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 6 

Cells are complex biochemical systems whose behavior emerges from interactions 7 

among myriad molecular components.  The idea that cells execute computational processes 8 

is often invoked as a general framework for understanding cellular complexity. However, 9 

the manner in which cells might embody computational processes in a way that the 10 

powerful theories of computation, such as finite state machine models, could be 11 

productively applied, remains to be seen.  Here we demonstrate finite state machine-like 12 

processing embodied in cells, using the walking behavior of Euplotes eurystomus, a ciliate 13 

that walks across surfaces using fourteen motile appendages called cirri.  We found that 14 

cellular walking entails a discrete set of gait states.  Transitions between these states are 15 

highly regulated, with distinct breaking of detailed balance and only a small subset of 16 

possible transitions actually observed.  The set of observed transitions decomposes into a 17 

small group of high-probability unbalanced transitions forming a cycle and a large group 18 

of low-probability balanced transitions, thus revealing stereotypy in sequential patterns of 19 

state transitions. Taken together these findings implicate a machine-like process.  Cirri are 20 

connected by microtubule bundles, and we find an association between the involvement of 21 

cirri in different state transitions and the pattern of attachment to the microtubule bundle 22 

system, suggesting a mechanical basis for the regularity of state transitions.  We propose a 23 

model where the actively controlled, unbalanced transitions establish strain in certain cirri, 24 

the release of which from the substrate causes the cell to advance forward along a linear 25 
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trajectory.  This demonstration of a finite state machine embodied in a living cell opens up 26 

new links between theoretical computer science and cell biology and may provide a general 27 

framework for understanding and predicting cell behavior at a super-molecular level.   28 

 29 

Introduction 30 

Cells are complex physical systems controlled by networks of signaling molecules. 31 

Single cells can display remarkably sophisticated, seemingly animal-like behaviors 1–3, 32 

orchestrating active processes far from thermodynamic equilibrium in order to carry out proper 33 

biological functions 4,5. Indeed, single cells can make decisions by sensing and responding to 34 

diverse cues and signals 6, execute coordinated movements 7,8 and directed motility 9–12, and even 35 

solve mazes 13,14 and possibly learn 15–18. Such behaviors in animals arise from neural activity 36 

and have been studied extensively, but we know comparatively little about the mechanisms of 37 

cellular behavior 19,20. In individual cells, behaviors emerge directly through the joint action of 38 

chemical reactions 21, cellular architecture 3, physical mechanisms and constraints within the cell 39 

22,23 and interactions of the cell with its local environment 24. The links between information 40 

processing, decision-making, and their physical manifestation as cell state transitions suggest 41 

that cellular behavior might be understood as an embodied computation 25,26. The theory of 42 

computation has often been invoked as a general framework for understanding cellular dynamics 43 

25,27–32, with environmental sensing by bacteria being a particularly deeply studied example 32–34, 44 

and has been used to engineer programmable cell states 35, but the manner and extent to which 45 

cells might embody functional, computational processes as well as the extent to which a 46 

computational perspective on cellular behavior might prove productive remains to be seen. 47 
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Among the microbial eukaryotes (protists), ciliates display striking examples of 48 

unicellular behavior including hunting 3, sensorimotor navigation 10, and predator avoidance 36. 49 

Spirotrichous ciliates of the genus Euplotes are notable for their complex locomotion 37–39, using 50 

bundles of specialized cilia called cirri to walk across surfaces 37,38 (Fig. 1a, Movies S1 and S2). 51 

Depending on the species, cells generally have 14 to 15 ventral cirri arranged in a highly 52 

stereotyped pattern used for walking locomotion 40. Euplotes live in aquatic environments, and in 53 

addition to walking, their cirri can be used for swimming and rapid escape responses 41 (Movie 54 

S2). Oral membranelles (Fig. 1b) generate feeding currents to capture bacteria and small 55 

protistan prey and are also used for swimming. Early 20th century protistologists were so 56 

impressed by the apparent coordination of cirri that they proposed the existence of a rudimentary 57 

nervous system, the neuromotor apparatus, to account for their observations 39. This theory was 58 

motivated in part by the presence of intracellular fibers connecting various cirri (Fig. 1C), now 59 

known to be to be tubulin-based structures 42,43. Although the walking movements of Euplotes 60 

are superficially similar to those of animals such as insects, the low Reynolds environment of 61 

aquatic microorganisms, where viscous forces dominate over inertial forces, imposes significant 62 

physical constraints on all movements that do not impinge on the movements of larger terrestrial 63 

animals 44. 64 

How can a single cell coordinate a gait without a nervous system? Coordination, to the 65 

extent that it exists in the gait of Euplotes, would require some kind of dynamical coupling 66 

among cirri or between cirri and some shared external influence. Recently, analytical techniques 67 

from statistical physics have been used to characterize, understand, and predict mesoscale 68 

dynamics in biological systems, including cellular behavior 4,5,45,46. These approaches rely on 69 

coarse-graining the complexity of biological dynamics into states and analyzing the nature of 70 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433123doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433123


 4 

transitions between states. For example, a state representation allows us to ask whether forward 71 

and reverse transitions between pairs of states are equal, a condition known as detailed balance 72 

4,47. Systems that violate detailed balance operate in a non-equilibrium mode and can produce 73 

directed cycles in state space 4,48. Broken detailed balance has been observed in the motility 74 

dynamics of cultured mammalian cells as well as the motility dynamics of a freely behaving 75 

flagellate protist 5,45 and implies that non-equilibrium models are most applicable to such 76 

systems 46.  77 

When information processing drives patterns of state transitions, such a system can be 78 

viewed in terms of automata theory, a fundamental level in the theory of computation 49–79 

51.Automata theory can be used to address problems of decision-making and control in complex 80 

systems by providing predictive understanding independently of the underlying details of how a 81 

given process is implemented 50. Inspired by work considering cellular behavior in the context of 82 

the theory of computation 25, we hypothesized that walking cells might be governed by finite 83 

state automata with directed, processive movement arising from reproducible patterns of state 84 

transitions.  85 

The consistent structure of Euplotes, its mode of motility, and its ease of observation 86 

makes these cells an ideal biological test-bed in which to apply theories of non-equilibrium 87 

statistical mechanics and embodied computation, both of which rely on describing a system in 88 

terms of discrete state transitions. Here, we use time-lapse microscopy and quantitative analyses 89 

to show that Euplotes eurystomus walks with a cyclic stochastic gait displaying broken detailed 90 

balance and exhibiting elements of stereotypy and variability, consistent with a finite state 91 

automaton representation. The observed dynamics are reminiscent of behavioral regulation in 92 

some cells and animals 5,52 but  contrast with many well-characterized examples of cellular 93 
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motility 7,9,10,12,53–56. Our results provide a clear demonstration of machine-like processes 94 

governing cellular state transitions and serve as a framework for investigating the principles of 95 

behavioral control and non-equilibrium dynamics in single cells. 96 

 97 

Results 98 

Walking dynamics can be described in a reduced state space 99 

 In order to ask whether cell behavior is governed by a finite state machine, we analyzed 100 

the walking behavior of Euplotes eurystomus cells, 41, focusing on the simplest case of 101 

uninterrupted, linear walking trajectories (Fig. 2a, b, Movie S1). Cells were placed onto 102 

coverslips on which free, spontaneous walking behavior was observed by microscopy. A focal 103 

plane at the cirrus-coverslip interface was chosen in order to clearly observe cirral dynamics 104 

(Fig. 2a). The relative spatial positioning of cirri is highly stereotyped from cell to cell, allowing 105 

us to give each of the 14 cirri an alphabetic label from a-n (Figure 2c). In each video frame (33 106 

frames/s), the walking state of the cell was encoded as a 14-bit binary vector, with each bit 107 

corresponding to a cirrus and receiving a value of “0” if the cirrus was in contact with the 108 

coverslip and stationary and a “1” if the cirrus was in motion (instances of stationary cirri held 109 

above the coverslip for a sustained period of time were not observed). The trajectories of 13 cells 110 

were manually tracked and annotated for a total of 2343 time points. This quantitative analysis 111 

revealed stepping-like cirral dynamics in that cirri tend to undergo rapid movements followed by 112 

longer periods of quiescence (Fig. 2d). Cirral dynamics appeared to lack any obvious patterns 113 

such as periodicity or repeating sequences of states (e.g. Fig. 2d), implying that the state 114 

sequences are either stochastic, or generated by complex deterministic processes. This lack of 115 

periodicity or fixed phase relationships between appendage movements is different from the gaits 116 
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of most animals or those reported for various flagellates 57–59. Autocorrelation analysis confirmed 117 

the observed lack of clear periodicity (Fig. S1). 118 

 Despite the apparent complexity of cirral dynamics, we suspected that discernable 119 

structure might exist, which would allow us to obtain a reduced state space that accurately 120 

described the dynamics as has proved successful in behavioral analysis of diverse living systems 121 

45,46,60–63. We performed dimensionality reduction using non-negative matrix factorization 122 

(NMF), and cross-validation by imputation 64,65 (see Methods and Fig. S2 for more details) 123 

revealed the cirral states to be well-described in three dimensions (Fig. 2e-g). The components of 124 

the NMF analysis correspond to distinct groups of cirri, and these groups constitute spatially 125 

distinct partitions of cirri with respect to their positions on the cell body (Fig. 3h). The 126 

dimensionality reduction of the gait state space arises at least in part from shared pairwise mutual 127 

information between groups of cirri (Fig. 3i). 128 

We next used the density-based spatial clustering of applications with noise (DBSCAN) 129 

algorithm 66 to group our data into clusters in an unbiased fashion, with members of a given 130 

cluster sharing similar patterns of cirral activity. Visual inspection in conjunction with silhouette 131 

coefficient 67 (a metric of cluster cohesion and separation) analysis revealed that 32 clusters 132 

accurately captured the visible structure in the reduced state space without overfitting (Fig. 2e-g, 133 

see Methods and Fig. S3 for more details)*. These reduced gait states correspond to distinct 134 

patterns of cirral activity (Fig. 2j). Taken together, our results reveal stereotypy in the 135 

spatiotemporal patterns of cirral activity. The discrete, reduced state space, or set of gait states, 136 

 
* The problem of determining the true number of clusters is an unresolved problem 89. We have followed standard 
methods to determine cluster number but have found that our key results do not depend sensitively on the precise 
number of clusters identified (see SI and Fig. S7). 
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demonstrates that cells make use of a subset of the possible patterns of appendage movement 137 

during walking locomotion. 138 

Euplotes walks with a cyclic stochastic gait 139 

 In order to relate the gait states identified in our cluster analysis, we asked how changes 140 

in the number of active cirri may relate to cell movement. Naively, one might expect that the 141 

force associated with locomotion is roughly proportional to the number of moving appendages 68. 142 

Alternatively, we velocity might inversely correlate with the net change in cirral activity, which 143 

would be expected if stationary cirri were generating a pushing traction force as in crawling or 144 

climbing animals 58,69 or if cirri execute a power stroke just before coming to rest as has been 145 

suggested by Erra et al. 38. At low Reynolds number, velocity should be proportional to the 146 

difference between the net force generated by the cell and the opposing drag 44. Examining cell 147 

velocity versus the net change in cirral activity, however, showed that neither of these 148 

expectations were in fact the case (Fig. 3a). Cell velocity was only weakly correlated with 149 

number of active cirri (R2=0.03), and instead, small to moderate positive and negative changes in 150 

the number of active cirri corresponded to the largest cell velocities (Fig. 3a). We reasoned that 151 

transitions between gait states must be important to driving the forward progression of walking 152 

cells, and so sought to determine whether this active coordination might manifest in the observed 153 

gait dynamics. 154 

 Analysis of the 1423 pairwise transitions in our dataset yielded the transition matrix 155 

displayed in Fig. 3b (see Methods for more details). The presence of strongly unbalanced 156 

transitions such as from gait state 3 to 17 versus 17 to 3 suggested broken detailed balance, and 157 

indeed, a number of forward and reverse transitions were found to be significantly unbalanced by 158 

the binomial test (see Methods). Entropy production rate has been used to quantify the degree of 159 
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broken detailed balance, or, similarly, the distance from equilibrium where the entropy 160 

production rate will be zero 5. Following the procedure detailed in 5, we obtain a lower bound 161 

estimate for an entropy production rate of 0.4, similar to the value reported for strongly non-162 

equilibrium gait transitions observed in a flagellate 5. Walking Euplotes cells, therefore, have a 163 

strongly non-equilibrium gait despite lack of periodicity. 164 

Only 322 of the 1024 possible types of transitions were observed to occur at least once, 165 

and within this restricted set, only 173 occurred more than once (Fig. 3c). Also, we found that 166 

relatively few transitions corresponded to substantial cellular movement (Fig. 3c). Crucially, the 167 

presence of broken detailed balance revealed the existence of directed cycles of cirral activity 168 

during locomotion. To get a better understanding of the nature of these cycles, we grouped 169 

transitions into two categories: balanced transitions, which satisfy detailed balance, and 170 

unbalanced transitions, which do not (see Methods for details). This partitioning allowed us to 171 

separately investigate unbalanced, non-equilibrium-like and balanced, equilibrium-like 172 

transitions (Fig. 3d, e). Significantly unbalanced transitions (p<0.05 by binomial test) are among 173 

the most frequent transitions, but only involve a small number of states (Fig. 3d). Of the 32 gait 174 

states, we found that only states 2, 3, 4, 7, 17, and 27 were associated with unbalanced 175 

transitions. We noted the presence of one complete cycle with unbalanced transitions following 176 

2à3à17à2. We had expected that unbalanced transitions might be associated with a “power 177 

stroke” in the sense of occurring simultaneously with cell movement, but in fact high cellular 178 

velocities tended to be associated with balanced transitions (Fig. 3d, e). Additionally, we found 179 

that, with the exception of transitions between states 1 and 2, transitions occurring at the highest 180 

frequencies were unbalanced (Fig. 3d). 181 
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Notably, the most frequent balanced transitions were associated with transitions into and 182 

out of gait state 1, a unique “rest state” which involves no cirral movement (Fig. 3c, d). 183 

Furthermore, we found by computing the autocorrelation function for a binarized sequence of 184 

each state that gait state 1 has the most predictable dynamics in terms of significant positive 185 

autocorrelation in contrast to the lack of significant autocorrelation seen for other states (see Fig. 186 

S4). Although transitions between states 1 and 2 are balanced, the most frequent transitions out 187 

of state 2 are strongly biased toward transitions into state 3, from which other strongly biased 188 

transitions also frequently occur, including the cycle of biased transitions mentioned in the 189 

preceding paragraph. The presence of high frequency unbalanced transitions does not preclude 190 

the existence of highly variable trajectories through state space. The picture of walking 191 

trajectories that emerges is of stochastic excursions from gait state 1 into a stochastic cycle 192 

involving a mix of balanced and unbalanced transitions, with the majority of cell movement 193 

occurring during infrequent, equilibrium-like transitions. Biased transitions, occurring at 194 

relatively high frequency from a subset of states, introduce temporal irreversibility to the gait of 195 

Euplotes due to their strongly non-equilibrium character. 196 

Finally, we checked whether gait state transition dynamics had the Markov property, 197 

which entails that transition probabilities are determined completely by the present state, and that 198 

previous dynamics contribute no additional predictive information 70,71. Lack of past dependence 199 

has led to Markov processes often being referred to as “memoryless” 72. When we compared the 200 

gait transition matrix (Fig. 3b) with a computed transition matrix over two timesteps, we 201 

observed these matrices to be different from one another, which is inconsistent with the Markov 202 

property (see Fig. S5). Finally, we applied a Billingsley test, a chi-squared measure for 203 

Markovness 73, which revealed that the null hypothesis that the process was Markov could be 204 
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rejected (p=0.005). These analyses showed that Euplotes retains some “memory” of the prior 205 

sequence of cirral movements during locomotion. 206 

Taken together, our analysis revealed a mixture of unbalanced transitions arranged in 207 

cycles and balanced transitions arranged as networks, for which we propose to apply the term 208 

“cyclic stochastic gait”. The cyclic stochastic gait of Euplotes eurystomus incorporates elements 209 

of both stereotypy and variability in gait dynamics. Forward progress of the cell is not produced 210 

merely by a physical ratchetting process driven by unpatterned fluctuations in cirral activity, nor 211 

is it produced by a highly regular, deterministic process like a clock. It has been argued that 212 

significant computation arises in physical systems exhibiting such a mix of stereotypy and 213 

variability 49,74,75 in the sense that the time-evolution of the system is most compactly described 214 

by the result of a computation involving state transitions, memory, and decision rules, rather than 215 

by a periodic oscillation or a random coin flip.  216 

 While our analysis revealed a computational underpinning of gait, we sought to better 217 

understand the functional organization of the dynamical patterns driving processive motion of 218 

the cell. To do so, we first focused on the highest transition probabilities emanating from each 219 

state. Transition probabilities were estimated as Nij/Ni where Nij is the number of transitions from 220 

state i to state j, and Ni is the total number of transitions from state i. This allowed us to prune 221 

away rare transitions in order to reveal the dominant structure of gait state transitions. Figure 3g 222 

displays the pruned transition matrix as a heatmap. We found that relatively few states were the 223 

recipients of the majority of high probability transitions, and many states received none. To more 224 

clearly visualize the structure of transitions, we grouped together all gait states receiving no more 225 

than one unique high probability transition with the idea being that state transitions into this 226 

group show little bias in terms of source state, and within the group, transitions between states 227 
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exhibit low probability, time unbiased, equilibrium-like fluctuations. the majority of cell 228 

movement was associated with transitions between states within this group. In contrast to the 229 

“cloud” of states linked by low-probability, balanced transitions, nearly all of the states receiving 230 

high probability transitions were either the three “cycle” states, or else fed cycle states with their 231 

highest probability transitions, with the majority feeding gait state 17. 232 

 Focusing on the structure of transitions in this way allowed us to derive a simplified, 233 

functional representation of stereotypy in gait dynamics as depicted in Fig. 3h. Although gait 234 

state 1 is not the recipient of any individual high probability transitions, we identified it as the 235 

unique “start” state from which cells initiate walking. Beginning with this start state, cells 236 

transition with high probability to gait state 2, also one of the highest frequency transitions and 237 

the first state in the 2à3à17à2 cycle of unbalanced transitions. From this first cycle state, 238 

cells transition to gait state 3, the second cycle state, with highest probability and frequency and 239 

then similarly on to gait state 17, the third cycle state. This sequence from the start state through 240 

the cycle states corresponds to increasing amounts of cirral activity. Although the highest 241 

probability transitions from the third cycle state to any single gait state return to the first and 242 

second cycle state with equal probability and return to the first cycle state also being unbalanced, 243 

cells in fact transition to the equilibrium “cloud” of motility-associated states with overall higher 244 

probability. Return to the cycle states tend to occur through various moderately high probability 245 

transitions from the motility state cloud or through intermediate states. In conjunction with this 246 

set of transitions, we also noted unbalanced transitions stemming from the cycle states to the 247 

motility state as well as intermediate state subsequently feeding the next cycle state.  248 

Altogether, the picture that emerges of stereotypical gait dynamics is of biased transitions 249 

through cycle states before relatively low probability, unbiased transitions associated with 250 
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substantial cell movement before returning to the start or cycle states and beginning the sequence 251 

again. While this general sequence is repeated during walking, there is variability or apparent 252 

stochasticity in the details of gait state transitions with increasingly variable transitions as any 253 

given sequence progresses. We propose that the cycle states serve to establish configurations of 254 

cirri necessary for cells to later transition to between states from which forward progress of the 255 

cell is generated. Many state transitions along any instance of the stereotyped sequence are 256 

unbiased, but biased, high probability transitions, presumably resulting from active cellular 257 

control, give temporal irreversibility to the sequence. 258 

 259 

The fiber system of Euplotes constrains models of gait coordination 260 

 What physical machinery could embody this information processing required to generate 261 

the stochastic cyclic state transitions seen during Euplotes’ walking? We reasoned that there 262 

must be some form of coupling or communication between cirri or feedback between gait state 263 

and cirral dynamics. The role of the system of cytoskeletal fibers associated with cirri as conduits 264 

of information between cirri during cellular locomotion, supported by microsurgical 265 

experiments, has been a key hypothesized mechanism of gait coordination since the early 1900s 266 

76,77. We wondered whether the structure of the cytoskeletal fiber system associated with cirri 267 

(Fig. 4a) could give some insight into how cirri might be coordinated. 268 

 We sought to characterize and reconstruct in 3D the tubulin-based fiber system of 269 

Euplotes associated with cirri and lying just beneath the cell cortex 39,42,43. Upon inspection of 270 

our confocal reconstructions of SiR-tubulin labeled cells (Fig. 4a, Fig. S6), we noted the 271 

presence of two morphologically distinct classes of fibers, one thicker, linear class and the other 272 

more filamentous and less linear, consistent with previous observations (Fig. 1c, 39,42,43). 273 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433123doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433123


 13 

Additionally, we observed a group of thick linear fibers associated with some of the frontal cirri, 274 

which to our knowledge has not been previously reported. Fibers emanate from the base of all 275 

cirri, appear to intersect one another, and also connect to the cortex of the cell at various points 276 

(Fig. 3g). Some cirri were found to be associated with only thick fibers while others have both or 277 

only thin fibers. Based on apparent fiber intersections and convergences, we found the fiber 278 

system to constitute a continuous network between all cirri, with the fibers associated with the 279 

base of each cirrus intersecting the fiber system associated with at least one other cirrus (Fig. 4a, 280 

b). Contrary to the long-standing standing hypothesis from the literature 76, the functional 281 

modules (groups of co-varying cirri) identified in our dynamical analysis were not exclusively 282 

linked by dense fiber intersections  39,43,76 (Fig. 4a, b). In fact, connections between cirri are not 283 

generally associated with any statistically significant difference in mutual information (defined 284 

in terms of the information that the activation state of one cirrus has concerning the other) 285 

compared to unlinked pairs of cirri (p=0.14 by Wilcoxon rank sum test, Fig. 4C). However, 286 

information flow became apparent when fiber-fiber links are grouped by type (i.e. thick to thick 287 

fiber, thick to thin fiber, or thin to thin fiber). We found that pairs of cirri associated with only 288 

thick fiber to thick fiber and only thin fiber to thin fiber links have increased mutual information 289 

compared to those without links (Fig. S6). Interestingly, we found that cirri nearby one another 290 

and connected by fibers to similar regions of the cell cortex shared the most mutual information 291 

(Fig. 2i, 3c, 4d, e), suggesting that if the fibers play a role in cirral coordination, coupling may 292 

also be mediated by mechanisms at the cirrus and fiber-cortex interface. Cirri d, e, h, i, for 293 

example, share very little mutual information with any of the other cirri, and fibers emanating 294 

from the base of these cirri contact the cell cortex and other fibers at various unique points. Cirri 295 

g and f, on the other hand, which share more mutual information than any other pair, are 296 
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associated with both thick and thin fibers terminating at similar regions of the cell cortex. Indeed, 297 

both distances between pairs of cirri and cross nearest neighbor distance (a measure of similarity 298 

between discrete spatial distributions) between paired sets of cirrus-cortex contact points show 299 

significant Spearman correlations to mutual information (-0.49, p<0.001 and -0.62, p<0.001 300 

respectively) (Fig. 4d, e). These correlations indicate that mutual information between pairs of 301 

cirri tends to increase with proximity and also tends to increase with similarity between fiber-302 

cortex contact locations, so the cirri with the highest mutual information are those that are close 303 

together with similar fiber-cortex connections (Fig. 4d-f).  Together, these observations strongly 304 

support a mechanical coordination mechanism in which microtubule bundles allow groups of 305 

cirri to influence successive behavior of other groups of cilia. 306 

 307 

Discussion 308 

In order to meet the challenge of accounting for the emergence of apparently 309 

sophisticated cellular behavior, we conceptualized the cell as a finite state machine. 310 

Traditionally, studies of computational processes performed by cells have tended to focused on 311 

combinatorial logic, where the output of a computational process depends only on the current 312 

input, performed by networks of molecules in bacterial cells 25,32–34. We have focused on 313 

sequential logic, where outputs depend on the system state as well, an equally important aspect 314 

of the theory of computation with notable yet less developed representation in studies of cellular 315 

and sub-cellular dynamics 16,20,78. Behavior of eukaryotes has frequently been observed to 316 

involve stereotyped transitions between dynamical states, and our results suggest that automata 317 

theory, which includes finite state machine models and necessarily involves sequential logic, 318 

may be particularly well-suited to studying the behavior of eukaryotic cells. Our approach, 319 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.26.433123doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433123


 15 

relying on dimensionality reduction to identify dynamical states, revealed modularity in cellular 320 

dynamics associated with structural modularity of the cell (Fig. 2, 4) in addition to cyclic 321 

patterns of sequential dynamical activity (Fig. 3). 322 

Walking locomotion in Euplotes represents a departure from many of the best studied 323 

appendage-based locomotor systems. For example, limbed locomotion in animals tends to 324 

proceed by highly stereotyped, determinate patterns of activity 57,58, and many small, aquatic 325 

animals exhibit periodic movements of appendages, often cilia, during locomotion 7,59,79. Many 326 

forms of unicellular locomotion involve such dynamics as well including in sperm cells 80, 327 

diverse flagellates with various numbers of flagella 59, and ciliates 59,81,82. Even in cases where 328 

cellular locomotion involves fundamentally stochastic dynamics such as in run-and-tumble 329 

motility in E. coli 12 or analogous behaviors observed in protists 11,83–85, motility can be described 330 

by equilibrium processes 5, in contrast to the non-equilibrium character of the gait of Euplotes. 331 

There are examples, however, of locomotor dynamics in both animals and unicellular organisms 332 

that are reminiscent of those we have observed in Euplotes. Gait switching in kangaroo rats has 333 

been shown to have a stochastic, non-equilibrium character, perhaps to facilitate predator 334 

avoidance by being difficult to predict 52. Most saliently, gait switching in an octoflagellate 5 and 335 

motility dynamics in cultured mammalian cells 45 have been shown to exhibit broken detailed 336 

balance. We propose that broken detailed balance in the gait of Euplotes indicates active 337 

coordination of motility processes. Here, broken detailed balance in gait state transitions revealed 338 

cyclic activity, characterized by transitions into and out of a resting state with a mixture of 339 

stereotypy and variability in the intervening steps, in the gait of a single cell (Fig. 3, 4). To 340 

explain how these dynamics give rise to directed walking, we propose a mechanism in which  341 

biased, actively controlled cyclic transitions serve to establish strain, effectively storing stress, in 342 
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certain cirri, and the spontaneous release of these cirri from the substrate, during a series of 343 

unbiased gait state transitions, allows the cell to move forward. The cloud of unbiased transitions 344 

associated with substantial cellular movement is consistent with the fact that the details of the 345 

precise order in which the strained cirri are released does not matter for generating motility. 346 

Consistent with this mechanism, inspection of videos revealed that substantial cell movement 347 

appears to be correlated with the movement of notably bent inactive cirri. Return to the cycle 348 

states then are necessary to establish this process anew by winding up the system for continued 349 

cell movement. This mechanism and these patterns of cirral activity are consistent with previous 350 

observations of cyclic velocity fluctuations in the trajectories of walking Euplotes 37. We argue 351 

that subcellular processes must be involved in actively coordinating cirri in order to accomplish 352 

the observed stereotypy in biased sequential activity. Our analysis of the tubulin-based 353 

cytoskeletal fiber system is consistent with its role in mechanically mediating communication 354 

among cirri and between cirri and cell cortex (Fig. 4). Thus, by combining information 355 

processing to properly dictate patterns of cirral activity and the mechanical actions of cirral 356 

movement, walking Euplotes embodies the sequential computation of a finite state machine. 357 

Among the domains of life, eukaryotes uniquely display remarkable complexity and 358 

diversity in cellular behavior 86. Our approach, grounded in finite state-machine analysis, has 359 

revealed modularity and stereotypy underlying a complex cellular behavior, implicating a 360 

machine-like process. Our results suggest that integrating approaches from theoretical computer 361 

science, non-equilibrium statistical physics, and cell biology stands to shed light on the 362 

regulation of cellular behavior in eukaryotes more broadly. By revealing principles of cellular 363 

behavior, the line of research established here stands to advance our ability to predict and even 364 

one day engineer cellular behavior across diverse eukaryotic systems. 365 
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Figures 559 

 560 

Figure 1. Euplotes exhibits highly polarized, complex cellular architecture and walks 561 

across surfaces using microtubule-based organelles called cirri, some of which are physically 562 

linked. Scale bar is 10 µm. a, A single Euplotes eurystomus cell in profile displays its ventral 563 

cirri, which are used for walking locomotion across surfaces (arrowhead indicates a single cirrus 564 

stretching out from the cell). b, A drawing of a Euplotes cell, viewed from the ventral surface, 565 

highlighting the complex, asymmetric structure of the cell. Notable features include the cirri (ci) 566 

and the membranellar band (m), wrapping from the top of the cell to the center, which is used to 567 

generate a feeding current to draw in prey items. Drawing adapted and obtained from Wikimedia 568 

Commons, from original source 87. c, A drawing of a Euplotes cell, highlighting the fiber system 569 

associated with the cirri, historically referred to as the neuromotor apparatus. Drawing adapted 570 

from 88.  571 
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Figure 2. The gait of Euplotes can be described in a discrete, reduced state space with gait 573 

states corresponding to identifiable patterns of cirral activity. a-a’’, The movements of cirri 574 

during walking locomotion are clearly visible by brightfield microscopy by focusing on a plane 575 

at the surface of the coverslip on which cells are walking. Three snapshots depict different time 576 

points during a single walking trajectory, and white arrowheads indicate cirri. In the panels from 577 

left to right, the cirrus indicated by the arrowhead on the left is stationary, stationary, and then 578 

moving, and the cirrus indicated by the arrowhead on the right is stationary, moving, and then 579 

stationary. Scale bar is 15 µm. b, The trajectory of a cell during a single recorded trajectory as 580 

the cell walked across a coverslip from left to right. The cell position was manually tracked in 581 

each frame. c, The scheme for encoding cirral dynamics during walking involved labeling each 582 

of the 14 distinguishable ventral cirri (a-n), and recording cirral activity in each frame, 583 

corresponding to timepoints (t1,...,tn), of recordings of walking cells as a 14-bit binary vector. 584 

Each entry in each vector is given a value of either 0 if the cirrus is not moving and in contact 585 

with the coverslip or 1 if the cirrus is moving. Scale bar is 15 µm. d, Representative visualization 586 

of cirral dynamics for a single trajectory of a walking cell. These dynamics correspond to the 587 

walking trajectory in b. Each row corresponds to a cirrus and each column is a single video 588 

frame. White denotes cirral activity, a value of 1, in the vector encoding of dynamics from c. 589 

Note the dynamical complexity and discrete, stepping-like nature of cirral movements. e-g, 590 

Three roughly orthogonal views of a plot displays the structure of all recorded cirral dynamics 591 

encoded as in Figure 2C from 13 cells over 2343 timepoints in a reduced state space obtained by 592 

non-negative matrix factorization (NMF). Axes correspond to the components of the NMF (H1, 593 

H2, H3), and each point is a single timepoint. Randomized colors highlight the 32 clusters 594 

identified using the density-based spatial clustering of applications with noise (DBSCAN) 595 
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algorithm 66. We refer to these clusters as gait states, and they correspond to unique 596 

configurations of cirral activity during walking locomotion (see panel F). h, Plot of the 597 

magnitudes associated with each cirrus corresponding to the components of the NMF of cirral 598 

dynamics shows distinct contributions from spatially distinct groups of cirri. Component H1, for 599 

example, is associated with activity in cirri a, b, and c. The tracing of a cell including the position 600 

of cirri has the same color map as the plot above and shows the grouping of the cirri 601 

corresponding to each component. i, A heatmap of mutual information between all pairs of cirri 602 

shows that correlations in cirral activity correspond to the NMF components displayed in d. For 603 

example, cirri a, b, and c share mutual information with one another and are the cirri contributing 604 

to component H1. j, A heatmap representation of the cirral activity associated with each of the 32 605 

gait states. Values for each cirrus are the mean over all instances of the gait state. Note that each 606 

gait state has a unique signature of cirral activity. 607 

 608 
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Figure 3. Euplotes walks with a cyclic stochastic gait exhibiting broken detailed balance, 610 

stereotypy, and state machine-like dynamics. All data is pooled from the walking trajectories of 611 

13 different cells over 2343 timepoints and 1423 pairwise gait state transitions. a, A plot of the 612 

mean net change in cirral activity versus the net scaled cell velocity associated with all 613 

transitions between the 32 gait states identified in Fig. 3 shows that the change in number of 614 

active cirri is not strongly correlated with cell velocity (R2=0.03). Cell velocities were obtained 615 

from manually tracked walking trajectories and then scaled by dividing frame to frame 616 

displacements for each trajectory by the length of the cell being tracked and also dividing by the 617 

average frequency of cirral inactivity. Scaling provided a non-dimensional velocity scaled by 618 

natural units of the system. Note that at low Reynolds number, velocity should be proportional to 619 

force 44, so this plot also reflects the net walking force generated by the cell. Net change in cirral 620 

activity was computed using the data presented in Fig. 3F. Note that the largest velocities are 621 

associated with small negative and small to moderate positive net changes in cirral activity. b, 622 

The transition matrix of all gait state transitions, with rows representing the starting state and 623 

columns indicating the ending state, exhibits broken detailed balance. Rates were estimated by 624 

dividing the total number of observed transitions between each state pair and dividing by the 625 

total time observed. Under detailed balance or equilibrium conditions, transitions from one state 626 

to another should be balanced by reverse transitions. Lack of this kind of reversibility, as seen by 627 

the lack of symmetry of the heatmap across the diagonal, indicates broken detailed balance and 628 

non-equilibrium dynamics. c, A directed graph representation of all gait state transitions. Nodes 629 

correspond to the 32 gait states, and node sizes are scaled by the proportion of total time cells 630 

spent in each state. Directed edges are represented by arrows between nodes and signify state 631 

transitions. The size of the arrows is scaled by transition rates as in b. Edge color represents 632 
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scaled cell velocity as in a, with cool colors (more cyan) representing lower velocity, and 633 

warmer colors (more magenta) representing higher velocity. d, A subset of transitions visualized 634 

as in c shows the restricted and relatively high frequency nature of unbalanced, non-equilibrium-635 

like transitions. Only transitions that were observed to happen more than one time and exhibiting 636 

a significant difference between forward and reverse transitions (p<0.05 by binomial test, see 637 

Methods for more details) are displayed. e, A subset of transitions, similarly to panel E, except 638 

that only the balanced transitions, lacking a significant difference between forward and reverse 639 

transitions (p<0.05 by binomial test) are displayed, also show a complex and widespread 640 

structure, this time of balanced, equilibrium transitions. Note that the majority of transitions 641 

associated with high cell velocity involve equilibrium-like dynamics. f, Examples illustrating the 642 

spatial organization of cirral activity corresponding to gait states. Some states, such as 7, 643 

correspond to activity in spatially discrete groups of cirri, while others, such as 17, correspond to 644 

cirral activity across the cell. The gait states displayed here are those involved in unbalanced 645 

transitions. g, A heatmap of transition probabilities between states, showing only the most 646 

probable transitions from a given state with all others set to zero, shows distinct structure. In 647 

cases were multiple state transitions from a state were tied for the highest probability, all of these 648 

transitions are displayed. Fewer than half of the total states are recipients of multiple high 649 

probability transitions, and many states are the recipients of no high probability transitions. h, A 650 

representation of functional states and transitions between them highlights the machine-like 651 

nature of the gait of Euplotes. Gait states are represented as circles with numerical labels. Blue 652 

circles represent states that are both recipients and sources of unbalanced transitions as identified 653 

in d and constitute the three cycle states. Red circles represent states that are recipients but not 654 

sources of unbalanced transitions as identified in d. Black circles correspond to gait states that 655 
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are associated only with balanced transitions as in e. States receiving no more than one unique 656 

high probability transitions from states with only a single highest as identified in g were grouped 657 

together into a compound state represented by the dark gray blob. The blue background behind 658 

states 4, 16, 18, 26, and 28 indicates that these states all share the same highest probability 659 

transitions between states identified in this panel, and thus, the group constitutes a single 660 

compound functional state. Arrows represent the highest probability transitions between the 661 

states, including compound states composed of multiple gait states as identified in Fig. 2 and 3 662 

(dark gray blob and blue background). Gait state 1 is also depicted, as it is the state in which 663 

cells spent the most time over all walking trajectories and also is uniquely the state from which 664 

cells begin walking. Cells also frequently return to the state during walking. Further, transitions 665 

from gait state 2 from gait state 1 constitute the single highest frequency transition. Together, all 666 

identified states in this panel constitute functional states. Arrows represent the most probable 667 

transitions between functional states, and all unbalanced transitions are also represented with size 668 

scaled by their proportional probability compared to all other transitions emanating from the 669 

source functional state. Cartoons are a walking cell in profile with cirri in a configuration 670 

representative of the corresponding functional state. Labels refer to the apparent functional role 671 

of states and their associated transitions. Beginning from gait state 1, the resting/start state, cells 672 

are most likely to follow transitions from gait state 2 to 3 to 17 at which point cells are likely to 673 

enter the functional state associated with substantial cell movement involving variable balanced 674 

transitions between a number of gait states. Transitions are then likely to lead back toward the 675 

cycle states. Note that while this representation of gait dynamics highlights the most probable 676 

transitions, substantial variability, primarily involving reversible transitions, occurs during 677 

walking trajectories.   678 
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 679 

 Figure 4. The fiber system of Euplotes is complex, interconnected, and constrains 680 

mechanistic hypotheses of gait coordination. a, The SiR-tubulin labeled cell (faint, dark blue) 681 
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was imaged by confocal microscopy, and a 3D reconstruction as obtained from serial confocal 682 

slices. Fibers were manually traced in each slice using TrakEM2 in FIJI. Two morphologically 683 

distinct classes of fibers were observed and are indicated as follows: thick, linear fibers are cyan 684 

and thinner, filamentous fibers are magenta (see Fig. S6 for raw image data). Fibers emanate 685 

from the base of each cirrus and form a connected network between all cirri. The base of each 686 

cirrus is indicated by corresponding letters (as in Fig. 2c). Gray shading indicates the dynamical 687 

groups identified by dimensionality reduction and follows the same color scheme as in Fig. 3d. 688 

Scale bar is 10 µm. b, A graph representation of fiber-fiber connections illustrates the complex 689 

and interconnected nature of cirrus associated fiber topology. Nodes correspond to the cirri to 690 

which each fiber system is associated, and edges indicate connections between fiber systems. 691 

Colors of nodes indicate the same groups as in a, and colors of edges indicate the types of fibers 692 

connecting to one another, cyan for thick fiber connections, magenta for thin fiber connections, 693 

and purple for thick to thin fiber connections. c, Pairs of cirri that are linked by fiber-fiber 694 

contacts show no statistically significant difference in mutual information compared to those 695 

lacking fiber-fiber contacts. The plot displays mutual information between all pairs of cirri 696 

grouped by the absence (Not linked) or presence (Linked) of associated fiber-fiber connections. 697 

Statistical significance was evaluated by the Wilcoxon rank sum test. Note that when pairs of 698 

cirri are grouped by fiber-fiber connection type, we do observe an increase in mutual information 699 

for cirri associated with only thin fiber-fiber connection and only thick fiber-fiber connections 700 

compared to those lacking fiber-fiber connections (see Fig. S6). d, A plot of mutual information 701 

as a function of inter-cirrus distance displays negative correlation, with a Spearman correlation 702 

coefficient of -0.49 (p<0.001). Plotted values are defined with respect to pairs of cirri. e, A plot 703 

of mutual information as a function of fiber-cortex contact distance grouped by fiber type 704 
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similarity and lack thereof displays negative correlation, with a Spearman correlation coefficient 705 

of -0.62 (p<0.001) for pairs of cirri with similar fiber types and no significant correlation for 706 

those with dissimilar fiber types. Similarity of fiber types is defined in terms of sharing at least 707 

some fiber types as defined in a. Fiber-cortex contact difference is measured by the mean cross 708 

nearest neighbor distance (see Methods) for all fiber-cortex contact points associated with each 709 

cirrus. The negative correlation values from the data plotted in d and e indicate that cirri that are 710 

closer to one another and also cirri with fiber-cortex contacts in nearby regions of the cell tend to 711 

have higher mutual information, and indeed cirri that are both close to one another and with 712 

similar patterns of fiber-cortex contacts display the highest mutual information. f, A plot of fiber-713 

cortex contact difference versus inter-cirrus difference (as in panels d and e) illustrates that 714 

nearby cirri tend to have similar associated fiber-cortex contacts, highlighting that nearby cirri 715 

with similar fiber-cortex contacts share the most mutual information. 716 

  717 
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Methods 718 

Cell husbandry 719 

Cultures of Euplotes eurystomus were obtained from Carolina Biological Supply Company (Item 720 

#131480). Individual cells were isolated from cultures, which contained other protists and 721 

meiofauna, by pipetting and placed in non-treated 6-well plates (Thermo Fischer Scientific 08-722 

772-49) containing spring water taken from cultures. Cells were kept in wells for no longer than 723 

five days before imaging, and if cells were to be kept for longer than 48 hours, wells containing 724 

cells were supplemented with 1% Cereal Grass Medium 1 (from Thermo Fischer Scientific 725 

S25242) to prevent depletion of a population of prey bacteria and otherwise maintain Euplotes 726 

under constant growth conditions. 727 

 728 

Live cell brightfield microscopy 729 

Cells were concentrated by centrifugation (500×g for 5 min) and resuspended either in 0.5 mL of 730 

spring water in coverglass bottomed FluoroDishes (World Precision Instruments FD35-100) or 731 

in 0.2 mL spring water on a coverslip (FisherScientific, 12-545-D) for imaging. No more than 732 

three cells were kept in 0.5 mL imaging samples and only one cell was ever kept in 0.2 mL 733 

imaging samples in order to minimize cell-cell interactions. Cells were observed to exhibit 734 

spontaneous walking activity on coverglass. Walking cells in FluoroDishes were imaged under 735 

brightfield illumination using a Zeiss Z.1 Observer and Hamamatsu Orca Flash 4.0 V2 CMOS 736 

camera (C11440-22CU) with a 20x, 0.8 NA Plan-Apochromat (Zeiss) objective. Cells on 737 

coverslips were imaged under brightfield illumination with coverslips inverted over a well 738 

containing a small amount of distilled water to reduce evaporation using a Zeiss Axio Zoom.V16 739 

and a PCO pco.dimax S1 camera. Importantly, in both imaging systems, the focal plane was set 740 
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at the interface between cirri of walking cells and the glass surface upon which they were 741 

walking. Images were acquired at 0.033 seconds per frame with a 0.005 second exposure in order 742 

to capture all cirral dynamics during walking with minimal blur. 743 

 744 

Quantification of walking dynamics 745 

 Movies of walking cells were viewed using FIJI 2. Movement of cirri, or lack thereof was 746 

clearly visible in each movie frame (see Fig. 2a and Movie S1). The dynamical state of each 747 

cirrus in each movie frame was manually annotated. For each frame, each cirrus received a label 748 

of “1” if the cirrus was in motion and “0” if the cirrus was not moving and in contact with the 749 

coverslip. Motion of cirri was evident in terms of a change in cirrus shape or tip position often in 750 

addition to blur due to motion during image acquisition or position out of the focal plane (see 751 

Fig. 2a and Movie S1). While only slowly walking cells were recorded, sometimes cells 752 

nevertheless exhibit brief, spontaneous departures from slow walking during the course of movie 753 

acquisition. Any frame in which the movement of the cell and/or cirri were too fast to be 754 

resolved, such as during spontaneous escape responses3 (Movie S2), was excluded from analysis 755 

such that some videos were split into a number of separate continuous sequences. Thus, each 756 

movie frame associated with a particular time point in the walking trajectory, with the exception 757 

of those excluded from analysis as described, yielded a corresponding 14-element binary vector 758 

encoding the motility state of the cell in terms of the movement of cirri. Cell movement was 759 

tracked using the manual tracking feature of the TrackMate plugin in FIJI 4. The center of each 760 

cell was used as the reference feature for tracking. We analyzed the walking dynamics of 13 761 

different cells. 762 

 763 
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Dimensionality reduction 764 

 Dimensionality reduction was performed by non-negative matrix factorization (NMF) 765 

implemented in MATLAB release 2019b (Mathworks, Natick). NMF was chosen as a 766 

dimensionality reduction technique to allow us to obtain a reduced, sparse, and interpretable 767 

representation of walking dynamics. Because NMF derives non-negative factors, the basis 768 

vectors in NMF space correspond to patterns of cirral activity. NMF involves factoring data, A, 769 

an n by m matrix, into non-negative factors W, an n by k matrix, and H, a k by m matrix where 770 

the product W*H approximates A. To determine the appropriate number of dimensions or rank, k, 771 

that are necessary to accurately represent the data without overfitting, we performed cross-772 

validation by imputation with random holdouts 5,6, also implemented in MATLAB. We randomly 773 

held out 15% of our walking dynamics data, performed NMF for a given k, and then used the 774 

NMF reconstruction W*H, to update the missing data entries. This process of updating is known 775 

as imputation, and we repeated the imputation process 50 times, by which point the imputed 776 

values had stabilize, to obtain a final NMF reconstruction. We then computed the root mean 777 

squared residual (RMSR) between the final NMF reconstruction, W*H, and our dataset, A. We 778 

performed this entire process 100 times for each value of k. As is generally the case for NMF, we 779 

observed a monotonic decrease in reconstruction error with increasing k without performing the 780 

imputation procedure 7 (Fig. S2a). In contrast to this trend, we observed an increase in RMSR of 781 

imputed values with increasing k indicating overfitting 5 (Fig. S2b). We chose k=3 because this 782 

value was the highest value before a notable increase in imputation error (Fig. S2b), which 783 

would indicate overfitting 5,6. Thus, our choice of rank 3 selects the lowest rank approximation 784 

that captures structure of the dataset without overfitting that structure. Further, our choice 785 
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facilitated the visual inspection of the structure of data in the reduced dimensional 786 

reconstruction. 787 

Finally, we noted that for our chosen value of k, due to the stochastic nature of the NMF 788 

algorithm, which involves a random initialization step, we obtained slightly different solutions 789 

for different iterations 5. In order to choose the best reduced dimensional approximation, 790 

therefore, we performed NMF 500 times and chose the particular solution corresponding to the 791 

lowest RMSR compared to our dataset. 792 

 793 

Clustering 794 

  Clustering on the dataset obtained using NMF was performed by density-based spatial 795 

clustering of applications with noise (DBSCAN) algorithm 8 implemented in MATLAB release 796 

2019b (Mathworks, Natick). Structure in NMF space was clearly visible (Fig. 2e-g), and 797 

DBSCAN using a Euclidean distance metric, was initially chosen as a clustering method because 798 

it yielded qualitatively good partitioning of the data. The DBSCAN algorithm involves stochastic 799 

search within neighborhoods of a given radius ε around datapoints, and points with a minimum 800 

number of neighbors, n, within their neighborhood are grouped as belonging to the same cluster, 801 

leaving two free parameters to determine. We set ε by first using the 802 

clusterDBSCAN.estimateEpsilon function in MATLAB (release 2020b, Phased Array System 803 

Toolbox), which yielded a value of 0.15. We next set about determining the minimum neighbor 804 

number, n. To do so, we computed the average Silhouette coefficient, a commonly used measure 805 

of clustering quality that indicates how well-separated clusters are 9, for various values of n. The 806 

results of this analysis are plotted in Fig. S3. Higher Silhouette coefficients indicate better 807 

clustering, and we found that a value of n=8 maximized the mean Silhouette coefficient (Fig. 808 
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S3a). We also noted, however, that for this value, many datapoints were found to be outliers, not 809 

belonging to any cluster due to having too few points within a distance of ε. Fig. S3b displays 810 

percentage of datapoints found to be outliers as a function of n. In order to avoid categorizing 811 

more than 5% of datapoints as outliers, we chose to settle on n=4, which does not have a 812 

significantly different mean Silhouette coefficient compared to any of the others in the range 813 

n=2-7. This choice was further supported by the fact that major clusters involving more than 5 814 

datapoints identified with n=8 were also identified with n=4. 815 

 Although this set of parameters gave qualitatively and quantitatively reasonable 816 

clustering results, we sought to further refine our clusters and to further reduce the outlier 817 

datapoints. We noted the obvious partitioning of the NMF dataset into three groups along the H2 818 

axis (Fig. 2e). We found the previously determined parameter values to yield good clustering for 819 

the top and middle partitions (H2≤1.1 and 0.2<H2<1.1), with no outliers. For the lower partition 820 

(H2≤0.2), however, we found that we were able to improve clustering by using ε=0.1182. With 821 

this updated value, we found no statistically significant change in Silhouette coefficient and 822 

reduced outliers to 0%. The clusters obtained by this process constituted the identification of the 823 

32 gait states. We note here that the problem of determining the true or optimal number of 824 

clusters is an unresolved problem 10, and we note that we have followed standard methods to 825 

determine cluster number, and we found that our key results do not depend sensitively on the 826 

precise number of clusters identified (see following section and Fig. S8 for more details). 827 

 828 

State transition analysis 829 

Following dimensionality reduction and clustering to identify gait states, we proceeded to 830 

characterize state transition dynamics. For each cell trajectory, we identified all unique gait state 831 
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transitions for a total of 1423 unique pairwise transitions over the cumulative 2343 video frames 832 

for 77.14 s of recording. We computed empirical transition rates between states as the total 833 

number of observed transitions divided by the total time of observation. In order to determine 834 

which transitions were balanced and which were unbalanced, we followed Chang and Marshall 835 

11, and performed binomial tests of statistical significance. Assuming a system at equilibrium, 836 

with all transitions obeying detailed balance, we expect to observe some deviation from exactly 837 

reciprocal transitions and can calculate the probability of observing a given set of ratios given 838 

underlying probabilities of forward and reverse transitions. The binomial probability of 839 

observing a set of transitions with known forward and reverse probabilities is given by 840 

𝑃(𝑋 = 𝑓) = (
𝑛
𝑓* 𝑝,-./0.1

, 𝑝.232.42
56,  841 

where (
𝑛
𝑓* = 	

5!
,!(56,)!

 is the choose function,  f is the number of forward transitions, n is the total 842 

number of transitions (such that n-f is the number of reverse transitions), and the probabilities 843 

𝑝,-./0.1 and 𝑝.232.42 are the forward and reverse probabilities. Considering only the set of 844 

transitions involving a specific pair of states, and calculating the probability that a transition 845 

between those states is either in the forward or reverse direction, the values of forward and 846 

reverse probabilities in the balanced case must be equal such that 𝑝,-./0.1 = 𝑝.232.42 = 0.5. 847 

With an α level of 0.05, we then considered reciprocal transition pairs with binomial 848 

probabilities less than 0.05 to be significantly unbalanced. Figure S9 displays the binomial 849 

probabilities associated with all transitions. 850 

 In order to calculate the estimated entropy production rate, we followed Wan and 851 

Goldstein 12, where the entropy production rate is defined as 852 

	�̇� =
1
2=𝐽?@𝐴?@
?B@

 853 
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 854 

with conjugate fluxes 𝐽?@ = 𝑝?𝑘?@ − 𝑝@𝑘@? and forces 𝐴?@ = ln	 GHIJIK
HKJKI

L where the 𝑝M are the 855 

probabilities of being in state l at steady state and the  𝑘?@ are the transition rates between states i 856 

and j. We estimate the state occupancy probabilities 𝑝M as NO
NPQRSO

, where 𝑇M is the amount of time 857 

spent in state l over all trajectories and 𝑇N-U0M is the total recorded time, and the rates 𝑘?@ as VIK
NI

, 858 

where 𝑁?@ is the total number of observed transitions from state i to state j and 𝑇? is the total time 859 

spent in state i. To avoid 𝑘@? = 0, we let 𝑘@? =
Y

HKNZS[
 where 𝑇\0] = 11.55 seconds is the 860 

maximum duration of any single recorded walking trajectory. 861 

 In the course of our state transition analysis, we also checked whether the waiting times 862 

between instances of each state might be non-exponentially distributed, with exponential 863 

distributions indicative of an embedded Markov process or possibly self-organized criticality 864 

13,14. Using the Lilliefors test implemented in Matlab, we found that in general, waiting times 865 

were not exponentially distributed, although states  2, 3, 6, 16, 17, 18, 25, 27, 28, 32 were found 866 

to have waiting times consistent with exponential distributions with Benjamini-Hochburg 867 

corrected p-values of 0.046, 0.046, 0.022, 0.008, 0.046, 0.017, 0.046,  0.0081, 0.0046, 0.0046 868 

respectively. Interestingly, none of the waiting times between the movements of individual cirri 869 

were found to be consistent with exponential distributions. These results are consistent with 870 

mechanisms constraining the temporal dynamics of cirri and state transitions. 871 

 In order to begin evaluating whether state transitions obeyed the Markov property, where 872 

the transition probabilities from one state to the next are completely determined by current state 873 

15,16, we estimated the transition matrix for walking dynamics, consisting of the transition 874 

probabilities between all states. We estimate the transition probability from state i to state j as 875 
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𝑝?@ =
VIK

∑ VIaa
 such that ∑ 𝑝?@? = 1. The entries of the transition matrix, P, are these transition 876 

probabilities with indices i for rows and j for columns. If gait state transitions obeyed the Markov 877 

property, we expect that the product of the transition matrix with itself, P2, would be equivalent 878 

to the two-step transition matrix where transition probabilities are computed as before except that 879 

state j is the state to which i has transitioned after an intervening transition. Figure S5 displays 880 

the results of this analysis showing that the two matrices show substantial quantitative and 881 

qualitative differences. Although these results strongly suggest violation of the Markov property, 882 

we applied the Billingsley test for a more statistically rigorous evaluation 17,18. This test was 883 

implemented and performed in Matlab (release 2019b). The Billingsley test gives a χ2 metric 884 

with M2-2M degrees of freedom given by 885 

∑ ∑
(VIK6bIK ∑ VIKc

Kde *
f

bIK ∑ VIKc
Kde

g
@hY

g
?hY , 886 

where 𝑅?@, the independent trials probability matrix, is given by 887 

𝑅?@ = ∑ 𝑁J@g
JhY (∑ ∑ 𝑁jMg

MhY
g
jhY − ∑ 𝑁?Jg

JhY )⁄ . 888 

Importantly, we also noted that the key qualitative results of our state transition analysis 889 

are robust to the details of clustering results. In particular, we find that strongly unbalanced 890 

transitions and violation of the Markov property exist for a range of clustering parameters. 891 

Figure S8 displays the transition matrices for different clustering results. 892 

 893 

Confocal microscopy 894 

Cells were prepared for imaging and placed into a FluoroDish as described in the Live Cell 895 

Brightfield Microscopy section. Cells were then labeled with SiR-tubulin (Spirochrome provided 896 

by Cytoskeleton, Inc, CY-SC002) at 1 µM concentration. Cells were imaged using a Zeiss LSM 897 
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880 AxioExaminer and a 40x, 1.2 NA C-Apochromat water immersion objective (Zeiss) and 898 

excitation provided by a 633 nm laser (Zeiss). Only one full confocal z-stack of a complete cell 899 

was obtained during imaging to avoid effects of photodamage. 900 

 901 

Fiber reconstruction and analysis 902 

 The image stack resulting from confocal imaging was first aligned in FIJI using the 903 

StackReg plugin 2. Next, fibers were manually segmented in each of the aligned z-stack images 904 

using the TrakEM2 plugin in FIJI 19,20. Thick and thin fibers (Fig. 5a) were morphologically 905 

distinguished, with thick fibers having a diameter of no less than 5 µm at the thinnest point. 906 

Fibers were traced from their distal termini to their convergences at the base of the cirri with 907 

which they were associated. Following segmentation, 3D surfaces were reconstructed in 908 

TrakEM2. Inter-fiber contacts were then found by inspection of 3D reconstructions and verified 909 

by examining individual z-stack frames to confirm intersections between fibers. 910 

 911 
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