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Abstract 
Computational modeling has become an established technique to encode mathematical 
representations of cellular processes and gain mechanistic insights that drive testable 
predictions. These models are often constructed using graphical user interfaces or domain- 
specific languages, with SBML used for interchange. Models are typically simulated, 
calibrated, and analyzed either within a single application, or using import and export from 
various tools. Here, we describe a programmatic modeling paradigm, in which modeling is 
augmented with best practices from software engineering. We focus on Python - a popular, 
user-friendly programming language with a large scientific package ecosystem. Models 
themselves can be encoded as programs, adding benefits such as modularity, testing, and 
automated documentation generators while still being exportable to SBML. Automated version 
control and testing ensures models and their modules have expected properties and behavior. 
Programmatic modeling is a key technology to enable collaborative model development and 
enhance dissemination, transparency, and reproducibility. 
 
 
Highlights 

● Programmatic modeling combines computational modeling with software engineering 
best practices. 

● An executable model enables users to leverage all available resources from the 
language. 

● Community benefits include improved collaboration, reusability, and reproducibility. 
● Python has multiple modeling frameworks with a broad, active scientific ecosystem. 
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Introduction 
 
Mathematical modeling of cellular processes for mechanism exploration has now 
become commonplace using various techniques [1–5], but challenges remain as to 
how models should be built, calibrated, analyzed and interpreted to extract much-
needed mechanistic knowledge from experimental data. Historically, methods and 
techniques from other fields have been directly imported to systems biology with 
varying success. For example, early interpretations of cellular processes as circuits 
provided insights about basic regulatory motifs that could explain cellular behaviors [6]. 
Similarly, techniques from chemistry, physics, and various engineering disciplines have 
been used to model cellular processes [7,8], but due to the spatiotemporal complexity 
of cellular processes, from femtosecond/nanometer electron transfer reactions to years 
and meter scales in tumor growth, no established paradigm has emerged to capture 
the full complexity of cellular processes. Multiple tools have been developed to achieve 
specific modeling tasks. For example, COPASI [5], RuleMonkey [9], Simmune [10], and 
StochSS [11] all provide graphical user interfaces that cater to non-expert modelers 
wishing to encode mechanistic representations of biological processes. More abstract 
approaches such as BioNetGen [12], Kappa [13], and CobraPy [14] employ a domain-
specific language (DSL) to describe and simulate models. However, most tools are 
self-contained platforms with a small set of included methods and analyses, limiting 
access to other standalone simulation tools such as StochKit [4], SciML tools[15], 
URDME [16], SmolDyn [17]. Similarly, optimization techniques ranging from vector-
based optimization methods [18,19] to probabilistic-based methods [20*,21] exist in yet 
another isolated domain. Therefore, the current modeling and simulation ecosystem is 
compartmentalized and fractured, and thus, unification and intercompatibility efforts 
are sorely needed. 
 
Valuable efforts toward unification have been put forth to create standards for model 
instantiation, simulation, analysis and dissemination [22,23**,24–26]. Of these, Systems 
Biology Markup Language (SBML) is perhaps the most successful to date. However, 
mathematical modeling for cell biology remains challenging to scale - both vertically 
(larger, more complex models) and horizontally (more active collaborators). While 
mathematical tools are the obvious way forward to describe cellular processes, the 
complexity challenge results in a knowledge base that is highly domain specific, with 
some notable exceptions [27*]. 
 
A novel, more flexible approach to encode knowledge about biological processes as 
computer programs is slowly emerging and gaining momentum [3,28,29]. In this 
approach, biological models are no longer static documents, but computer code that 
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aggregates community knowledge and opens doors toward crowd-driven 
mathematical models of biological processes. Although computer languages like Lisp 
[30] and proprietary packages such as MATLAB have been used toward this goal, we 
believe Python provides the largest ecosystem, myriad learning resources, and large 
applicable base to unify modeling practices in the field. Adopting a programmatic 
modeling paradigm for systems biology automatically accrues decades of computer 
science practices including structured documentation, integrated development 
environments (IDEs), (model) version control, code-sharing platforms, code testing 
frameworks, and importantly, literate programming/computational notebook 
dissemination. Here, we review the recent developments in programming-based 
approaches for systems biology. The structure of the manuscript is motivated by the 
model specification, simulation, calibration, analysis, and visualization 
paradigm/pipeline, commonly practiced in systems biology. Throughout, we note how 
this approach could be supplemented and improved by incorporating best practices 
from software engineering (Figure 1). 
 
 
Model specification 
  
Traditionally, encoding a model of biochemical reactions would require the user to 
write each equation by hand, encode these into a solver, and run the simulations [31]. 
Although this is still common practice for smaller model systems, these lists of 
equations often lead to a model dead-end as the biological context is completely lost 
in the mathematical representation, which hinders model reuse. Reaction-based 
modeling formats add one layer of abstraction where the user instead writes chemical 
reactions of the form 𝐴 + 𝐵 ↔ 𝐶 in a program-specific notation and the computer 
parses this information into a mathematical representation [32]. These DSLs can 
operate either through a GUI that generates the code in the background, or directly 
through a text editor. For example, Antimony [32] requires manual enumeration of 
every species and reaction explicitly. However, signaling pathways often comprise a 
large number of molecular complexes, which can assemble in multiple orders, leading 
to a large number of reactions and intermediate species during complex assembly and 
degradation. Therefore, traditional approaches become unwieldy as model systems 
become larger, learning to model dead-ends. Another level of abstraction is presented 
by rule-based modeling formalisms whereby reaction rules rather than explicit 
reactions (or equations) are used to encode the system [3,12,13]. A reaction rule is a 
template for reaction patterns to be enumerated and instantiated recursively, starting 
from a defined list of initial species, thereby saving the user time and reducing error-
prone repetition. In rule-based approaches, the reaction center (the relevant molecular 
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components for a given reaction) is separated from the context (attached molecular 
components which have minimal or no effect on the reaction). These approaches often 
require a pre-processing step to generate the network of nodes (chemical species) and 
edges (chemical reactions) from the initial pool of chemical species and a set of 
reaction rules. However, network-free methodologies have been proposed to bypass 
the network generation step [33].   
  
Model specification can also be embedded into General Purpose Programming 
Languages (GPPL) to provide a more powerful approach to biological modeling. In the 
programmatic modeling paradigm, the model is encoded as an executable piece of 
code, thereby offering all the advantages of a full-fledged computer programming 
language (Figure 2). Modularity, in which a model can be split into smaller, reusable 
code objects, is perhaps the most useful aspect for cell biology modeling. For 
example, PySB currently includes a library of 25 macros (small modules or functions) 
that encode reaction patterns commonly found in biology such as catalytic activation, 
molecule-molecule inhibition, or complex oligomerization. From a user perspective, 
GPPLs have greater integration with IDEs than DSLs, thus allowing syntax highlighting 
and checking, and navigation between functions. The model is also inspectable at 
runtime, allowing searching and filtering of model components.  For example, a user 
could check whether certain species or reactions are present before simulation 
commences. Currently, the most used modeling frameworks using the programmatic 
modeling paradigm in Python are PySB [3], written in and using Python, and Tellurium 
[29], which is written in Python but uses Antimony [32], a DSL with function support, for 
model specification. 
 
 
Model simulation 
 
Model simulation involves numerically solving the model equations to obtain 
trajectories for dynamically controlled species. Concentrations or molecule counts of 
chemical species in the model are the most commonly simulated quantities. Integration 
of systems of ordinary differential equations (ODEs) for deterministic simulations is the 
most common model simulation approach. Many ODE integrators are available and the 
best choice depends on model stiffness, desired integrator tolerances, and other 
requirements. In Python, a family of integrators is available through SciPy [34**] 
including VODE and LSODA, but many other solvers have been proposed. Other 
commonly used solver suites include StochKit (Stochastic Simulation Algorithm) [4,35], 
BioNetGen (CVODE, SSA, tau-leaping algorithm, partition-leaping algorithm) [12], 
cupSODA (GPU ODE) [36], GPU_SSA (GPU SSA) [37], and Libroadrunner (CVODE, 
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SSA) [38]. Within the Python ecosystem, PySB provides a simulation class that enables 
users to use many of these simulation tools or to connect new tools as needed. In 
addition, users of other Python-based tools such as Tellurium can also take advantage 
of these resources. 
 
 
Model calibration 
 
Model calibration is the process of adjusting model parameters to match experimental 
data, also known as parameter estimation/optimization when applied to parametric 
models. The most common form of model calibration involves a process of running 
many simulations (thousands to millions or more) and checking the distance between 
model and experimental data error using an objective function, which gives a measure 
of the model’s simulation “error” versus experiment; for a review see [39]. Since 
dynamic data for signaling models are hard to come by, the modeler often only has 
data for a few species, and thus model calibration often leaves a model 
underdetermined - multiple parameter sets fit the data equally well [40]. The concept of 
parameter “sloppiness” states that only a few “stiff” combinations of parameters are 
important in determining model outcomes, and others are “sloppy” and have little 
effect. Thus, an undetermined model can still be useful in predicting biological 
properties [41]. However, the interpretation of large, underdetermined models in the 
context of limited data is still up for debate. Lessons from e.g. hydrology and climate 
modeling have been highly influential toward addressing these issues [20*,42,43]. 
 
The landscape of model parameters is often envisioned as a multidimensional surface 
with “height” representing the objective function, where the (ideally global) minimum or 
minima (representing the best fit(s)) must be found. SciPy [34**], for example, includes 
gradient descent and simplex-based methods. However, the curse of dimensionality 
means that local optimization can give far-from-globally optimal results as the number 
of model parameters increases. Finding the global minimum of a multivariate nonlinear 
model is NP-hard [44], however several methods can make statistically good 
approximations. Markov Chain Monte Carlo sampling methods are among the most 
popular algorithms [45]. General purpose optimization toolkits for Python include 
SciPy.optimize [34**] and Pyomo [46]. We have found that DEAP [19] provides 
excellent support for PSO and genetic algorithm-based optimization. 
 
Given the dearth of data available for biological model calibration, conditional 
probability (Bayesian) approaches are gaining traction. These approaches provide a 
probabilistic interpretation of model parameters [47], including uncertainty 
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quantification, at the cost of increased computer time. However, new GPU-based 
integrators mitigate this problem. Excellent tools for Bayesian parameter inference 
include PyDREAM (which can readily take PySB models) [20*], PyBioNetFit [48*], 
PyPESTO [49], PyMC3 [50], and PySTAN [51], although popular data-science tools 
such as TensorFlow [52] and PyTorch [53] also provide Bayesian inference capabilities. 
ABC-SysBio [54] provides a hybrid solution to the computation problem but still within 
a Bayesian context. 
 
 
Model analysis and visualization 
 
Model analysis and visualization is likely the least developed area in systems biology as 
no clear standards have been proposed. In general, modelers explore the chemical 
species concentration trajectories in their model to infer mechanistic behaviors and 
properties. Exploration of biochemical flux through reactions is highly challenging with 
some notable attempts toward this goal in the literature [7,47], but much work is still 
needed. For visualization, perhaps the most useful tool in Python is matplotlib [55], 
which provides flexible graphing capabilities. Other Python tools include Seaborn 
(https://seaborn.pydata.org/), Plotly [56], and Mayavi [57]. Network visualization is 
perhaps the other major area of model analysis that is addressed in various ways in 
Python. For example, PyVIPR [58*] is a visualization tool built on Cytoscape.js [59] for 
rule- and reaction-based models which animates model dynamics over time, overlaid 
on a graph. MASSPy [60] also provides some visualization capabilities for metabolic 
models. We note, however, that excellent tools for graph manipulation in Python exist, 
such as NetworkX [61]. 
 
 
Model sharing and modification 
 
Perhaps the most appealing benefit for the systems biology community from program-
based paradigm is the use of literate programming for model and results 
dissemination. Introduced by Donald Knuth, literate programming is a paradigm 
whereby the code and the document coexist in an interactive format [62]. Jupyter 
Notebook, a popular format, has been described as “data scientists’ computational 
notebook of choice” [63]. Jupyter Notebooks allow analyses to be run in a web 
browser, checked into version control, and include documentation alongside analyses, 
in turn improving transparency and reproducibility. We believe that Jupyter notebooks 
are a highly desirable step forward in systems biology as it greatly contributes to model 
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transparency, revision, and dissemination, and should be included in paper 
submissions where computational simulation and analysis are involved. 
 
Programmatic models’ code can be managed using existing version control tools. Git 
has emerged as the de facto standard for version control, providing powerful 
capabilities for decentralized editing, branching, and merging, with online platforms 
such as GitHub adding a collaborative interface for change management, commenting, 
and other functions. In PySB, models are Python programs, and so can be imported 
like other Python modules and extended or modified. The code can be inspected, for 
example the model can be searched for species or reactions using pattern matching. 
Tellurium’s antimony language has an import function, but previous model definitions 
are currently not programmatically searchable or modifiable. 
 
Good documentation can be vital to ensure model reproducibility and interpretability 
by others. Sphinx (sphinx-doc.org) is a de facto documentation standard for Python 
code, which allows code comments to be compiled into multiple formats including 
website (HTML) and PDF. The former can be combined with continuous integration, for 
always up-to-date documentation (readthedocs.io).  
 
 
Model checking and testing 
 
Complex biochemical models present challenges in both ensuring they are correctly 
encoded, and ensuring their dynamics meet a given specification. In software 
engineering, it has become common practice to build an accompanying test suite while 
developing code, which runs the code under scrutiny to test that works as expected. 
Subtle errors can be introduced as models grow larger. In our opinion, the field should 
establish minimum standards to ensure software is runnable, reproducible, and meets 
basic quality standards [64]. In the context of models-as-programs, unit and integration 
tests can be borrowed from software engineering to ensure code correctness. Unit 
tests refers to code which checks the functionality of other, minimal units of code; 
integration tests check that units work as expected when combined. Python has 
several frameworks for testing, PyTests is a popular option with a plugin for Jupyter 
Notebooks [65]. PySB introduces a framework for testing static properties of rule-
based models after network generation; for example, checking that certain species are 
produced by the reaction network, or that certain reactions are present. Using 
continuous integration (CI), these tests can be run automatically when changes are 
made and checked into version control, and/or on a regular basis. Running tests 
regularly is recommended because, even if a model itself does not change, changes to 
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software dependencies could lead to unexpected errors. The importance of this is 
emphasized by a recent review, which found a majority of Jupyter Notebooks were not 
automatically reproducible, often due to dependency errors [66**]. For open-source 
models, these tests can be run for free using services such as Github Actions, Travis, 
and Circle CI. Finally, we recommend containerization technologies such as Docker 
[67] and Singularity [68], which bundle model and software dependencies together in a 
self-contained environment, further aiding reproducibility and cross-platform 
compatibility. 
 
 
Conclusions 
 
Python has recently turned 30 years old and is now one of the most popular 
programming languages in the world. There are many reasons for its success, but a 
key insight of its creator is that code is read much more often than it’s written [69]. The 
same principle applies to models, which emphasizes the importance of clear 
documentation, transparency of approach, and the separation of model specification 
from simulation and downstream analysis code. These efforts are central to improving 
reproducibility, code maintenance, and model extensions, by original authors and third 
parties. 
 
For beginners interested in modeling cell signaling, we recommend either the PySB or 
Tellurium frameworks, both of which have high quality documentation and active 
communities for support. We expect the Python modeling ecosystem will continue to 
grow, and efforts for framework and package interoperability to increase. 
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Tool or service Usage 
terms 

Notes 

Frameworks 

PySB [3] BSD Bespoke Python object-based model format, multiple 
simulation backends 

Tellurium [29] Apache Bespoke DSL (Antimony), ODE and SSA simulation 
backends 

PySCeS [70] BSD Bespoke DSL, ODE simulation backend 

ScrumPy [71] GPL Metabolic modeling 

CobraPy [14] GPL Metabolic modeling 

Testing 

PyTest MIT Testing framework; pytest.org 

GitHub Actions Free* 
service 

Continuous Integration; github.com/features/actions 

Circle CI Free* 
service 

Continuous Integration; circleci.com 

Calibration 

PyBioNetFit [48*] BSD BNGL and SBML models 

PyPESTO [49] BSD SBML and PEtab support 

PyDREAM [20*] GPL PySB interface 

Analysis & Visualization 

Matplotlib PSF Plotting library; matplotlib.org 

Jupyter 
Notebooks 

BSD Computational notebooks; jupyter-notebook.readthedocs.io 

PyVIPR [58*] MIT PySB, Tellurium interfaces 

Sharing and modification 

Github Free* 
service 

Code hosting and collaboration suite; github.com 
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Sphinx BSD Documentation framework; sphinx-doc.org 

Readthedocs Free* 
service 

Automated documentation compiler and hosting; 
readthedocs.io 

 
Table 1: List of key frameworks, tools, and services for programmatic modeling in Python. 
BSD, MIT, and PSF are permissive software licenses. GPL is a “copyleft” software license. 
*Free for open-source projects. 
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Figure 1: The traditional modeling paradigm in systems biology entails model building, 
simulation, calibration, and analysis (left column), which is carried out with myriad tools and 
practices. Software engineering practices can add much needed structure to the practice 
through maintenance, testing, documentation and sharing paradigms (right column), vetted by 
a the software community. 
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Figure 2: Levels of abstraction in programmatic modeling. Models are composed of modules 
and macros, which are handled by the programming language interpreter/compiler; rules 
encode sets of reactions using structured pattern templates; reactions specify biochemical 
species’ transformations; and finally equations are handled by an ODE integrator or simulation 
algorithm directly.  
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