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ABSTRACT
Remarkable advances in high-throughput sequencing have resulted in rapid data accumulation, and
analyzing biological (DNA/RNA/protein) sequences to discover new insights in biology has become
more critical and challenging. To tackle this issue, the application of natural language processing
(NLP) to biological sequence analysis has received increased attention, because biological sequences
are regarded as sentences and k-mers in these sequences as words. Embedding is an essential step
in NLP, which converts words into vectors. This transformation is called representation learning and
can be applied to biological sequences. Vectorized biological sequences can be used for function and
structure estimation, or as inputs for other probabilistic models. Given the importance and growing
trend in the application of representation learning in biology, here, we review the existing knowledge
in representation learning for biological sequence analysis.

1. Introduction
Considerable advances in high-throughput sequencing

have resulted in rapid data accumulation [1]. Although
these modern technologies produce a large amount of data,
they do not provide any interpretation or biological infor-
mation. Thus, analyzing biological sequences, such as
DNA/RNA/protein sequences, to make biological discover-
ies has become more critical and challenging. To tackle this
issue, the application of natural language processing (NLP)
to sequence analysis has attracted great attention in terms
of biological sequences as sentences and k-mers in these se-
quences as words [2, 3].

NLP aims to allow computers to understand the contents
of natural language, including the context, and accurately ex-
tract information and insights [4]. Natural language is com-
posed of characters, such as the alphabet, and the meaning
is constructed using grammar and semantics. In the same
way, biological sequences can be regarded as sentences with
different letters, and biophysical and biochemical rules de-
fine properties, such as the function and structure [5]. Bio-
logical sequences are consistent with natural language where
characters define their meaning, and themeaning depends on
the neighboring sequence. For example, whether the word
“bank” in a sentence refers to a financial institution or raised
portion of seabed depends on the context. Similarly, whether
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a part of an RNA sequence forms a secondary structure de-
pends on its neighboring sequences. Thus, there are simi-
larities between natural language and biological sequences,
and it would be natural to apply NLP to a more in-depth un-
derstanding of the function and structure encoded in the bi-
ological sequence.

Representation learning is an essential step in NLP and
indicates automatic systems to explore the representation
of raw data, such as words or characters [6]. In general,
the representation is provided as a real-valued vector, called
distributed representation. Successful representation learn-
ing is expected to convert words into vectors while pre-
serving their semantic similarity. For example, the names
of foods, like “sushi” and “pizza,” should be converted
into similar vectors and the names of organisms, such as
“frog,” should be assigned entirely different vectors (Figure
1). In biological sequences, N-methyl-D-aspartate recep-
tor and �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor, which are ionotropic glutamate receptors, are
expected to be converted into similar vectors, whereas GFP,
a fluorescent protein, is expected to be converted into a com-
pletely different vector. Thus, representation learning indi-
cates the transformation from words to vectors while pre-
serving the similarities and differences between words.

Biological sequences vectorized by representation learn-
ing can be directly used for biological tasks, such as function
and structure prediction. If the vector similarity between
proteins is high, it can be inferred that they have similar func-
tions and structures. Note that vector similarity/distance can
be calculated using linear algebra operations, such as dot
product, Euclidian distance, and cosine similarity. In par-
ticular, the successful encoding of words via representation
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Figure 1: Ideal representation learning should convert the
names of foods, such as “sushi” and “pizza,” into similar vec-
tors and assign different vectors to the names of organisms,
such as “cow” and “frog.”
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Figure 2: Change in the number of hits for the search term
“representation learning” (with double quotation) in PubMed
(https://pubmed.ncbi.nlm.nih.gov/).

learning has been recognized as an essential research area
because the performance of NLP and deep learning depends
on the quality of the representation [6]. Thus, a good repre-
sentation of a biological sequence is critical for clustering,
function, structure, and disorder prediction [2].

Given the significance and growing trend in the appli-
cation of representation learning in biology (Figure 2), here,
we describe a review of representation learning for sequence
analysis. It should be noted that this review covers the ap-
plication of representation learning to biological sequence
analysis, and its use in biological literature and medical
records is beyond the scope of this review. This review is
organized as follows: Section 2 introduces the basic repre-
sentation techniques for NLP. Section 3 provides a compre-
hensive survey of representation learning approaches for se-
quence analysis. Section 4 presents a summary and an out-
look of representation learning applications in biological se-
quence analysis.

2. Representation learning techniques
Currently, the acquisition of distributed representations

of biological sequences is mainly achieved using neural net-
works developed in NLP. In representation learning for NLP,
it is assumed that the words that appear in the same con-
text should have similar meanings according to the dis-
tribution hypothesis [7]. Representation learning methods
based on the distribution hypothesis attempt to vectorize
words or phrases by training the neural networks with ar-
chitectures specialized for capturing the relationships among
words from a corpus, a set of documents. Various represen-
tation learning methods presented in this review are taken
from neural-network-based language models specialized for
biological sequences; thus, it is essential to understand the
underlying architecture of the neural networks developed for
NLP. In this section, we briefly summarize the development
of basic representation learning techniques.

word2vec is the first successful method to obtain dis-
tributed representations using a neural network [8, 9]. There
are two types of neural networks used in word2vec: skip-
gram model that predicts the words around the input word
and a continuous bag-of-words model that predicts the tar-
get word from the surrounding words. Until the advent of
word2vec, researchers used neural networks to describe the
syntactic structure [10, 11]. The skip-gram model proposed
by Mikolov attracted attention for its ability to capture not
only grammatical correctness but also semantic features, as
described in the introduction. word2vec with the skip-gram
model acquires a distributed representation for each word by
training the three-layer neural network, as shown in Figure
3. Given a sentence with T words and the t-th word wt,the model predicts the words present in the vicinity of wt inthat sentence. The parameters to be estimated in the skip-
gram model include the weight matrix X to predict the d-
dimensional hidden layer ℎ ∈ ℝd from the one-hot encoded
input layer and weight matrix Y to predict the output from
ℎ. They are predicted using the formula described below:

X̂, Ŷ = argmax
X,Y

1
T

T
∑

t=1

{ t−1
∑

t′=t−c
log p(wt′ ∣ wt, X, Y )

+
t+c
∑

t′=t+1
log p(wt′ ∣ wt, X, Y )

}

(1)

, where c is a constant indicating the number of words far-
ther away from wt that should be included in the predic-
tion. The model performs the same operation for all sen-
tences to complete training. In this case, the weight ma-
trix X is a V × d matrix, where V is the number of words
in the vocabulary. If wt is the v-th word in the vocabu-
lary, we can obtain the distributed representation of the word
wt as the v-th vector of the predicted X (i.e., X̂v ∈ ℝd).
The word2vec representation has additive compositionality
and has become famous for allowing intuitive operations,
such as X̂Vietnam + X̂capital ≈ X̂Hanoi, as shown previously
[9]. Hence, word2vec succeeded in obtaining highly inter-
pretable distributed representations for the first time and di-
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Figure 3: Skip-gram model used in word2vec. This neural
network model has three fully connected layers: the input,
hidden, and output layers. In this case, it attempts to learn
the features from the sentence, “I am majoring in biology,” and
predict the words surrounding wt, “majoring. ”

rected subsequent development in representation learning.
The fact that word2vec captured semantic features was

a remarkable breakthrough in representation learning, and
various extended models based on word2vec were proposed.
GloVe uses word co-occurrence matrices, which have been
used in classical latent semantic analysis, such as singular
value decomposition [12]. It shows higher semantic accu-
racy thanword2vec. FastText is one of the embeddingmeth-
ods based on the skip-gram model [13]. It can train the
model very quickly while maintaining the same accuracy as
conventionalmethods. In addition, several methodswere de-
veloped to obtain a distributed representation for each sen-
tence (not word) based on the word2vec concept. doc2vec
utilizes the paragraph vectors, which captures the context for
each paragraph and provides the features for each sentence
[14].

Although word2vec has enabled considerable progress
in representation learning, it cannot express the semantic
polysemy of words because it yields a single d-dimensional
vector for a single lexicon, as mentioned above. For exam-
ple, “right” that appears in “right to vote” and “turn right”
differ in meaning, but they are embedded at the same point
using word2vec. The approach to solving this problem is
called word sense disambiguation in NLP [15], and it calls
for architecture to consider the context andmeaning of a sen-
tence. In biological sequences, the context of aword in a sen-
tence is equivalent to the role of a particular nucleic/amino
acid in the whole sequence. Hence, the polysemy in biologi-
cal sequences is critical, similar to that in natural languages.
Here, we introduce two methods that can take such contexts
into account: one that can achieve this by making the neural
network recursive using a recurrent neural network (RNN)
or long short-term memory (LSTM) [16] and another that
uses the attention mechanism.

Embeddings from language models (ELMo) dissolves
the polysemy problem using themodel stacked withmultiple
bidirectional-LSTM (bi-LSTM) and yields the distributed
representations by taking the linear weighted-sum of outputs
of their hidden layers [17]. RNN and LSTM have been uti-
lized mainly for sequential tasks, such as document genera-

Figure 4: The graphical representation of a bidirectional lan-
guage model. Input It shows the embedding of the t-th word in
the sentence, wt. The output, Ot, is transformed to a probabil-
ity with a softmax function, and all the modules are trained to
maximize the observed probability of wt. 2L + 1 layers circled
in squares with rounded corners are used to calculate ELMot,
the distributed representation for wt.

tion and machine translation [18, 19]. In a language model
with a simple forward LSTM, the occurrence probability
of the t-th word in a sentence, wt, depends on the set of
words that appear beforewt (denoted asw1∶t−1). The model
trains the parameters to maximize the joint probability for
all words, {w1,⋯ , wt,⋯ , wT }. To calculate p(wt|w1∶t−1),LSTM uses the hidden layer of wt (its output is denoted by
ℎforward,t ∈ ℝd), which depends on wt−1 and ℎforward,t−1.As the hidden layer is computed recursively depending on
the word order, LSTM-based models allow context-aware
learning. Previously [17], bi-LSTM modules were used
in their language model called the bidirectional language
model (bi-LM). bi-LSTM considers not only the forward but
also backward word dependency. In a backward LSTM, the
hidden layer of wt and its output ℎbackward,t depend on wt+1and ℎbackward,t+1 as opposed to the case in forward LSTM.
By considering word dependency in the backward direction,
bi-LM can incorporate relationships among words that can-
not be captured by the forward LSTM alone. bi-LM con-
tains a stack of L bi-LSTM modules (see Figure 4), and all
the modules are trained to maximize the joint probability of
generating the entire sentence as follows:

1
T

T
∑

t=1

{

log p(wt ∣ w1∶t−1) + log p(wt ∣ wt+1∶T )
} (2)

Finally, the distributed representation, ELMo, is obtained
by taking the weighted-sum of outputs from 2L + 1 layers,
which are hidden layers for each LSTM module and an in-
put embedding layer. ELMo succeeded in placing the same
lexicon on different points in a high-dimensional space, de-
pending on the context.

Another approach to solving the polysemy problem is
to use the attention mechanism. In brief, attention quanti-
fies the degree of correspondence between words [20, 21].
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Figure 5: The graphical representation of Bidirectional en-
coder representations from transformers (BERT) architecture.
Preparation of special tokens enables the model to extract fea-
tures based on the self-attention of the whole sentence. BERT
is trained with two tasks: masked language model (MLM) and
next sentence prediction (NSP).

Neural networks with attention mechanisms have an atten-
tion weight that is obtained by calculating the association
of hidden layers (e.g., using the inner product) for arbitrary
combinations of words in sentences. If the two words used
to compute the attention weight come from different sen-
tences, this attention is called the source-target-attention; if
they are from an identical sentence, it is called self-attention.
Models that use attention weights in the forward propagation
are highly expressive, and we can naturally introduce an at-
tention mechanism to representation learning. Transformer,
which implements attention mechanism and positional en-
coding [22] in Key-Value Memory neural network [23, 24]
without conventional context-aware architectures, such as
RNN or LSTM, has achieved the state-of-the-art accuracy
in several tasks, including machine translation [25].

Bidirectional encoder representations from transform-
ers (BERT) have multiple transformers with self-attention
connected in series (see Figure 5) [26]. In the pre-training of
BERT, the input is a set of tokens connecting two sentences.
At this time, a part of the input words is masked, and the
model predicts the masked words from the extracted features
considering the context. In addition, the model performs a
binary classification of whether the two input sentences are
semantically consecutive. Similar to other methods, we can
use the outputs of pre-trained transformer layers as the dis-
tributed representations of input sentences.

Neural networks with attention mechanisms, such as
transformer and BERT, capture distal word associations bet-
ter than conventional recursive models represented by RNN
and LSTM [20, 27]. This is because, in recursive models, a
hidden layer of a certain word depends on the hidden layers
of the neighboring words only, and the contribution of distal
words becomes small or converges to zero. In contrast, the
use of attention is robust against suchweight loss because the
model always refers to the association of it with all words.
This feature of BERT is attractive from the viewpoint of bi-
ology since distal interactions are important for structural
prediction and other purposes. Another advantage of BERT

is task-independent versatility. For instance, when we use
ELMo, we should prepare a task-specific model to transfer
the obtained distributed representations to other tasks. In
contrast, with BERT, we can utilize the same architecture
used in pre-training (as shown in Figure 5) without modifi-
cation. Fine-tuning, which uses pre-trained hidden layers for
initialization and optimizes the parameters for each task, has
achieved state-of-the-art accuracy in many NLP tasks [26].

The main advantage of obtaining features through unsu-
pervised learning is that it can retain versatility for transfer
learning to various tasks. However, to build a specialized
model for a specific task, representation learning in a su-
pervised manner is also useful. StarSpace is a supervised
learning method [28], which uses labeled documents as the
training dataset, and embeds words and labels in the same
space so that a label is close to words associated with it. Em-
bedding with StarSpace allows for text classification, that is,
prediction of labels used in the course of learningwith higher
accuracy than the other unsupervised methods, and provides
highly interpretable vectors. As this example shows, super-
vised representation learning is also a practical option if the
correct labels are known.

Since the development of word2vec in 2013, the field of
representation learning inNLP has been growing at an aston-
ishing pace. Considering the models based on transformer
or BERT, several modern improved methods have continued
to provide increased accuracy [29, 30]. Furthermore, similar
to the big impact of the attention mechanism, the emergence
of new concepts may also reconstruct the current paradigm
of language modeling. These substantial developments in
machine learning will be useful for bioinformatics and se-
quence analyses. As numerous examples are introduced in
later sections, we believe that applying the latest represen-
tation learning techniques to biological sequences will lead
to a discovery or elucidation of novel information in this do-
main.

3. Survey of representation learning
applications in sequence analysis
We conducted an exhaustive survey, as shown in Table 1,

for articles that met the following criteria: (i) Peer-reviewed
and published in PubMed, except for BERT, which was re-
cently published with a limited number of peer-reviewed
articles; (ii) explicitly used a language model, such as
word2vec or BERT; (iii) provided the source code or the
model for repeatability or verification.
3.1. Applications for structure/function prediction

ProtVec is the first model to use the embedding method
for biological sequences [31]. This method regarded 3-mers
of amino acids as words and used 546,790 protein sequences
from the Swiss-Prot database as the training dataset. Subse-
quently, word2vec using the skip-grammodel was applied to
the dataset, and 100-dimensional protein vectors were cal-
culated. Originally, ProtVec was evaluated based on protein
family classification and disordered protein prediction accu-
racies and it achieved high performance in both. Currently,
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Table 1
Comprehensive survey of representation learning application in biological sequences

Method name Model Training data Task
Avail.
and
repr.

Ref.

ProtVec word2vec 547K proteins family classification, disorder prediction + [31]
HLA-vec word2vec HLA-I binding/non-binding peptides HLA-I binding prediction ++ [32]
m-NGSG word2vec 0.1K–3K proteins protein classification ++ [33]
ene2vec word2vec 89K positive and 495K negative mRNAs N6-methyladenosine site prediction ++ [34]

– word2vec 3K–101K of 300 bp
genomic regulatory regions regulatory region prediction ++ [35]

ProtVecX word2vec 371–44K proteins venom toxin prediction, enzyme prediction +++ [36]
MHCSeqNet word2vec 228K peptide-MHC pairs MHC binding prediction +++ [37]
– word2vec 1M 16S rRNAs sample class (e.g., body part) prediction +++ [38]
fastDNA word2vec 356–3K bacterial genomes species identification ++ [39]

NucleoNN word2vec 86/72 SNPs in the
control/exposure samples investigating allele-interactions ++ [40]

– word2vec 3K–22K CPI pairs CPI prediction +++ [41]

FastTrans word2vec 1K membrane transporter and
1K membrane non-transporter proteins substrate prediction of transport proteins ++ [42]

INSP word2vec 78 nuclear proteins nuclear localization prediction ++ [43]
– word2vec 9M proteins function prediction ++ [44]
Its2vec word2vec 126K ITSs species identification ++ [45]
4mCNLP-Deep word2vec C. elegans genome (WBcel235/ce11) N4-methylcytosine sites prediction ++ [46]

– doc2vec 525K proteins Localization, T50, absorption,
enantioselectivity prediction +++ [47]

EP2vec doc2vec 650K enhancers and 93K promotors enhancer-promoter interaction prediction ++ [48]
IDP-Seq2Seq Seq2Seq 3K proteins Disorder prediction ++ [49]
– Glove 244K–504K chromatin accessible regions chromatin accessibility prediction ++ [50]

CircSLNN Glove 37 dataset of
RBP-binding sites on circular RNAs

RBP-binding sites
prediction of circRNAs + [51]

– FastText 3K promoters and 3K non-promoters promoter stregnth classification ++ [52]
iEnhancer
-5Step FastText 1K human enhancers and

1K human non-enhancers enhancer prediction ++ [52]

TNFPred FastText 18 tumor and 133 non-tumor
necrosis factors tumor necrosis factors classification ++ [53]

eDNN-EG FastText 518 essential and
1K non-essential genes essential gene prediction + [54]

ProbeRating FastText 440K proteins and
274K nucleic acids

nucleic acid-binding proteins binding
preference prediction ++ [55]

CSCS bi-LSTM 4K–58K viral proteins viral escape mutation prediction +++ [56]
UniRep mLSTM 24M proteins structure and function prediction +++ [57]

UDSMProt AWD-LSTM
language model 499K proteins

enzyme class prediction,
gene ontology prediction, remote homology,
fold detection

+++ [58]

USMPep AWD-LSTM
language model 23K–120K MHC binding peptides MHC binding affinity prediction ++ [59]

BindSpace StarSpace 505K TF-associated and
505K non-associated DNA TF-binding prediction ++ [60]

MutSpace StarSpace cancer mutation sites cancer type prediction ++ [61]

SeqVec ELMo 33M proteins
3-state secondary structure prediction,
disorder prediction, localization prediction,
membrane prediction

++ [62]

DNA-
transformer transformer E. coli genome (MG1655)

Transcription start sites,
translation initiation sites,
4mC methylation sites prediction

++ [63]

NuSpeak ULMfit 92K RNAs designing RNA toehold switches ++ [64]

TAPE BERT 31M proteins
3-state secondary structure prediction,
contact prediction, remote homology detection,
fluorescence prediction, stability prediction

+++ [65]

ESM-1b BERT 27M–250M proteins
remote homology detection, 8-state secondary
structure prediction, contact map prediction,
quantitative prediction of mutational effects

++ [66]

ProtBert BERT 216M–2B proteins
3-/8-state secondary structure prediction,
subcellular localization prediction,
membrane-boundness prediction

++ [67]

DNABERT BERT H. sapiens genome (GRCh38.p13) promoter prediction, TF-binding site prediction,
splicing site prediction, functional variant analysis +++ [68]

Avail. and repr. indicate availability and reproductivity, respectively. (+++) The source code to generate the model, pre-trained model, and detailed
documentation, including data links and installation instructions, are available. (++) Either the source code to generate the model or the pre-trained
model is available, and detailed documentation, including data links and installation instructions, are available. (+) Either the source code to generate
the model or the pre-trained model is available, but the documentation is limited. Model indicates a general model (described in section 2) utilized in
the method. K, kilo; M, mega; B, billion; HLA, human leukocyte antigen; MHC, major histocompatibility complex; CPI, compound–protein interaction;

RBP, RNA binding protein; TF, transcription factor

ProtVec has also been utilized for predicting kinase activ-
ity [69] and gene function [70]. As ProtVec is a straightfor-
ward model, various extensions have been proposed. One of
the extensions is seq2vec, which embeds not the k-mers of
amino acids but the whole protein sequences [71]. Seq2vec

utilizes doc2vec [14], an NLP method that embeds docu-
ments instead of words, which showed a higher performance
than ProtVec in terms of protein family classification per-
formance. Another extension is dna2vec [72], which em-
beds variable-length k-mers rather than fixed-length DNA
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k-mers using word2vec. ProtVecX is a similar method that
uses word2vec to embed variable-length amino acid k-mers
[36].

SeqVec is the first model that uses ELMo to achieve
amino acid representation based on the whole protein se-
quence [62]. ELMo was applied to the UniRef50 dataset,
which contains 33M proteins with 9.6G residues, regard-
ing single amino acids as words. The extracted sequence
profile was then fed to the per-residue prediction and per-
protein prediction. With and without the evolutionary infor-
mation, the model accurately predicted the secondary struc-
ture, disorder, localization, and membrane binding. The per-
formance did not exceed that of the state-of-the-art methods
[73, 74]. However, it was better than ProtVec [31] which is
a context-independent model. In some tasks, such as protein
function prediction, it outperformed one-hot encoding of k-
mer-based embeddings and showed the competitive results
obtained using ELMo [75].

UDSMProt is another language model representation
extractor using a variant of LSTM [58]. The structure used
was called AWD-LSTM [76], which is a three-layered bi-
LSTM that introduces different types of dropout methods
to achieve accurate word-level language modeling. UDSM-
Prot was initially applied to the Swiss-Prot database and then
fine-tuned for specific tasks, such as enzyme commission
classification, gene ontology prediction, and remote homol-
ogy detection. UDSMProt showed that upon pre-training
with external data, the model performed as well as the exist-
ing methods that were tailored to the task using a position-
specific scoring matrix (PSSM) and outperformed them in
two out of three tasks. In addition, it demonstrated that uti-
lizing pre-training information can compensate for the lack
of data, compared to the case where PSSM information is
provided. These results and extensions, such as USMPep,
which revealed the ability to successfully predict MHC class
I binding [59], imply that language models can efficiently
contextualize and achieve word-based representation.

ESM-1b is a BERT-based model trained on a massive
biological corpus, particularly amino acid sequences [66].
The study presented a series of BERT models with varying
parameter sizes. After pre-training on up to 250 million pro-
tein sequences, where each amino acid residue in a sequence
was treated as a word, models accurately predicted the struc-
tural characteristics of proteins, including remote homology,
secondary structure, and residue–residue contact. Repre-
sentations emitted from the pre-trained 34-layer model were
merged with multiple sequence alignments, which were the
original input of existing secondary structure or contact
prediction methods, and their prediction accuracy was im-
proved. This result indicated that embedded representations
from the pre-trained BERT incorporated more information
than themultiple sequence alignments. Furthermore, the 34-
layer model was fine-tuned to predict the quantitative effect
of mutations and outperformed the state-of-the-art methods.
As an attractive topic, other protein BERT models, such as
TAPE transformer and ProtBert, have also been developed
[65, 67]. Meticulous inspection of the TAPE transformer

revealed that attention maps extracted from the pre-trained
model reflect the context of input amino acid sequences
[77]. For instance, one attention module, which special-
izes in deciphering residue–residue interactions, exhibited a
significant correlation with experimental labels even though
no structural information was provided. This phenomenon
was later investigated by reconstructing protein contact maps
from the attention maps of pre-trained ESM-1b [78]. The
collection of studies illustrates that BERT-based models are
highly interpretable and widely applicable to protein-related
bioinformatics problems.

DNABERT, in contrast, is the only model, currently,
to pre-train BERT-based models using a whole human ref-
erence genome [68]. During preprocessing, the genome,
whose gaps and unannotated regions were excluded, was
split into 5 to 510 consequent nucleotide sequences without
overlapping and subsequently converted to 3- to 6-mer rep-
resentations. Simply put, each subsequence of length 3 to
6 was regarded as a word. BERT models were pre-trained
using k-mers with a masked language modeling objective
and applied to downstream tasks. Upon task-specific fine-
tuning, DNABERTdemonstrated state-of-the-art or compar-
ative performance in predicting promoter regions, binding
sites of transcription factors (TFs), and splice sites. Atten-
tion analysis revealed that fine-tuned models captured the
characteristics of each set of target sequences. For exam-
ple, DNABERT fine-tuned using splicing datasets exhib-
ited high attention weights in intronic regions in addition
to target splice sites, indicating the ability of the model to
learn the contextual significance of splicing enhancers or
silencers in predicting splice sites. The study further ap-
plied DNABERT to predict promoters in the mouse genome
and reported higher performance than those of existing deep
learning methods. Overall, two-step training of the BERT
architecture demonstrated its broad application to translate
various genomic features in a cross-organism manner.
3.2. Applications for molecular interactions

Tsubaki et al. proposed a model by combining a graph
neural network for compounds and a convolutional neural
network (CNN) for proteins to predict compound–protein in-
teractions (CPIs) [41]. Representations of compounds and
proteins were obtained in an end-to-end manner. The word
embeddings in the protein were learned from the training
dataset using word2vec (3-mer of amino acids as words). To
obtain protein vector representation, the average value of a
set of hidden vectors was used with d-dimensional embed-
ding after a hierarchical convolutional filter. Extensive eval-
uations were conducted on three CPI datasets (human, C.
elegans [79] and DUD-E dataset [80]). The results showed
that using the raw amino acid sequence as the input, the pro-
posed approach significantly outperformed existing methods
utilizing traditional chemical and biological features. They
also established that the model could highlight 3D struc-
tural interaction sites between the compounds and proteins
through an attention mechanism similar to that of words in
sentences.
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ProbeRating is a neural network-based recommender
system utilizing word embeddings in NLP to infer bind-
ing profiles for unexplored nucleic acid-binding proteins
(NBPs) [55]. ProbeRating achieves this goal using a two-
stage framework. In the first stage, representation learning
is performed using a package called FastBioseq, implement-
ing FastText. Thus, the input feature vectors are extracted
from the NBP sequences and nucleic acid probes. Authors
chose 3-mers amino acids for proteins and 5-mers for nucleic
acids as words. Three datasets (Uniprot400k [81], RRM3k
[82], and Homeo8k [83]) were used to pre-train the Fast-
Bioseq protein embedding models, whereas RNA embed-
ding models were trained directly from the RRM162 dataset
[82]. In contrast, 8-mer frequency features were used for the
DNA sequences in theHomeo215 dataset [84]. In the second
stage, predicting the NBP binding preference was redefined
as a recommender system formulation, where NBPs are like
users and RNAs or DNAs are like products to be recom-
mended. When no preference was available for a given user,
the authors adapted and extended a strategy that converted
the binding intensity prediction problem into a similarity
prediction problem, solved it, and then converted it back.
Extensive evaluation experiments were conducted on two
tasks: RBP–RNA interaction and TF–DNA interaction. The
results showed that ProbeRating outperformed three base-
line methods (Nearest-Neighbor, Co-Evo [85] and Affini-
tyRegression [84]). Further analysis suggested that this ad-
vantage was beneficial using both the neural network ap-
proach and input features extracted via word embeddings.
3.3. Applications in synthetic biology

Valeri et al. proposed a model that predicts synthetic ri-
boregulators called toehold switches [86]. The model com-
prised a languagemodel for toehold switch classification and
a CNN-based model for toehold switch performance regres-
sion. In the language model, a sequence of toehold switches
was embedded using ULMfit regarding a nucleotide as a
word. They trained the model using toehold switches exper-
imentally characterized by Angenent-Mari et al. [87]. The
results showed that the model exhibited good and robust per-
formance even for sparse training data and that the features
obtained by the model revealed unknown properties of the
toehold switches. They also showed that the trained model
is easily fine-tuned by transfer learning using small external
data [88, 89], and the fine-tuned model exhibited superior
performance compared to an existing model. Finally, they
showed that the fine-tuned model could help in the efficient
design of toehold switches for various applications, such as
SARS-CoV2 detection.

UniRep is a representation that comprehensively sum-
marizes the semantics of arbitrary proteins and can be use-
ful for various types of prediction tasks [90]. A protein se-
quence is embedded into UniRep usingmultiplicative LSTM
(mLSTM), trained with 24M UniRef50 sequences [91],
where an amino acid is regarded as a word. UniRep recapit-
ulates biophysical properties, phylogenetics, and secondary
structures of proteins. The authors also showed that UniRep

outperformed other representations for predicting the struc-
tural and functional properties of de novo proteins, single
point mutants, and natural proteins. These results suggest
that UniRep is useful for the rational design of proteins. As
a proof-of-concept, UniRep re-trained using deepmutational
scanning data of GFP [92] was shown to effectively extrap-
olate GFP brightness outside the training domain. There-
fore, UniRep was suggested to drastically reduce the cost for
the rational design of GFP. Collectively, UniRep embodies
various known protein characteristics and may be a versatile
representation for protein bioinformatics.
3.4. Applications for other tasks

StarSpace is a supervised embedding method, which
is different from the unsupervised embedding methods that
we have introduced in section 2 [28]. Although StarSpace
was originally developed for general NLP tasks, such as text
classification, there are currently two bioinformatics appli-
cations. The first application is BindSpace, which predicts
the binding sites of TFs [60]. BindSpace uses HT-SELEX
experiments as the training dataset and applies StarSpace to
the dataset by considering 8-mers and TFs as words and la-
bels, respectively. In performance evaluation using the EN-
CODE ChIP-seq dataset, BindSpace achieved high classi-
fication performance even between paralogous TFs, which
have highly similar binding motifs. The second application
is MutSpace, which estimates the cancer types of patients
from somatic mutation patterns [61]. This method regarded
mutation patterns and cancer types as words and labels, re-
spectively. MutSpace shows state-of-the-art performance in
a breast cancer subclass classification problem. The high
performance of these two applications means that StarSpace
is likely to perform well in other bioinformatics problems.

A constrained semantic change search (CSCS) is a
method for discovering word changes that significantly al-
ter the semantics from an original sentence based on em-
bedding techniques [93]. The key feature of this method is
that it does not detect word changes that would abolish the
grammar of the sentence but those that preserve the gram-
matical structure. For example, in an NLP task, CSCS can
change “winegrowers revel in good season” to “winegrowers
revel in flu season.” We briefly introduce the CSCS method.
We define x and x̂ as the original and mutated sentences,
respectively. The embedded representations of x and x̂ are
defined as z and ẑ, respectively. Here, the semantic change is
modeled as the distance between these embedded represen-
tations, that is, ||z−ẑ||. Additionally, the preservation of the
grammatical structure is evaluated by p(x̂|x), which is also
modeled using embedding techniques. Finally, x̂ maximiz-
ing ||z − ẑ|| + �p(x̂|x), where � is a scaling factor. One bi-
ological application of CSCS is the modeling of viral evolu-
tion [56]. This application regarded viral proteins, preserva-
tion of the infectivity, and escape from antibody recognition
as sentences, preservation of grammar, and semantic change,
respectively, and detected escape mutations from immune
systems as a result of the CSCS analysis. The analyses of
HIV-1 and influenza viruses showed that mutations detected
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by the CSCS were in good agreement with the experimental
mutation results.

Woloszynek et al. applied word2vec to a metagenomic
dataset by regarding 4–15-mers in sequencing reads as words
[38]. They trained word2vec with a skip-gram model using
2,262,986 full-length 16S rRNA amplicon sequences from
GreenGenes [94], a microbial 16S rRNA sequence database
obtained using metagenomic analysis. They verified the ro-
bustness of the model in a taxonomic identification task us-
ing an independent dataset of 16,699 full-length 16S rRNA
sequences from the KEGG REST server [95] as a valida-
tion dataset. The embedding features exhibited superior
performance to the k-mer frequency features. In addition,
the embedding as also performed using the American Gut
project dataset [96], which has 11,341 partial 16S rRNA se-
quences from three body sites (gut, skin, and oral cavity),
and showed comparable performance to conventional meth-
ods, such as sequence alignment in the body site classifica-
tion task. These results suggest the availability of embed-
ding with pre-trained models instead of sequence alignment
for metagenomic sequence profiling.

4. Summary and outlook
In this study, we introduced basic algorithms and re-

viewed the recent literature concerning representation learn-
ing applications in sequence analysis. Heinzinger, et al.
pointed out three difficulties in biological sequence model-
ing with NLP [62]as follows: (i) Proteins range from approx-
imately 30 to 33,000 residues, which is much longer than the
average English sentence, which consists of 15 to 30 words
[97]; (ii) proteins use only 20 amino acids in most cases;
if we consider one amino acid as a word, the word reper-
toire is 1/100,000 of English language, and if we consider
3-mer as a word, the word repertoire is 1/10 to 1/100 of En-
glish language; (iii) UniProt is more than ten times the size
of Wikipedia, and extracting information from a huge bio-
logical database may require a commensurate model. Em-
bedding biological sequences using NLP overcomes these
difficulties and outperforms existing methods in many tasks,
such as function, structure, localization, and disorder pre-
diction (Table 1). In addition to these general biological
tasks, representation learning has also been used to solve
specific problems, such as RNA aptamer optimization [98],
viral mutation prediction [56], and venom toxin prediction
[36]. In these studies, representation learning of biological
sequences could capture biophysical and biochemical prop-
erties of biological systems, and representation learningmay
reveal the grammar of life.

The development of novel representation learning meth-
ods has been actively studied in machine learning research.
For example, hyperbolic embedding methods have been pur-
sued in recent years [99, 100]. These methods embed the
data not in Euclidean space, which is utilized in all the stud-
ies introduced in this paper, but in the hyperbolic space.
The hyperbolic space has constant negative curvature; thus
it shows characteristic geometric features not seen in Eu-

clidean space, such as the sum of the interior angles of a
triangle being less than 180°. Changes in the embedding
space can considerably alter the efficiency of representa-
tion learning, and theoretical and experimental analyses have
shown that hyperbolic embedding methods are suitable for
data with hierarchical latent structure. Therefore, hyperbolic
embedding methods have recently been used for biological
analysis, such as phylogenetic analyses [101] and single-cell
RNA-seq analyses [102]. Furthermore, research on embed-
ding into more complex spaces, such as mixed-curvature
spaces, has also attracted attention [103]. The application
of these embedding techniques in non-Euclidean space for
biological sequence analyses should be an essential research
direction in the future.

New approaches are released every day in this field, and
the scientific community is trying to compare their accuracy
and validate their uses [65, 104, 105]. Therefore, it is impor-
tant tomake themodels available in an easy-to-use formwith
documentation. In addition, considering the rapid growth
of biological databases, the source code for creating models
should be made available for future updates. Only a limited
number of studies have released both the source code and
the pre-trained model with the relevant documentation. Par-
ticipants in this community need to publish their papers in a
form that can be reproduced and verified.

In this study, we comprehensively surveyed and re-
viewed the application of representation learning to biolog-
ical sequence analysis. Although NLP-based biological se-
quence analysis is still in its early stages and requires fur-
ther development, in the light of novel challenges in biology,
such as single-cell analysis, genome design, and personal-
izedmedicine, representation learningmay help the progress
of bioinformatics studies.
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