
1 

 

          Article, Discoveries 1 

Flor yeasts rewire the central carbon metabolism during wine alcoholic 2 
fermentation.    3 

Emilien Peltier1,2,3, Charlotte Vion1,2, Omar Abou Saada3, Anne Friedrich3, Joseph Schacherer3,4, 4 

Philippe Marullo1,2 5 

 6 

1University of Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, 7 

33140 Bordeaux INP, Villenave d’Ornon, France  8 

2Biolaffort, 33100 Bordeaux, France 9 

3Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France 10 

4Institut Universitaire de France (IUF) 11 

 12 

Corresponding author: 13 

Emilien Peltier, GMGM, 14 

IPCB 15 

4 allée Konrad Roentgen, 67000 Strasbourg, France  16 

epeltier@unistra.fr 17 

  18 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 19 

The identification of natural allelic variations controlling quantitative traits could contribute to 20 

decipher metabolic adaptation mechanisms within different populations of the same species. 21 

Such variations could result from man-mediated selection pressures and participate to the 22 

domestication. In this study, the genetic causes of the phenotypic variability of the central 23 

carbon metabolism Saccharomyces cerevisiae were investigated in the context of the enological 24 

fermentation. Carbon dioxide and glycerol production as well as malic acid consumption 25 

modulate the fermentation yield revealing a high level of genetic complexity. Their genetic 26 

determinism was found out by a multi environment QTL mapping approach allowing the 27 

identification of 14 quantitative trait loci from which 8 of them were validated down to the gene 28 

level by genetic engineering. Most of the validated genes had allelic variations involving flor 29 

yeast specific alleles. Those alleles were brought in the offspring by one parental strain that is 30 

closely related to the flor yeast genetic group while the second parental strain is part of the wine 31 

group. The causative genes identified are functionally linked to quantitative proteomic 32 

variations that would explain divergent metabolic features of wine and flor yeasts involving the 33 

tricarboxylic acid cycle (TCA), the glyoxylate shunt and the homeostasis of proton and redox 34 

cofactors. Overall, this work led to the identification of genetic factors that are hallmarks of 35 

adaptive divergence between flor yeast and wine yeast in the wine biotope. These alleles can 36 

also be used in the context of yeast selection to improve oenological traits linked to fermentation 37 

yield.  38 
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Introduction 39 

Deciphering how the considerable phenotypic diversity observed at the species level is 40 

controlled by genetic variation is an important and non-trivial goal in biology. Improving 41 

knowledge regarding genotype-phenotype relationship provides information on evolution and 42 

adaptation mechanisms (Olson-Manning, Wagner, and Mitchell-Olds 2012) and is precious in 43 

many biological fields like medicine (Minikel et al. 2020) or food industry (McCouch 2004; 44 

Marullo et al. 2006; Sharmaa et al. 2015). Unravelling the genetic basis of adaptation highlights 45 

how organisms adapt to new selection pressure like climate change, new pathogens or drugs 46 

and vaccines (Olson-Manning, Wagner, and Mitchell-Olds 2012; Alföldi and Lindblad-Toh 47 

2013). Domestication is a specific case of adaptation with important phenotypic change 48 

emerging from human artificial selection. Domesticated organisms are a great opportunity to 49 

study adaptation as there is a better knowledge of their adaptive history through their well-50 

characterized phenotypic properties and selective environments (Ross-Ibarra, Morrell, and Gaut 51 

2007; Gladieux et al. 2014). The identification of genes and molecular mechanisms leading to 52 

adaptation against domestication is also very useful in genetic selection in order to improve 53 

traits of economic interest and bringing phenotypic novelty to domesticated species (McCouch 54 

2004). 55 

The yeast Saccharomyces cerevisiae rapidly emerged as an excellent model to study genotype-56 

phenotype relationship (Steinmetz et al. 2002; Brem et al. 2002) and plenty of quantitative 57 

genetic studies were carried out in this species to study epistasis (Sinha et al. 2006), missing 58 

heritability (Bloom et al. 2013), gene-environment interaction (Smith and Kruglyak 2008; 59 

Bhatia et al. 2014; Yadav, Dhole, and Sinha 2016; Peltier et al. 2018) or impact of rare variants 60 

(Fournier et al. 2019; Bloom et al. 2019). S. cerevisiae was subjected to multiple domestication 61 

events in association with a large number of human associated environments (wine, beer, bread 62 

etc.) leading to distinct phylogenetic groups (Peter et al. 2018; Sicard and Legras 2011; J. L. 63 

Legras et al. 2018). Several genetic marks of adaptation were identified such as gene loss of 64 

function (Will et al. 2010), translocations (Zimmer et al. 2014; Pérez-Ortín et al. 2002), 65 

introgressions (Novo et al. 2009; Marsit et al. 2015), and SNPs (Peltier et al. 2019) (see for 66 

review : (Giannakou, Cotterrell, and Delneri 2020). Flor and wine yeasts are both associated 67 

with wine making environment and form two distinct but closely related phylogenetic groups 68 

(J. L. Legras et al. 2018). While both groups are able to efficiently perform wine fermentation, 69 

flor yeasts used in Sherry-like wines have the specific ability to shift to oxidative metabolism 70 
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and form a velum covering wine surface after fermentation (J. Legras et al. 2016). Differences 71 

in genomic content between wine and flor yeast were observed and the impact of allelic 72 

variations involved in biofilm formation were proposed as a feature of genetic adaptation 73 

(Fidalgo et al. 2006; Coi et al. 2017). Other functional adaptation hallmarks related to active 74 

gluconeogenesis, response to osmotic pressure and metal transport were predicted by a 75 

population genomic approach but have not been demonstrated yet at the gene level (Coi et al. 76 

2017).  77 

Recent global warming caused the steady increase of sugar content in grape juices leading to 78 

higher ethanol concentration in wine with several issues regarding consumer health and wine  79 

quality (Dariusz R. Kutyna et al. 2010). Therefore, there is a growing demand for the 80 

development of new technologies to reduce alcohol content in wine. In this context, several 81 

institutions have attempted a biological approach in order to select new strains of S. cerevisiae 82 

with a lower fermentation yield. Various strategies were implemented such as adaptive 83 

evolution (Tilloy et al. 2015; D. R. Kutyna et al. 2012), interspecific breeding (da Silva et al. 84 

2015), and genetic engineering (Rossouw et al. 2013; Ehsani et al. 2009). Here, we aim at 85 

finding out undescribed natural genetic variations controlling the central carbon metabolism in 86 

order to modulate the efficiency of sugar into ethanol conversion (Fermentation yield). By 87 

applying a Quantitative Trait Loci (QTL) mapping approach, we investigated the genetic 88 

determinism of three traits (glycerol production, CO2 production and malic acid consumption) 89 

that shape the carbon balance in enological conditions.  90 

Our study is based on the analysis of a progeny obtained by crossing two strains derived from 91 

wine starters. A deeper analysis of parental genomes showed that, unexpectedly, one of the 92 

parental strains results to have a mosaic genome inherited from both wine and flor yeasts while 93 

the second parental strain belongs to the wine group. This admixture has promoted an important 94 

phenotypic variability impacting the central carbon metabolism of the F1 progeny. A total of 95 

14 QTLs were identified and the effect of eight of them were experimentally validated down to 96 

the gene level. Six genes (PMA1, PNC1, PYC2, SDH2, MAE1, and MSB2), among which three 97 

are directly involved in central carbon metabolism (SDH2 in tricarboxylic acid cycle (TCA)), 98 

MAE1 in pyruvate metabolism and PYC2 in gluconeogenesis pathways, show allelic variations 99 

highly specific to flor yeasts group. Linked to these validated genes, further proteomic analyses 100 

highlighted different metabolic regulations between the parental strains for TCA and glyoxylate 101 

shunt. Altogether, these results support the hypothesis that allelic variations between wine and 102 
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flor yeasts generate important phenotypic differences and could be considered as hallmarks of 103 

adaptation for different growth strategies on the wine biotope. These results also show that flor 104 

yeasts constitute a great reservoir of genetic variation to bring phenotypic novelty in 105 

commercial yeast starter to cope for new challenges as global warming (Mira de Orduña 2010) 106 

and new viticultural practices (Kontoudakis et al. 2011). 107 

Results 108 

Biometric study of the glycerol, CO2 and malic acid 109 

In order to explore the genetic determinism of central carbon metabolism during wine alcoholic 110 

fermentation, the previous dataset of fermentation traits measured within a QTL mapping 111 

population was used (Peltier, Sharma, et al. 2018). This population was obtained by mating two 112 

fully homozygous strains (SB and GN) derived from the sporulation of wine starters. A total of 113 

94 meiotic segregants were obtained though sporulation of a single hybrid (SBxGN) (Fig1) and 114 

phenotyped in three environmental conditions using a small-scale fermentation dispositive and 115 

enzymatic assays to measure fermentation kinetics traits and endpoint concentration of several 116 

metabolites, including glycerol and CO2 production. All segregants were sequenced and a 117 

genetic map of 3433 biallelic markers was built in order to identify the genetic factors 118 

controlling these phenotypes (Table S1). In the present study, an additional phenotyping effort 119 

was achieved by measuring malic acid consumption in the same conditions.  120 

 121 

Carbon balance was evaluated by measuring the main organic compounds assimilated and/or 122 

produced for each of the 94 segregants at the end of the alcoholic fermentation (Table S2). 123 

According to the must, the fermentation yield computed ranged between 0.45 and 0.48 which 124 

is close to values observed in other studies (Tilloy, Ortiz-Julien, and Dequin 2014) 125 

(Supplementary file S1). An analysis of variance demonstrated a significant genetic (strain) 126 

impact on the fermentation yield (17% of the total variance explained). This integrative trait is 127 

mostly shaped by the quantitative variation of three metabolites: glycerol, malic acid, and CO2 128 

that were partially correlated (Figure S1). Glycerol and CO2 (which is stoichiometrically linked 129 

to ethanol) are de novo synthetized by yeast catabolism; their concentrations are expressed in 130 

g/L. The final concentration of CO2 produced is expressed hereafter as CO2max. The final 131 

concentration of malic acid depends on its initial amount in grape must which differs according 132 
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to the grape juice. Since this organic acid is partially metabolized by yeast, the strain 133 

contribution was normalized by computing the percentage of Malic Acid Consumed (MAC%). 134 

For each trait, parental strains SB and GN are significantly different with important gaps for 135 

glycerol and MAC% (Wilcoxon test, pval <0.05). Indeed, SB produces 1.6 g/L more glycerol 136 

(+30%) and consumes 28% more malic acid than GN. Since malic consumption and glycerol 137 

production have an opposite effect on CO2 and ethanol production, the phenotypic differences 138 

for CO2 are sharper. These differences are consistent with previous results showing that SB is 139 

the top strain for glycerol production and malic acid consumption compared to a panel of 140 

commercial starters (Peltier, Bernard, et al. 2018).  141 

Each trait had a high overall heritability (Table S3) and displayed a bell-shaped distribution 142 

with number of segregants showing transgressive values respect to parental strains (Fig S2). 143 

These broad biometric observations highlighted a polygenetic control of each trait with a 144 

positive contribution of both parental strains. 145 

Linkage analysis brings out a linkage hotspot with pleiotropic effect  146 

In a previous work that explored QTL interaction with environment, five QTLs were associated 147 

with CO2max and glycerol production in the SBxGN offspring (Peltier et al., 2018). Here, we 148 

aimed at identifying supplemental QTL controlling MAC% that was newly phenotyped. A 149 

linkage analysis was performed and significantly associated nine QTLs to this trait. Therefore, 150 

a total of 14 QTL are involved in CO2max, glycerol and MAC% (Fig 2 and Table S4). The 151 

effects of parental alleles are shown in the Fig S3. Intriguingly, a large region of the 152 

chromosome VII (387 kb to 716 kb) was associated with all the considered traits. This linkage 153 

hotspot is almost entirely above the significance threshold for at least one trait and four distinct 154 

linkage peaks can be distinguished. This hotspot encompasses one major QTL, the locus 155 

VII_415 (Chr VII, position 415,719), influencing the glycerol production (LOD score >10) 156 

which explains more than 10 % of total variance. Interestingly, for this cross, a sharper region 157 

of chromosome VII (50 kb) was previously associated with kinetic traits during second 158 

fermentation of sparkling wines (Martí-Raga et al. 2017). Three genes of this large QTL (PDR1, 159 

PMA1 and MSB2) were demonstrated to have an important phenotypic impact in this condition. 160 

Here, the QTL VII_482 linked to MAC% is located in the PMA1 coding sequence (479,910 161 

482,666). 162 
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Multiple Quantitative Trait Genes control glycerol production and malic acid 163 

consumption. 164 

Candidate genes neighboring the QTL peak within a 20 kb window were considered through 165 

their functional annotation and by checking for ns-SNPs within parental strains sequences using 166 

the algorithm SnpEff (Table S5) (Sherman and Salzberg 2020). We selected also the three genes 167 

(PDR1, PMA1 and MSB2) previously validated for second fermentation traits that are located 168 

near the major hotspot of chromosome VII in the present work. This leads to consider 11 169 

candidate genes that could impact the traits investigated. Their effects were interrogated by a 170 

Reciprocal Hemizygosity Analysis (RHA) (Steinmetz et al. 2002). The impact of parental 171 

alleles was compared in alcoholic fermentation test using the same fermentation protocol. In 172 

addition, ethanol content (% Vol) was estimated by infrared reflectance rather than enzymatic 173 

assay (see methods). The effect of four candidate genes impacting CO2max and/or glycerol was 174 

tested. They belong to the two major QTLs found in term of variance explained: ADE6 175 

(VII_616), MSB2 (VII_512), PDR1 (VII_482), PNC1 (VII_415). The RHA was carried out in 176 

the M15_sk condition with two sugar concentration levels (219 and 265 g/L) using at least five 177 

biological replicates for each condition. Sugar spiking would emphasize the phenotypic 178 

differences related to CO2 and ethanol production. The most obvious effects were obtained for 179 

glycerol production for genes ADE6, MSB2, and PCN1 for which hemizygous hybrids are 180 

significantly different (Wilcoxon test, pval < 0.1) (Fig 3, panel A). These three genes are located 181 

in a region of 200 kb along the chromosome VII hotspot demonstrating that distinct genetic 182 

factors in this region control the glycerol production. 183 

Intriguingly, the sugar content modulated the phenotypic responses of hemizygous hybrids. 184 

Indeed, in sugar-spiked grape must (M15_265), alleles ADE6GN enhanced glycerol production 185 

of 12 %, while the allele MSB2GN has an enhancer effect only in the original M15 grape must 186 

(219g/L of initial sugar). The allelic forms ADE6GN, PNC1SB promote the glycerol production 187 

and their effects are those observed in the SBxGN progeny (Table S4, Fig S3). In contrast, the 188 

MSB2GN allele produced more glycerol which is not observed in the segregating progeny (Fig 189 

S4). This opposite effect has been previously described for the same gene for another phenotype 190 

and could be due to the complex genetic architecture of chromosome VII (Martí-Raga et al. 191 

2017). The difference observed in glycerol production for ADE6, PNC1 and MSB2 did not 192 

impact either the CO2max or the ethanol content. 193 
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In the same way, seven candidate genes belonging to six QTLs affecting MAC% were 194 

evaluated: MAE1 (XI_381), MCH1 and GPM2 (IV_356), PYC2 (II_669), PMA1 (VII_482), 195 

SDH2 (XII_53) and YBL036c (II_152). Fermentations were carried out in both M15 and SB14. 196 

RHA revealed a significant effect for the genes MAE1, PMA1, PYC2 and YBL036c (Fig 3, panel 197 

B) (Wilcoxon test, pval < 0.05). The alleles of MAE1, PYC2 and YBL036c inherited from the 198 

parental strain SB consumed respectively 25%, 19%, and 45% more malic acid than those 199 

inherited from GN. In contrast, the PMA1GN allele consumed 18% more malic acid than 200 

PMA1SB. This gene, encoding for the plasma membrane ATPase, has been previously linked to 201 

the maintenance of pH homeostasis during wine fermentation and is located in the center of 202 

chromosome VII hotspot (Martí-Raga et al. 2017). Unexpectedly, a significant effect of PNC1 203 

on MAC% was also observed and the hemizygote hybrid harboring the PNC1SB allele consumes 204 

15 % more malic acid than PNC1GN (Fig 3, panel B) (Wilcoxon test, pval < 0.05). The genomic 205 

position of PNC1 is about 50 kb from the nearest QTL peak for MAC% VII_482), however the 206 

other causative genes (PMA1, MSB2, ADE6) associated with the chromosome VII hotspot may 207 

have altered the precision of our linkage analysis. 208 

Beside the validation of these five genes on MAC%, reciprocal hemizygous analysis of SDH2 209 

suggested its potential contribution on malic acid consumption. Although the hemizygous are 210 

not statistically different, a strong haploinsufficiency effect in both hemizygous hybrids was 211 

observed affecting either MAC% (-14%) and fermentation kinetics by doubling the 212 

fermentation duration (Fig S5). Intriguingly, this haploinsufficiency was only present in M15 213 

grape juice. Two factors suspected to have an impact on this haploinsufficiency were tested 214 

(initial malic concentration and pH) in synthetic grape juice (SGJ) by adjusting these two initial 215 

values to either M15 or SB14 levels. An haploinsufficiency similar to that in M15 was found 216 

in all four conditions even in the one mimicking SB14 conditions (Fig S5). No significant 217 

interaction between the level of haploinsufficiency and pH and malic acid was found (Anova, 218 

pval > 0.1). These findings suggest that SDH2 has a great impact on fermentation rate and 219 

MAC% during grape juice fermentation. However, since the RHA test was limited by the 220 

haploinsufficiency effect our experiments failed to clearly demonstrate the impact of parental 221 

allelic variations.  222 

 223 

Altogether, these functional analyses validated the role of eight Quantitative Trait Gene (QTG). 224 

Four of them play a direct role in the central metabolism encoding enzymes involved in 225 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

oxidoreductive reactions of carbohydrate metabolism (MAE1, PYC2, PNC1, SDH2). Two 226 

others are key regulators of osmotic (MSB2) and pH (PMA1) homeostasis. The RHA also 227 

revealed that ADE6 and YBL036c contribute to the phenotypic difference between the parental 228 

strains for glycerol production and malic acid consumption, respectively (Fig 3). However, their 229 

functional connection with the metabolic pathway of glycerol and malic acid is more difficult 230 

to address at this stage. 231 

SB is a mosaic strain derived from flor and wine yeasts  232 

QTL mapping is a useful strategy for identifying natural genetic variations that shape 233 

phenotypic diversity between two strains. However, in most of the cases, the causative 234 

mutations identified are rare and specific to one parental strain (Bloom et al. 2019; Fournier et 235 

al. 2019; Peltier et al. 2019) due to the clonal structure of S. cerevisiae population (Peter et al. 236 

2018). This impairs the identification of more general mechanisms of adaptation resulting to 237 

natural selection. In order to have a more precise idea of the evolutive relevance of QTL 238 

identified, SB and GN genomes were compared to those of 403 wine related strains previously 239 

released (Peter et al. 2018; Legras et al. 2018). A phylogenetic tree was generated using 385,678 240 

SNPs discriminating the 403 wine strains plus the parental strains SB and GN. This collection 241 

of strains encompasses wine (n=358) and flor (n=47) strains that form distinct groups as 242 

previously described (Coi et al. 2017; Legras et al. 2018) (Table S6). Interestingly, SB is 243 

genetically close to the flor group while GN is quite similar to the wine group (Fig 4, panel A). 244 

Consequently, the two parental strains used in this study are quite distant with a sequence 245 

divergence of 0.19 % (~22,000 SNPs). The relatedness of SB genome with the flor group was 246 

deeply investigated by selecting a subset of 5,086 SNPs highly specific to the flor yeast group. 247 

Those SNPs have a frequency difference higher than 90 % between flor and wine yeast groups. 248 

The strain SB harbors 44.3 % of flor yeast specific alleles while GN only has 1.7 % of them. 249 

Their distribution across the SB genome is not uniform (Fig 4, panel B). Indeed, long portions 250 

of chromosomes have inherited 100 % flor-specific alleles (Chr II) while other portions are 251 

totally exempt of them (Chr VIII). This analysis demonstrated that SB is a mosaic strain 252 

between wine yeast and flor yeast, a feature shared with some others wine starters (Coi et al., 253 

2017). 254 

 255 
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Intriguingly, nine of the fourteen QTLs mapped are located in flor specific chromosomic 256 

portions. This is the case of a large stretch within chromosome VII encompassing four causative 257 

genes (PNC1, MSB2, PMA1, ADE6) that displays the genomic signature of flor yeasts. A similar 258 

observation can be made for chromosome II in which three QTLs were identified (Fig 4, panel 259 

B). During their domestication, flor yeasts accumulated numerous mutations leading to an 260 

adaptation to grow on wine surface (Coi et al. 2017). In order to narrow such natural genetic 261 

variations, we listed the pool of ns-SNP discriminating SB and GN in the sequence of causative 262 

genes. For those SNPs, allelic frequencies of flor and wine groups were computed (Table 1). In 263 

ADE6, ns-SNPs listed are scarcely found whatever the group. The low allelic frequency of such 264 

polymorphisms would reflect recent mutations which is a common feature of the S. cerevisiae 265 

population. In contrast, for the other genes PMA1, PNC1, PYC2, SDH2, MAE1, and MSB2, the 266 

SB alleles are highly specific to flor yeast group while GN alleles are specific to the wine group. 267 

Therefore, these flor-specific alleles would have promoted the wide phenotypic variability of 268 

carbon metabolism observed in SBxGN progeny and more broadly are explaining phenotypic 269 

differences between flor and wine yeasts. 270 

SB proteome reveals peculiar metabolic regulations functionally connected with 271 

some causative genes. 272 

Flor yeasts are able to grow on the wine surface at the end of the alcoholic fermentation. By 273 

creating biofilm rafts, they are able to resist to high ethanol content in harsh conditions (Legras 274 

et al. 2016). For ensuring their development, they activate particular metabolic pathways (active 275 

neoglucogenesis and respiration metabolism) that are the opposite of those developed by wine 276 

yeasts during the alcoholic fermentation. Such metabolic differences have been previously 277 

reported at the metabolomic and the proteomic levels (Moreno-García, García-Martínez, 278 

Moreno, et al. 2015; Moreno-García, García-Martínez, Millán, et al. 2015; Alexandre 2013; 279 

David-Vaizant and Alexandre 2018). In order to have a broad overview of the metabolic 280 

peculiarities of the SB strain, we reanalyzed a proteomic dataset previously generated in our 281 

laboratory (Albertin, Marullo, et al., 2013; Blein-Nicolas et al., 2013, 2015). Data explored 282 

were obtained by quantifying the proteome of 25 S. cerevisiae strains, including SB and GN, 283 

during the fermentation of a sauvignon blanc grape juice by a shotgun proteomics approach. 284 

Samples were collected at mid-point in triplicate allowing the quantification of 1110 proteins 285 

commonly expressed (Table S7). A global Principal Component Analysis (PCA) demonstrates 286 

that SB is strongly discriminated by the two principal axes accounting for 34 % of the total 287 
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inertia suggesting an outlier protein abundance respect to 24 other strains (Fig. 5, panel A). 288 

Indeed, the Abundance Fold Change Ratio (AFCR) of SB and GN vs the 24 other strains were 289 

compared for each of the 1100 proteins quantified. SB displays a much distinct profile since 290 

12.9 % of its proteome reach a 2 folds change abundance (log2(AFCR) +/- 1.0) while only 2.9 % 291 

of GN proteins reach this threshold (Fig S6). Thus, proteome variance of SB and GN are 0.504 292 

vs 0.143, respectively (variance F test, pvalue <1.10-16). This analysis demonstrated that SB has 293 

a particular proteome compared to GN and even to other S. cerevisiae strains. 294 

 295 

In order to analyze the origin of this discrepancy, we deeply compared SB and GN using the 296 

1264 proteins quantified in both strains (Table S7). This comparative analysis reveals a set of 297 

207 proteins with an ACFR higher than 2 (Table S8). Within this set, a significative enrichment 298 

was found for mitochondrial proteins which represent 33% of the pool (χ2 test=2.10-5). We 299 

sought functional interactions between the eight causative genes identified and the set of 207 300 

differentially expressed proteins by performing a STRING analysis (Szklarczyk et al. 2019) 301 

(see methods). Three of the six interaction networks computed clearly linked four QTG with 302 

proteins differentially expressed (Fig 5, panel B). The main cluster, linked to the causative 303 

genes PYC2 and MAE1, encompassed 31 proteins including many enzymes related to pyruvate 304 

and citrate metabolism (Mls1p, Leu9p, Ach1p, Mdh3p, Dld1p, Dld2p, Ald5p, Cyb2p, Cit1p, 305 

Cit2p). The fold change abundance of such proteins suggests the existence of differential 306 

metabolic regulations between SB and GN. For instance, three of the four S. cerevisiae enzymes 307 

(Dld1p, Dld2p and Cyb2p) involved in the lactate metabolism are at least 2.5 less abundant in 308 

SB. These proteins are supposed to be repressed by glucose and anaerobiosis and participate to 309 

the oxidation of lactate into pyruvate (Bekker-Kettern, 2016). Other proteins, belonging to the 310 

glyoxylate shunt and TCA, were differentially quantified (2-fold change ratio). Interestingly, 311 

the oxidative branch of TCA and the glyoxylate shunt (i.e. Mls1p, Dal7p, Cit1p, Cit2p, Aco2p) 312 

are broadly more abundant in SB while proteins participating to the reductive branch of TCA 313 

(i.e. Fum1p, Mdh1, Sdh2p) are more abundant in GN (Fig S7, panel A). These metabolic 314 

pathways are directly connected with two causative genes identified in this study MAE1 and 315 

PYC2 that controls MAC%. Strikingly, the cytosolic malate synthase Mls1p catalyzing the 316 

condensation of glyoxylate and acetyl CoA in L-malate is 7 folds more abundant in SB 317 

(log2(AFCR)>2.8) and would directly enhance its cytosolic pool of malic acid. These 318 

noteworthy variations of proteins abundance are not due to a singular contrast between SB and 319 
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GN proteomes but reflect a clear specificity of SB central metabolism regulation. Indeed, the 320 

AFCR computed between SB and the 24 other S cerevisiae strains (average value) is very 321 

similar to the AFCR of SB vs GN (Pearson cor. test <10-13) (Fig S7 panel B). This analysis 322 

suggests that the peculiar proteome of SB would be due to its unusual mosaic origin 323 

encompassing large stretches of flor yeast genome. 324 

 325 

Discussion 326 

The flor yeast origin of the parental strain SB is likely involved in the diversity of 327 
carbon catabolism in the SBxGN progeny. 328 

This work aimed to identify natural genetic variations that possibly modulate the catabolism of 329 

carbon sources during wine fermentation. From an applied point of view, this goal is 330 

particularly relevant for wine industry in order to cope with two main negative effects of global 331 

warming: (i) the rise of ethanol content and (ii) the reduction of the total acidity of wines. This 332 

general trend is due to the increasing concentration of sugars coupled with a drop of malic acid 333 

content in grape juices around the world (van Leeuwen and Darriet 2016). By applying a QTL 334 

mapping strategy, eight Quantitative Trait Genes (QTG) impacting the carbon balance during 335 

the wine fermentation were identified. Although, reciprocal hemizygosity assay fails to identify 336 

candidate genes that significantly decrease the final ethanol content of wine, this study allows 337 

the identification of natural allelic variations controlling two remarkable phenotypes: the 338 

glycerol production and the percentage of malic acid consumed (MAC%). The schematic 339 

relationships of their respective proteins in the yeast metabolism map are shown on Fig 6. 340 

This study was carried out using two meiotic segregants (SB and GN) derived from commercial 341 

starters widely used in wine industry (Actiflore BO213 and Zymaflore VL1, Laffort, France). 342 

Such commercial starters have been selected in the past for their technological properties by 343 

sampling spontaneous wine fermentations (P Marullo, pers com). Unexpectedly, we find out 344 

that the SB genome has a mosaic structure inherited from two distinct groups of S. cerevisiae 345 

population: the wine and the flor yeasts (Peter et al. 2018). Around 40 % of the SB genome is 346 

flor specific suggesting that BO213, the parental strain of SB, would be an F1-hybrid resulting 347 

from the cross of a flor yeast and a wine yeast, as previously observed for others wine 348 

commercial strains related to the Champagne group (Coi et al. 2017). 349 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.27.433177
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Wine yeasts are adapted to a fast development on grape must in competition with numerous 350 

other species in a sugar rich environment and many natural allelic variations related to their 351 

adaptation to grape juice have been described in the past (Peltier et al. 2019). In contrast, flor 352 

yeasts are adapted to survive in wine, a sugar-depleted environment containing high ethanol 353 

degree and low oxygen. Thus, flor yeasts would have accumulated specific genetic variations 354 

for coping with this harsh environment. Many efforts have been made for identifying such 355 

adaptation signatures especially concerning the development of the flor velum. This biofilm-356 

like growth is essential for reaching the wine surface and to get oxygen which is mandatory for 357 

catabolizing ethanol and producing energy (Legras et al. 2016). Allelic variations specific to 358 

flor yeasts have been detected by using comparative genomics and the role of two genes (SFL1 359 

and RGA2) participating in the regulation of FLO11 has been demonstrated (Coi et al. 2017). 360 

In the SBxGN cross, wine and flor specific alleles segregate providing the opportunity to study 361 

the phenotypic impact of gene pools that have undergone parallel evolutionary routes with 362 

different selective pressures. Indeed, nine of the fourteen QTL identified are located in flor 363 

specific regions allowing the molecular validation of six genes (PMA1, PNC1, PYC2, SDH2, 364 

MAE1, and MSB2) characterized by flor specific alleles. This suggest that part of the allelic 365 

variations involved in the adaptive divergence between wine and flor yeast had been captured.  366 

Functionally, these genes are involved in key pathways discriminating flor yeast and wine yeast 367 

metabolisms. First, MSB2 encodes a signaling mucin protein acting as a stress or nutrient 368 

deprivation receptor (Cullen and Sprague 2012). Msb2p is associated with the transmembrane 369 

osmosensor Sho1p and transmits the signal to the downstream components of the monomeric 370 

G-proteins Rho involved in both filamentous growth (FG) and the high osmolarity glycerol 371 

(HOG) pathways (Tatebayashi et al. 2007). HOG pathway plays a key role for adaptation 372 

against high osmolarity levels by increasing the production of glycerol (Hohmann, 2009), the 373 

second more abundant metabolite of fermenting yeast after ethanol. The comparative analysis 374 

of MSB2 sequence reveals a unique ns-SNP between the parental strains (Table 1). The SB 375 

allele S529F is specific to flor yeasts and lowers the glycerol production respect to the GN 376 

allele. The MSB2S529F allele has a predicted deleterious effect that would impact the signal 377 

transduction of both HOG and FG MAPK pathways. Such pathways share common 378 

components but are induced by different stimuli and provides specific responses (Pitoniak et al. 379 

2009). The essential Rho protein Cdc42p has been described to stimulate glycerol production 380 

by triggering the MAPK Hog1p (Hohmann, 2009). Cdc42p is threefold less abundant in SB 381 
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which is consistent with the hypothesis of a low Msb2p activity in this background. In contrast 382 

the non-essential GTPase Rho3p also involved in cell polarity is three times more abundant in 383 

SB. Interestingly, the abundance fold ratio of Rho3p and Cdc42p are specific to SB (compared 384 

to others S cerevisiae strains) and might be related to the filamentous growth specificities of 385 

flor yeast required for the velum formation. 386 

A flor-specific allele was also found in the sequence of PNC1 which encodes for a 387 

nicotinamidase that converts nicotinamide to nicotinic acid. Pnc1p, which is induced by the 388 

osmotic stress, restores redox balance by regenerating NAD+ from nicotinamide via the NAD+ 389 

salvage pathway (Effelsberg et al. 2015; Ghislain, Talla, and François 2002). RHA reveals that 390 

the allele PNC1SB enhances both the glycerol production and the MAC%. A direct functional 391 

link exists between PNC1 and glycerol biosynthesis since this protein is co-imported in the 392 

peroxisome with Gpd1p, a major controlling enzyme of glycerol biosynthesis (Nevoigt and 393 

Stahl 1997). Under osmotic stress, their overexpression saturates the peroxisome importation 394 

system and therefore this protein became cytosolic and active (Effelsberg et al., 2015). The role 395 

of Pnc1p in MAC% is more complex to explain and might be linked to the NAD+/NADH+ 396 

homeostasis itself that is tightly controlled (Bakker et al. 2001). This organic acid can be 397 

oxidized in pyruvate (by the malic enzyme Mae1p) or in oxaloacetate (by malate 398 

dehydrogenases). Thus, an active malic acid consumption would increase the intracellular 399 

levels of NADH+ requiring an increase of glycerol production for regenerating the NAD+ pool. 400 

 401 

Another flor yeast specific allele impacting MAC% is MAE1 that encodes for the mitochondrial 402 

malic enzyme that catalyzes the oxidative decarboxylation of malate to pyruvate (Boles, de 403 

Jong-Gubbels and Pronk, 1998) achieving the malo-ethanolic fermentation (Volschenk, 404 

Vuuren and Viljoen–Bloom, 2003). Interestingly, MAE1 was also reported to influence the 405 

formation of higher alcohols, fusel acids, and acetate esters in another mapping population 406 

where the same SNP is segregating (MAE1I605V) (Eder et al., 2018). These data suggest that this 407 

allelic variation would have pleiotropic consequences in an enological context, affecting the 408 

malic acid consumption as well as the biosynthesis of relevant wine volatile compounds. 409 

 410 

A second pleiotropic gene to be discussed is PMA1 which encodes for a membrane ATPase the 411 

major regulator of cytoplasmic pH and plasma membrane potential. During wine fermentation, 412 
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pH has a great impact on intracellular malic acid diffusion and consumption  (Salmon, 1987; 413 

Delcourt et al., 1995; Saayman and Viljoen-Bloom, 2006). Indeed, malic acid charge is strongly 414 

dependent of the wine pH since the pka1 of this diacid is 3.54. Bellow a pH value of 3.4, the 415 

entry of a malic acid molecule in the cytoplasm result to a net proton influx that must be pumped 416 

over for maintaining pH homoeostasis with an energy cost of 1 ATP per molecule. In the present 417 

work, the QTL VII_482 related to PMA1 has the strongest effect observed with a positive 418 

impact of the GN allele on malic acid consumption. Previously, we demonstrated that PMA1 419 

inheritance influences fermentation kinetics with a strong interaction with the pH of the 420 

medium. Indeed the GN and SB alleles increase the fermentation rate when the pH are 3.3 and 421 

2.8, respectively (Martí-Raga et al., 2017). These fine grain gene-environment interactions 422 

might result from the consumption level of malic acid in relation with the pH of wine. 423 

Two other genes with a direct connection with malic acid metabolism were shed on light. The 424 

gene PYC2 involved in gluconeogenesis pathway encodes for a pyruvate carboxylase that 425 

converts pyruvate to oxaloacetate (Stucka et al., 1991; Walker et al., 1991). During 426 

fermentation, pyruvate carboxylase is the sole source of oxaloacetate playing an essential role 427 

in aspartate biosynthesis, TCA turnover, and malic acid biosynthesis (Huet et al., 2000). Indeed, 428 

PYC2 overexpression enhances malic acid production in a bioengineering context (Bauer et al., 429 

1999). We hypothesized that the allelic variants of SB may have reduced the Pyc2p activity 430 

reducing the biosynthetic flux of malic acid from pyruvate. To cope with this reduction, a first 431 

metabolic alternative would be the de novo synthesis of malic acid from the glyoxylate shunt. 432 

This is consistent with the high abundance of the malate synthase (more than 7 folds) observed 433 

in SB respect to GN. A second metabolic alternative would be a strongest uptake from the 434 

external media which is the hallmark of the SB strain. 435 

Finally, a surprising effect of SDH2 deletion was observed. This gene encodes for a subunit of 436 

the succinate dehydrogenase complex (complex II) ensuring electron transfer from succinate to 437 

ubiquinone. This TCA cycle step is involved in the mitochondrial respiratory chain and is 438 

mostly inactive during the alcoholic fermentation (Camarasa, Grivet and Dequin, 2003) due to 439 

oxygen depletion and catabolic repression (Klein, Olsson and Nielsen, 1998; Kwast, Burke and 440 

Poyton, 1998). Indeed, under sake brewing conditions, the CO2 production rate was not 441 

impacted in double mutants Δsdh1, Δsdh2 (Kubo, Takagi and Nakamori, 2000). These 442 

commonly admitted results contrasted with the strong haploinsufficiency effect of SDH2 443 

deletion observed for MAC% and fermentation kinetics in M15 medium (Fig S5). Although we 444 
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could not measure a significant difference between hemizygous hybrids, the strong 445 

haploinsufficiency observed suggests that the succinate dehydrogenase complex would play an 446 

unsuspected physiological role in this specific background. Interestingly STRING analysis 447 

reveals that five proteins functionally associated to SDH2 are differentially synthetized between 448 

SB and GN. These proteins belong to the respiratory complexes II, III and IV. Thus, complex 449 

II (Sdh1p and Sdh2p) is less abundant in SB while proteins belonging to complex III (Qcr10p) 450 

and IV (Cox2p and Cox12p) are more abundant. Due to the functional importance of protein 451 

stoichiometry in such complexes, abundance change in few proteins would impact the residual 452 

activity of the respiratory chain. Therefore, the functional understanding of the succinate 453 

dehydrogenase complex during alcoholic fermentation will require further analyses that are not 454 

the purpose on the present paper. 455 

 456 

Flor yeasts exhibit an active gluconeogenesis and respiration catabolism during velum 457 

development that impact their proteomics response (Legras et al. 2016; Alexandre 2013) 458 

(Moreno-García, García-Martínez, Moreno, et al. 2015). However, to our knowledge, a 459 

comparative proteomic study between flor and wine yeast was never achieved. Since the SB 460 

strain harbor 40% of the genomic signature of a flor yeast, we supposed that this strain could 461 

exhibit particular flor yeast features at the proteomic level. This prompted us to compare the 462 

fermentation proteome of SB with other S cerevisiae strains including the parental strain GN 463 

used in this study. A large comparative proteomics study between strains of the same species 464 

carried out in our laboratory was reanalyzed for this purpose (Blein et al. 2015). The abundance 465 

of 1100 proteins commonly quantified in 25 S. cerevisiae strains clearly demonstrated that SB 466 

exhibit a peculiar proteomic regulation (Fig 5, panel A) during wine fermentation (Table S7). 467 

Strikingly most of the proteins differentially regulated between SB and GN are due to the 468 

specific proteomic patterns of SB discarding the fact that the SB vs GN proteomic variations 469 

would be due to the GN strain (Fig S6, panel B). Several proteins involved in pyruvate and 470 

gluconeogenesis were differentially quantified. Many of them have been previously described 471 

as specific signature of velum development (Moreno-García, García-Martínez, Moreno, et al. 472 

2015).  473 

By implementing a STRING analysis, we attempted to retrace a functional link between the 474 

eight QTG identified and the proteomic variations observed between parental strains. This 475 

indirect analysis would bridge the gap between specific flor yeast variations and the overall 476 
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proteomic discrepancy of the SB strain. Three causative genes (MSB2, SDH2 and PYC2) 477 

harboring flor specific alleles were functionally connected with three protein clusters (Fig 5, 478 

panel B). PYC2 and SDH2 are directly involved in central carbon metabolism playing an 479 

essential role in gluconeogenesis and respiration, respectively. The first controls the unique way 480 

for producing glucose from ethanol since the pyruvate kinase catalyzed an irreversible reaction 481 

(Pronk, Steensma, and Van Dijken 1996). The second belongs to the succinate dehydrogenase 482 

which is inactivated during the fermentation and that constitutes the first step of respiration 483 

chain (complex II) which is essential for producing energy in aerobic conditions. A contrasted 484 

regulation between the oxidative and reductive branch of TCA was observed in the strain SB 485 

(Fig S7A) promoting the idea that succinate dehydrogenase activity would participate to the 486 

regulation of TCA proteome. Although this hypothesis remains to be validated by further 487 

experiments, we hypothesized that the specific flor alleles Sdh2K158E and Pyc2Q373K carried by 488 

SB strain might impact the overall proteomic response of this strain by controlling key steps of 489 

gluconeogenesis and TCA cycle. 490 

Materials and Methods 491 

Yeast strains and culture media 492 

All the strains used in this study belong to the yeast species Saccharomyces cerevisiae. SB and 493 

GN strains are monosporic clones derived from industrial wine starters, VL1 and Actiflore 494 

BO213, respectively. Generation of the SBxGN and segregant populations were described by 495 

(Peltier, Sharma, et al., 2018). Briefly, F1-hybrids were obtained by manual crossing with 496 

micromanipulator. After sporulation on ACK (2 % potassium-acetate, 2% agar) media, 497 

monosporic clones were isolated by micromanipulation. Yeast was cultured at 30 °c in yeast 498 

YPD media (10 g/L yeast extract, 20 g/L peptone and 20 g/L glucose) and solidified with 2 % 499 

agar when required. The strains were stored long term in YPD with 50% of glycerol at − 80 °C. 500 

 501 

Phenotyping 502 

The two grape juices used, Merlot of vintage 2015 (M15) and Sauvignon Blanc of vintage 2014 503 

(SB14), were provided by Vignobles Ducourt (Ladaux, France) and stored at − 20 ° C. Before 504 

fermentation, grape juices were sterilized by membrane filtration (cellulose acetate 0.45 μm 505 
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Sartorius Stedim Biotech, Aubagne, France). Fermentations were carried out as previously 506 

described (Peltier, Bernard, et al. 2018). Briefly, fermentations were run at 24 °C in 10 mL 507 

screw vials (Fisher Scientific, Hampton, New Hampshire, USA) with 5 mL of grape must. 508 

Hypodermic needles (G 26–0.45 × 13 mm, Terumo, Shibuya, Tokyo, Japan) were inserted 509 

through the septum for CO2 release. Two micro-oxygenation conditions were used by applying 510 

or not constant orbital shaking at 175 rpm during the overall fermentation. For this data, three 511 

fermentation conditions were used: SB14 with shaking (SB14_Sk), M15 with shaking (M15_Sk) 512 

and M15 without shaking (M15). Fermentation progress was estimated by regularly 513 

monitoring the weight loss caused by CO2 release using a precision balance. The amount of 514 

CO2 released over time was modeled by local polynomial regression fitting with the R-loess 515 

function setting the span parameter to 0.45. From this model CO2max parameter was 516 

extracted: maximal amount of CO2 released (g.L-1) and the end of the fermentation. 517 

Fermentation conditions were described by (Peltier, Sharma, et al. 2018). Glycerol and malic 518 

acid concentration were determined by enzymatic assay (Peltier et al. 2018) using K-GCROLGK 519 

and K-LMAL-116A enzymatic kits (Megazyme, Bray, Ireland), following the instructions of the 520 

manufacturer. 521 

 522 

Linkage analysis 523 

The QTL mapping analysis was performed with the R/qtl package (Broman et al. 2003) on the 524 

data collected in the three environmental conditions by using the Haley-Knott regression 525 

model that provides a fast approximation of standard interval mapping (Haley and Knott 526 

1992). The analysis is taking in account environment and cross as an additive covariate, aiming 527 

to identify QTL robust to environment and cross factor:  528 

y! = µ + β"! + 𝐴# + ϵ  529 

Where y!  is the phenotype for individual 𝑖, µ the average value, β"!  the QTL genotype for 530 

individual 𝑖,  𝐴#$ the matrix of environment covariates (y = M15_Sk, SB14_Sk, M15) and ϵ the 531 

residual error. For each phenotype, a permutation test of 1000 permutations tested the 532 

significance of the LOD score obtained, and a 5% FDR threshold was fixed for determining the 533 
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presence of QTLs (Churchill and Doerge 1994). The QTL position was estimated as the marker 534 

position with the highest LOD score among all markers above the threshold in a 30 kb window. 535 

Hemizygous hybrids construction 536 

For each QTL, candidate genes were sought in a 30 kb windows around the QTL position with 537 

the maximal LOD score. Genes with non-synonymous SNPs and/or with a function related to 538 

the trait of interest were retained. Candidate genes were validated by reciprocal hemizygosity 539 

analysis according to (Steinmetz et al., 2002) using SBxGN hybrid. Deletion cassettes were 540 

obtained by PCR amplification of the disruption cassette plus 500 pb of the flanking regions 541 

using as genomic template the genomic DNA of the strains Y04691, Y03717, Y04878, Y03751, 542 

Y04405, Y01529, Y03062 of the EUROSCARF collection (http://euroscarf.de), which contain 543 

disruption cassettes for the following genes: ADE6, GPM2, MAE1, MCH1, PNC1, PYC2, SDH2, 544 

YBL036C, respectively. Primers used for strains construction are listed in File S2. Reciprocal 545 

hemizygotes for MSB2, PDR1 and PMA1 were previously constructed with the same strategy 546 

by (Martí-Raga et al., 2017). 547 

Phylogenic analysis 548 

Publicly available sequences of yeasts from wine and flor genetic groups were retrieved from 549 

(Peter et al. 2018; Legras et al. 2018) and are listed in table S6. A matrix of 385,678 SNPs was 550 

generated with GenotypeGVCFs from GATK after gvcf files were constructed as detailed in 551 

(Peter et al. 2018). This matrix was used to build a neighbor-joining tree using the ape and 552 

SNPrelate R packages. Flor and wine yeast genetic groups were determined according to (Peter 553 

et al. 2018; Legras et al. 2018) and correspond to the flor genetic group and the Wine/European 554 

(subclade 4), respectively. Flor yeast specific alleles were defined as alleles with a frequency 555 

difference of 90 % between flor and wine genetic groups. 556 

Proteomic data reanalysis 557 

The dataset used for reanalyzing proteome specificities of the strain SB correspond to the 558 

supplementary table S5 published by Blein et al. (2015). This dataset compassed the proteomes 559 

of 66 Saccharomyces strains quantified during the alcoholic fermentation of a Sauvignon blanc 560 

grape juice at two temperatures. Among those strains, 28 S cerevisiae strains constituting a half-561 

diallel design of 7 parental strains of different origins and 21 F1-hybrids. In that study the 562 
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parental strains SB and GN were referenced as E2 and E3, respectively. A subset portion of this 563 

large data set was reanalyzed for narrowing down the proteomic specificities of the strain SB. 564 

Only the proteome corresponding to S cerevisiae strains measure at 26°C were kept. Indeed, 565 

proteomic data for the strain E2 (SB) at 18°C were not available. In addition, we removed the 566 

proteomes of the strains W1, EW21 and EW31 due to the lower number of proteins quantified 567 

(<900) respect to the other strains. By applying these filters, we analyzed the abundance of 1100 568 

proteins commonly quantified in 25 S. cerevisiae strains including GN and SB. In addition, the 569 

list of the 1264 proteins specifically detected between SB and GN was listed in the table S7. 570 

The abundance values indicated in are the average of three biological replicates where 90% of 571 

the data points have a CV% lower than 5.37. The Abundance Fold Change Ratio (AFCR) of 572 

the strains SB and GN were expressed in log2 for an easier comparison. An arbitrary AFCR 573 

threshold of +/-1 was used for selected proteins having a relevant abundance change, this basic 574 

threshold is widely used in the proteomics literature. The table S8 provides the list of the 207 575 

proteins selected in the set of the 1264 proteins common to SB and GN. Proteins with a 576 

differential abundance between SB and GN were used for computing a STRING analysis in 577 

order to find out functional connections with the eight genes validated in this study. The 578 

permanent link of such analysis is the following https://version-11-0.string-579 

db.org/cgi/network.pl?networkId=pEeVlh8dPgJJ. The interaction classes interrogated were 580 

“experiments” and “databases” with the highest confidence score.  581 

Statistical analyses 582 

All the statistical and graphical analyses were carried out using R software (R Core Team 2018). 583 

 The lato sensu heritability h2 was estimated for each phenotype as follows: 584 

  ℎ² = "#!$"%!

"#!
  585 

where 𝜎𝑃& is the variance of progeny population in each environmental conditions, explaining 586 

both the genetic and environmental variance of the phenotype measured, whereas 𝜎𝐸2 is the 587 

median of the variance of replicates in each environmental conditions, explaining only the 588 

environmental fraction of phenotypic variance. 589 

 590 
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Figure 597 

Figure	1.	Experimental	design.	598 
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Figure 2. Linkage analysis leads to the identification of 14 QTLs. 600 
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Figure 3. Results of the reciprocal hemizygosity analysis 602 
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Figure 4. SB is closely related to flor yeasts 604 
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Figure 5. Proteomic analysis reveals the outlier behavior of the SB strain 606 

 607 

Figure 6. Relative position of the eight QTG in the metabolic map of S cerevisiae 608 
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Figure Legends 610 

Figure	1.	Experimental	design.	611 

Panel A. Overview of yeast central carbon metabolism during fermentation with the main 612 

carbon input and output. Panel B. Segregant population, genetic map and phenotypic 613 

conditions used for QTL mapping. 614 

Figure 2. Linkage analysis leads to the identification of 14 QTLs. 615 

Linkage analysis results for the CO2max, Glycerol and MAC% for chromosome with at least 616 

one QTL. Horizontal lines represent the threshold of significance according to permutation test 617 

(FDR = 5 %). Vertical lines highlight QTL peaks. Grey shadow encompasses the previously 618 

identified QTL hotspot containing PDR1, MSB2 and PMA1 (Martí-Raga et al., 2017). 619 

Figure 3. Results of the reciprocal hemizygosity analysis 620 

Boxplot are colored according to the allele present in the hemizygous hybrids (blue = both, red 621 

= GN and green = SB) and represented the dispersion of at least five biological replicates. A 622 

Wilcoxon–Mann–Whitney test was applied to assess the significance of the phenotypic 623 

difference between hemizygotes. The level of significance is indicated as follows: * p ≤ 0.1, ** 624 

p ≤ 0.05, *** p ≤ 0.01 and p ≤ 0.001****. Panel A. RHA result for glycerol. Panel B. RHA 625 

result for MAC%. 626 

Figure 4. SB is closely related to flor yeasts 627 

Panel A. Dendrogram using 385,678 SNPs from 405 wine strains. Flor yeasts group is 628 

highlighted. Panel B. Percentage of specific allele own by SB along the genome is represented 629 

by a gradient from dark blue (0 %) to light blue (100 %). Grey portions represent genome tracks 630 

without any flor yeast specific allele. SB is aneuploid for chromosome IX and therefore is not 631 

considered in this analysis. The 20 QTLs mapped are shown with red dots (some of them are 632 

overlapping) and validated genes are shown in green. 633 

Figure 5. Proteomic analysis reveals the outlier behavior of the SB strain 634 

Panel A. We reanalyzed a proteomic dataset previously obtained by shotgun quantitative 635 

proteomics (Blein et al. 2015). Yeast samples of 25 S. cerevisiae strains including SB and GN) 636 

were collected at mid fermentation of a Sauvignon blanc grape juice. A set of 1110 proteins 637 

common to all the strain was selected for analyzing strain relationships by a principal 638 
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component analysis. The first two components representing 34% of the total inertia illustrate 639 

that the proteome of the strain SB (blue point) is quite divergent from the other S. cerevisae 640 

strains including GN (red point). Panel B The functional interactions between 207 differentially 641 

expressed proteins and the eight QTG validated in this study was interrogated by using STRING 642 

algorithm. The three clusters encompassed 2, 4 and 31 proteins showing a strong functional 643 

interaction with the four causative genes PYC2, MAE1, MSB2 and SDH2, (black crosses). 644 

Active interactions were computed using the STRING algorithm on the base of experimental 645 

data and annotated database with a minimal interaction score of 0.8. Proteins were colored 646 

according to their mitochondrial origin (red), their involvement in pyruvate metabolism (blue) 647 

or in neo glucogenesis (green). 648 

Figure 6. Relative position of the eight QTG in the metabolic map of S cerevisiae  649 

The metabolic relationships between the eight causative genes identified in this study is 650 

presented. Genes impacting glycerol production are represented in green while genes impacting 651 

MAC% are presented in blue. 652 

Tables 653 

Table 1. ns-SNPs in validated genes according to genetic group 654 

ORF Gene Protein size Trait impacted 
ns-SNP Frequency in  deleterious 

effect a 

 
Protein allele Inheritance wine group flor group   

YGR061C ADE6 1359 Glycerol 

F181L SB 1.7 12.8 no  

V570I SB 1.8 3.2 no  

P745S GN 0.4 0 no  

V1238A SB 2 4.3 yes  

YGL008C PMA1 919 MAC% 

P74L GN 96.3 0 yes  

L176M SB 0.6 27.7 no  

D200E SB 0.6 10.6 yes  

E283R SB 2.7 100 no  

L290V SB 0.6 27.7 no  

K431I  SB 0 0 no  

Q432E SB 0 0 no  

D718N SB 3.5 100 no  

E875Q SB 2.7 97.9 yes  
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YGL037C PNC1 217 Glycerol. MAC% V112A SB 1.7 100 no  

YBR218C PYC2 1181 MAC% 
Q373K SB 1.7 78.7 no  

E722K SB 0.1 0 no  

YLL041C SDH2 267 MAC%. kinetics K158E SB 1.3 100 no  

YGR014W MSB2 1306 Glycerol S529F SB 1.7 98.9 yes  

YKL029C MAE1 669 MAC% I605V GN 64.9 0 no  

a ns-SNP have been predicted to be to have a deleterious effect on protein according to 655 

PROVEAN algorithm 656 

Supplementary Figure 657 

Fig S1. Correlation between traits. 658 

Correlation between traits. Data is normalized according to environment. Each dot represents 659 

the average value of an individual in one of the three phenotypic condition. Correlation 660 

coefficient and P value of Spearman’s correlation test is indicated. CO2max is negatively 661 

correlated with glycerol and positively correlated with MAC% (Spearman test, pval < 0.01). 662 

However, rho values observed are quite low (<0.2) because the variation in CO2 production is 663 

balanced by glycerol production and malic acid consumption. 664 

Fig S2. Distribution of traits. 665 

Left. Distribution of the progeny according to trait and media is represented. Dashed vertical 666 

line represent parental average value. Right. Data is normalized according to environment. 667 

Distribution of the progeny in all media, according to trait and cross. Dashed vertical line 668 

represent parental average value.  669 

Fig S3. QTL effect in population. 670 

Effect of each QTL according to parental inheritance. Each dot represents the phenotypic value 671 

of one individual and are colored according to their marker inheritance. Bigger points 672 

represent the mean of the population. 673 

Fig S4. Discrepancy for MSB2 674 

Panel A. Effect of the marker associated to MSB2 in the offspring. Each dot represents the 675 

phenotypic value of one individual and are colored according to their marker inheritance. 676 
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Panel B. Result of RHA test for MSB2. The represented value is from at least 5 biological 677 

replicates. The level of significance is indicated as follows: * p ≤ 0.1. ** p ≤ 0.05. *** p ≤ 0.01. 678 

Solid lines of kinetic curves represent the mean and the shadow the standard error. 679 

 680 

Fig S5. SDH2 hemizygotes show a substantial haploinsufficiency according to 681 
media. 682 

The represented value is from at least 5 biological replicates. A Wilcoxon–Mann–Whitney test 683 

was applied to assess the significance of the phenotypic difference between wild type and 684 

hemizygote. The level of significance is indicated as follows: * p ≤ 0.1. ** p ≤ 0.05. *** p ≤ 0.01. 685 

Solid lines of kinetic curves represent the mean and the shadow the standard error. 686 

Fig S6. SB proteome exhibit a strongest variability than GN respect to 24 others S 687 
cerevisiae proteomes. 688 

The plot represents the distribution of the Abundance Fold Change Ratio (expressed in log2) of 689 

the strains SB and GN respect to the average values of 24 other strains. The variance of SB and 690 

GN computed for the 1110 proteins indicated a highest variability of the SB proteome (F-test 691 

analysis <1.10-7).  692 

Fig S7. Abundance of proteins belonging to the oxidative and reductive branches 693 
of TCA in SB respect to GN and others S cerevisiae strains  694 

Panel A. Abundance fold ratio of quantified proteins belonging to the TCA and the glyoxylate 695 

shunt; red and green colors indicated over and under expressed proteins in the SB strain vs GN 696 

(left box) or vs the average value of 24 S cerevisiae strains (right box). Panel B. correlation 697 

between the AFCR (log2) of SB vs GN and SB vs 24 S. cerevisiae strains for the commonly 698 

expressed proteins. 699 

Supplementary file 700 

File S1. Assessment of the alcoholic fermentation yield and variability of carbon 701 
use in wine fermentation 702 

File S2. Hemizygotes construction 703 

 704 
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