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Abstract 

The emerging area of dynamic brain network analysis has gained considerable attraction in 

recent years. While current tools have proven useful in providing insight into dynamic patterns 

of brain networks, development of multivariate statistical frameworks that allow for examining 

the associations between phenotypic traits and dynamic patterns of system-level properties of the 

brain, and drawing statistical inference about such associations, has largely lagged behind. To 

address this need we developed a mixed-modeling framework that allows for assessing the 

relationship between any desired phenotype and dynamic patterns of whole-brain connectivity 

and topology. Unlike current tools which largely use data-driven methods, our model-based 

method enables aligning neuroscientific hypotheses with the analytic approach. We demonstrate 

the utility of this model in identifying the relationship between fluid intelligence and dynamic 

brain networks using resting-state fMRI (rfMRI) data from 200 subjects in the Human 

Connectome Project (HCP) study. To our knowledge, this approach provides the first model-

based statistical method for examining dynamic patterns of system-level properties of the brain 

and their relationships to phenotypic traits.  
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1. Introduction 

The past two decades have witnessed an explosion of studies aimed at examining the brain as a 

complex system through analysis of neuroimaging data, particularly data from functional MRI 

(fMRI). Complex functional systems of the brain are often analyzed through graph theoretical 

measures of the brain’s functional networks (Bullmore and Sporns 2009). Nodes in brain 

networks often represent brain regions, and edges represent functional connections (statistical 

associations) between the blood-oxygen-level-dependent (BOLD) signals in different brain 

regions. Until recent years, most network studies of the brain focused on static functional 

networks, in which the functional connections between brain regions were defined over the entire 

scanning period or condition. Although such studies have provided promising insights into 

functional organization and abnormalities of the brain (Bassett and Bullmore 2009, Park and 

Friston 2013), recent studies indicate that functional connectivity patterns are not stationary and 

fluctuate over very short periods of time on the order of seconds (Chang and Glover 2010, 

Handwerker, Roopchansingh et al. 2012, Hutchison, Womelsdorf et al. 2013, Parr, Rees et al. 

2018). This has resulted in a new and rapidly evolving line of studies examining dynamic 

networks or time-varying functional connectivity (TVFC) patterns of the brain.  

Studies of brain dynamics are critical for establishing a profound understanding of the brain 

given that the brain is a complex multiscale dynamic system rather than a stationary one (Lurie, 

Kessler et al. 2020). Dynamic brain networks have been associated with a wide range of 

cognitive and behavioral responses (Cole, Bassett et al. 2014, Shine, Bissett et al. 2016, 

Vidaurre, Hunt et al. 2018). More specifically, they have been used to determine the engagement 

of a subject in a specific cognitive task (Shirer, Ryali et al. 2012, Gonzalez-Castillo, Hoy et al. 

2015), and have been associated with consciousness (Barttfeld, Uhrig et al. 2015, Godwin, Barry 

et al. 2015), learning (Bassett, Wymbs et al. 2011), and various neuropsychiatric and 

neurological disorders, such as schizophrenia (Sakoglu, Pearlson et al. 2010, Rashid, 

Arbabshirani et al. 2016), depression (Long, Cao et al. 2020, Martinez, Deco et al. 2020), 

Alzheimer’s disease (Jones, Vemuri et al. 2012, Gu, Lin et al. 2020), and Parkinson’s disease 

(Diez-Cirarda, Strafella et al. 2018, Zhu, Huang et al. 2019). New studies indicate that dynamic 

brain networks may provide more sensitive biomarkers for detecting differences between study 

populations or individuals than static networks (Rashid, Arbabshirani et al. 2016). In addition, 

studies of dynamic brain networks can answer more compelling open questions about cognitive 

and behavioral responses, as noted in (Lurie, Kessler et al. 2020).  

Despite such insights, substantial challenges remain to enable more accurate analysis of dynamic 

brain networks and accurate interpretation of results. Development of multivariate statistical 

tools that allow for identifying associations between dynamic brain networks or TVFC patterns 

and phenotypic traits, as well as drawing inference from such associations, is among such critical 

challenges. Developing and disseminating explainable, validated multivariate statistical methods 

are paramount for relating phenotypic traits to dynamic changes in network properties of the 
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brain, which will greatly aid in providing profound insights into normal and abnormal brain 

function. Dynamic changes in the systemic organization of brain networks confers much of our 

brains’ functional abilities (Buzsaki and Draguhn 2004, Bressler and Menon 2010). If functional 

connections are lost or rendered dynamically rigid due to an adverse health condition, 

compensatory connections may develop to maintain organizational consistency and functional 

abilities. Consequently, brain network analysis necessitates a suite of tools including a 

multivariate modeling framework for dynamic brain network data to assess effects of multiple 

variables of interest and topological network features on the overall network structure. 

 For the modeling framework, if we have 

 𝐷𝑎𝑡𝑎 {
𝒀𝑖𝑡: network of participant 𝑖 at time point 𝑡                       
𝑿𝑖𝑡: covariate information                                                        

         

We wish to accurately estimate the probability density function of the networks given the 

covariates 𝑃(𝒀𝑖𝑡|𝑿𝑖𝑡 , 𝜷𝑖𝑡), where 𝜷𝑖𝑡  are the parameters that relate the covariates to the network 

structure as shown in Figure 1. However, the development of such methods has vastly lagged 

behind, mainly due to the same challenges which exist in developing multivariate statistical tools 

for static networks (Shehzad, Kelly et al. 2014, Simpson and Laurienti 2016, Bahrami, Laurienti 

et al. 2019). Most current methods rudimentarily compare the variability of connection strength 

or networks across study populations (Elton and Gao 2015, Fukushima, Betzel et al. 2018, 

Sizemore and Bassett 2018), failing to fully harness the wealth of information obtained via such 

a multivariate framework. As noted by (Shine, Breakspear et al. 2019), the neurobiological 

mechanisms underlying brain network dynamics (dynamic changes in functional architecture) 

remain poorly understood; and as pointed out in (Liu 2017) “novel methods are urgently needed 

for a better quantification of temporal dynamics in resting-state fMRI.” The development of 

rigorous statistical methods within a multivariate framework as described above are among such 

urgent needs. 

Here we introduce a novel multivariate statistical framework for assessing phenotype-dynamic 

brain network pattern relationships and drawing inference from such relationships. This model-

based framework is a fundamentally different approach toward analyzing dynamic brain 

networks when compared to current approaches which often use data-driven methodologies to 

identify “brain states” and their transitions with respect to health and behavioral outcomes 

(Allen, Damaraju et al. 2014, Vidaurre, Smith et al. 2017, Shine and Poldrack 2018, Shappell, 

Caffo et al. 2019). We develop this method by advancing a promising statistical mixed-modeling 

framework for static networks (Simpson and Laurienti 2015). Several extensions of the original 

framework (Bahrami, Laurienti et al. 2019, Simpson, Bahrami et al. 2019), as well as a Matlab 

toolbox with user-friendly graphical user interfaces (GUIs) (Bahrami, Laurienti et al. 2019) have 

recently been introduced. The original model and its extensions have been used in several studies 

(Bahrami, Laurienti et al. 2017, Burdette, Laurienti et al. 2020). However, it has yet to be 

extended to the dynamic network context. To our knowledge, this proposed extension will be the 
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first to allow relating group- and individual-level characteristics to time-varying changes in 

spatial and topological brain network properties while also maintaining the capabilities of the 

original model, such as accounting for variance associated with confounders. We will 

demonstrate the utility of this framework in identifying the relationship between (fluid) 

intelligence and dynamic brain network patterns using 200 subjects from the HCP (Van Essen, 

Smith et al. 2013) study. Fluid intelligence (gF) refers to reasoning ability and the capacity of an 

individual to discern patterns or solve problems when that individual doesn’t have or has 

minimal resources or acquired knowledge to act upon (Cattell 1987). Understanding the 

neurobiological underpinnings of gF is of great interest, as it has been associated with a variety 

of cognitive abilities (Colom and Flores-Mendoza 2007, Unsworth, Fukuda et al. 2014, Ye, Li et 

al. 2019).   

 

 

2. Materials and Methods 

2.1. Motivating data 

We used the rich data set provided by the HCP study (Van Essen, Smith et al. 2013) to be able to 

explore dynamic functional brain network differences in cognitively variable populations as a 

function of phenotype, while maintaining continuity with previous analyses to contrast and 

clearly distinguish the novel utilities of our proposed method. We specifically focused on 

demonstrating the utility of our framework in assessing the relationship between dynamic 

functional networks and intelligence due to the great interest in identifying such relationship. The 

HCP data released to date include 1200 individuals. Of those, 1113 (606 female; 283 minority) 

have complete MRI images, cognitive testing, and detailed demographic information. 

Participants in the HCP were screened to rule out neurological and psychiatric disorders. All data 

were collected on 3T Siemens MRI scanners located at Washington University or the University 

of Minnesota using identical scanning parameters. The HCP performed extensive testing and 

development to ensure comparable imaging at the two sites. The BOLD-weighted images were 

collected using the following parameters: TR = 720 ms, TE = 33.1 ms, voxel size 2 mm3, 72 

slices, and 1200 volumes. In this study, we selected a subsample comprising 389 individuals 

with unique family identification numbers that also passed our image processing quality control 

assessments. For multiple individuals with the same family identification number, one individual 

was selected randomly. We initially used the entire 389 individuals, but we further reduced this 

to 200 individuals (randomly chosen from our subsample) after we faced convergence issues in 

modeling one of the two-part mixed-effect models. The HCP analyses are an exemplar; 

importantly, our methods can be applied to any network-based neuroimaging study.  
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2.2. Dynamic networks generation 

We used minimally preprocessed rfMRI data from HCP (Glasser, Sotiropoulos et al. 2013). We 

used two scans for each individual, the left-to-right (LR) and right-to-left (RL). For each scan, 

we used ICA-AROMA (Pruim, Mennes et al. 2015) to correct for any motion artifact in the 

rfMRI data. A band-pass filter (0.009-0.08 Hz) was applied to each scan. The LR and RL scans 

for each individual were then concatenated temporally, and then a regression was performed with 

the mean tissue signals (GM, WM, and CSF), the six movement parameters and derivatives, as 

well as a binary regressor to account for any mean signal differences between the two groups 

(LR and RL scans). Our quality control process removed 116 individuals from the analysis. QC 

included manually checking the rfMRI for warping irregularities as well as remaining motion 

artifact after the above processing steps. For the remaining individuals, among those with the 

same family identification number, one individual was selected randomly. This provided a final 

dataset comprising 389 individuals with unique family identification numbers. For all 389 

individuals, we divided the brain into 268 regions based on a functional atlas (Shen, Tokoglu et 

al. 2013), and averaged all time series within each region to create a single time-series for that 

region. We used a continuous wavelet transform (CWT) to filter artifact resulting from the LR 

and RL concatenation with a window size of 30s (covering 15s from the ending and starting 

points of LR and RL time series, respectively). We then prewhitened the time series to avoid 

undesired autocorrelation effects for our regression analyses and as recommended by (Honari, 

Choe et al. 2019) for dynamic network analyses using a sliding window correlation (SWC) 

approach.  

Dynamic brain networks for each participant were constructed through a sliding window 

correlation approach. We used a modulated rectangular (mRect) window (Mokhtari, Akhlaghi et 

al. 2019) with a length of 120 volumes and the same shift size (i.e., 120 volumes) to generate 

non-overlapping windows. We understand that this is not a commonly used shift size as most 

studies use overlapping windows with 1 TR shift size; however, unlike other methods, we 

subsequently use the dynamic networks in a regression framework, thus we used non-

overlapping windows to further reduce autocorrelation. The reasons and implications of our 

choices for window type, window length, and shift size will be further explained in the 

Discussion. The dynamic networks for each participant were generated by moving the window 

across the time series, and computing the Pearson’s correlation between time series of all pairs of 

268 regions at each shift. This yielded 19 dynamic networks for each participant. We then 

thresholded all dynamic networks to remove negative correlations as multiple network measures, 

particularly clustering, remain poorly understood in networks with negative correlations 

(Telesford, Simpson et al. 2011, Friedman, Landsberg et al. 2014). Figure 2 shows a schematic 

exhibiting this dynamic network generation process.  

We also used the original models (Simpson and Laurienti 2015) to conduct the same analyses but 

with static networks to see how the results are different with the results of the dynamic network 
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analyses, and how the new introduced framework for dynamic networks provides more accurate 

results. For the static networks, we constructed a single network for each one of the 200 

individuals by computing the correlation between average time series of all pairs of brain regions 

across the entire scanning time.  

 

2.3. Mixed-effects modeling framework for weighted dynamic brain 

networks  

Given that we have sparse weighted networks, a two-part mixed-effects model will be employed 

to model both the probability of a connection (presence/absence) and the strength of a 

connection, if it exists (Simpson and Laurienti 2015). The model includes the entire brain 

connectivity matrix of each participant, endogenous covariates, and exogenous covariates (see 

Figure 1). The endogenous covariates are summary variables extracted from the network to 

summarize global topology. The exogenous covariates are the biologically-relevant phenotypic 

variables (e.g. for our data, fluid intelligence, sex, race, and education among others). This 

statistical framework allows for the evaluation of group and individual effects. Another key 

feature of the model is the multivariate nature of the statistics. Inclusion of the actual 

connectivity matrices allows the statistics to be performed on the entire network simultaneously, 

rather than performing edge-by-edge analyses in a massively univariate fashion. 

More specifically, let 𝑌𝑖𝑗𝑘𝑡  represent the strength of the connection (quantified as the correlation 

in our case) and 𝑅𝑖𝑗𝑘𝑡  indicate whether a connection is present (presence variable) between node 

𝑗 and node 𝑘 for the 𝑖𝑡ℎ  subject at time 𝑡. Thus, 𝑅𝑖𝑗𝑘𝑡 = 0 if 𝑌𝑖𝑗𝑘𝑡 = 0, and 𝑅𝑖𝑗𝑘𝑡 = 1 if 𝑌𝑖𝑗𝑘𝑡 > 0 

with conditional probabilities  

𝑃(𝑅𝑖𝑗𝑘𝑡 = 𝑟𝑖𝑗𝑘𝑡|𝜷𝑟; 𝒃𝑟𝑖; 𝜸𝑟; 𝒅𝑟𝑖) = (
1 − 𝑝𝑖𝑗𝑘𝑡(𝜷𝑟; 𝒃𝑟𝑖; 𝜸𝑟; 𝒅𝑟𝑖)    𝑖𝑓   𝑟𝑖𝑗𝑘𝑡 = 0

𝑝𝑖𝑗𝑘𝑡(𝜷𝑟; 𝒃𝑟𝑖; 𝜸𝑟; 𝒅𝑟𝑖)            𝑖𝑓   𝑟𝑖𝑗𝑘𝑡 = 1
),                               (1) 

where 𝑝𝑖𝑗𝑘𝑡(𝜷𝑟; 𝒃𝑟𝑖; 𝜸𝑟) is the probability of a connection between nodes 𝑗 and 𝑘 for subject 𝑖 at 

time 𝑡. We then have the following logistic mixed model (part I model) for the probability of this 

connection:  

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖𝑗𝑘𝑡(𝜷𝑟; 𝒃𝑟𝑖; 𝜸𝑟; 𝒅𝑟𝑖)) = 𝑿′𝑖𝑗𝑘𝜷𝑟 + (∑𝑛
𝑜=1 𝛾𝑟𝑜𝑠(𝑜)(𝑋𝑡)) + Z′𝑖𝑗𝑘𝒃𝑟𝑖 + (∑𝑛

𝑜=1 𝑑𝑟𝑖𝑜𝑠(𝑜)(𝑍𝑡)) , (2)     

where 𝜷𝑟 is a vector of population parameters (fixed effects) that relate the probability of a 

connection to a set of covariates (𝑿𝑖𝑗𝑘) for each subject and nodal pair (dyad), 𝒃𝑟𝑖 is a vector of 

subject- and node-specific parameters (random effects) that capture how this relationship varies 

about the population average (𝜷𝑟) by subject and node (𝒁𝑖𝑗𝑘), ∑𝑛
𝑜=1 𝛾𝑟𝑜𝑠(𝑜)(𝑋𝑡) corresponds to 

a population-level 𝑛𝑡ℎ order orthonormal polynomial model capturing the dynamic trend in the 

presence of connections across time, and ∑𝑛
𝑜=1 𝑑𝑟𝑖𝑜𝑠(𝑜)(𝑍𝑡) corresponds to an individual-level 
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𝑛th order orthonormal polynomial model capturing how much the subject-specific trends deviate 

from the population trend. Employing an orthonormal polynomial model in this manner has been 

shown to accurately represent the trend in time series data while avoiding the computational issues 

resulting from the use of natural polynomials (Simpson and Edwards 2013, Edwards and Simpson 

2014).  

For the part II model, which aims to model the strength of a connection given that there is one, we 

let 𝑆𝑖𝑗𝑘𝑡 = [𝑌𝑖𝑗𝑘𝑡|𝑅𝑖𝑗𝑘𝑡 = 1]. In our case, the 𝑆𝑖𝑗𝑘𝑡  will be the values of the correlation 

coefficients between nodes 𝑗 and 𝑘 for subject 𝑖 at time 𝑡. We can then use Fisher's Z-transform, 

denoted as 𝐹𝑍𝑇, to induce normality for the following mixed model (part II model)  

𝐹𝑍𝑇 (𝑆𝑖𝑗𝑘𝑡(𝜷𝑠; 𝒃𝑠𝑖; 𝜸𝑠; 𝒅𝑟𝑖)) = 𝑿′𝑖𝑗𝑘𝜷𝑠 + (∑𝑛
𝑜=1 𝛾𝑠𝑜𝑠(𝑜)(𝑋𝑡)) + Z′𝑖𝑗𝑘𝒃𝑠𝑖 + (∑𝑛

𝑜=1 𝑑𝑠𝑖𝑜𝑠(𝑜)(𝑍𝑡)) + 𝑒𝑖𝑗𝑘𝑡,   (3)     

where 𝜷𝑠 is a vector of population parameters that relate the strength of a connection to the same 

set of covariates (𝑿𝑖𝑗𝑘) for each subject and nodal pair (dyad), 𝒃𝑠𝑖 is a vector of subject- and 

node-specific parameters that capture how this relationship varies about the population average 

(𝜷𝑠) by subject and node (𝒁𝑖𝑗𝑘), ∑𝑛
𝑜=1 𝛾𝑠𝑜𝑠(𝑜)(𝑋𝑡) corresponds to a population-level 𝑛𝑡ℎ order 

orthonormal polynomial model capturing the dynamic trend in the strength of connections across 

time, ∑𝑛
𝑜=1 𝑑𝑠𝑖𝑜𝑠(𝑜)(𝑍𝑡) corresponds to an individual-level 𝑛𝑡ℎ order orthonormal polynomial 

model capturing how much the subject-specific trends deviate from the population trend, and 𝑒𝑖𝑗𝑘𝑡 

accounts for the random noise in the connection strength of nodes 𝑗 and 𝑘 for subject 𝑖 at time 𝑡. 

In this study, the covariates (𝑿𝑖𝑗𝑘) used to explain and predict both the presence and strength of 

connection are: 1) 𝑁𝑒𝑡: the average of the following network variables (categorized and further 

detailed in Table 1 below and in (Rubinov and Sporns 2010, Simpson, Bowman et al. 2013) in 

each dyad: Clustering Coeficient (𝐶), Global Efficiency (𝐸𝑔𝑙𝑜𝑏), Degree (𝑘) (difference between 

connected nodes instead of average to capture "assortativity"), Modularity (𝑄), and Leverage 

Centrality (𝑙); 2) 𝐶𝑂𝐼: Covariates of Interest (fluid intelligence (gF) in our study – we modeled gF 

as a continuous covariate. gF in the HCP protocol has been assessed using the Raven’s progressive 

matrices with 24 items with scores being integers representing number of correct items (Bilker, 

Hansen et al. 2012)); 3) 𝐼𝑛𝑡: Interactions of the Covariate of Interest with the variables in 1); and 

4) 𝐶𝑜𝑛: Confounders (for our data, Sex (binary), Age (continuous), years of Education (categorical 

with three levels – level 1 (≤11), level 2 (12-16), and level 3 (≥17)), BMI (continuous), Race 

(categorical with six categories – cat 1 (Am. Indian/Alaskan Nat.), cat 2 (Asian/Nat. 

Hawaiian/Other Pacific Is.), cat 3 (Black or African Am.), cat 4 (White), cat 5 (More than one), 

cat 6 (Unknown or Not Reported)), Ethnicity (categorical with three categories – cat 1 

(Hispanic/Latino), cat 2 (Not Hispanic/Latino), cat 3 (Unknown or Not Reported)), Handedness 

(continuous – ranging from -100 to +100, with negative and positive numbers indicating whether 

participants were more left- or right-handed, respectively assessed using the Edinburgh 

Handedness Inventory (EHI) (Oldfield 1971), Income (Continuous – Toal household income), 

Alcohol abuse (Binary – Indicating whether participant met DSM4 criteria for alcohol abuse), 
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Alcohol dependence (Binary – Indicating wether participant met DSM4 criteria for alcohol 

dependence), Smoking status (Binary – Indicating whether pariticipant smoked or not), Spatial 

distance between nodes (importance of spatial distance as potential geometric confounders has 

been discussed in (Friedman, Landsberg et al. 2014)), and square of spatial distance between 

nodes). Thus, we can decompose 𝜷𝑟 and 𝜷𝑠 into 𝜷𝑟 = [𝛽𝑟,0 𝜷𝑟,𝑛𝑒𝑡 𝛽𝑟,𝑐𝑜𝑖  𝜷𝑟,𝑖𝑛𝑡 𝜷𝑟,𝑐𝑜𝑛] and 

𝜷𝑠 = [𝛽𝑠,0 𝜷𝑠,𝑛𝑒𝑡 𝛽𝑠,𝑐𝑜𝑖  𝜷𝑠,𝑖𝑛𝑡 𝜷𝑠,𝑐𝑜𝑛] to correspond with the population intercepts and these 

covariates. For the random-effects vectors we have that 𝒃𝑟𝑖 = [𝑏𝑟𝑖,0 𝒃𝑟𝑖,𝑛𝑒𝑡 𝒃𝑟𝑖,𝑑𝑖𝑠𝑡 𝜹𝑟𝑖,𝑗𝜹𝑟𝑖,𝑘] 

and 𝒃𝑠𝑖 = [𝑏𝑠𝑖,0 𝒃𝑠𝑖,𝑛𝑒𝑡 𝒃𝑠𝑖,𝑑𝑖𝑠𝑡 𝜹𝑠𝑖,𝑗𝜹𝑠𝑖,𝑘], where 𝑏𝑟𝑖,0 and 𝑏𝑠𝑖,0 quantify the deviation of 

subject-specific intercepts from the population intercepts (𝛽
𝑟,0

 and 𝛽
𝑠,0

), 𝒃𝑟𝑖,𝑛𝑒𝑡 and 𝒃𝑠𝑖,𝑛𝑒𝑡 

contain the subject-specific parameters that capture how much the relationships between the 

network variables in 1) and the presence and strength of a connection vary about the population 

relationships (𝜷
𝑟,𝑛𝑒𝑡 

and 𝜷
𝑠,𝑛𝑒𝑡

), respectively, 𝒃𝑟𝑖,𝑑𝑖𝑠𝑡 and 𝒃𝑠𝑖,𝑑𝑖𝑠𝑡 contain the subject-specific 

parameters that capture how much the relationship between spatial distance (and square of spatial 

distance) and the presence and strength of a connection vary about the population relationships 

respectively, 𝜹𝑟𝑖,𝑗 and 𝜹𝑠𝑖,𝑗  contain nodal-specific parameters that represent the propensity for 

node 𝑗 (of the given dyad) to be connected and the magnitude of its connections, respectively, and 

𝜹𝑟𝑖,𝑘 and 𝜹𝑠𝑖,𝑘 contain nodal-specific parameters that represent the propensity for node 𝑘 (of the 

given dyad) to be connected and the magnitude of its connections respectively. Parameters for 

all 𝑻 time points (number of networks per individual) (𝒕 = 𝟏, 𝟐, . . . , 𝑻) are estimated or 

predicted simultaneously from the model. In general, additional covariates can also be 

incorporated as guided by the biological context.   

Specifying a reasonable covariance model (balancing appropriate complexity with parsimony and 

computational feasibility) is paramount for a unified dynamic multitask model such as the one 

developed here. Toward this end, we assume that 𝒃𝑟𝑖 ,  𝒅𝑟𝑖 , 𝒃𝑠𝑖 , 𝒅𝑠𝑖, and 𝒆𝑖  are normally 

distributed and mutually independent, with variance component covariance structures for 𝒃𝑟𝑖, 𝒅𝑟𝑖, 

𝒃𝑠𝑖, and 𝒅𝑠𝑖, and the standard conditional independence structure for 𝒆𝑖 . That is, 𝒃𝑟𝑖 ∼

𝑁(𝟎, 𝜮𝑏𝑟𝑖(𝝉𝑏𝑟) = 𝑑𝑖𝑎𝑔(𝝉𝑏𝑟)), where 𝝉𝑏𝑟 = (𝜎𝑏𝑟,0
2 , 𝝈𝑏𝑟,𝑛𝑒𝑡

2 , 𝝈𝑏𝑟,𝑑𝑖𝑠𝑡
2 , 𝜎𝑏𝑟,𝑛𝑜𝑑𝑒1

2 , 𝜎𝑏𝑟,𝑛𝑜𝑑𝑒2
2 , …, 

 𝜎𝑏𝑟,𝑛𝑜𝑑𝑒268
2 )′, 𝒅𝑟𝑖 ∼ 𝑁(𝟎, 𝜮𝑑𝑟𝑖(𝝉𝑑𝑟) = 𝑑𝑖𝑎𝑔(𝝉𝑑𝑟)) where 𝝉𝑑𝑟 = (𝜎𝑑𝑟,0

2 , 𝜎𝑑𝑟,1
2 , … , 𝜎𝑑𝑟,𝑛

2 )
′
, 

 𝒃𝑠𝑖 ∼ 𝑁(𝟎, 𝜮𝑏𝑠𝑖(𝝉𝑏𝑠) = 𝑑𝑖𝑎𝑔(𝝉𝑏𝑠)) where 𝝉𝑏𝑠 = (𝜎𝑏𝑠,0
2 , 𝝈𝑏𝑠,𝑛𝑒𝑡

2 , 𝝈𝑏𝑠,𝑑𝑖𝑠𝑡
2 , 𝜎𝑏𝑠,𝑛𝑜𝑑𝑒1

2 , 

 𝜎𝑏𝑠,𝑛𝑜𝑑𝑒2
2 , … , 𝜎𝑏𝑠,𝑛𝑜𝑑𝑒268

2 )′, and 𝒅𝑠𝑖 ∼ 𝑁(𝟎, 𝜮𝑑𝑠𝑖(𝝉𝑑𝑠) = 𝑑𝑖𝑎𝑔(𝝉𝑑𝑠)) where 𝝉𝑑𝑠 =

(𝜎𝑑𝑠,0
2 , 𝜎𝑑𝑠,1

2 , … , 𝜎𝑑𝑠,𝑛
2 )′ —yielding  (276 + (𝑛 + 1)) random effects variance parameters for both 

the presence and strength models—and 𝒆𝑖 ∼ 𝑁(𝟎, 𝚺𝑒𝑖 = 𝜎2𝑰). These variance and covariance 

parameters will provide insight into whether individual and group differences in variability in 

dynamics relate to health and behavioral outcomes. Parameter estimation is conducted via 
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restricted pseudo-likelihood (Wolfinger and Oconnell 1993) with the residual approximation of 

the 𝐹-test for a Wald statistic employed for inference.  

We implemented the models (eqs. 2 and 3) above to describe and  compare brain network dynamics 

as a function of fluid intelligence. For both models, we started model fitting with the entire set of 

random-effects, i.e., random effects for: intercept, nodal network measures (clustering, global 

efficiency, degree, and leverage centrality), distance, and nodal propensities. However, after facing 

convergence issues, we dropped nodal propensities from our random effects. We assessed model 

goodness-of-fit (GOF) and consistency of estimates (to further avoid overfitting) to determine the 

orthonormal polynomial degree yielding the best model fits. We fit the two-part model defined 

above with the mentioned fixed- and random-effect parameters using orthonormal polynomial 

models of degrees ranging from 3-18 (giving 16 model fits), and determined the “best” model 

based on a composite approach employing the Akaike Information Criterion (AIC) (Akaike 1981), 

Bayesian Information Criterion (BIC) (Schwarz 1978), modified AIC (AICc) (Hurvich and Tsai 

1989), Hannan-Quinn Information Criterion (HQIC) (Hannan and Quinn 1979), and Consistent 

AIC (CAIC) (Bozdogan 1987) GOF measures as well as the consistency of the obtained parameter 

estimates and p-values to further avoid overfitting. We used Matlab to generate the appropriate 

data frame for our framework and used SAS v9.4 on a Linux operating system with 330 GB of 

RAM and 2.60 GH processor to perform the model fitting.  

 

 

3. Results 

Here, we show our framework’s ability in identifying the relationship between fluid intelligence 

and dynamic brain networks. For orthonormal polynomial models of degrees ranging from 3-18, 

all GOF measures for the strength model (eq.3) slightly improved with increasing degree, 

providing good fits for almost all degrees. However, the models with polynomial degrees 

ranging from 9-16 provided the most consistent estimates and p-values. Thus, to avoid 

overiftting while still using a model with a relatively good fit as indicated by the GOF measures, 

we used the model with polynomial degree of 12 as a middle ground between 9-16. For the 

probability model, although all GOF measures slightly improved with increasing degree too, the 

differences were negligible. Thus, we used the same polynomial degree (12) for consistency. The 

estimates, standard errors, and p-values for the polynomial parameters are presented in Table 2.  

The parameter estimates, standard errors, and p-values (based on the residual approximation of 

the F-test for a Wald statistic) associated with the fixed-effect covariates are presented in Table 

3. The estimates quantify the relationship between dynamic patterns of probability 

(presence/absence) and strength of (present) connections between nodes (brain regions), as 

dependent variables, and the previously mentioned sets of covariates, including (dynamic 

patterns of) endogenous network measures, fluid intelligence as our covariate of interest, and 
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confounders (sex, age, education, BMI, race, ethnicity, handedness, income, DSM4 alcohol 

abuse, DSM4 alcohol dependence, smoking status, spatial distance and square of spatial distance 

between nodes). The estimates for interaction covariates shows if (and how) the relationship 

between dynamic patterns of probability/strength of connections and dynamic patterns of 

endogenous network measures are affected by fluid intelligence. Notable results are detailed in 

the following sections.  

 

3.1. Dynamic network analysis 

3.1.1. Endogenous network measures and confounding covariates 

As Table 3 presents, dynamic changes of clustering (functional segregation), global efficiency 

(functional integration), degree difference (functional resilience), and leverage centrality 

(information flow), all play important roles in explaining dynamic patterns of both connection 

probability and strength. Among the confounding covariates, spatial distance and square of 

spatial distance are important covariates in explaining the dynamic patterns of both connection 

probability and strength, while gender, race (Black or American-African as compared with white 

(reference group)), income, and alcohol dependence are important in explaining the dynamic 

patterns of just connection strength. 

 

3.1.2. Fluid intelligence 

Fluid intelligence, our covariate of interest (COI), is neither directly related to dynamic patterns 

of connection probability (presence/absence) nor connection strength as indicated by the p-

values associated with 𝛽𝑟,𝐶𝑂𝐼  (p-value = 0.2793) and 𝛽𝑠,𝐶𝑂𝐼 (p-value = 0.4529), respectively. 

However, it has a significant effect on the relationship between dynamic changes of connection 

strength and dynamic changes of whole-brain modularity as indicated by the p-value associated 

with 𝛽𝑠,𝐶𝑂𝐼×𝑄 (p-value <0.0001 ), and a marginally significant effect on the relationship between 

dynamic changes of connection probability and dynamic changes of whole-brain modularity as 

indicated by the p-values associated with 𝛽𝑟,𝐶𝑂𝐼×𝑄 (p-value = 0.0762), while having no effect on 

other relationships. Dynamic changes of whole-brain modularity and connection strength are 

negatively associated with each other (𝛽𝑠,𝑄), which implies the dominance of between-

community (rather than within-community) connections in driving the dynamic changes of 

whole-brain modularity. Fluid intelligence interacts with this relationship — as intelligence 

increases, dynamic changes of modularity are less driven by dynamic changes in between-

community (and more by within-community) connectivity as indicated by the positive and 

significant estimate for 𝛽𝑠,𝐶𝑂𝐼×𝑄. (However, the dynamics of between-community connections 

are still the dominant factors in driving the dynamic changes of whole-brain modularity.) Our 
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results might imply that brain networks in people with higher fluid intelligence are more flexible 

with respect to changes in their modularity at rest. These changes are associated with both 

stronger within-community connections (more specialized neural communities) and weaker 

between-community connections (more segregated neural communities). This is illustrated in 

Figure 3.    

 

3.2. Dynamic versus Static network analysis  

To further demonstrate how the developed framework for dynamic brain networks provides a 

better fit and different insight into effects of phenotypic traits on brain networks, we conducted 

an additional analysis to examine the effects of fluid intelligence on static brain networks for 

comparison. We used the original mixed-effects models introduced in (Simpson and Laurienti 

2015) with the exact same fixed- and random-effects, and the same random-effects variance 

covariance structure as those used for dynamic networks. All GOF measures indicate much 

better fits for dynamic brain networks (Tables 4, 5), probably due to accounting for the dynamic 

trends in the brain network data. Also, the results for modeling the static brain networks 

presented in Table 6 clearly illustrate that different conclusions would be drawn from employing 

this less favorable modeling approach, particularly when comparing the effects of fluid 

intelligence on brain modularity and connectivity. While dynamic patterns of whole-brain 

modularity are modified by fluid intelligence, the static network analyses indicate no such effect.   

 

 

4. Discussion 

As the interest in dynamic brain networks continues to grow, new methods are needed to enable 

gleaning neurobiological insight into this complex and big data. Development of multivariate 

statistical methods, particularly model-based ones, which allow quantifying relationships 

between phenotypic traits and dynamic patterns of brain connectivity and topology and drawing 

inference from such relationships is among the urgent needs. Development of such methods even 

for static networks has remained a challenge given the size, complexity, and multiscale 

dependence inherent in brain network data. However several model-based methods (Simpson, 

Hayasaka et al. 2011, Shehzad, Kelly et al. 2014, Simpson and Laurienti 2015) and various data-

driven multivariate methods (Calhoun, Adali et al. 2001, Beckmann and Smith 2004, Allen, 

Erhardt et al. 2011, Smith, Hyvarinen et al. 2014) have been introduced and extensively used for 

static networks. Dynamic changes in the systematic organization of our brain networks confer 

much of our brains’ functions abilities due to the fact that our brain is a complex multiscale 

dynamic system with known and unknown compensatory mechanisms at multiple scales. Thus, 

methods that allow analyzing the brain within a multivariate framework can provide much 
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deeper insights into dynamic patterns of brain networks in health and disease. In addition, 

multivariate model-based tools enable aligning neuroscientific hypotheses with the analytic 

approach which is ideal for dynamic brain network analysis (Preti, Bolton et al. 2017). 

Nevertheless, no model-based multivariate method has been introduced for dynamic network 

analyses to our knowledge.  

Here we provided a baseline model-based multivariate method to relate phenotypic traits to 

dynamic patterns of brain connectivity and topology. We developed this model by advancing a 

two-part mixed-effects regression framework for static brain networks (Simpson and Laurienti 

2015). Our proposed model allows accounting for the connectivity/network dynamics when 

assessing group differences and phenotype-health outcome relationships, to avoid confounding 

and drawing erroneous conclusions. Most current methods used to assess dynamic brain 

networks reduce this data into dynamic patterns of individual brain connections (Simony, Honey 

et al. 2016, Schmlazle, O'Donnell et al. 2017, Tewarie, Liuzzi et al. 2019) or commonly used 

summary network variables, such as node degree or modularity (Jones, Vemuri et al. 2012, 

Kabbara, Khalil et al. 2019) rather than analyzing the systemic dynamics of the brain networks. 

Such methods not only fail to model the brain as a multiscale dynamic system (Lurie, Kessler et 

al. 2020), but often entail matching study populations to perform group comparisons, which is a 

daunting task for most neuroimaging studies. Our model provides a framework to assess the 

systemic dynamics of brain networks and thus to account for complex dynamics of the brain via 

the simultaneous modeling of brain connectivity and topological network variables. The 

multivariate nature of this framework reduces demands for matching study populations as any 

number of confounding effects can be incorporated as covariates, and the effects of multiple 

covariates of interest can be studied in a single model.  

We demonstrated the utility of our model in identifying the relationship between fluid 

intelligence and dynamic patterns of brain connectivity and topological network variables using 

the rich data set provided by the HCP study (Van Essen, Smith et al. 2013). Our model allowed 

accounting for various sources of potential confounding effects, such as sex, education, age, and 

alcohol abuse, among others. Our results indicated that dynamic patterns of brain modularity and 

connection strength are significantly affected by fluid intelligence. More specifically, our results 

showed that for any level of fluid intelligence, dynamic patterns of modularity are predominantly 

associated with between-community, rather than within-community, connections. However, fluid 

intelligence modulates this trend such that, across an entire spectrum of fluid intelligence, 

dynamics of whole-brain modularity play a less important role in driving changes in between-

community connections for higher fluid intelligence values (with dynamics of within-community 

connections probably being affected more). While the ultimate neurobiological interpretations of 

such effects is speculative at this point, our results may suggest that brain networks in more 

intelligent participants are more flexible with respect to changes in its modularity at rest, such 

that dynamic patterns of modularity are determined by both establishing stronger within-

community connections (more specialized neural communications) and weaker between-
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community connections (more segregated neural communities). Other studies have reported 

associations between brain modularity and intelligence (Chaddock-Heyman, Weng et al. 2020), 

as well as significant correlations between creativity and learning and dynamic patterns of brain 

modularity (Bassett, Wymbs et al. 2011, Kenett, Betzel et al. 2020).   

We used a sliding window correlation approach in this analysis as it has remained the most 

popular approach to examine dynamic brain networks (Hutchison, Womelsdorf et al. 2013, 

Allen, Damaraju et al. 2014, Rashid, Damaraju et al. 2014, Preti, Bolton et al. 2017, Bahrami, 

Lyday et al. 2019). However, in the absence of a “gold-standard” the optimal choice for window 

type, window length, and step size is challenging. We used a modulated rectangular (mRect) 

window due to its superior performance in examining dynamic brain networks when compared 

to other conventional window types (Mokhtari, Akhlaghi et al. 2019). The window lengths used 

in the literature commonly range from the 30s to 240s (Chang and Glover 2010, Kiviniemi, Vire 

et al. 2011, Handwerker, Roopchansingh et al. 2012, Kucyi and Davis 2014, Mokhtari, Rejeski et 

al. 2018). We used 120 volumes for our window length for multiple reasons, including: i) to 

provide more stabilized correlation values while not losing the variability of the brain dynamics, 

ii) due to its wider use which makes comparing and contrasting our method with currently used 

methods easier, and iii) model fit and convergence considerations of our proposed method. It is 

also important to note that no commonly used window length can accurately identify different 

states of correlation (Shakil, Lee et al. 2016), and that the SWC is only used to demonstrate the 

utility of our method rather than to provide  comprehensive analyses of fluid intelligence-

dynamic brain network associations. Also, typical shift sizes used in the literature range from 1 

TR to 50% of the window length (Chang, Liu et al. 2013, Kucyi and Davis 2014, Shakil, 

Magnuson et al. 2014), with the 1 TR being the most commonly used shift size (Shakil, Lee et al. 

2016). However, as our proposed method subsequently uses the dynamic networks in a 

regression framework, we used a shift size of 120 volumes, equal to the window length, to create 

non-overlapping windows and thus further reduce autocorrelation. Additionally, using non-

overlapping windows allowed using a smaller, but sufficient number of dynamic networks for 

each participant and thus helped avoiding possible convergence issues.  

Our work here is not without limitations. The proposed mixed-effects framework can be used for 

predicting dynamic networks based on participant characteristics as well as simulating dynamic 

networks from the modeled distributions and desired characteristics. However, we have not 

demonstrated these capabilities here. These capabilities will be demonstrated in future work 

given that they require extensive analytical assessment and exposition which lie beyond the 

scope of this paper. We will also make our proposed framework accessible to neuroimaging 

researchers by incorporating new GUIs into WFU_MMNET, the software developed for the 

application of the original static model (Bahrami, Laurienti et al. 2019). Future studies will also 

assess the effects of the sliding window parameters (e.g., window length and shift size) as well as 

the parcellation choice on model results (Power, Cohen et al. 2011, Bahramf and Hossein-Zadeh 

2014, Glasser, Coalson et al. 2016).   
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Table 1. Network measures by category 

Category Measure(s) 

Functional segregation Clustering coefficient 

Functional integration Global efficiency 

Resilience Degree difference 

Centrality and information flow Leverage centrality 

Community structure Modularity 
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Table 2. Fixed-effect estimates, SEs, and P-values for 12th degree orthornormal polynomial fit 

Models Parameters Ortho Poly degree Estimate SE P-value 

Probability Model βr,0 Intercept -0.0325  0.0029 <0.0001 

 βr,1 1 -12.864 13.098 0.3260 
 βr,2 2   3.2334  11.666 0.7817 
 βr,3 3 -45.319  13.146 0.0006 
 βr,4 4  64.035  11.513 <0.0001 
 βr,5 5 -15.858  12.414 0.2015 
 βr,6 6 -13.590  11.848 0.2514 
 βr,7 7 -31.703  11.722 0.0068 
 βr,8 8  21.245  10.751 0.0482 
 βr,9 9  10.496  10.983 0.3393 
 βr,10 10 -11.572  11.885 0.3302 
 βr,11 11 -28.431  11.331 0.0121 
 βr,12 12  20.729  11.242 0.0652 

Strength Model βs,0 Intercept 0.3297 0.0011 <0.0001 

 βs,1 1 -17.061 4.779 0.0004 
 βs,2 2  2.7768 3.977 0.4851 
 βs,3 3 -26.615 4.228 <0.0001 
 βs,4 4  33.522 3.892 <0.0001 
 βs,5 5 -2.0592 3.677 0.5755 
 βs,6 6 -1.0681 4.021 0.7905 
 βs,7 7 -19.033 3.949 <0.0001 
 βs,8 8  20.267 4.156 <0.0001 
 βs,9 9  7.2895 4.244 0.0858 
 βs,10 10 -8.2756 4.051 0.0411 
 βs,11 11 -13.659 3.774 0.0003 
 βs,12 12  2.5260 3.665 0.4907 
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Table 3. Parameter estimates, standard errors, and p-values for dynamic networks 

      Probability Model Outputs         Strength Model Outputs   

Parameter Estimate SE *p-value Parameter Estimate SE *p-value 

βr,0  -0.0325 0.0029 <0.0001 β𝑠,0  0.3297 0.0011 <0.0001 

βr,COI 37.214 34.399 0.2793 β𝑠,COI -7.0446 9.3853 0.4529 

βr,C  -2952.4 46.959 <0.0001 β𝑠,C  888.08 5.8209 <0.0001 

βr,Eglob  2636.8 91.101 <0.0001 β𝑠,Eglob  580.14 5.3669 <0.0001 

βr,D -896.17 45.306 0.0022 β𝑠,D -583.11 190.28 0.0022 

βr,L 118.78 54.994 0.0308 β𝑠,L -412.13 6.7029 <0.0001 

βr,Q 736.57 5.1383 <0.0001 β𝑠,Q -333.00 0.5925 <0.0001 

βr,dist -1803.0 36.509 <0.0001 β𝑠,dist -224.13 3.1505 <0.0001 

βr,dist2  1059.8 21.398 <0.0001 β𝑠,dist2  155.04 2.0048 <0.0001 

βr,Gender 42.474 32.223 0.1875 Βs,Gender -31.8717 8.7937 0.0003 

βr,Age  62.773 34.959 0.0726 β𝑠,Age  12.5816 9.5386 0.1872 

βr,EduLev1  31.851 45.805  0.4868 β𝑠,EduLev1  8.2917 12.5032  0.5072 

βr,EduLev2  42.968 41.471 0.3002 β𝑠,EduLev2  8.8911 11.3200 0.4322 

βr,BMI
  23.923 32.331 0.4593 β𝑠,BMI

  6.2230 8.8237 0.4806 

βr,RaceAm 6.3565 31.605 0.8406 β𝑠,RaceAm -10.5590 8.6374 0.2215 

βr,RaceAsian 13.179 30.887 0.6696 β𝑠,RaceAsian -7.4438 8.4354 0.3775 

βr,RaceBlack  11.556 34.403 0.7396 β𝑠,RaceBlack  19.2897 9.3860 0.0399 

βr,RacedMore -11.866 30.250 0.6949 β𝑠,RacedMore -9.2663 8.2588 0.2619 

βr,RaceUknown -0.4579 33.310 0.9890 βs,RaceUknown -8.3128 9.0974 0.3608 

βr,EthnHisp  64.827 68.903 0.3468 βs,EthnHisp  14.4546 18.8084 0.4422 

βr,EthnNonHisp  57.132 71.588 0.4248 βs,EthnNonHisp  11.1630 19.5353 0.5677 

βr,Handedness 10.309 31.938 0.7468 βs,Handedness -7.8091 8.7180 0.3704 

βr,Income  29.989 36.093 0.4060 βs,Income  22.7940 9.8509 0.0207 

βr,AlcAbuse 20.026 32.118 0.5330 βs,AlcAbuse -3.2167 8.7648 0.7136 

βr,AlcDep -3.6623 30.967 0.9059 βs,AlcDep -19.0315 8.4492 0.0243 

βr,SmokStatus  26.399 33.214 0.4267 βs,SmokStatus  0.1819 9.0620 0.9840 

βr,COI×C 40.956 45.783 0.3710 βs,COI×C -6.8030 5.6675 0.2300 

βr,COI×Eglob 50.731 89.219 0.5696 βs,COI×Eglob -0.4372 5.2510 0.9336 

βr,COI×D -15.879 43.923 0.7177 βs,COI×D -0.1495 184.59 0.9994 

βr,COI×L  -45.387 53.886 0.3996 βs,COI×L  2.4008 6.5669 0.7147 

βr,COI×Q  -9.2262 5.2031 0.0762 βs,COI×Q  7.4360 0.5993 <0.0001 
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Table 4. Probability model’s GOF measures for dynamic and static network analyses 

Analysis -2 Res Log Likelihood Generalized Chi-Square 

Dynamic (ortho poly degree 12)  5.76E8 1.36E8 

Static 0.31E8 0.07E8 

 

 

 

Table 5. Strength model’s GOF measures for dynamic and static network analyses 

Analysis AIC AICC BIC CAIC HQIC 

Dynamic (ortho poly degree 12)  -7448537 -7448537 -7448471 -7448451 -7448510 

Static -3640945 -3640945 -3640918 -3640910 -3640934 
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Table 6. Parameter estimates, standard errors, and p-values for static networks 

      Probability Model Outputs         Strength Model Outputs   

Parameter Estimate SE *p-value Parameter Estimate SE *p-value 

βr,0 -0.2584 0.0809 0.0014 β𝑠,0 0.1022 0.0289 0.0004 

βr,COI -0.2073 0.0110 0.2793 β𝑠,COI -0.0089 0.0043 0.0369 

βr,C  -2952.4 46.959 <0.0001 β𝑠,C 0.0777 0.0008 <0.0001 

βr,Eglob -0.0403 0.0079 <0.0001 β𝑠,Eglob 0.0700 0.0009 <0.0001 

βr,D 0.0176 0.0042 <0.0001 β𝑠,D -0.0433 0.0005 <0.0001 

βr,L 0.1714 0.0092 <0.0001 β𝑠,L -0.0419 0.0009 <0.0001 

βr,Q 0.0918 0.0110 <0.0001 β𝑠,Q -0.0177 0.0039 <0.0001 

βr,dist -0.2993 0.0050 <0.0001 β𝑠,dist -0.0398 0.0005 <0.0001 

βr,dist2 0.1510 0.0024 <0.0001 β𝑠,dist2 0.0211 0.0003 <0.0001 

βr,Gender 0.0022 0.0220 0.9197 Βs,Gender 0.0121 0.0079 0.1263 

βr,Age 0.0025 0.0119 0.8350 β𝑠,Age 0.0043 0.0043 0.3092 

βr,EduLev1 0.0524 0.0415 0.2070 β𝑠,EduLev1 0.0018 0.0149 0.9062 

βr,EduLev2 0.0164 0.0298 0.5822 β𝑠,EduLev2 0.0101 0.0107 0.3471 

βr,BMI
 0.0232 0.0114 0.0411 β𝑠,BMI

 -0.0086 0.0041 0.0348 

βr,RaceAm 0.0967 0.1523 0.5253 β𝑠,RaceAm -0.0816 0.0549 0.1374 

βr,RaceAsian -0.0038 0.0400 0.9250 β𝑠,RaceAsian -0.0107 0.0144 0.4570 

βr,RaceBlack -0.0317 0.0359 0.3777 β𝑠,RaceBlack 0.0157 0.0129 0.2234 

βr,RacedMore 0.1128 0.0842 0.1803 β𝑠,RacedMore -0.0109 0.0304 0.7209 

βr,RaceUknown 0.0248 0.0817 0.7618 βs,RaceUknown 0.0043 0.0295 0.8843 

βr,EthnHisp -0.0965 0.0808 0.2320 βs,EthnHisp 0.0464 0.0289 0.1083 

βr,EthnNonHisp -0.0580 0.0769 0.4507 βs,EthnNonHisp 0.0393 0.0275 0.1536 

βr,Handedness 0.0081 0.0109 0.4531 βs,Handedness -0.0041 0.0039 0.2915 

βr,Income -0.0098 0.0122 0.4266 βs,Income 0.0042 0.0044 0.3429 

βr,AlcAbuse 0.0311 0.0279 0.2637 βs,AlcAbuse 0.0063 0.0100 0.5313 

βr,AlcDep -0.0162 0.0402 0.6870 βs,AlcDep -0.0082 0.0145 0.5726 

βr,SmokStatus -0.0628 0.0307 0.0409 βs,SmokStatus 0.0034 0.0110 0.7616 

βr,COI×C -0.0069 0.0111 0.5333 βs,COI×C 0.0009 0.0008 0.2866 

βr,COI×Eglob 0.0026 0.0079 0.7475 βs,COI×Eglob -0.0009 0.0009 0.2927 

βr,COI×D -0.0016 0.0042 0.7117 βs,COI×D -0.0005 0.0005 0.2367 

βr,COI×L 0.0033 0.0092 0.7226 βs,COI×L -0.0012 0.0009 0.1988 

βr,COI×Q 0.0055 0.0117 0.6401 βs,COI×Q -0.0024 0.0042 0.5592 
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Figure 1. Dynamic brain networks as a function of endogenous and exogenous variables of 

interest. Dynamic patterns of brain connectivity (presence/absence and strength) is modeled as a 

function of (dynamic) nodal and global network variables (e.g., clustering coefficient, global 

efficiency, etc.) and exogenous covariates, including: phenotypes (e.g., blood measurements and 

brain damage) and possible confounding effects (e.g., hypertension and smoking).   
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Figure 2. Schematic for generating dynamic brain networks from fMRI time series. Time series 

are first filtered and prewhitened to remove the undesired undershoots/overshoots in the middle 

as well as undesired effects of autocorrelation. Then, using a sliding window correlation (SWC) 

approach, functional connectivity between brain areas is estimated between all time series pairs 

at each shift to produce a connection matrix at that shift. By moving the window across the entire 

length of time series, a series of dynamic connection matrices will be produced for each 

participant. A threshold is applied to the matrix to remove negative connections. These networks 

are subsequently used for analyses.  
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Figure 3. Cartoon depiction of fluid intelligence effects on dynamic brain networks. The nodes 

represent brain regions, and edges represent dynamic functional connections. To illustrate the 

effects of fluid intelligence on dynamic changes of modularity  as interpreted from Table 3, three 

random communities marked with separate colors, dark red, light blue, and purple, are shown in 

this figure. The within- and between-community connections are shown with the yellow and 

black colors, respectively. As this figure illustrates, dynamic changes of modularity is 

predominantly determined by between-community connections for any level of intelligence (here 

two level is shown – low and high). However, when comparing the more and less intelligent 

participants (networks on the right), in more intelligent participants, dynamic changes of 

modularity is less determined by between-community connections (thicker dark edges in top 

right), and dynamic changes of within-community connections also play more important roles in 

changing the modularity (thicker yellow edges in top right network). We should note that fluid 

intelligence was modeled as a continuous variables, and here, only for simplicity, we have shown 

how intelligence affects modularity for two extreme conditions.  
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