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Introduction 48 

De novo mutations (DNMs) are known to play a prominent role in sporadic disorders with reduced fitness1. We 49 

hypothesize that DNMs play an important role in male infertility and explain a significant fraction of the 50 

genetic causes of this understudied disorder. To test this hypothesis, we performed trio-based exome-51 

sequencing in a unique cohort of 185 infertile males and their unaffected parents. Following a systematic 52 

analysis, 29 of 145 rare protein altering DNMs were classified as possibly causative of the male infertility 53 

phenotype. We observed a significant enrichment of Loss-of-Function (LoF) DNMs in LoF-intolerant genes (p-54 

value=1.00x10-5) as well as predicted pathogenic missense DNMs in missense-intolerant genes (p-55 

value=5.01x10-4). One DNM gene identified, RBM5, is an essential regulator of male germ cell pre-mRNA 56 

splicing2. In a follow-up study, 5 rare pathogenic missense mutations affecting this gene were observed in a 57 

cohort of 2,279 infertile patients, with no such mutations found in a cohort of 5,784 fertile men (p-58 

value=0.009). Our results provide the first evidence for the role of DNMs in severe male infertility and point to 59 

many new candidate genes affecting fertility. 60 

 61 

Main 62 

Male infertility contributes to approximately half of all cases of infertility and affects 7% of the male 63 

population. For the majority of these men the cause remains unexplained3. Despite a clear role for genetic 64 

causes in male infertility, there is a distinct lack of diagnostically relevant genes and at least 40% of all cases 65 

are classified as idiopathic3–6. Previous studies in other conditions with reproductive lethality, such as 66 

neurodevelopmental disorders, have demonstrated an important role for de novo mutations (DNMs) in their 67 

etiology1. In line with this, recurrent de novo chromosomal abnormalities play an important role in male 68 

infertility. Both azoospermia Factor (AZF) deletions on the Y chromosome as well as an additional X 69 

chromosome, resulting in Klinefelter syndrome, occur de novo. Collectively, these de novo events explaining up 70 

to 25% of all cases of non-obstructive azoospermia (NOA)3,6. Interestingly, in 1999 a DNM in the Y-71 

chromosomal gene USP9Y was reported in a man with azoospermia7. Until now, however, a systematic 72 

analysis of the role of DNMs in male infertility had not been attempted. This is partly explained by a lack of 73 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.27.433155
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

basic research in male reproductive health in general6,8, but also by the practical challenges of collecting 74 

parental samples for this disorder, which is typically diagnosed in adults.  75 

In this study, we investigated the role of DNMs in 185 unexplained cases of oligozoospermia (<5 million sperm 76 

cells/ml; n=74) and azoospermia (n=111) by performing whole exome sequencing (WES) in all patients and 77 

their parents (see Supplementary Figure 1 and 2, Supplementary notes and tables for details on methods and 78 

clinical description). In total, we identified and validated 192 rare DNMs, including 145 protein altering DNMs. 79 

All de novo point mutations were autosomal, except for one on chromosome X, and all occurred in different 80 

genes (Supplementary Table 1). Two de novo copy number variations (CNVs) were also identified affecting a 81 

total of 7 genes (Supplementary Figure 3).  82 

None of the 145-protein altering DNMs occurred in a gene already known for its involvement in autosomal 83 

dominant human male infertility. This is not unexpected as only 4 autosomal dominant genes have so far been 84 

linked to isolated male infertility in humans5,9. Broadly speaking, across genetic disorders, dominantly acting 85 

disease genes are usually intolerant to loss-of-function (LoF) mutations, as represented by a high pLI score10. 86 

The median pLI score of genes with a LoF DNM (n=17) in our cohort of male infertility cases was significantly 87 

higher than that of genes with 181 LoF DNMs identified in a cohort of 1,941 control cases from denovo-db 88 

v1.6.111 (pLI male infertility=0.80, pLI controls=3.75x10-5, p-value=1.00x10-5) (Figure 1). This observation 89 

indicates that LoF DNMs likely play an important role in male infertility, similar to what is known for 90 

developmental disorders and severe intellectual disability12,13. As an example, a heterozygous likely pathogenic 91 

frameshift DNM was observed in the LoF intolerant gene GREB1L (pLI=1) of Proband_076. Homozygous Greb1L 92 

knock-out mice appear to be embryonic lethal, however, typical male infertility phenotypic features such as 93 

abnormal fetal testis morphology and decreased fetal testis volume are observed14. Interestingly, this patient 94 

has a reduced testis volume and severe oligospermia (Supplementary Notes Table 1). Nonsense and missense 95 

mutations in GREB1L in humans are known to cause renal agenesis15 (OMIM: 617805), not known to be 96 

present in our patient. Of note, all previously reported damaging mutations in GREB1L causing renal agenesis 97 

are either maternally inherited or occurred de novo. This led the authors of one of these renal agenesis studies 98 

to speculate that disruption to GREB1L could cause infertility in males14. A recent WES study involving a cohort 99 

of 285 infertile men also noted several patients presenting with pathogenic mutations in genes with an 100 

associated systemic disease where male fertility is not always assessed16. We also assessed the damaging 101 
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effects of the two de novo CNVs by looking at the pLI score of the genes involved. Proband_066 presented with 102 

a large 656 kb de novo deletion on chromosome 11, spanning 6 genes in total. This deletion partially 103 

overlapped with a deletion reported in 2014 in a patient with cryptorchidism and NOA17. Two genes affected in 104 

both patients, QSER1 and CSTF3, are extremely LOF-intolerant with pLI scores of 1 and 0.98, respectively. In 105 

particular, CSTF3 is highly expressed within the testis and is known to be involved in pre-mRNA 3΄ end cleavage 106 

and poylyadenylation18.  107 

To systematically evaluate and predict the likelihood of these DNMs causing male infertility and identify novel 108 

candidate disease genes, we assessed the predicted pathogenicity of all DNMs using three prediction methods 109 

based on SIFT19, MutationTaster20 and PolyPhen221. Using this approach, 84/145 protein altering DNM were 110 

predicted to be pathogenic, while the remaining 61 were predicted to be benign. To further analyse the impact 111 

of the variants on the genes affected, we looked at the missense Z-score of all 122 genes affected by a 112 

missense variant, which indicates the tolerance of genes to missense mutations22. Our data highlights a 113 

significantly higher missense Z-score in genes affected by a missense DNM predicted as pathogenic (n=63) 114 

when compared to genes affected by predicted benign (n=59) missense DNMs (p-value=5.01x10-4, Figure 2, 115 

Supplementary Figure 4). Furthermore, using the STRING database23, we found a significant enrichment of 116 

protein interactions amongst the 84 genes affected by a protein altering DNM predicted to be pathogenic (PPI 117 

enrichment p-value = 2.35 x 10-2, Figure 3). No such enrichment was observed for the genes highlighted as 118 

likely benign (n=61, PPI enrichment p-value=0.206) or those affected by synonymous DNMs (n=35, PPI 119 

enrichment p-value=0.992, Supplementary Figure 5). These two findings suggest that (1) the predicted 120 

pathogenic missense DNMs detected in our study affect genes sensitive to missense mutations, and (2) the 121 

proteins affected by predicted pathogenic DNMs share common biological functions.  122 

The STRING network analysis also highlighted a central module of interconnected proteins with a significant 123 

enrichment of genes required for mRNA splicing (Supplementary Figure 6). The genes U2AF2, HNRNPL, CDC5L, 124 

CWC27 and RBM5 all contain predicted pathogenic DNMs and likely interact at a protein level during the 125 

mRNA splicing process. Pre-mRNA splicing allows gene functions to be expanded by creating alternative splice 126 

variants of gene products and is highly elaborated within the testis24. One of these genes, RBM5 has been 127 

previously highlighted as an essential regulator of haploid male germ cell pre-mRNA splicing and male fertility2. 128 

Mice with a homozygous ENU-induced allele point mutation in RBM5 present with azoospermia and germ cell 129 
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development arrest at round spermatids. Whilst in mice a homozygous mutation in RBM5 is required to cause 130 

azoospermia, this may not be the case in humans as is well-documented for other genes25, including the 131 

recently reported male infertility gene SYCP29. Of note, RBM5 is a tumour suppressor in the lung26, with 132 

reduced expression affecting RNA splicing in patients with non-small cell lung cancer27. HNRNPL is another 133 

splicing factor affected by a possible pathogenic DNM in our study. One study implicated a role for HNRNPL in 134 

patients with Sertoli cell only phenotype28. The remaining three mRNA splicing genes have not yet been 135 

implicated in human male infertility. However, mRNA for all three is expressed at medium to high levels in 136 

human germ cells and all are widely expressed during spermatogenesis29. Specifically, CDC5L is a component of 137 

the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-138 

mRNA splicing30, as is CWC2731. U2AF2 plays a role in pre-mRNA splicing and 3'-end processing32. Interestingly, 139 

CSTF3, one of the genes affected by a de novo CNV in Proband_066, affects the same mRNA pathway17.  140 

Whilst DNMs most often cause dominant disease, they can contribute to recessive disease, usually in 141 

combination with an inherited variant on the trans allele. This was observed in Proband_060, who carried a 142 

DNM on the paternal allele, in trans with a maternally inherited variant in Testis and Ovary Specific PAZ 143 

Domain Containing 1 (TOPAZ1) (Supplementary Figure 7). TOPAZ1 is a germ-cell specific gene which is highly 144 

conserved in vertebrates33. Studies in mice revealed that Topaz1 plays a crucial role in spermatocyte, but not 145 

oocyte progression through meiosis34. In men, TOPAZ1 is expressed in germ cells in both sexes29,35,36. Analysis 146 

of the testicular biopsy of this patient revealed a germ cell arrest in early spermiogenesis (Figure 4). 147 

In addition to all systematic analyses described above, we evaluated the function of all DNM genes to give 148 

each a final pathogenicity classification (Table 1, details in Material & Methods). Of all 145 DNMs, 29 affected 149 

genes linked to male reproduction and were classified as possibly causative. For replication purposes, 150 

unfortunately no other trio-based exome data are available for male infertility, although we note that a pilot 151 

study including 13 trios was recently published37. While this precluded a genuine replication study, we were 152 

able to study these candidate genes in exome datasets of infertile men (n=2,279), in collaboration with 153 

members of the International Male Infertility Genomics Consortium and the Geisinger Regeneron DiscovEHR 154 

collaboration38. The 33 candidate genes selected for this analysis include the 29 genes mentioned above and 4 155 

additional LoF intolerant genes carrying LoF DNMs with an ‘unclear’ final pathogenicity classification. For 156 
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comparison, we included an exome dataset from a cohort of 11,587 fertile men and women from 157 

Radboudumc.  158 

In the additional infertile cohorts, we identified only 2 LoF mutations in our DNM LoF intolerant genes 159 

(Supplementary table 2). Next, we looked for an enrichment of rare predicted pathogenic missense mutations 160 

in these cohorts (Table 2). A burden test revealed a significant enrichment in the number of such missense 161 

mutations present in infertile men compared to fertile men in the RBM5 gene (adjusted p-value=0.009). In this 162 

gene, 5 infertile men were found to carry a distinct rare pathogenic missense mutation, in addition to the 163 

proband with a de novo missense mutation (Supplementary figure 8, Supplementary table 3). Importantly, no 164 

such predicted pathogenic mutations were identified in men in the fertile cohort. In line with these results, 165 

RBM5, already highlighted above as an essential regulator of male germ cell pre-mRNA splicing and male 166 

infertility2, is highly intolerant to missense mutations (missense Z-score 4.17). 167 

Given the predicted impact of these DNMs on spermatogenesis, we were interested in studying the parental 168 

origin of DNMs in our trio-cohort. We were able to phase 29% of all our DNMs using a combination of short-169 

read WES and targeted long-read sequencing (Supplementary Table 4). In agreement with literature39–42, 72% 170 

of all DNMs occurred on the paternal allele. Interestingly, phasing of 8 likely causative DNMs showed that 6 of 171 

these were of paternal origin (75%). This suggests that DNMs with a deleterious effect on the future germline 172 

can escape negative selection in the paternal germline. This may be possible because the DNM occurred after 173 

the developmental window in which the gene is active, or the DNM may have affected a gene in the gamete’s 174 

genome that is critical for somatic cells supporting the (future) germline. Transmission of pathogenic DNMs 175 

may also be facilitated by the fact that from spermatogonia onwards, male germ cells form cysts and share 176 

mRNAs and proteins43. As such, the interconnectedness of male germ cells, which is essential for their 177 

survival44, could mask detrimental effects of DNMs occurring during spermatogenesis. 178 

In 2010, we published a pilot study pointing to a de novo paradigm for mental retardation45 (now more 179 

appropriately termed developmental delay or intellectual disability). This work contributed to the widespread 180 

implementation of patient-parent WES studies in research and diagnostics for neurodevelopmental 181 

disorders46, accelerating disease gene identification and increasing the diagnostic yield for these disorders. The 182 

data presented here suggest that a similar benefit could be achieved from trio-based sequencing in male 183 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.27.433155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.27.433155
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

infertility. This will not only help to increase the diagnostic yield for men with infertility but will also enhance 184 

our fundamental biological understanding of human reproduction and natural selection. 185 

 186 

 187 

 188 

Data access 189 

Raw and processed exome sequencing data of our 185 patient-parent trios is available under controlled access 190 

and requires a Data Transfer Agreement from the European Genome-Phenome Archive (EGA) repository: 191 

EGAS00001004945. 192 
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Figures and Tables 333 
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 351 

Figure 1: Analysis of the intolerance to loss-of-function variation for DNM genes. Violin plots represent the distribution of 352 
the pLI scores of all genes in gnomAD, all genes affected by DNMs and all LoF DNM in this study and in a control population 353 
(http://denovo-db.gs.washington.edu/denovo-db/). The observed median pLI score is displayed for each category as a 354 
black circle. The closer the pLI score is to 1, the more intolerant to LoF variation a gene is10. Comparison between LoF 355 
DNMs in our study and control populations shows a significance difference (p-value=1.00x10-5).  356 

 357 
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Figure 2: Intolerance to missense variants for genes with a DNM. Violin plots show the distribution of Z-scores of genes 358 
containing a missense DNM in our cohort, where an enrichment can be observed for predicated pathogenic DNMs in genes 359 
more intolerant to missense mutations based on their mean z-score with a p-value of 5.01x10-4. 360 
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Figure 3: Protein-protein interactions predicted for proteins encoded by damaging DNM genes. A protein-protein 361 
interaction analysis was performed for all 84 genes containing a DNM scored as damaging using the STRING tool23. A 362 
significantly larger number of interactions is observed between our damaging DNM genes than is expected for a similar 363 
sized dataset of randomly selected genes (PPI enrichment p-value 2.35 x 10-2) with the number of expected edges being 25 364 
and the observed being 36. The central module of the main interaction network within the figure contains 5 genes which 365 
are all involved in the process of mRNA splicing (Supplementary figure 6) 366 
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 367 

Figure 4: Description of control and TOPAZ1 proband testis histology and aberrant acrosome formation: (a,b): H&E 368 
stainings of (a) control and (b) Proband_060 with  DNM in TOPAZ1 gene. The epithelium of the seminiferous tubules in the 369 
TOPAZ1 proband show reduced numbers of germ cells and an absence of elongating spermatids. (c,d): immunofluorescent 370 
labelling of DNA (magenta) and the acrosome (green) in control sections (c) and TOPAZ1 proband sections (d). (c) The 371 
arrowhead indicates the acrosome in an early round spermatid and the arrows the acrosome in elongating spermatids. 372 
Spreading of the acrosome and nuclear elongation are hallmarks of spermatid maturation. (d) No acrosomal spreading (see 373 
arrowheads) or nuclear elongation is observed in the TOPAZ1 proband. The asterisk indicates an example of progressive 374 
acrosome accumulation without spreading. Size bar in a, b: 40 µm, c, d: 5 µm. 375 
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Table 1: De novo mutation classification summary. 382 

Possibly causative Unclear Unlikely causative Not Causative Total

Missense 21 38 50 13 122

Frameshift 4 8 1 0 13

Stop gained 1 3 0 0 4

In-frame indels 3 1 1 1 6

Splice site variant 0 0 0 11 11

Synonymous 0 0 0 36 36

TOTAL 29 50 52 61 192
A total of 192 rare DNMs were classified based on pathogenicity scores as well as functional data into 4 categories, 383 
‘Possibly causative’, ‘Unclear’, ‘Unlikely Causative’ and ‘Not causative’.  384 
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Table 2: Rare potentially pathogenic missense mutations in exome data from various cohorts of infertile men and fertile control cohorts.   399 

Gene Missense 
Z-score 

NIJ/NCL 
Cohort of 
Patient-

Parent Trios 
(n=185) 

NIJ/NCL 
Cohort of 
Infertile 

Men 
(Singleton) 

(n=145) 

MERGE 
Cohort of 
Infertile 

Men 
(n=887) 

GEMINI 
Cohort of 
NOA Men 
(n=926) 

Geisinger-
Regeneron 
DiscovEHR 
Cohort of 
Infertile 

Men (n=88)

Italian 
Cohort of 
NOA Men 

(n=48) 

Total 
Infertile 

Men 
(n=2,279) 

Fertile 
Dutch Men 
(n=5,784) 

Fertile 
Dutch 

Women 
(n=5,803) 

Burden test 
Infertile vs 
Fertile Men 

(Bonf) 

Burden test 
Fertile Men 
vs Women 

(Bonf) 

ABLIM1 1.62 1 1 1 1 1 0 5 1 1 0.15 1 

ATP1A1 6.22 0 0 0 1 0 0 1 0 1 1 1 

CDC5L 2.78 1 1 1 3 0 0 6 2 4 0.15 1 

CDK5RAP2 -0.37 1 0 1 1 0 0 3 5 5 1 1 

HUWE1 8.87 1 0 2 0 0 0 3 0 0 0.41 1 

INO80 3.53 1 0 1 0 0 0 2 3 3 1 1 

MAP3K3 2.04 1 0 2 0 0 0 3 1 2 1 1 

MCM6 1.07 1 1 1 3 0 0 6 4 8 0.64 1 

PPP1R7 1.86 0 0 0 1 0 0 1 1 1 1 1 

QSER1 1.34 0 1 1 0 0 0 2 8 1 1 0.38 

RASAL2 1.40 0 1 1 2 1 0 5 25 13 1 0.94 

RBM5 4.17 1 2 2 0 1 0 6 0 2 0.009 1 

RPA1 1.22 1 0 0 1 0 0 2 3 3 1 1 

SDF4 0.53 1 0 0 0 0 1 2 1 1 1 1 

SOGA1 2.27 1 0 1 1 0 0 3 15 5 1 0.47 

STARD10 1.34 1 0 2 0 0 0 3 4 5 1 1 

TENM2 3.30 1 0 2 2 0 2 7 16 16 1 1 

ZFHX4 1.01 0 0 3 3 0 0 6 14 8 1 1 
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The genes included in this analysis were among the strongest candidate genes affected by a DNM (either missense or LoF mutation). The missense Z-score is included here to indicate a 400 
relative (in)tolerance to missense mutation22. For the original NIJ/NCL discovery cohort, only the missense DNMs are included in this Table (7 of these genes were affected by a LoF DNM). A 401 
burden test was done to compare the total number of predicted pathogenic missense mutations observed in the infertile vs. fertile men, as well as between fertile men and fertile women 402 
(Fisher’s Exact test, adjusted for multiple testing following Bonferroni correction). 403 
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