq. 5 

 
 
 
where 𝑀(𝑡) is the number of dead cells at time 𝑡	and 𝐷(𝑡) is the time-dependent death rate. Equation 5 can be rewritten in the 
same manner as equation 2 to reveal a useful formula for the death rate. 
       

𝐷(𝑡) = !'
!#

𝑁(𝑡)/ .      Eq. 6 
 
Armed with 𝑃(𝑡) and 𝐷(𝑡), we can then easily obtain  𝐵(𝑡) from Equation 1, i.e., 
 

𝐵(𝑡) 	= 	𝑃(𝑡) 	+ 𝐷(𝑡)	 
 
 
 
The Proliferative Behavior of Cells in the Experimental System 
Next, we examined the proliferative behavior of DMECs after plating in full growth medium. Full 
growth medium contains 5% FBS and a cocktail of growth factors. Following an approximately 
28-hour period of attachment in this rich growth medium (Fig. S1D), the cells entered into a 
phase of exponential growth (Fig 1B). Proliferation continued exponentially for another 70 hours, 
deviating only as the confluency reached ~70%. Such exponential growth is expected in a 
population where there are abundant resources (excess growth factors), and inhibitory crowding 
effects (contact inhibition) are absent (see Box1). These results also defined the confluency below 
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which contact inhibition remains insignificant and we were able to directly verify that in the 
presence of growth factors, the proliferation rate is independent of plating density (Fig, S1E).  
        Having characterized the proliferative response in the presence of excess growth factors, we 
next attempted to isolate the proliferative effects of purified growth factors. To accomplish this, 
we formulated a basal proliferation medium without any exogenous growth factors and 
significantly reduced serum. The goal of this medium was three-fold: 1.) to increase the dynamic 
range of the assay by a reduction in the basal proliferation rate compared to that observed in full 
growth medium, 2.) to achieve specificity through a reduction in background growth factor 
signaling due to their presence in serum, and 3.) to model the re-entry of resting endothelial cells 
in vessels into the cell cycle by synchronization of cells in the G0 phase of the cell cycle. Ideally, 
cells in a basal medium would show little to no net proliferation. We explored the possibility of 
achieving this goal via titration of serum in a commonly used endothelial basal medium 
(Zetterberg and Larsson 1985). When the serum content was too low (i.e., < 0.5%) a net loss of 
cells occurred, suggesting that many cells died from growth factor withdrawal. From these 
experiments we defined basal proliferation medium (BPM) to contain 1% serum. Comparing the 
proliferative response of DMECs in BPM (Fig. 1E), where there is very little net increase in the 
number of cells over time, to full growth medium (Fig. 1B), it is clear BPM offers considerable 
dynamic range.  

To evaluate the effectiveness of BPM in reducing background growth factor-induced pro-
proliferative signaling, we sought to physiologically characterize cells cultured in BPM. We 
compare the effects of full growth medium and BPM on the proliferative signaling state of DMECs 
(Shiojima Ichiro and Walsh Kenneth 2002; Srinivasan et al. 2009). BPM reduces the 
phosphorylation state of ERK2, Akt, p90RSK etc. as compared to cells in full growth medium in 
as little as 24 hours (Fig. S1F). Thus, BPM reduces the background well-appreciated pro-
proliferative signaling molecules in endothelial cells. 

Resting endothelial cells in a blood vessel, before receiving pro-angiogenic stimuli, would 
be in a quiescent state, or the so-called G0 phase of the cell cycle. Using DNA-staining for cell 
cycle analysis and comparing DMECs in full growth medium and in BPM shows that BPM has 
expected effects on the cell cycle (Fig. 1C). Specifically, in growth medium, the majority of cells are 
found in G1/G0, but a significant number of cells are in S- and G2/M-phases. At this level of 
analysis, it is impossible to distinguish between cells in G0 and G1. However, EdU labeling of 
DMECs in full growth medium shows that within the length of the typical DMEC cell cycle (~28 
hours), nearly all cells pass through S-phase suggesting that there are no cells in G0 in growth 
medium (not shown). In BPM, we see a nearly complete loss of cells in S and G2/M and a 
concomitant increase in cells (>91%) arrested in G0/G1. As we will show later in the discussion of 
Fig. 3, we have reason to believe that the 1N peak in BPM (Fig 1C, right panel) contains cells in 
G0. Therefore, BPM offers desirable dynamic range, reduces background pro-proliferative 
signaling, and isolates DMECs in G0 or a quiescent state.  

The realization that DMECs not only cannot proliferate in low growth factor conditions but 
in fact die led us to wonder if the overall low proliferation rate in BPM was achieved through a 
balance of birth and death (see Box 1). To measure dead cells, we optimized the use of the cell-
impermeable DNA-binding dye, YOYO1. With this dye, a dead cell can be easily seen as the 
mCherry signal fades, membrane integrity is lost, cellular DNA is exposed, and the YOYO1 signal 
appears (see Fig. 1D). The dye is easily detected at low concentrations, stable throughout the 
timeframe of the assay (not shown) and appears to be passive in that it has no effect on 
proliferation (Fig S1G). Importantly, cell death in BPM was infrequent and occurred in a rather 
reproducible manner with a cell rounding up and blebbing, followed by death with little further 
fragmentation and the cell most often remaining attached in place. The exception to remaining 
attached was an occasional tendency for living, motile cells to adhere to the dead cell body. These 
favorable features allowed for the quantitation of cell death using YOYO-1. 
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        In BPM, there was a small but reproducible death of cells (Fig. 1E) revealing that the low level 
of net proliferation in BPM is due to a balance between the birth and death rate. Since DMECs are 
a primary cell isolate rather than a transformed cell line, we assume them to be more sensitive to 
growth factor levels and more susceptible to pro-apoptotic signals. Furthermore, we have shown 
that culture in BPM reduces pro-proliferative/pro-survival signaling (Fig S1F). Give these facts 
and the morphological changes seen during cell death (Figure 1D), we hypothesized that the death 
in BPM was due to apoptosis. The spontaneous cell death in BPM appears to be apoptosis as it 
can be inhibited by pretreatment with the caspase inhibitor, Q-VD-OPh (Fig. 1F, S1H). As a 
negative control, pretreatment with necroptosis inhibitor necrostatin was ineffective at blocking 
cell death in BPM. 
 In summary, we have generated an experimental system that allows for the quantitative 
study of in vitro endothelial cell proliferation. We can accurately count living and dead cells 
accurately without considerable impact on proliferative behavior. BPM reduces background pro-
proliferative signaling, offers significant dynamic range and models the cell cycle state of 
endothelial cells in resting blood vessels. Furthermore, BPM creates a state where birth and death 
are balanced and the effect that growth factors may have on this balance can be examined. 
 
Identification of Growth Factors with Pro-Proliferative Behavior in the Experimental System 

Having established an experimental system for studying the proliferation of endothelial 
cells, we sought to identify growth factors with pro-proliferative activity. Through literature 
search we identified more than 30 growth factors suggested to be pro-angiogenic. We obtained 33 
from commercial sources and tested them in the DMEC proliferative setup described above 
(Table S1). We were disappointed to see that the vast majority of these reported growth factors 
had no effect on DMEC proliferation. The source of discrepancy between reported results and our 
results is not immediately clear but may include differences in endothelial cell isolates. We found 
that four families of growth factors were capable of increasing proliferation: members of the FGF 
(FGF1 and 2), VEGF (VEGFA165 and VEGFA145), and EGF (EGF and TGFα) families along with 
HGF. The effects of EGF were significantly weaker than the others and therefore was not included 
in subsequent analysis. It must be noted that both FGF and HGF are commonly indicated as 
sources of resistance to VEGF blockade in many cancers, including RCC (Mollica et al. 2019; Zhou 
et al. 2016). 
  
Features of Growth Factor-Induced Population Dynamics 

Having generated and characterized an experimental system to study the proliferative effects of 
identified growth factors on DMECs, we sought to determine mathematical definitions for 
proliferation, birth, and death rates. Although the proliferation rate in full growth medium was 
constant, it was not immediately clear that the proliferation rate in response to starvation and 
stimulation with single purified growth factors would behave similarly. The data for each well is 
quite noisy and the detailed study of the proliferation, birth, and death rates requires numerical 
differentiation of the noisy data. To limit the effect of applying noise-amplifying numerical 
process to noisy data, we performed a set of experiments with hundreds of replicates (wells in a 
384 well plate) for each condition and applying data smoothing where necessary to generate 
easily interpretable data. As it is appreciated that such smoothing can affect the exact timing of 
events, here we focus on a qualitative description of the data and analyses with the intention of 
using it to arrive at simple definitions for the rates of interest that do not require numerical 
differentiation. 

 The number of cells per well (N) in response to addition of purified FGF2 is shown as a 
function of time in Figure 2A. In contrast to the simple case of exponential growth in full growth 
medium (Fig. 1B), there appears to be two phases: slow steady growth from the initiation of the 
experiment to around 24 hours followed by a second phase of more rapid proliferation. The first 
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phase appears to be largely independent of growth factor concentration while the second phase 
showed strong dose dependence. At this level it is not clear whether or not the time of entry into 
the second phase is sensitive to FGF2 concentration. 

The number of dead cells per well (M) from the same experiment is shown in Fig 2B. It too 
shows concentration dependence and two phases, albeit on a separate time scale compared to the 
two phases of net population growth seen in Figure 2A. For dead cells, the first phase is short 
lived transitioning into the second phase after only ~10 hours.  

The plots of N and M over time reveal intriguing characteristics of the concentration-dependent 
proliferative behavior of DMECs. Taken alone, however, they do not provide deep insight into the 
proliferative behavior we isolate in the experimental system developed here. To better understand 
the proliferative behavior of DMECs following the addition of purified growth factors to BPM, we 
compute the proliferation, birth, and death rates (see Box 1). In general, the rates of interest could 
be a function of the density of cells (here called N) or the time, t.  

 We suspected that the growth factor dependence of the first phase to be the result of growth 
factors’ rapid effect suppressing apoptosis. Furthermore, the abrupt transition from the first slow 
phase to the second faster phase was due to the degree of synchrony in the cell cycle introduced 
by BPM and the time required for cells to re-enter the cell cycle, synthesize DNA, and undergo 
mitosis. Examination of the birth rate over time showed that, indeed, cells appeared to divide 
with some degree of synchrony, producing a spike in the birth rate. Meanwhile, the death rate 
proved to be more-or-less constant over the course of the experiment.  

To examine the potential time and density dependence of the endothelial cell proliferation, we 
computed the proliferation rate and plotted it vs density and time. In contrast to density, where 
we saw no obvious relationship, there is strong time dependence with the proliferation rate 
peaking at around 30 hours after the addition of growth factor. The rise and fall of the 
proliferation rate occurred in a dose-dependent manner and the time of maximum proliferation 
rate was consistent. It begins around the same time, peaks at the same time, and ends at the same 
time regardless of growth factor dose. The proliferation rate begins to rise around 20 hours and 
peaks around 30 hours and returns to low level by 40 hours. The mean cell cycle length of these 
cells was determined by measurement of the doubling time in complete medium to be 21 hours. 
We interpret the extra time needed to divide during the first division post growth factor treatment 
to be the passage of cells from G0 in to G1. Thus, the time dependence of the proliferation rate is a 
direct consequence of the synchronization of the population in G0. 

From here, we considered extracting parameters like the maximum proliferation rate or the 
time of maximum proliferation rate. The definition of the time-dependent proliferation rate (and 
more specifically, the scale of the experiment required to clearly see the time dependence) did not 
allow us to determine these parameters on the scale required to measure the effect of 
perturbations. We elected to define an apparent proliferation rate that captured the most relevant 
features of growth factor-induced proliferation.  
 
 
Dose-Response Behavior to Pro-Angiogenic Growth-Factors 
The dose-response behavior of pro-angiogenic growth factors is shown in Figure 3. The 
proliferation rate (Fig. 3A) shows FGF2 to be the most potent and efficacious at driving 
proliferation. VEGFA and HGF both shared similar efficacy but VEGFA was slightly more potent 
in that it could produce measurable effects at lower molar concentrations. Since the proliferation 
rate is the difference between the birth and the death rate (see Box 1) the proliferation rate alone 
does not completely characterize the system. Comparing the proliferation rate (Fig. 3A) to the 
birth and death rates (Fig. 3B and C, respectively) shows a more complete story. Two interesting 
and related features appear: 1.) given the relatively low magnitudes of the death rates the 
proliferation rate is mostly governed by the birth rate and 2.)  growth factors, even at low 
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concentrations push the low death rate closer to zero. Thus, the action of growth factors in the 
assay is two-fold: first they quickly reduce the death rate while initiating the re-entry into the cell 
cycle leading to a semi-synchronous wave of birth.  
 
Testing a Panel of Kinase Inhibitors  
To identify kinases that are used by endothelial cells regardless of the growth factor input, we 
applied KIR (Rata et al. 2020; Taranjit Singh Gujral, Peshkin, and Kirschner 2014; Taranjit S. 
Gujral et al. 2014). KIR consists of two steps, first measuring the quantitative effects of 58 kinase 
inhibitors on proliferation rate in the presence of FGF2, VEGFA, and HGF. The kinase inhibitors 
used here have been fully characterized against 369 human protein kinases in in vitro 
biochemical assays and have been chosen to provide coverage of the human kinome. The second 
step uses the biochemical kinase inhibition data with the degree of inhibition of proliferation 
within a regularized regression framework to identify kinases important for proliferation.  
 It was qualitatively apparent that some kinase inhibitors, especially at higher 
concentrations, produced cell death to an extent that greatly exceeded the apoptosis seen in BPM. 
Examination of the calculated death rates in the presence of kinase inhibitors confirmed that 
there were in some cases rapid and massive death. In many cases, the proliferation rate was 
negative, indicating net loss of cells. These scenarios, where it can be assumed that the birth rate 
is negligible, provide two independent approximations of cell death. Often in these situations, the 
loss of cells indicated by the loss of nuclei exceeded the independently measured increased 
number of dead cells, resulting in unrealistic negative birth rates. This indicates a failure of 
YOYO-1 to accurately reflect cell death in cases of rapid and extensive death. As a result, for the 
remaining analysis, we focus on analysis of the proliferation rate which is obtained through high 
confidence counting of labeled nuclei. 
 

Regularization Regression to Identify Universal Kinases  

Kinases were identified as the output of regularized regression using the package glmSparseNet 
(Veríssimo et al. 2018) with the regularization weight alpha set to 0.15 and the kinases were taken 
as the set of kinases that had nonzero coefficients at the value of lambda with lowest mean-
squared error (Figure S2B). A dataset of mRNA expression levels in DMECs (Davis et al. 2018; 
ENCODE Project Consortium 2012) was used to identify the set of kinases expressed (Figure 
S2A). This procedure produced a ranked order list of kinases important for proliferation for each 
of the three growth factors tested. The output is shown in Figure 4A. Most kinases appeared in 
more than one growth factor indicating a degree of similarity in signaling pathways that drive 
proliferation in endothelial cells. To reduce the complexity of returned kinases and focus on a 
subset that might prove an enticing target for a more complete antiangiogenic blockade, we chose 
to compile the intersection of the kinases from each growth factor (Figure 4B). The identity of the 
kinases in the intersection of all three growth factors are listed in Figure 4C. The kinases in the 
intersection proved to be a mix of kinases with well appreciated roles in basal metabolism (IR) or 
proliferation (AKT2 (Shiojima Ichiro and Walsh Kenneth 2002), CDK6 (Sherr, Beach, and 
Shapiro 2016), PKACG (Yang et al. 2013), and PEAK1 (Wang et al. 2018)) but also some with 
understudied roles in proliferation (e.g., DCAMKL2, GRK5/6, and DMPK). Interestingly, the 
magnitude of the regression coefficient for kinases showed no relationship with the mRNA 
expression level, suggesting that the method is not simply isolating highly expressed kinases 
(Figure S3). 
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Orthogonal Experimental Evidence for Kinases Returned From KIR 

We used siRNA to obtain orthogonal evidence that the kinases that were contained within the 
intersection had impact on the proliferation rate. First, siRNA transfection was optimized for 
DMECs and the specific plating conditions of the proliferation assay (not shown). We are aware 
that siRNAs have considerable limitations in this setting for at least two reasons. The first is 
general to siRNA and is that application of too much siRNA can produce significant off-target 
effects while too little might obscure real contributions to proliferation. The second is more 
specific to this system – as DMECs are primary cells, independent confirmation of siRNA-
mediated knockdown is not feasible. Overall, we wish to address these limitations using a 
conservative approach, with the goal of leveraging the assay’s reproducibility and quantitative 
sensitivity to reduce off target effects at the potential expense of on-target effects.  

For the first limitation, we aimed to thread this needle by determining the concentration at 
which siRNAs targeted to each growth factor receptor inhibited the proliferation of DMECs in the 
presence of its cognate growth factor but not the others. Although there is only one known 
receptor for HGF (namely MET), the fact that there are four potential FGFRs and three VEGFRs 
required us to first experimentally determine which receptors are expressed. Via western blot, we 
identified the receptors expressed to be FGFR1 for FGF2, VEGFR2 for VEGFA, and Met for HGF 
(Figure S3). We attempted to account for the second limitation by using three siRNAs directed 
towards each gene of interest and considered the effect to be an average of all three siRNAs.  

Using the optimized transfection conditions, we determined the concentration of siRNAs 
directed toward the expressed growth factor receptors which resulted in a reduction of the 
proliferation rate in the presence of the cognate growth factor but not the other two. For example, 
a specific knockdown of FGFR1 would be expected to reduce the proliferation rate of DMECs in 
the presence of FGF2 but not VEGFA. We found that using 5 nM produced little to no effect while 
15 nM produced strong off target effects (not shown). siRNAs directed toward growth factor 
receptors at 10 nM appeared to generate specific, on-target reductions in proliferation rate while 
avoiding off-target responses (Figure 5A). Note that for each target, the reductions in the 
proliferation rate are incomplete, suggesting that we can indeed measure difference using 
relatively low concentration of siRNA which should limit non-specific effects. 

  Next, we tested the intersection kinases using three independent siRNAs to each kinase 
and the effect of knockdown of each gene was taken to be the average of the effect of all three 
siRNAs. This conservative approach was chosen because of the difficulty in ascertaining the 
extent of knockdown in limiting numbers of primary cells on the scale necessary for this work. We 
present the magnitude of each kinase knockdown in Figure 5B as the difference between control 
and knockdown, or ∆𝑘!. The magnitude of each effect was tested with ANOVA followed by 
multiple comparisons. Significantly, the knockdown of most, but not all, of the kinases resulted in 
significant phenotypes as indicated by the asterisks. Again, because of the limitations inherent in 
siRNA knockdown in this system, we elected to continue our conservative approach and focus on 
kinases with significant effect in all three growth factors. The results clearly suggest four kinases 
to be important for endothelial cell proliferation in FGF2, VEGFA, and HGF: AKT2, CDK6, 
CAMKL2, and PKACG. Of these, three (AKT2, CDK6, and PKACG) are well characterized.  The 
role of the fourth kinase, DCAMKL2, in endothelial cell proliferation has not been studied and is 
therefore of considerable interest as a new regulator of endothelial cell proliferation and 
angiogenesis.  
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We would like to emphasize that while the knockdown of a kinase producing an effect in all 
three growth factors certainly provides strong evidence for a role in proliferation, we cannot with 
great confidence exclude the possibility that those that did result in an effect in one or two growth 
factors (or even those that had no significant effect at all) do not also have a considerable impact 
on endothelial cell proliferation. For example, it would seem unlikely that the insulin receptor is 
somehow not important in FGF driven proliferation.   

 

Discussion 
Despite the initial disappointment, anti-angiogenic therapy remains an enticing approach 

to treating cancer, particularly in RCC. Furthermore, given the fact that angiogenesis is critically 
involved other pathological disorders as well as in wound healing, the desire for a more thorough 
understanding of the regulation of the process remains high. Here, we present a novel approach 
for the identification of critical kinases downstream of growth factor receptors. 

Using KIR, we identified 19 kinases to be important for endothelial cell proliferation in the 
presence of multiple bona fide pro-angiogenic factors. Further we also provide evidence using an 
orthogonal method that four of these 19 are critical for endothelial cell proliferation. One of these 
four kinases, CDK6, has an inhibitor Palbociclib approved for treatment of cancer. Indeed, some 
have speculated that at least some of Palbociclib’s efficacy is due to an anti-angiogenic effect (Liu, 
Liu, and Chen 2018; Ehab and Elbaz 2016). This work also indicates the DCAMKL2 as a novel 
regulator of endothelial cell proliferation. DCAMKL1 and 2 are understudied kinases, with the 
majority of work being upon DCAMKL1 and its role in cancer (Ferguson et al. 2020), neuronal 
survival (Nawabi et al. 2015), and maintenance of intestinal crypt cell stemness (Chandrakesan et 
al. 2017). It will be of interest to further explore the role of DCAMKL2 in endothelial cell biology. 

 

Methods 

Growth Factors and Cytokines. All human recombinant growth factors and cytokines were purchased 
from PeproTech (NJ) and resuspended in the solvent recommended by the manufacturer at 100µg/mL, 
aliquoted, and frozen until use. 

Cloning. The viral transfer plasmid expression a nuclear-localized mCherry was obtained using standard 
cloning techniques. First, pLVX-EF1α-mCherry-N1 (puro) was digested with EcoRI and NotI. The 8.5kB 
band representing the backbone of the vector was excised and purified. The nuclear-localized mCherry was 
digested from pBRY-nuclear mCherry-IRES-PURO (Addgene plasmid 52409) and the ~860bp band was 
gel purified. The insert was ligated into the pLVX vector overnight at room temperature, transformed into 
Stbl3 bacteria and plated on LB/ampicillin plates. Colonies were picked, cultured overnight and tested for 
proper ligation using digestion with EcoRI and NotI. Positive clones were tested be sequencing and the 
sequence of both the 3X-NLS and mCherry was confirmed to be correct. 

Cell Culture, Virus Production, and Viral Transduction. Human Dermal blood microvascular endothelial 
cells (DMECs) isolated from a single donor were purchased from Lonza (CC-2183). DMECs were cultured 
in EGM2-MV (Lonza) and passaged using trypsin and trypsin neutralization solution (Lonza). Viruses 
carrying a gene for the expression of nuclear localized mCherry were produced via triple transfection of 
HEK-293T cells using FuGENE. The plasmids used were psPAX2, pMDG.2, and pLVX- E1α-NLS-
mCherry. Twenty-four hours after transfection, the medium was replaced. For the next 3 days, the 
supernatant was collected, spun at 500xg to remove large debris and stored at 4C. After all supernatant 
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was collected, the pooled supernatant was passed through a 0.45 µm filter and transferred to centrifuge 
and centrifuged for 90 minutes in a SW28 singing bucket rotor. After centrifugation, the supernatant was 
discarded and the pellet containing concentrated virus was resuspended in 100 µL of PBS. To create a large 
supply of labeled DMECs, three tubes of purchased DMECs were thawed, counted, plated at 5000 
cells/cm2 and cultured overnight. The next day, purified and concentrated virus was added to the cells at 
MOI = 5 in medium containing 8 µg/mL polybrene. The next day, the medium was changed, and the cells 
were cultured continuously, passaged when ~80% confluent until reaching the sixth passage (cells are 
purchased at passage three). At this point, the cells were trypsinized, pelleted, counted, and resuspended 
in EGM2-MV supplemented with 10% DMSO at a density of 500,000 cells/mL. The labeled DMECs were 
aliquoted in 500 uL aliquots and frozen at -80C overnight and then transferred to long term storage in 
liquid nitrogen. For every experiment presented here, tubes were thawed, viable cells determined and 
plated at 5000 cells/mL, cultured for 6 days with medium changes before being collected, counted and 
plated. 

Formulation of Basal Proliferation Medium (BPM). BPM contains 0.5% human AB serum (0.5%), insulin, 
r-Transferrin, 0.5% BSA, hydrocortisone.  

The proliferation assay. YOYO-1 iodide was purchased from ThermoFisher (Y3601) and added to BPM 
immediately before plating cells for the proliferation assay. DyeCycle Green was purchased from 
ThermoFisher and used as a live cell stain at a final concentration of 10 µM to count living nuclei and 
determine the labeling efficiency of nuclear mCherry transduction and expression. 

 

Image Analysis for Counting Nuclei and Dead Cells. Time-lapse imaging of DMEC proliferation was done 
in an IncuCyte ZOOM (Sartorius) with a 4x objective. Nuclei and dead cells were counted using the built-in 
image analysis capabilities of the IncuCyte ZOOM. 

 

Cell Cycle Distribution and EdU Incorporation. DMECs were plated on poly-L-lysine coated 6 well glass 
bottom plates at 8,450 cells per cm2 in either BPM or growth medium (EGM2-MV, Lonza). After 24 hours, 
cells were fixed with 4% paraformaldehyde in PBS for 10 minutes, permeabilized with 0.1% triton in PBS 
for 10 minutes, then stained with DAPI (Cell Signaling) for one hour at room temperature. Following 
staining, cells were washed once with PBS and then imaged immediately on a Nikon at 10x.  

For long-term EdU incorporation, we first optimized the concentration of EdU that could be detected but 
not greatly alter the proliferation rate. We did this by plating cells in varying concentration of EdU in 
growth medium and fixing after various times. We found that culture in 240 nM EdU for 48 hours less 
than 5 % reduction  of the proliferation rate while being incorporated into ~95% of cells. For experiments, 
we then plated cells in BPM, and 24 hours later, added EdU with the growth factor or added complete 
growth medium.   

 

ELISA. Pre-coated ELISA plates were purchased from R&D Systems and performed according to 
manufacturer instructions. Cell culture supernatants were obtained by plating 600 cells per well in 384 
well plates in 60 µL BPM. After 24 hours, 20 µL of BPM containing growth factors at 4x intended final 
concentration were added. Twenty-four hours following growth factor addition, 60 µL of supernatant was 
removed from each well and pooled according to growth factor and concentration. The pooled 
supernatants were then clarified by centrifugation to remove any cell debris and frozen at -20C until all 
replicates were performed. Supernatants were thawed to room temperature and utilized immediately in 
the ELISA. 
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Analysis of kinetic measurements of cellular proliferation and death. We applied the following definitions 
to calculate per capita proliferation rates for each well: 

𝑃(𝑡) ≈ 	𝑘! =	
∆)
〈)〉

∆#
=	

),-./012)(-4)
),-./016)(-4) 78

#./0$#4
. 

Where 𝑁(𝑡) is the number of nuclei as a function of time, 〈𝑁〉 is the average number of nuclei over the 
experiment, and 𝑡% and 𝑡&'( is the first and last time points in the experiment. The death rate was defined 
similarly: 

𝐷(𝑡) ≈ 	𝑘) =	
∆9
〈)〉

∆#
=	

9,-./0129(-4)
),-./016)(-4) 78

#./0$#4
. 

 

The birthrates were then calculated as 𝑘* =	𝑘! + 𝑘) . These definitions assume that the rates are 
independent of the overall density and time. Although we show that density is not a critical factor (Figure 
S1E), the rates are clearly dependent on time (Figure 2). We use these definitions as they are simple to 
compute and calculation of time-dependent rates were not feasible with the noise inherent in the data.   

Kinase Inhibitor Screen 

Extensively characterized kinase inhibitors were tested in the proliferation assay in the presence of each of 
the three growth factors. Inhibitors were tested with four replicates at each of six concentrations, the 
highest being 5 µM with serial 3-fold dilution.  

 

Kinome Regression (KIR) 

Kinome regression was performed as regularized regression using the R package glmSparseNet. The input 
was the calculated difference between each inhibitor/growth factor combination and the appropriate 
control (DMSO/growth factor combination) contained on the same plate. The kinase data from the in vitro 
characterization was filtered according to endothelial cell expression (https:// www.encodeproject.org, 
identifier: ENCFF110UGQ) using a cutoff of 1.5 arbitrary expression units (see Figure S2). The following 
parameters were used in the analysis: α = 0.15 and standardize = TRUE. 

siRNA Validation of Kinases Identified by KIR.  

We tested four different siRNA transfection reagents (RNAiMAX, DharmaFECT 4, for two properties: 1.) 
To efficiently knock-down a gene of interest and 2.) to have minimal impact on proliferation in the assay. 
To evaluate transfection efficiency, we used KIF11 which is critical for cytokinesis and when knocked down 
results in easily scored rounded cells. We found that 1uL/mL of RNAiMAX resulted in 95% rounded cells 
in while decreasing the proliferation rate by less than 3%. We knocked down kinases using siRNAs from 
Qiagen (see spreadsheet for the ordering numbers of the siRNAs used) at 10 nM. For transfection, cells 
were plated in BPM containing YOYO1 in 384 well plates as usual for the proliferation assay. While the 
cells were adhering, siRNA transfection complexes were formed after a 10-minute incubation and added to 
the cells with four replicates. Twenty-four hours after plating/transfection, growth factors were added at 
the following concentrations: FGF2, 1.25 ng/mL; VEGFA, 20 ng/mL, and HGF, 20 ng/mL. The plates were 
then added to the IncuCyte ZOOM and imaged every two hours for 48 hours. The proliferation rates were 
extracted as described in the section.  
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FIGURE LEGENDS 

Figure 1. Establishment of the Experimental System. A.) Demonstration of DMEC labeling. Fluorescent 
image of nuclear-localized mCherry overlaid on a phase contrast image of confluent DMECs. B.) The 
proliferation of DMECs in full growth medium (dotted line) is exponential (red line is a fitted exponential 
curve). C.) Cell cycle analysis of DNA ploidy determined by labeling live cells with Hoescht and imaged 
with a microscope. Full growth medium (left panel) produces a familiar distribution of cells while 24 hours 
in BPM (right panel) produces far fewer cells in S- and G2/M- phases. D.) Demonstration of YOYO-1 dye 
to detect dead cells. E.) Example of nuclei (closed circles) and dead cells (open circles) over time in BPM. 
F.) Cell death seen in BPM can be inhibited by inhibition of caspase activity via 10 µM Q-VD-OPh. 

 

Figure S1. More on the Establishment of the Experimental System. A.) Nuclei can be counted via image 
processing. The right panel shows a fluorescent micrograph of nuclear mCherry labeled DMCEs, while the 
center panel shows the mask generated by automated image analysis. The right panel shows the overlay of 
the two. B.) There is a high degree of correspondence between automated counting (x-axis) and manual 
counting of nuclei (y-axis). Additionally, the error is apparently independent of density. C.) Labeling 
DMECs with nuclear mCherry via lentivirus-mediate gene transfer does not alter the doubling time of 
DMECs. D.) Left panel: Nuclear labeled DMECs produce exponential growth over an interval of time as 
evidenced by linear relationship between time in hours (x-axis) and the natural logarithm of cell number 
(y-axis). Right panel: Percent confluence for the same experiment. Note the deviation from exponential 
growth occurs at ~120 hours or when confluency grows above ~70%. For both panels, solid line is data, 
dashed line is a fitted exponential curve. E.) The proliferation rate (defined as in main text, section 
Features of Growth Factor-Induced Population Dynamics) is independent over a range of plating 
densities in the presence of growth factors. F.) Plating DMECs in BPM reduces the phosphorylation of Akt, 
ERK1/2, and S6 Kinase. G.) YOYO-1, at concentrations as high as 50 nM, have no effect on the 
proliferation of DMECs. H.) The inhibition of death rate in BPM (defined as in main text, section Features 
of Growth Factor-Induced Population Dynamics) is dependent on the concentration of inhibitor. I.) 
The death rate in BPM is not inhibited by relevant concentration of the necroptosis inhibitor necrostatin. 
 
Figure 2. Concentration-Dependent Population Dynamics of DMECs in the Presence of Pro-Angiogenic 
Growth Factors. A.) The number of cells (N) over time for four concentrations of FGF2. B.) The number of 
dead cells (M) over time for the same experiment shown in panel A. C.) The proliferation rate, P, for the 
same experiment in panels A and B. D.) The birth rate, B, as a function of time. E.) The death rate, D, as a 
function of time. 
 
 
Figure 3. The dose-response proliferative behavior of DMECs to Three Pro-Angiogenic Growth Factors. 
The proliferation rate (A), the birth rate (B), and the death rate (C) for FGF2, VEGFA, and HGF over a 
range of concentrations. Note that the y-axes share the same scale to facilitate comparison of the relative 
magnitude of each. 
 
Figure 4. Identification of kinases important for the proliferation rate of DMECs in each pro-angiogenic 
growth factor studied. A.) Plots of the KIR coefficients (i.e., influential kinases) and their magnitudes for 
each growth factor. B.) Venn diagram revealing the exclusivity and commonalities between each growth 
factor regarding kinases with influence over proliferation rate. C.) The list of the intersection of kinases 
implicated in all three growth factors. 
 
Figure S2 Additional data regarding KIR. A.) From left to right we detail the RNA-seq dataset used to 
identify the set of kinases expressed by DMECs. On the far left is shown the histogram of expression levels 
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of all 17,698 genes in the dataset. The bimodal nature of the expression data is easily seen and suggests 
that genes in the first peak with relatively low expression values are not actually expressed while those in 
the second more broad peak with higher expression values are. Moving rightward, the histogram of the 
expression of only protein kinase genes (N = 493) is shown. It can be seen that kinases too follow the 
expected bimodal distribution as seen for all genes. We use these two observations to justify the selection 
of a threshold for real kinase expression. This threshold was set at 1.5 arbitrary units. Next histogram 
shows the distribution of the 377 expressed kinases in DMECs. Finally, on the far right we see the 
histogram of the intersection between expression kinases and KIR kinases, i.e., those for which the 
compounds have been thoroughly characterized. Thus, we arrive at 265 kinases which could potentially be 
returned from KIR analysis. This is not the final number as will be detailed next. Note that in Fig. S2A the 
number of kinases in the RNA-seq dataset is 493. This is 25 shy of the total number of kinases thought to 
be in the human genome. Of the 25 kinases not in the expression data, five are KIR kinases. To be 
conservative, we include those kinases in our analysis. B.) Plots of log(λ) vs mean-squared error (MSE) 
from leave-one-out cross-validation. We used the kinases from the model that minimize MSE (vertical 
dashed line).  
 
 
Figure S3 The KIR coefficients plotted against the mRNA expression level. Note the lack of relationship 
between expression level and magnitude of contribution. It can also be seen that two kinases for which we 
lack expression data, PEAK1 and PKACG, were returned by the analysis.  
 
 
Figure 5. Orthogonal Data Supporting the Role of Kinases Return from KIR Analysis. A.) Targeting growth 
factor receptors with 5 nM of siRNA reduces the proliferation rate of DMECs in the presence of cognate 
growth factors while minimizing reduction in proliferation in other growth factors. B.) Targeting kinases 
with siRNA largely agrees with kinases implicated by KIR. Here, effect is defined as the average over all 
three siRNAs used for each kinase. Error bars are s.e.m. The asterisks indicated 𝑝 < 0.05	from multiple 
comparison testing.  

 

 

Figure S4. The identification of relevant growth factor receptors expressed on DMECs via western blotting. 
There are two VEGF receptors in the genome with kinase activity, VEGFR2 and VEGFR3. DMECs only 
express VEGFR2. Similarly, there are four FGFRs in the human genome and DMECs only express FGFR1. 
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TABLE S1 

Growth Factor Supplier MW (kDa) Highest 
Concentration 

Tested (nM) 

Pro-
Proliferative? 

Activin A PeproTech 26 3.85 N 
Ang1 PeproTech 56.3 1.78 N 
Ang2 PeproTech 50.1 2 N 
CTGF PeproTech 11 9.09 N 
EG-VEGF PeproTech 9.6 10.42 N 
EGF Millipore 133.95 0.01 Y (weak) 
FGF1 PeproTech 16.8 5.95 Y 
FGF2 PeproTech 17.2 5.81 Y 
FGF3 R&D 21.1 7.11 N 
G-CSF PeproTech 18.7 5.35 N 
GM-CSF PeproTech 14.6 13.7 N 
Heregulin 1 PeproTech 7.5 13.33 N 
HGF PeproTech 79.4 2.52 Y 
IGF-1 R&D 7.6 26.32 N 
IL-1β R&D 17.3 5.78 N 
IL8 PeproTech 8.9 11.24 N 
Leptin R&D 16 62.5 N 
MCP-1 PeproTech 8.6 11.63 N 
PDGF-BB R&D 24.3 4.12 N 
PlGF PeproTech 29.7 5.05 N 
SDF-1α PeproTech 8 25 N 
TGF-α PeproTech 5.5 18.18 Y (weak) 
TGF-β1 PeproTech 25 4 N 
TGF-β2 PeproTech 25 4 N 
TGF-β3 PeproTech 25 4 N 
VEGFA 121 R&D 28 5.36 Y (weak) 
VEGFA 145 R&D 34 4.41 Y 
VEGFA 165 PeproTech 38.2 3.93 Y 
VEGF B PeproTech 38 3.95 N 
VEGF C PeproTech 27 5.56 N 
VEGF D PeproTech 26.2 5.73 N 
Wnt1 PeproTech 38.4 2.6 N 
Wnt7B PeproTech 35.5 2.82 N 
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