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Abstract  

Obtaining variation in water use and photosynthetic capacity is a promising route toward yield 

increases, but it is still too laborious for large-scale rapid monitoring and prediction. We tested 

the application of hyperspectral reflectance as a high-throughput phenotyping approach for 

early identification of water stress and rapid assessment of leaf photosynthetic traits in citrus 

trees. To this end, photosynthetic CO2 assimilation rate (Pn), stomatal conductance (Cond) 

and transpiration rate (Trmmol) were measured with gas-exchange approaches alongside 

measurements of leaf hyperspectral reflectance from citrus grown across a gradient of soil 

drought levels. Water stress caused Pn, Cond and Trmmol rapid and continuous decreases in 

whole drought period. Upper layer was more sensitive to drought than middle and lower 

layers. Original reflectance spectra of three drought treatments were surprisingly of low 

diversity and could not track drought responses, whereas specific hyperspectral spectral 

vegetation indices (SVIs) and absorption features or wavelength position variables presented 

great potential. Performance of four machine learning algorithms were assessed and random 

forest (RF) algorithm yielded the highest predictive power for predicting photosynthetic 

parameters. Our results indicated that leaf hyperspectral reflectance was a reliable and stable 

method for monitoring water stress and yield increasing in large-scale orchards. 
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Introduction 

Agriculture worldwide accounts for up to 70% of the total consumption of water. Water demand 

for agriculture used for irrigation will remain the largest and increase by 60% in 2025 (Boretti and 

Rosa 2019). Global warming is projected to increase evaporation and to reduce soil moisture 

(Samaniego et al. 2018). Consequently, climate change may exacerbate droughts which may set in 

more quickly, be more intense and last longer (Trenberth et al. 2014). Fruit trees such as citrus, 

sensitive to droughts, are already resulting in decreased yields and poor tolerance to pests and 

stresses (Morgan et al. 2014). Photosynthesis is an important physiological activity in the growth 

process of green plants and generally limited by soil drought (Zhu et al. 2008). Photosynthetic 

efficiency is not just connected to potential yield increases but also influences efficiency of the use 

of resources such as water (Heckmann et al. 2017). Drought often leads to low net photosynthetic 

rate (Xiao et al. 2019). Improvements in pant photosynthetic efficiency are expected to play a 

major role in the efforts to increase agriculture productivity (Long et al. 2015, Ort et al. 2015, 

Osco et al. 2020). An important reason for the insufficient exploration of the potential for changes 

to water use and photosynthesis for fruit yield forecast and quality improvements is the lack of 

appropriate high-throughput screening methods.  

Further information of fruit trees’ responses to water stress at the large scale throughout the 

growth period can improve the efficiency of water use. Severe drought has been associated with 

regional-scale tree mortality and premature senility worldwide which led to reductions in yields 

(McDowell et al. 2008). Moderate drought stress is one of the commonly method to induce flower 

buds in tropical and subtropical fruit trees. A moderate water shortage treatment can make trees 

enter reproductive growth as soon as possible and promote flowering for improving fruit quality 

and regulating the maturity period (Chica and Albrigo 2013, Li et al. 2017). In addition, plants can 

be irreversibly affected before visible symptoms of water stress appear(Yordanov et al. 2003). So, 

a pre-symptomatic or pre-visual detection of plant physiological changes was urgent for avoiding 

severe damages (Chaerle and Van Der Straeten 2000, Gerhards et al. 2019). 

Physiological, morphological and biochemical change were observable early at the drought onset 

(fast changes) or after some time (slow changes) when green plant was encountered soil drought 

(Acevedo et al. 1971, Zaher-Ara et al. 2016, Sobejano-Paz et al. 2020). Measuring photosynthesis 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433135doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433135
http://creativecommons.org/licenses/by-nc-nd/4.0/


data is a challenge impacted by heterogenetic environmental parameters such as soil moisture 

content (Zhang et al. 2020). Advancements in phenotyping techniques capable of rapidly assessing 

the effects of drought on plant photosynthetic responses is necessary to understand plant traits 

under predicted future environmental conditions (Cotrozzi et al. 2020).The functional responses 

that are associated with increased yield, such as improving photosynthetic productivity under 

stressful conditions requires new techniques to quantify this parameter, yet traditional methods 

rely on leaf sampling and analysis under laboratory conditions or using in-field gas exchange 

systems (Long and Bernacchi 2003, Osco et al. 2020). This method can provide very precise 

photosynthetic information but was costly, time-consuming and hard to accomplish especially in 

citrus-growing mountain. 

Remote sensing communities have long used spectrum or spectral vegetation indices to estimate 

plant biochemical and morphological properties, which also presents huge potential in assessing 

photosynthetic capacity of plants quickly and non-destructively at different scales (ground, 

airborne, and satellite) (Asner 1998, Yendrek et al. 2017, Gamon et al. 2019). Hyperspectral 

spectra ranging from the visible over the near infrared to the intermediate infrared can provide 

spectral features regarding differences in leaf metabolism, structure, physiological and chemical 

traits in associated plant conditions (Pinter et al. 2003, Cotrozzi et al. 2017, Santoso et al. 2019, 

Osco et al. 2020, Streher et al. 2020). It is very popular to use hyperspectral reflectance to assess 

crop physiological and biochemical parameters. Nutritional status (Bruning et al. 2019, Chen et al. 

2019), chlorophyll or carotenoid contents (Sonobe et al. 2020a, Sonobe et al. 2020b, Yamashita et 

al. 2020), water content (Kong et al. 2019, Chen et al. 2020), heavy metal content (Zhou et al. 

2020c) and species composition (Manevski et al. 2011) in crops have been estimated by using leaf 

reflectance spectrum. Application of hyperspectral spectra to assess plant function or physiology is 

complex, as the mechanisms linking spectra reflectance and emission to plant functional traits are 

not always clear or known (Gerhards et al. 2019). Spectroscopy techniques coupled with deep 

learning algorithms has been also used for leaf morphological and biochemical traits with the 

highest photosynthetic potential (Serbin et al. 2014, Osco et al. 2020). Photosynthetic capacity of 

crop plants has been evaluated based on leaf reflectance successfully by using specific 

wavelengths or indices related to photosynthesis status of the plants over a wide range of species 
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(Driever et al. 2014, Garriga et al. 2017, Heckmann et al. 2017, Silva-Perez et al. 2018, Fu et al. 

2019, Meacham-Hensold et al. 2019, Fu et al. 2020, Watt et al. 2020, Zhang et al. 2020). Although, 

further research on citrus is necessary. Macro- and micronutrient content of citrus had been 

successfully predicted with leaf reflectance data (Osco et al. 2020). Very little studies have 

focused on using leaf reflectance spectra to monitor the respond of citrus leaves to water stress and 

estimate the photosynthetic capacity. 

Citrus is the most widely cultivated fruit crop worldwide and also abundant within China. In the 

past 20 years, citrus industry has developed rapidly in the world. The most outstanding research 

about citrus was related to molecular breeding, stress respond and post-harvest treatment (Wu et al. 

2016, Ling et al. 2017, Liu et al. 2017, Wang et al. 2017). In this study, citrus leaves—more 

specifically, from lemon (Citrus limon) trees—were selected to compose the experimental dataset. 

Measurements of leaf reflectance and photosynthesis were taken from an experiment that included 

a factorial water stress applied to citrus trees. Using this data, we address the following question: 

(1) how citrus physiology (leaf Pn, Cond and Trommol) respond to continuous soil water stress 

and re-watering (2) what is the variation in the leaf reflectance spectra of citrus in different 

drought treatment? what is the most stable hyperspectral information selected responding citrus 

leaves to water stress? (3) how leaf hyperspectral reflectance spectra can best be used to predict 

photosynthetic capacity of citrus leaves? The answers to these questions will help to facilitate the 

spectral responds of citrus to drought and photosynthesis prediction models. 

Materials and Methods 

Experimental design 

The study was conducted at the greenhouse facility of Huazhong Agriculture university using 

lemon (Citrus limon) as the selected plant material, which is located in Wuhan, Hubei province, 

China (113°41′-115°05′E, 29°58′-31°22′N). Wuhan is one of the largest cities on the upper and 

middle reaches of the Yangtze River in central China. The annual average temperature, mean 

annual relative humidity, precipitation and annual average frost-free period are 16.9 °C, 77%, 240 

days, 1259 mm, respectively (Yan et al. 2019). Random block design was used in this study. 

4-year-old lemon trees (Femminello) propagated by bud grafting to trifoliate orange rootstocks 

were used. These trees ranged in height from 2 to 2.5 m growing in 60-cm plastic pots containing 
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potting mix of commercial medium and perlite (3:1). Trees in the greenhouse were exposed to 

natural variations in photoperiod throughout the experiment during Summer (from August to 

September) 2020. Each level included 8 lemon trees. The soil moisture was controlled to 35% 

(Normal water supply), 25% (Mild stress), 15% (Moderate stress) and 10% (Severe stress). All the 

trees were firstly adopted to drought treatment for 21days in 6-Aug, 12-Aug, 18-Aug, 26-Aug and 

then watered three times in 26- Aug, 4-Sep and 9-Sep. Three trees were randomly selected from 

each drought treatment, and two randomly selected leaves from the upper, middle and lower layers 

of each selected trees were used for measuring photosynthetic and spectral related parameters in 

6-Aug (day 1), 12-Aug (day 7), 18-Aug (day 13), 26-Aug (day 20), 4-Sep (day 28) and 9-Sep (day 

33). 

Hyperspectral Measurement Processing 

The spectral radiance of the lemon leaves was measured with a full-range hyperspectral PSR-3500 

spectroradiometers. The FieldSpec collects data in the 350–2500 nm spectral range, with a 

resampled spectral resolution of 1nm before 1006nm and 3.5 nm after 1006nm. Leaf reflectance 

data was collected on the surface of the leaf at 2 positions per leaf using the leaf clip from mature 

leaves. Ten measurements were conducted in each leaf position to produce one mean spectral 

reflectance. Before each spectral measurement, a white surface plate was registered to calibrate 

the equipment and convert the digital number to a physical signal (Osco et al. 2020). Leaf 

reflectance was computed as the ratio of leaf radiances relative to the radiance from the white 

reference panel (Shah et al. 2019). 

Photosynthetic Measurement  

Immediately after the spectral reflectance scan, the selected leaf was placed into the leaf room of 

the LICOR 6400XT gas analyzer (LICOR Biosciences, Lincoln, NE, United States). 

Measurements were initiated at a saturating light (1000 mmol m−2 s−1), a block temperature of 25�, 

and a flow rate of 500 mmol mmols-1. leaf photosynthetic CO2 assimilation rate (Pn, μmol CO2 

m-2s-1), leaf stomatal conductance (Cond, mol HO2 m
-2s-1), leaf transpiration rate (Trmmol, mmol 

HO2 m
-2s-1) for each leaf was captured after an adjustment period of approximately 30 minutes. 

Extraction of Vegetation Indices 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433135doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433135
http://creativecommons.org/licenses/by-nc-nd/4.0/


A database of 20 narrow-band spectral vegetation indices (SVIs) (Table 1), which have shown 

potential for assessing attributes of vegetation parameters related to plant physiology, morphology 

and biochemistry, were preselected for analysis. They simplified the interpretation of complex 

vegetation reflection characteristics based on the indirect relationship between plant physiological 

and structural parameters (Gerhards et al. 2019). Normalized difference vegetation index (NDVI), 

Ratio vegetation index (RVI), Enhanced Vegetation Index (EVI) can represent greenness, 

vegetation cover, biomass, LAI and fraction of photosynthetic active radiation (Sobejano-Paz et al. 

2020). Greenness Index (GI), Red Edge model (CI730), Red Edge model (CI709), Chrollophy Index 

at Green band (CIG), Normalized Difference Red Edge (NDRE), Red and Green Vegetation Index 

(RGVI), Chlorophyll Absorption Ratio Index (CARI), MERIS Terrestrial Chlorophyll Index 

(MTC) were related to plant pigments. Because of the short-term changes of xanthophyll under 

stress, photochemical reflectance index (PRI), and its derivations (i.e. photochemical reflectance 

index improved, PRI2) was directly related to photosynthesis (Ballester et al. 2018). Moisture 

Stress Index (MSI), Water Index (WI), Normalized Multi-band Drought Index (NMDI), Global 

Vegetation Moisture Index (GVMI), Normalized Difference Water Index (NDWI1200), 

NDWI1240, NDWI1640 were calculated as proxy of water content. All of the data processing and 

calculations of the SVIs were performed in the python 3.7 software package. 

We also conducted 40 spectral absorption features and wavelength position variables acquired 

from leaf spectral reflectance to analysis the different stress level on lemon leaves. The red edge 

optical parameters from a plant spectrum between 670 nm and 780nm were commonly used in 

analysis plant. In this paper, we used red edge position (REP) parameter, which is a wavelength 

position variable indicating biophysical and biochemical parameters of vegetation. The inverted- 

Gaussian (IG) model was used to extract the red edge optical parameters. The spectral shape of the 

red edge reflectance can be modeled as equation (1): 

)
2

)(
exp()()(

2

2
0

0 σ
λλλ −−−−= RRRR ss       (1) 

Where ��is the maximum spectral reflectance; �� and �� are the minimum spectral reflectance 

and corresponding wavelength, respectively; �  is the wavelength; and �  is the Gaussian 

function variance parameter. The REP is calculated as equation (2): 
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            �� � �� � �                   (2) 

We also acquired the absorption features in 1230 nm to 1650 nm and 1800 nm to 2200nm, as 

these two spectral ranges are highly corresponding the water stress. The absorption features in a 

reflectance spectrum include wavelength position (nm), depth, width, area, asymmetry and 

spectrum absorption index with a continuum removal procedure (Pu et al. 2003). Figure 1 showed 

a part of typical spectrum (1200 nm - 1300 nm) of lemon leaf to illustrate the feature parameters. 

The absorption position (P) marks the wavelength at the deepest absorption. The width (W) 

defines the full width half maximum. X1 and X2 is the wavelength of left and right shoulder at the 

position of the full width half maximum. Δλ which represent the value of W is calculated by 

X2-X1. Y is the corresponding reflectance of X1 and X2. The absorption depth (DEP) is the depth 

of the feature minimum relative to the hull. The absorption area (Area) is the area of the 

absorption district. The asymmetry of an absorption feature derived as the ratio of the left area 

(label A in Figure 1) of the absorption center to the right area of the absorption center. L is tangent 

line and the slope of L can be calculated. Spectrum absorption index (SAI) defines the absorption 

intensity, which was calculated as equation (3): 

     ��� �
�������������

���
           (3) 

Where �� and �� are shoulder wavelength, ��� and ���  are the reflectance at corresponding 

wavelengths, respectively. � is the normalized weight, calculated as equation (4): 

        � �
�����

�����
                 (4) 

 

Principal component analysis (PCA) and ANOVA analysis 

In order to understand the difference of lemon leaf reflectance spectra of four drought treatments, 

PCA was conducted in python 3.7 with the sklearn package. A one-way ANOVA was performed to 

assess the effect of drought treatment to spectral parameters. Prior to ANOVA analysis, all the data 

were tested for normality. Differences in means were regarded to be significant if the P value was 

less than 0.05. 

Machine Learning Algorithms   

Radom Forest (RF), Support Vector Machines (SVM), Gradient boost (GDboost) and Adaptive 

Boosting (Adaboost) methods were applied to estimate the Pn, Cond and Trmmol value. The field 
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data was randomly divided into training (70%) and testing (30%) data. The prediction metrics to 

evaluate above-mentioned algorithms were the coefficient of determination (R2), 

root-mean-squared error (RMSE) and mean absolute error (MAE). To determine the relationship 

between the predicted and measured values, the overall model will be evaluated in the regression 

graph. All the algorithms were implemented in the scikit-learn 0.22.2 package in python 3.7 

(Pedregosa et al. 2011). 

Ntree (i.e., to the number of variables) and Mtry (i.e., to the number of variables to randomly 

sample as candidates at each split) are two key parameters influencing robustness of RF 

algorithms (Zhang et al. 2018, Zhou et al. 2020b). These two parameters were often set default 

values (Wang et al. 2016, Zhao et al. 2019).    

SVM use a nonlinear kernel function to project input data onto a high dimensional feature space, 

where complex non-linear patterns can be simply represented (Mountrakis et al. 2011). The key to 

SVM is the kernel function. Low-dimensional space vector sets are usually difficult to divide. The 

best choice is to map them to high-dimensional spaces. The classification function of the 

high-dimensional space can be obtained by selecting the appropriate kernel function (Were et al. 

2015). Gaussian radial basis kernel function of the form was applied in this study 

(Rodriguez-Galiano et al. 2015). 

Boosting method establishes several basic estimators (decision tree is used in this paper), each of 

which can learn to correct the prediction error of prior model in the model sequence, such as 

GDboost and Adaboost method. The GDboost Algorithm tries to match the residual error of the 

new predictor with the previous one, while the Adaboost algorithm corrects the unfitness of the 

training instance through the previous training. The main difference between GDboost and 

Adaboost was how they deal with the underfitted values (Zhou et al. 2020a). The number of trees 

(ntree) and learning rate (learning_rate) were tuned in AdaBoost and GDBoost models. 

 

Results 

Photosynthetic response to water stress 

The sensitivity of Pn, Cond and Trmmol to water stress of upper layer, middle layer, and lower 

layer were compared in drought treatment period (i.e. day 1, day 7, day 13 and day 20) and 
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re-watering period (i.e. day 28 and day 33) (Figure 2, supplementary table S1-S2). Comparing 

among soil water status from 35% (normal water supply) to 10% (severe drought) showed 

decreases in average Pn, Cond and Trmmol in upper, middle-, and lower-layers drought treatment 

period. After re-watering, Pn, Cond and Trmmol values of different water stress were nearly not 

significantly different. Pn, Cond and Trmmol of normal water supply of upper layer was 

significantly higher than other water stress in the whole drought treatment time, whereas these 

values of severe drought was significantly lower than other water stress. Photosynthetic changes 

with drought in the middle and lower layer were less sensitive than upper layer. Pn, Cond and 

Trmmol of moderate or severe drought were lower significantly than normal water supply, whereas 

these photosynthetic parameters were nearly not significant different of mild drought comparing to 

normal water supply. 

Variation of leaf reflectance spectra of different water stress and tracking of leaf 

hyperspectral reflectance to water stress. 

Spectra of four drought treatment was of low diversity, percentage of 97.55% of variance was 

contained in the first three principal components (Figure 3). The reason for this becomes apparent 

in the correlation matrix of the spectra (Figure 4). Five main independent wavelength ranges have 

been identified, within which the measurements are closely related. Two correlated ranges are 

found in the visible spectrum (from about 400 to 480 nm and from 500 nm to 660 nm) and three in 

the infrared region (from about 720 nm to 1400 nm, 1450nm to 1800nm and from 1900 nm to 

2500 nm). Three of them could be reflected in the three main components (Figure 4).  

Eighteen hyperspectral parameters selected from sixty parameters presented significant difference 

among different water stress. PRI, NDVI, RVI, GI, C, NMDI, VIS-�� , SW1-fwhmX1 and 

SW1-fwhmX2 showed difference just after drought treatment. Especially, PRI was more sensitive 

to water stress than other hyperspectral parameters and the values of different drought treatments 

have significant differences in the whole drought period. PRI value of normal water supply was 

significantly higher than mild, moderate and severe treatment (Figure 5a). NDVI and GI of normal 

water supply and mild treatment were significantly higher than moderate and severe treatments in 

day 1 and day 7 (Figure 5b and Figure 5d). RVI shows the opposite trend (Figure 5c). In day 13 

and day 20, NDVI and RVI of severe treatment were significantly higher or lower than other 
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treatments (Figure 5b and Figure 5c). GI and C could distinguish the normal water supply, mild or 

moderate and severe treatment effectively, however, they could not reveal the spectra difference 

between mild and moderate treatments (Figure 5d and Figure 5e). NMDI, VIS-��, SW1-fwhmX1, 

SW1-fwhmX2 were effectively used to distinguish severe drought treatment based on spectra from 

day 1 to day 20 (Figure 5f-5i).  

SW1-fwhmY, SW1-fwhm-Δλ, SW1-SAI, SW2-fwhm-Y, SW2-fwhm-Δλ, SW2-SAI, SW2_Area, 

MSI, NDWI1640, GVMI were useful to distinguish severe drought treatment in day 7, day 13 and 

day 20. These values of normal water supply, mild and moderate treatment were not significantly 

different (Figure 6). SW1-fwhmY, SW2-fwhm-Y, MSI values of severe drought were significantly 

higher than other three treatments, while SW1-fwhm-Δλ, SW1-SAI, SW2-fwhm-Δλ, NDWI1640, 

SW2_Area, SW2-SAI and GVMI presented opposite trends (Figure 6). 

GI, CI730, CI709, CIG, NDRE, Rg, CARI, MCTI, PRI, VIS-λ2, VIS-��, VIS-Area, VIS-symmetry, 

VIS-slope, VIS-fwhm X1, VIS-fwhm-Δλ, SW1-λ1, SW2-λ1, SW2-slope, SW2-fwhm-X1, C, λ, λp, σ 

and REP of responses to drought were lagging, and spectral variations of different treatments 

could still be presented in the initial stage of rewatering (i.e. day 28), but great uncertainty 

occurred (Table 2). 

Machine learning algorithms to predict Pn, Cond and Trmmol  

The photosynthetic parameters returned heterogeneous and non-parametric results for the analyzed 

leaves (Table 3). The analysis showed that Pn, Cond and Trmmol had high variability and uniform 

distribution. This heterogeneous dataset was is very useful for building prediction models using 

machine learning algorithms. Four machine learning algorithms were applied to estimate Pn, Cond 

and Trmmol values of lemon leaves. A comparison of the four machine learning algorithms 

showed that RF demonstrated the best regression performance in terms of Pn, Cond and Trmmol 

values. The R2 value ranged from 0.88 to 0.92, and the RMSE was 1.86, 0.049 and 1.88 for Pn, 

Cond and Trmmol, respectively. The AdaBoost achieved the second highest accuracy except for 

the Trmmol. In the AdaBoost regression models, the R2 ranged from 0.49 to 0.69 and the RMSE 

was 1.84, 0.056 and 2.078 for Pn, Cond and Trmmol. SVM obtained a moderate performance and 

presented R2 values from 0.28 to 0.64 (Table 4). 
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To ascertain the relationship between observed and predicted Pn, Cond and Trmmol, their 

regression values were plotted (Figure 7). GDboost did not show similarity to a 1:1 relationship 

(dashed-line—Figure 7b, 7f and 7g). Predictions of Adaboost, RF and SVM were comparatively 

well related to the observed Pn, Cond and Trmmol values (Figure 7). 

Discussion 

Global warming leads to increasing drought problems and food shortages. Water deficit 

monitoring and yield estimation for citrus trees of large area is very critical. Laboratory method of 

water stress and gas exchange measurements still are cumbersome experimental techniques and 

not suitable for large-scale monitoring in a short time (Fu et al. 2019, Fu et al. 2020). Novel 

techniques are thus required to efficiently select for water stress and photosynthetic capacity 

(Heckmann et al. 2017). Drought resistance is a combination of physiological and biochemical 

adaptations (Boochs et al. 1990, Ashraf 2010), which can be reflected in the plants’ spectral 

signature (Zovko et al. 2019). To this end, we studied photosynthetic and spectral responses under 

water stress, analyzed the properties of leaf reflectance measurements and built corresponding 

predictive photosynthesis models. It will play an important role in predicting yield and mitigating 

the impact of drought on yield in a large-scale orchard. To understand the general properties and 

diversity of leaf reflectance spectra in different drought treatments, we estimated their distribution. 

Percentage of 97.55 of raw spectra of three water stress was contained in the first three principal 

components (Figure 2), which revealed a low and unexpected diversity of spectral properties. Five 

high correlated band regions were identified. This feature of the spectra poses a challenge for the 

development of robust predictive models. Machine learning algorithms may be urgent to predict 

photosynthetic characterization because of their advantage of solving multi-collinearity.  

Hyperspectral technology can accurately obtain the fine spectral information of plants for 

accurately monitoring the growth, physiological and biochemical characteristics of plants.  

Although using remote sensing to assess responses to drought is a very active topic of research, 

most studies to date have focused on estimating biochemical and structural parameters related to 

water stress (Sobejano-Paz et al. 2020). In this study, physiological and spectral responses to soil 

drought were assessed. For citrus, a significant decline of leaf Pn, Cond and Trmmol was observed 

after trees suffered water stress (Figure 2, Supplementary Table S1-S2). An effective and 
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alternative method was provided to identify drought stress and its severity early in citrus trees. PRI, 

NDVI, RVI, GI, C, NMDI, VIS-��, SW1-fwhmX1 and SW1-fwhmX2 were effective in tracking 

continuous drought responses in citrus at the beginning of drought treatment when leaves did not 

show any morphological changes. Once drought stress occurs, leaves quickly close the stomata to 

reduce water loss, stomatal conductance and transpiration (Sun et al. 2013). Drought stress affects 

morphological characteristics such as leaf relative water content and leaf area, leaf relative 

conductivity (Dong et al. 2021). NDVI, RVI, GI, NMDI, SW1-fwhmX1 and SW1-fwhmX2 have 

indirect relationships to plant physiological and structural parameters such as water content and 

greenness (Govender et al. 2009). Especially, PRI was a key remote sensing index, which was 

surprisingly more sensitive to an early plant water-stress stadium than traditional SVIs from 

beginning to end and can serve as a pre-visual and continuous water-stress indicator (Suarez et al. 

2009, Panigada et al. 2014). This result was contributed the fact that PRI was closely linked to 

photosynthetic process due to faster changes in xanthophyll pigments comparing other SVIs under 

stress conditions (Gerhards et al. 2019). Leaf stomatal closing responding to water stress was early 

than change of leaf morphology and pigment. PRI nearly presented the same respond as 

photosynthetic parameters with water stress (Figure 2, Table S1, Table S2, and Figure 5a).   

In addition to photosynthesis and moisture reduction, the total soluble sugar, soluble protein and 

starch content increase, whereas chlorophyll a and b content decrease significantly with the 

extension of the drought period (Dong et al. 2021). SW1-fwhmY, SW1-fwhm-Δλ, SW1-SAI, 

SW2-fwhm-Y, SW2-fwhm-Δλ, SW2-SAI, SW2-area, MSI, NDWI1640 and GVMI of severe 

drought were also different significantly than other water stress from the 7th day of drought 

treatment to the end (Figure 6). SW1 and SW2 was around 1230-1650nm and 1800-2200nm 

which were highly sensitive to leaf water content. Zovko et al. (2019) also showed SWIR was 

effective to determine drought stress and its severity in grapevines. Drought led to the change of 

leaf water, cellulose, starch and lignin content (Zaher-Ara et al. 2016) which was linked to SW1 

and SW2(Zhao 2003). Water deficits affect citrus physiology and citrus exposed to drought stress 

had a higher amount of soluble sugar and a lower amount of starch. The accumulation of soluble 

sugar and proline indicates a possible role of these osmolytes in drought tolerance (Arbona et al. 

2005, Zaher-Ara et al. 2016). MSI, NDWI1640 and GVMI were measured with around 800 and 
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1600 bands which were just related to starch and sugar. GI, CI730, CI709, CIG, NDRE, Rg, CARI, 

MCTI, PRI, VIS-λ2, VIS-abs, VIS-Area, VIS-symmetry, VIS-slope, VIS-fwhm X1, VIS-fwhm-Δλ, 

SW1-λ1, SW2-λ1, SW2-slope, SW2-fwhm-X1, C, λ, λ0, σ, REP of different treatments could still 

be presented in the initial stage of rewatering. They were related to content of xanthophyll content, 

chlorophyll, carotenoid, sugar and starch (Zhao 2003, Govender et al. 2009). There was a process 

of plant recovery, and these indicators may reflect differences in the process of recovery from the 

drought conditions. It was proved that hyperspectral SVIs and spectral absorption and wavelength 

position variables was effective in drought stress identification. The limitation was that most of 

hyperspectral parameters can only distinguish severe drought from all water stress.  

To obtain quantitative assessment of water stress and yield prediction, we systematically 

developed Pn, Cond and Trmmol prediction models with high precision and evaluated the 

performance of a variety of models. This was the first time that photosynthetic parameters related 

to citrus yield had been predicted. In citrus, past studies on predicting physiological traits of citrus 

mainly focused on nutrient or micronutrient content like N, P, K, Mg, S, Cu, Fe, Mn, and Zn (Osco 

et al. 2019, Osco et al. 2020). In this study, RF was the best predictor, followed by AdaBoost and 

SVM (Table 4). RF models had the highest R2 (0.92), lower RMSE (1.86) and MAE (1.51). 

Random forest has been reported to bring high accuracy of physiological traits in crops and forests 

(Zhao et al. 2019, Osco et al. 2020). Partial least-squares regression model relating to 

hyperspectral reflectance also has been used to estimate photosynthetic capacity of crops, such as 

Maize (Yendrek et al. 2017) and tobacco (Meacham-Hensold et al. 2019), however, it did not 

return higher prediction accuracy than this study. This was contributed to advantage of modeling 

data in a non-linear and a non-parametric manner and solving the problem of multiple 

collinearities. Although SVM has advantage of handling high dimensionality data and do well 

with a limited training dataset(Ma et al. 2019), it performed poorly in comparison with RF in this 

study. GDboost exhibited severe overfitting and returned unreliable prediction although literature 

reported GDBoost model performed better RF when estimating forest coverage (Zhou et al. 

2020a). It may be concluded that GDBoost present major flaws in modeling highly correlated 

hyperspectral data. 

Conclusion 
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Non-destructive and rapid methods for accurate pre-visual water-stress detection and 

photosynthetic parameters’ estimation was necessary to yield increase and quality improvement of 

citrus. Photosynthetic parameters presented significant decrease under water stress and this trend 

was more obviously in upper layer. Original reflectance spectra of three drought treatments 

presented a low and unexpected diversity. PRI is more sensitive to an early plant water-stress 

stadium than traditional SVIs and can serve as a pre-visual, persistent and stable water-stress 

indicator interestingly. Spectral absorption features in SW1 and SW2 regions, MSI, NDWI1640 

and GVMI were useful to distinguish severe drought treatment effectively. Photosynthetic rate 

could be estimated with highest precision by applying hyperspectral leaf reflectance and RF 

models compared SVM, AdaBoost and GDBoost. To our knowledge, this is one of the first 

applications of using hyperspectral parameters as indicator for water stress and input for the 

retrieval of photosynthetic traits in citrus and provides a basis for extending the analysis to other 

observing platforms, such as unmanned aerial vehicle and satellite data for water condition 

monitoring and yield increasing quickly and precisely in large-scale orchards. 
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Table legends 

Table 1: The 20 selected spectral vegetation indices examined in this research, together with their 

band-specific formulations, and associated principal reference. 

 

Table 2: Performance of spectral parameters of normal water supply, mild stress, moderate stress 

and severe stress in the initial stage of rewatering (i.e., 4-Sep). The data was presented in the form 

of mean±standard error, significant differences were indicated by different letters in the same row. 

 

Table 3: Descriptive data from the photosynthetic parameters’ analysis of the lemon leaves. 

 

Table 4: The machine learning algorithms’ accuracy performance for the reflectance data. 

 

Figure legends 

Figure 1: A part of lemon leaf reflectance (1200-1700nm) and definitions of absorption features 

(where H means absorption depth, W represents the full width half maximum, P is the wavelength 

of absorption position, A is the area left area of the absorption center, L is tangent line, X1 and X2 

is the wavelength of left and right shoulder at the position of the full width half maximum. Y is the 

corresponding reflectance of X1 and X2.) 

 

Figure 2: One-way ANOVA test results of photosynthetic CO2 assimilation rate (Pn, mol m-2s-1) 

of upper layer, middle layer, and lower layer of different water stress in drought treatment period 

(i.e. 6-Aug, 12-Aug, 18-Aug, and 26-Aug) and re-watering period (i.e. 4-Sep and 9-Aug). The 

data was presented in the form of mean ± standard error, significant differences were indicated by 

different letters in the same subfigure. Sub-figure (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), (l), 

(m), (n), (o), (p), (q), (r) were upper layer-6-Aug, middle layer-6-Aug, lower layer-6-Aug, upper 

layer-12-Aug, middle layer-12-Aug, lower layer-12-Aug, upper layer-18-Aug, middle 

layer-18-Aug, lower layer-18-Aug, upper layer-26-Aug, middle layer-26-Aug, lower layer-26-Aug, 

upper layer-4-Aug, middle layer-4-Aug and lower layer-4-Aug. 
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Figure 3: Proportion of variance covered by the first 10 principal components of reflectance 

spectra in lemon of different drought treatments. 

 

Figure 4: Heat maps of the reflectance spectra of lemon leaves with four drought treatments. Each 

point shows the Pearson correlation of reflectance at both wavelengths. The panel below shows 

the three components that account for the largest proportion of variance. 

 

Figure 5: Performance of spectral parameters for revealing the difference of four drought 

treatments. a, b, c, d, e, f, g, h and i were indicated as PRI, NDVI, RVI, GI, C, NMDI, 

SW2-fwhm-X1, SW2-fwhm-X2 and VIS_λP respectively.  

 

Figure 6: Performance of spectral parameters for revealing the difference of four drought 

treatments. a, b, c, d, e, g, h, i, j, k and l were indicated as SW1-fwhmY1, SW1-fwhm-Δλ, 

SW2_area, SW1-SAI, SW2-fwhm-Y, GVMI, SW2-fwhm-Δλ, SW2-SAI, MSI, and NDWI1640. 

 

Figure 7: Measured vs. predicted values after applying AdaBoost, GDBoost, random forest (RF) 

and support vector machine (SVM) model to predict leaf photosynthetic CO2 assimilation rate (Pn 

in µmol m-2 s-1), leaf stomatal conductance (Cond in mol m-2 s-1), and leaf transpiration rate 

(Trmmol in µmol m-2 s-1). The red line is the 1:1 line and the black line is fitting line between 

observed and predicted values. (a), (b), (c), (d), (e), (f), (g), (h) and (i) were Pn- AdaBoost, Pn- 

GDBoost, Pn- RF, Pn- SVM, Cond- AdaBoost, Cond- GDBoost, Cond- RF, Cond- SVM, Trmmol- 

AdaBoost, Trmmol- GDBoost, Trmmol- RF and Trmmol- SVM. 

 

Supplementary material: 

Supplementary table S1: One-way ANOVA test results of stomatal conductance (Cond, mol 

m-2s-1) of upper layer, middle layer, and lower layer in different water stress. The data was 

presented in the form of mean ± standard error, significant differences were indicated by different 

letters in the same column. 

Supplementary table S2: One-way ANOVA test results of leaf transpiration rate (Trmmol, mmol 

m-2s-1) of upper layer, middle layer, and lower layer in different water stress. The data was 
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presented in the form of mean ± standard error, significant differences were indicated by different 

letters in the same column. 
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Table 1. The 20 selected spectral vegetation indices examined in this research, together with their 

band-specific formulations, and associated principal reference. 

NO. Spectral Vegetation Indices Reference 

 Structure  

1 Normalized difference vegetation index,  

NDVI = (R800 – R670)/(R800 + R670) 

(Rousel et al. 1973) 

2 Ratio vegetation index, RVI = R800 / R670 (Jordan 1969) 

3 Enhanced Vegetation Index, EVI= 2.5*(R800 – R680)/(R800 + 

6* R680 - 7.5*R450+1) 

(Huete et al. 1994) 

 Pigments: Chlorophyll, Carotenoids, and Anthocyanin  

4 Greenness Index, GI = R554/ R667 (Zarco-Tejada et al. 

2005) 

5 Red Edge model, CI730 = R800 /R730 -1.0 (Mehdaoui and Anane 

2020) 

6 Red Edge model,CI709 = R800 /R709 -1.0  

7 Chrollophy Index at Green band, ch1green = R800/ R550 - 1.0 (Gitelson et al. 2006) 

8 Normalized Difference Red Edge, NDRE = (R790 – 

R720)/(R790 + R720) 

(Fitzgerald et al. 2010a) 

9 Red and Green Vegetation Index, RGVI = R550 / R670 (Jordan 1969) 

 

10 

CARI_a = (R700 - R550)/150 

CARI _b = R550 - CARI_a *500 

(Kim et al. 1994) 
��� � |����� � ���� � ����

�  ���� _�|/����_�� � 1.0 
Chlorophyll Absorption Ratio Index, CARI = CAR 

*R700/R670 

11 
MERIS Terrestrial Chlorophyll Index, MTCI = (R754 - 

R709)/(R709 - R681) 

(Dash and Curran 2004) 

 Photosynthetic activity  

12 Photochemical Reflectance Index, PRI = (R570 - R531)/(R570 

+ R531) 

(Gamon et al. 1992) 

13 Photochemical Reflectance Index Improved, PRI2 = (R528 - 

R567)/(R528 + R567) 

 

 Water content  

14 Moisture Stress Index, MSI = R1600/R820 (Hunt and Rock 1989) 

15 Water Index, WI = R900/R970 (Penuelas et al. 1997) 

416 Normalized Multi-band Drought Index, NMDI = (R860 - 

R1640 + R2130)/(R860 + R1640 - R2130) 

(Fitzgerald et al. 2010b) 

17 Global Vegetation Moisture Index, GVMI = (R820 + 

0.1-R1600 - 0.02) /(R820 + 0.1 + R1600 + 0.02) 

(Ceccato et al. 2002) 

18 Normalized Difference Water Index, NDWI1200 = (R886 – 

R1200)/(R886 – R1200) 

(Gao 1996) 

19 Normalized Difference Water Index, NDWI1240 = (R886 – 

R1240)/(R886 – R1240) 

(Gao 1996) 

20 Normalized Difference Water Index, NDWI1640 = (R886 – (Gao 1996) 
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R1640)/(R886 – R1640) 
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Table 2 Performance of spectral parameters of normal water supply, mild stress, moderate stress 

and severe stress in the initial stage of rewatering (i.e., day 28). The data was presented in the 

form of mean±standard error, significant differences were indicated by different letters in the same 

row. 

Parameter Normal water supply Mild stress Moderate stress Severe stress 

GI 0.6228±0.0027b 0.5870±0.0027b 0.5937±0.0028b 0.6473±0.0013a 

CI730 0.2040±0.0020a 0.1617±0.0021c 0.1742±0.0016bc 0.2024±0.0011ab 

CI709 1.1799±0.012ab 0.9835±0.011c 1.0303±0.0010bc 1.2230±0.0067a 

CIG 3.3888±0.038ab 2.9082±0.031b 3.0010±0.036b 3.6980±0.022a 

NDRE 0.09232±0.00082a 0.07453±0.00091c 0.07998±0.00065bc 0.09182±0.00047ab 

rg 0.1418±0.00011ab 0.1539±0.00086a 0.1478±0.00012ab 0.1329±0.00082b 

CARI 1.1168±0.024ab 1.2758±0.018a 1.0828±0.017ab 0.9431±0.0072b 

MCTI 1.3550±0.015ab 1.1412±0.013c 1.2204±0.012bc 1.4350±0.0075a 

PRI 0.08426±0.00059b 0.09272±0.00063ab 0.08426±0.00059b 0.09925±0.00035a 

VIS-λ2 745.7833±0.073a 743.9444±0.1051c 744.3944±0.076bc 745.4222±0.043ab 

VIS-λP 669.6667±0.15a 667.2111±0.13bc 667.6667±0.14ab 665.2833±0.065c 

VIS-Area 118.6700±0.24ab 116.47±0.24ab 115.10900.4322±0.43b 120.87±0.16a 

VIS-symmetry 0.6914±0.0012a 0.6800±0.00096a 0.6795±0.0010a 0.6613±0.00043b 

VIS-slope 0.002289±0.000012ab 0.002182±0.000013b 0.002120±0.0000081b 0.002386±0.0000048a 

VIS-fwhm X1 573.3167±0.10ab 572.0278±0.11a 572.1167±0.13a 569.6222±0.039b 

VIS-fwhm-W 138.0944±0.22ab 135.5389±0.24b 136.1056±0.22b 140.5556±0.077a 

SW1-λ1 1281.6778±0.10b 1282.5222±0.14b 1282.5222±0.10b 1284.8444±0.088a 

SW2-λ1 1818.1444±0.085b 1818.3333±0.089b 1819.8444±0.079a 1820.4111±0.076a 

SW2-cslope -0.0003405±1.58*10-6b -0.0003277±1.6*10-6a

b 

-0.0003189±7.9*10-8a -0.0003425±8.2*10-7b 

SW2-fwhm-X1 1838.8±0.045c 1874.1833±0.070bc 1874.1±0.042ab 1875.1444±0.044a 

C 3.4474±0.030ab 3.1406±0.028b 3.1544±0.039b 3.7082±0.015a 

λ 543.4862±0.022a 543.0308±0.016b 543.1019 ±0.028b 542.8853±0.0059b 

λ0 676.0881±0.051ab 675.2125±0.052c 6754985±0.045bc 676.3048±0.025c 

σ 29.6841±0.053a 28.7165±0.063b 29.1676±0.041ab 29.8467±0.024a 
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Table 3. Descriptive data from the photosynthetic parameters’ analysis of the lemon leaves 

Summary Pn (μmol CO2 m
-2s-1) Cond (mol HO2 m

-2s-1) Trmmol (mmol HO2 m
-2s-1) 

Mean 4.53 0.089 3.00 

Std. Dev. 2.85 0.069 2.21 

Median 4.15 0.073 2.58 

Mix. 12.51 0.36 11.61 

Min. 0.022 0.0014 0.037 

Coeff. Var. 63.02 77.79 73.70 
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Table 4. The machine learning algorithms’ accuracy performance for the reflectance data. 

  AdaBoost GDBoost RF SVM 

Pn 

R2 0.69 0.99 0.92 0.64 

RMSE 1.84 2.55 1.86 1.91 

MAE 1.53 1.95 1.51 1.53 

Cond 

R2 0.52 0.99 0.89 0.28 

RMSE 0.056 0.068 0.049 0.055 

MAE 0.045 0.049 0.038 0.045 

Trmmol 

R2 0.49 0.99 0.88 0.50 

RMSE 2.078 2.48 1.88 2.06 

MAE 1.65 1.74 1.34 1.46 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433135doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433135
http://creativecommons.org/licenses/by-nc-nd/4.0/

