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31 Abstract
32 Background

33 Manual axon histomorphometry (AH) is time- and resource-intensive, which has inspired many 

34 attempts at automation. However, there has been little investigation on implementation of 

35 automated programs for widespread use. Ideally such a program should be able to perform AH 

36 across imaging modalities and nerve states. AxonDeepSeg (ADS) is an open source deep 

37 learning program that has previously been validated in electron microscopy. We evaluated the 

38 robustness of ADS for peripheral nerve axonal histomorphometry in light micrographs prepared 

39 using two different methods. 

40

41 Methods

42 Axon histomorphometry using ADS and manual analysis (gold-standard) was performed on 

43 light micrographs of naïve or regenerating rat median nerve cross-sections prepared with either 

44 toluidine-resin or osmium-paraffin embedding protocols. The parameters of interest included 

45 axon count, axon diameter, myelin thickness, and g-ratio. 

46

47 Results

48 Manual and automatic ADS axon counts demonstrated good agreement in naïve nerves and 

49 moderate agreement on regenerating nerves. There were small but consistent differences in 

50 measured axon diameter, myelin thickness and g-ratio; however, absolute differences were 

51 small. Both methods appropriately identified differences between naïve and regenerating 

52 nerves. ADS was faster than manual axon analysis.

53

54 Conclusions
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55 Without any algorithm retraining, ADS was able to appropriately identify critical differences 

56 between naïve and regenerating nerves and work with different sample preparation methods of 

57 peripheral nerve light micrographs. While there were differences between absolute values 

58 between manual and ADS, ADS performed consistently and required much less time. ADS is 

59 an accessible and robust tool for AH that can provide consistent analysis across protocols and 

60 nerve states. 

61

62 Key words: axon histomorphometry; machine learning; peripheral nervous system; outcome 

63 measure; histology

64
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65 Introduction

66 Axon histomorphometry (AH) is the most commonly used outcome measure in peripheral nerve 

67 research. It involves axon quantification and measurement of axonal micro-structure 

68 parameters on nerve cross-sections [1,2]. Manual measurements has traditionally been the 

69 gold-standard for AH, but this approach is both time- and resource-intensive and has known 

70 limitations related to differing sample preparation protocols and inter-rater reliability [1,2].

71

72 These widely recognized limitations of manual AH have inspired many tools to achieve some 

73 degree of automation [3–5]. A major obstacle to full automation using traditional programming 

74 methods is the difficulty of achieving axonal segmentation; that is, the process by which the 

75 boundaries of the myelin sheath surrounding individual axons are defined so that each axon 

76 can be measured separately [3,6,7] To illustrate the challenge of axonal segmentation, axons in 

77 undamaged nerves reside in close proximity with myelin sheaths tending to abut each other; in 

78 comparison, debris is frequently observed in regenerating nerves that can be mislabeled as an 

79 axon. These and other nuances need to be carefully defined to improve axonal segmentation, 

80 but manual correction is still required due to frequent errors that can affect downstream 

81 calculations and substantially reduce measurement accuracy. 

82

83 Machine learning has the potential to address the barriers to automating AH. Unlike the rigid 

84 design and inflexibility of traditional programs, machine learning algorithms iteratively create a 

85 set of rules by training on a large dataset [7,8]. Deep learning, also known as computer vision, 

86 is a subset of machine learning that can use convolutional neural networks, where each 

87 network hierarchically defines specific features of images and does not require structured 

88 numerical input data [9,10]. Various programs have leveraged deep learning for nerve analysis, 
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89 but their generalizability has not been investigated for implementation outside of the research 

90 groups in which they were developed [4–7,10–12].

91

92 AxonDeepSeg (ADS) is a novel deep learning program for fully-automated AH originally 

93 developed using both scanning- and transmission-electron micrographs of the brain and spinal 

94 cord [7]. The purpose of the present study was to validate the performance of ADS “out-of-the-

95 box” in peripheral nerve light micrographs to determine if it can be implemented reliably 

96 without retraining the program for light microscopy. Given the robustness of its deep learning 

97 algorithm, we hypothesized that ADS could perform AH on light micrographs of peripheral 

98 nerves across different tissue preparation protocols and nerve states. To test this hypothesis, 

99 we performed a validation study using adult rat median nerve preparations, comparing ADS to 

100 the gold-standard of manual axon quantification and critical parameter measurements. 

101

102 Materials and Methods

103 Animals

104 This study was carried out in accordance with National Institutes of Health recommendations in 

105 the Guide for the Care and Use of Laboratory Animals. The protocol was approved by the 

106 Johns Hopkins University Animal Care and Use Committee (Protocol number: RA18M74). All 

107 surgery was performed under isoflurane anesthesia with pre- and post-procedure 

108 subcutaneous buprenorphine analgesia. We used four adult male Lewis rats (Envigo, Frederick, 

109 MD), 12 to 24 weeks old and weighing 300 to 400 g. Two animals had no intervention prior to 

110 median nerve harvest. The other two underwent cut and repair of the proximal aspect of the 

111 median nerve at the level of the pectoralis and were sacrificed 16 weeks later. There were no 

112 specific exclusion criteria and no animals were excluded from the analysis.

113
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114 Tissue harvest

115 The rats were anesthetized with isoflurane prior to exposure of the heart for cardiac perfusion. 

116 Each rat was perfused through the left ventricle with 200 mL of phosphate buffered saline 

117 (PBS) followed by 200 mL of 4% paraformaldehyde (Sigma Aldrich, St Louis, MO) in PBS. 

118 Unilateral median nerves were exposed through a volar approach and dissected free of 

119 surrounding tissue under a dissection microscope. To compare embedding protocols, in the 

120 two naïve rats, 10 mm samples of each nerve were collected at the mid-humerus level. These 

121 were further cut into two 5 mm samples, each of which was allocated to one of two processing 

122 protocols: osmium-paraffin or toluidine-resin. For the regenerating samples, the median nerve 

123 was harvested at the level of the mid-forearm and nerve was processed in osmium-paraffin 

124 only.

125

126 Toluidine blue with resin embedding

127 One 5 mm sample from each naïve nerve was fixed for 48 hours at 4˚ C in a solution of 2% 

128 glutaraldehyde (16216, EMS), 3% paraformalydehyde (15754-S, EMS) and 0.1 M Sorensen’s 

129 phosphate buffer pH 7.2 solution. Specimens were post-fixed in 2% osmium tetroxide, 

130 dehydrated in ascending alcohol series (starting at 50%) and embedded in Araldite® 502 resin 

131 (Polyscience). Semi-thin (1 µm) tissue sections were cut on an Ultracut E microtome (Reichert 

132 Inc, Buffalo, NY) and stained with 1% Toluidine blue.

133

134 Osmium tetroxide staining only with paraffin embedding

135 This protocol is based on a previously published staining and embedding procedure with all 

136 steps carried out at 4° C [13]. One 5 mm sample from each nerve was fixed in a 4% 

137 paraformaldehyde in PBS solution for 2 hours. Samples were then placed in two serial washes 

138 of PBS solution with gentle agitation for 30 seconds each prior to being submerged for 2 hours 
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139 in 2% osmium solution (RT 19172, EMS). Thereafter, the washing step was repeated, and 

140 samples were stored in 0.2% glycine (Sigma) in PBS solution until embedding. Samples were 

141 processed by graded ethanol dehydration (starting at 30%), cleared with Pro-Par (Anatech Ltd) 

142 and infiltrated with paraffin. After processing, samples were embedded in paraffin, then cut 

143 with a microtome into 7 µm thick sections.

144

145 Imaging

146 Two representative slices of naïve median nerve (one from each animal) were chosen from 

147 each of the two staining/embedding protocols (toluidine-resin, osmium-paraffin), and two 

148 representative slices of regenerating nerve (one from each animal) in osmium-paraffin were 

149 chosen. Microscopy was performed using a Zeiss Axioplan 2 (Carl Zeiss Microscopy LLC, 

150 White Plains, NY) with a 100x oil lens (numerical aperture 1.30) and digital images were 

151 captured using a Jenoptik ProgRes C5 camera (Jupiter, FL) mounted to the microscope. At this 

152 magnification, a single nerve slice produced 12 to 17 micrograph segments. 

153

154 Manual analysis

155 For manual analysis, the 12 to 17 non-overlapping micrograph segments for each nerve slice 

156 were analyzed individually by a blinded assessor. These micrograph segments (.tiff files, 

157 2580x1944 pixels, 15 MB) were imported into ImageJ (FIJI Package, version 2.0, NIH, 

158 Bethesda, MD) and, per stereological principles, at the center of each micrograph segment we 

159 sampled a box measuring either 25x25 µm (625 µm2; naïve nerves) or 40x40 µm (1600 µm2; 

160 regenerating nerves) (Fig.1)[14]. This method created non-overlapping sample areas across the 

161 entire nerve. Axons touching the top and right borders of the box were included in the 

162 measurements while those touching the bottom and left borders were not [1]. The larger 

163 sampling area was used for regenerating nerves due to their lower axon density. If the sampled 
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164 area was at an edge, and axons only covered a portion of the area, a multiplication factor was 

165 applied to ensure that the counts were comparable across all samples from the same nerve. 

166 Thresholding to create a black and white image was performed manually so that small axons 

167 were captured while simultaneously trying to avoid artificially thickening myelin sheaths. For 

168 fibers where myelin touched, lines were drawn between them so that they would be individually 

169 segmented. Counting was performed manually and then axon diameter and myelin thickness 

170 were individually measured using the “minferet” command. G-ratio (axon diameter divided by 

171 fiber diameter) was calculated from these values. 

172

173 Fig 1. Nerve slices at 10x magnification demonstrating number of micrographs and stereology 

174 sample. 

175 (A) Representative naïve nerve (osmium-paraffin protocol). Grey boxes represent individual 

176 micrographs, while the clear square in the middle represents the stereologic sampled area of 

177 25x25 µm box (625 µm2) used for naïve samples. Axons touching the top and right borders of 

178 the box were included in the measurements while those touching the bottom and left borders 

179 were not. (B) Representative regenerating nerve (osmium-paraffin protocol), demonstrating 

180 stereologic sampling with larger 40x40 µm box (1600 µm2), given decreased axon density.

181

182 Automated analysis 

183 AxonDeepSeg (ADS) is an open source program created using the Python coding language, 

184 and its development has been previously described [7]. In brief, deep learning models were 

185 trained from a dataset containing transmission electron micrographs with different acquisition 

186 resolutions in order to increase variability and improve generalization. All samples were from 

187 the central nervous system (brain and spinal cord) of mice, rats, and humans. The pipeline of 

188 ADS development consisted of four steps: data preparation, learning, evaluation, and 
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189 prediction. Ground truth labeling for segmentation was created using the image processing 

190 software GIMP (https://www.gimp.org/) and was cross-checked by at least two researchers. 

191 The deep learning architecture is based on the U-net, which combined a contracting path with 

192 traditional convolutions and then an expanding path with up-convolutions. This allowed for 

193 prediction of 3 classes: axon, myelin, and background. To avoid border effects during 

194 prediction, inference is run on a larger sample square but only calculates within a smaller 

195 square, then iterates over the entire image by shifting this sample square.

196

197 For our study, the same .tiff images used in the manual analysis were imported into ADS 

198 (version 2.1, with FSLeyes extension) and the resolution was entered (0.05 micrometer per 

199 pixel). The transmission electron microscopy pre-set was chosen because it has dark myelin 

200 and lighter axons, similar to light microscopy. Segmentation was performed automatically. 

201 Though manual correction is easily performed in the graphic user interface of ADS, to assess 

202 the accuracy of the automatic segmentation we refrained from correction beyond removal of 

203 segmented connective tissue (Fig.2). ADS then computed axon measurements for the entire 

204 micrograph and created a .csv file of each axon, its coordinates, and its respective 

205 measurements. To match the stereology sampling used in manual analysis, only axons within 

206 the same coordinates as in the manual analysis were included in our results. 

207

208 Fig 2. Representative screen shots showing user interface of AxonDeepSeg (ADS). 

209 (A) .tiff images were imported individually into the program, resolution was defined, and 

210 transmission electron microscopy was chosen as it produces dark myelin and lighter axons, as 

211 in light microscopy. Segmentation was then performed automatically, creating different layers 

212 for the axons and myelin. (B) Minimal manual correction was performed to remove objects 

213 mislabeled as axons. Histomorphometric measurements and axon count were then calculated 
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214 by pressing the “Compute morphometrics” button, and a .csv file with these values was 

215 generated and segmented images were saved. (A) and (B) are micrographs of naïve nerves 

216 prepared in toluidine-resin protocol. (C) Micrograph of naïve nerve, osmium-paraffin protocol. 

217 (D) Micrograph of regenerating nerve, osmium-paraffin protocol.

218

219 Statistical analysis

220 Data analyses were conducted using R (R Core Team, 3.6.1). Descriptive statistics were 

221 calculated for axon count, myelin thickness, and g-ratio. The primary outcome of comparability 

222 of axon counts was evaluated using Bland-Altman plots and intraclass correlation (ICC). The 

223 Bland-Altman plots show the difference between each value obtained from ADS and manual 

224 measurement, plotted against the mean of each measurement pair [15]; 95% of differences are 

225 expected to be contained within 1.96 standard deviations of the mean difference (i.e., the 

226 “limits of agreement”), otherwise fixed measurement bias must be ruled out. Secondary 

227 outcomes of myelin thickness, axon diameter, and g-ratio were compared using two-sample t-

228 tests and Cohen’s d for effect size. A P-value of < 0.05 was considered statistically significant. 

229 Cohen’s d effect size magnitudes were defined as: negligible (< 0.2), small (< 0.5), medium (< 

230 0.8), and large (> 0.8).

231

232 Results

233 The average time for ADS to segment a 15 MB tiff file measuring 2580x1944 pixels was 20 

234 seconds (2018 MacBook Pro, 3.1 GHz Intel Core i5, 8 GB 2133 MHz LPDDR3 RAM), with an 

235 additional minute for minimal manual correction and 1 second for measurement output. 

236 Average time to import the same image into ImageJ, perform manual thresholding, counting 

237 and measurement for a single micrograph was 5 minutes. In total there were 27 micrographs of 

238 the two toluidine-resin naïve nerves (12 and 15), 27 micrographs of the two osmium-paraffin 
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239 naïve nerves (13 and 14), and 33 micrographs of the two osmium-paraffin regenerating nerves 

240 (16 and 17). 

241

242 Axon count

243 Average axon count in the 25x25 µm sample areas of the 27 toluidine-resin micrographs for the 

244 two naïve nerves was 12.31 ± 4.12 when counted manually and 11.79 ± 3.8 (mean ± standard 

245 deviation) in the ADS output (Fig.3A). Bland-Altman showed limits of agreement ranging from -

246 5 to 5 and the ICC was 0.76 (P < 0.001; Fig.4A).

247

248 Fig 3. Number of axons in the sampled area. 

249 (A) Naïve nerves prepared with the toluidine-resin protocol, the mean number of axons in the 

250 625 µm2 sample area for the 27 micrographs. (B) Naïve nerves prepared with the osmium-

251 paraffin protocol, the mean number of axons in the 625 µm2 sample area for the 27 

252 micrographs. (C) Regenerating nerves prepared with the osmium-paraffin protocol, the mean 

253 number of axons in the 1600 µm2 sample area for the 33 micrographs. Boxes are 1 interquartile 

254 range (IQR), whiskers 1.5*IQR.

255

256 Fig 4. Bland-Altman plots of ADS and manual axon counts. 

257 (A) In naïve nerves prepared with the toluidine-resin protocol, the limits of agreement between 

258 ADS and manual counts in the 625 µm2 sample area in each micrograph ranged from -5 to 5. 

259 (B) In naïve nerves prepared with the osmium-paraffin protocol, the limits of agreement 

260 between ADS and manual counts in the 625 µm2 sample area ranged from -6 to 6. (C) In 

261 regenerating nerves prepared with the osmium-paraffin protocol, the limits of agreement 

262 between ADS and manual counts in the 1600 µm2 sample area ranged from -2 to 12.

263
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264 Axon count in the same sized sample area for the 27 micrographs osmium-paraffin protocol 

265 naïve nerves was 13.72 ± 5.19 when counted manually, and was 13.72 ± 5.78 in the ADS 

266 output (Fig.3B). Bland-Altman comparison showed good agreement between the counts, with 

267 limits of agreement ranging from -6 to 6. ICC was 0.84 (P < 0.001), indicating good to excellent 

268 agreement (Fig.4B). In the regenerating nerves, the average axon count per 40x40 µm sample 

269 area was 15.96 ± 7.48 when counted manually and 11.09 ± 5.74 in the ADS output (Fig.3C). 

270 Bland-Altman limits of agreement were -2 to 12 and the ICC was 0.56 (P <0.001; Fig.4C). 

271

272 Measurements

273 In the naïve nerve toluidine-resin protocol samples, there was a small difference in measured 

274 axon diameters, with larger measurements in ADS compared to manual (3.67 ± 1.92 vs. 3.06 ± 

275 1.71, t = 4.19, P < 0.001; d = 0.34; Fig.5A). Myelin was thicker in the ADS compared to manual 

276 measuring (1.16 ± 0.52 vs. 1.06 ± 0.46, t = 2.63, P = 0.0089; d = 0.21; Fig.6A). Thus g-ratio was 

277 larger in ADS (0.59 ± 0.12 vs. 0.57 ± 0.11, t = -2.22, P = 0.027; d = 0.18; Fig.7A). 

278

279 Fig 5. Comparison of axon diameters measured by ADS or manually. 

280 (A-C) Naïve nerves, toluidine-resin protocol; (A) Mean axon diameters for all micrographs for 

281 both nerves; (B) Mean axon diameters in each micrograph for nerve one; (C) Mean axon 

282 diameters in each micrograph for nerve two. (D-F) Naïve nerves, osmium-resin protocol; (D) 

283 Mean axon diameters for all micrographs for both nerves; (E) Mean axon diameters in each 

284 micrograph for nerve one; (F) Mean axon diameters in each micrograph for nerve two. (G-I) 

285 Regenerating nerves, osmium-paraffin protocol; (G) Mean axon diameters for all micrographs 

286 for both nerves; (H) Mean axon diameters in each micrograph for nerve one; (I) Mean axon 

287 diameters in each micrograph for nerve two. Asterisk (*) = significant (P < 0.05 by two-sample 

288 t-test). Boxes are 1 interquartile range (IQR), whiskers 1.5*IQR.
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289

290 Fig 6. Comparison of myelin thickness measured by ADS or manually. 

291 (A-C) Naïve nerves, toluidine-resin protocol; (A) Mean myelin thickness for all micrographs for 

292 both nerves; (B) Mean myelin thickness in each micrograph for nerve one; (C) Mean myelin 

293 thickness in each micrograph for nerve two. (D-F) Naïve nerves, osmium-resin protocol; (D) 

294 Mean myelin thickness for all micrographs for both nerves; (E) Mean myelin thickness in each 

295 micrograph for nerve one; (F) Mean myelin thickness in each micrograph for nerve two. (G-I) 

296 Regenerating nerves, osmium-paraffin protocol; (G) Mean myelin thickness for all micrographs 

297 for both nerves; (H) Mean myelin thickness in each micrograph for nerve one; (I) Mean myelin 

298 thickness in each micrograph for nerve two. Asterisk (*) = significant (P < 0.05 by two-sample t-

299 test). Boxes are 1 interquartile range (IQR), whiskers 1.5*IQR.

300

301 Fig 7. Comparison of g-ratio measured by ADS or manually. 

302 (A) Naïve nerves, toluidine-resin protocol, mean g-ratio for all micrographs for both nerves. (B) 

303 Naïve nerves, osmium-paraffin protocol, mean g-ratio for all micrographs for both nerves. (C) 

304 Regenerating nerves, osmium-paraffin protocol, mean g-ratio for all micrographs for both 

305 nerves. Asterisk (*) = significant (P < 0.05 by two-sample t-test). Boxes are 1 interquartile range 

306 (IQR), whiskers 1.5*IQR.

307

308 In naïve nerve osmium-paraffin protocol samples, there was no difference in measured axon 

309 diameter measured by ADS or manually (2.45 ± 1.16 vs. 2.47 ± 1.13, t = -0.29, P = 0.78; 

310 Fig.5B). Myelin was measured as thicker in ADS compared to manual measurements (1.54 ± 

311 0.45 vs. 1.35 ± 0.54, t = 4.86, P < 0.001; d = 0.38; Fig.6B), and this difference was consistent 

312 across micrographs. In turn, ADS had a smaller g-ratio, defined as axon diameter divided by 

313 fiber diameter (0.425 ± 0.10 vs. 0.474 ± 0.10, t = -6.28, P < 0.001; d = 0.49; Fig.7B). 
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314

315 In regenerating nerves (osmium-paraffin protocol), axon diameters were notably smaller than in 

316 the naïve nerves in both ADS (regenerating vs. naïve: 1.84 ± 1.00 vs. 2.45 ± 1.16, t = 7.13, P < 

317 0.001, d = 0.56) and manual measurements (1.27 ± 0.87 vs. 2.47 ± 1.13, t = 16.3, P <0.001, d = 

318 1.23). ADS measured axon diameter as larger compared to manual measurements (1.84 ± 1.00 

319 vs. 1.27 ± 0.87, t = 8.46, P < 0.001; d = 0.62; Fig.5C). Unlike in naïve samples, ADS measured 

320 myelin thickness as less than manual measuring (0.86 ± 0.30 vs. 1.06 ± 0.32, t = -8.56, P < 

321 0.001; d = -0.60; Fig.6C). This created a significantly larger calculated g-ratio in the ADS data 

322 (0.50 ± 0.16 vs. 0.39 ± 0.14, t = 13.8, P < 0.001; d = 1.0; Fig.7C). 

323

324 Discussion

325 We aimed to validate the use of the newly developed deep learning program AxonDeepSeg 

326 (ADS) for automated axon histomorphometry (AH) and found that even without algorithm 

327 retraining, ADS was able to appropriately identify critical differences between naïve and 

328 regenerating nerves and work in different sample preparation methods. AH is one of the most 

329 important measures in peripheral nerve research, yet it is a time- and resource-intensive task, 

330 which limits its accessibility as an outcome measure. While there has been a boom in 

331 programs created for AH, none of these have been validated for use outside of the specific 

332 protocols for which they were developed and therefore widespread implementation has been 

333 poor.

334

335 The ADS deep learning algorithm was originally trained and validated using electron 

336 micrographs, but given the increased accessibility of light microscopy, we tested its 

337 application in light micrographs of peripheral nerves [7]. We found that ADS was able to 

338 perform near automatic AH of peripheral nerve light micrographs with results that correlated 
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339 well to manual analysis but was much faster. Axon quantification in naïve nerves in both 

340 sample preparation protocols showed very good agreement with good interclass correlation 

341 between the manual and ADS counts. In regenerating nerves, the agreement was moderate, 

342 with ADS consistently counting fewer axons. Correlation could have been further improved by 

343 using the segmentation manual correction feature prior to calculating measurements.

344

345 One of the key differences between ADS and manual axon quantification is that ADS counted 

346 and measured every axon within a micrograph. With our manual analysis we used a stereologic 

347 sampling approach where only axons within a 25x25 µm (naïve) or 40x40 µm (regenerating) box 

348 at the center of each micrograph segment was counted, resulting in 12-17 sampled areas for 

349 each nerve. This approach is widely used in AH, in order to expedite time-consuming manual 

350 measurements (REF). Using a stereologic sampling approach, however, increases the risk of 

351 sampling error and bias as a difference in that small sample area can get compounded, leading 

352 to a significant difference in the number of total axons. For our comparisons we specifically 

353 analyzed only the ADS output for the same coordinates as in our manual analysis; however, 

354 ADS can evaluate the entirety of each micrograph rapidly which negates the need for 

355 stereologic sampling. It therefore does not need to be limited by local variation in axon density, 

356 and can avoid the error and bias propagation inherent in extrapolating from a stereologic 

357 approach.

358

359 Axon diameter, myelin thickness, and g-ratio are important AH parameters as they differentiate 

360 subpopulations of axons and can be used for evaluating changes following denervation and 

361 reinnervation [16]. ADS was able to appropriately identify differences in axon diameter, myelin 

362 thickness and g-ratio between naïve and regenerating nerves. Though there were small 

363 differences between ADS and manual measurements, they were in a consistent direction. With 
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364 our large dataset, this resulted in statistically significant differences even though the absolute 

365 differences were small. The absolute values of these parameters are known to differ between 

366 research labs due to differences in staining and imaging protocols [5,6], and the judgment of 

367 the individual raters doing the segmentations. Therefore, consistency within studies is most 

368 important, and ADS was able to provide reliable measurements with comparable variability as 

369 manual analysis. 

370

371 A known limitation of all machine learning programs is that accuracy and robustness are 

372 dependent on the images used to develop the model, what is known as the “ground truth”. 

373 This presents a problem for AH since as previously discussed, micrographs can vary 

374 depending on nerve state and sample processing. Re-training an algorithm model can provide 

375 more accurate results, at the cost of having to re-train a model, which is time consuming, 

376 requires expertise, and still lacks generalizability. 

377

378 Besides leveraging deep learning, ADS has a number of advantages over other programs that 

379 have been developed for axon histomorphometry [5–7,17]. ADS is open source and freely 

380 available for download from GitHub (https://github.com/neuropoly/axondeepseg). It was 

381 developed using Python, a commonly used programming language, and remains under 

382 continuous active development more than 2 years after its initial release. It has a graphical user 

383 interface and does not require advanced programming knowledge to use. Our results 

384 demonstrate that the current ADS algorithm is very robust across multiple nerve states and 

385 sample processing protocols. 

386

387 Deep learning and computer vision programs are an important step forward in the analysis of 

388 outcomes measures in nerve research. The speed and reliability of these methods promise to 
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389 be substantially improved over traditional manual measurement. Our work shows that in its 

390 current iteration, ADS is an accessible and robust tool for peripheral nerve AH across multiple 

391 image preparation modalities without retraining. 

392
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